

FCC RADIO TEST REPORT

FCC ID: OKUSB75WUJ1

Product Name :	37"Bluetooth Soundbar with Wireless Subwoofer
Trade Mark :	SYLVANIA, PROSCAN
Main Model :	PSB378W
Additional Model :	SBB-55391, SB-75WUJ1, PSB378X, SBXXXXXX (X means unit color and Buyer different, it can A to Z or N/A , the number of "X" can vary according to actual demand $)$
Report No. :	UNIA21052422ER-01

Prepared for

SHENZHEN JUNLAN ELECTRONIC LTD

No.277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

TEST RESULT CERTIFICATION

Applicant	SHENZHEN JUNLAN ELECTRONIC LTD
Address	No.277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China
Manufacturer	SHENZHEN JUNLAN ELECTRONIC LTD
Address	No.277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China
Product description	
Product Name	37"Bluetooth Soundbar with Wireless Subwoofer
Trade Mark	SYLVANIA, PROSCAN
Model Name	PSB378W, SBB-55391, SB-75WUJ1, PSB378X, SBXXXXXX (X means unit color and Buyer different, it can A to Z or N/A \cdot the number of "X" can vary according to actual demand)
Test Methods	FCC Rules and Regulations Part 15 Subpart C Section 15.247, ANSI C63.10: 2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date (s) of performance of tests:	April 19 ~ May 20, 2021
Date of Issue:	May 20, 2021
Test Result	Pass

Prepared by:

Date of Test

Reviewer:

Approved & Authorized Signer:

Bob (im

Bob liao/Editor

kahn.yang

Kahn yang/Supervisor

once

Liuze/Manager

Page 3 of 95

Table of Contents

1.	G	ENERAL INFORMATION	6
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST	
	1.2	Related Submittal(s) / Grant (s)	8
	1.3	TEST METHODOLOGY	8
	1.4	EQUIPMENT MODIFICATIONS	8
	1.5	Support Device	8
	1.6	TEST FACILITY AND LOCATION	9
	1.7	SUMMARY OF TEST RESULTS	10
2.	S	YSTEM TEST CONFIGURATION	
	2.1	EUT CONFIGURATION	11
	2.1	SPECIAL ACCESSORIES	
	2.2	DESCRIPTION OF TEST MODES.	
3.	FF	REQUENCY HOPPING SYSTEM REQUIREMENTS	12
	3.1	Standard and Limit	12
	3.2	EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	3.3	Frequency Hopping System	
4.	A	C POWER LINE CONDUCTED EMISSIONS	14
	4.1	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	4.2	Test Condition	
	4.3	Measurement Results	14
5.	R	ADIATED EMISSION	19
	5.1	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	10
	5.2	Measurement Procedure	
	5.2		
	5.4	Measurement Results	
6.	-	HANNEL SEPARATION	
0.	C	HANNEL SEPARATION	
	6.1	MEASUREMENT PROCEDURE	
	6.2	LIMIT	
	6.3	Test SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	6.4	Measurement Results	
7.	20	ODB BANDWIDTH	54
	7.1	Measurement Procedure	
	7.2	Test SET-UP (Block Diagram of Configuration)	
	7.3	Measurement Results	
	-		_

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

		Page 4 of 95	Report No.: UNIA2	21052422ER-01
8. H	OPPING CHANNEL NUMBER			
8.1	Measurement Procedure			
8.2	LIMIT			
8.3	TEST SET-UP (BLOCK DIAGRAM OF COM			
8.4	MEASUREMENT RESULTS			
9. TI	ME OF OCCUPANCY (DWELL TIME)			
9.1	MEASUREMENT PROCEDURE			
9.2	LIMIT			
9.3	TEST SET-UP (BLOCK DIAGRAM OF COM	IFIGURATION)		
9.4	MEASUREMENT RESULTS			63
10. N	IAXIMUM PEAK OUTPUT POWER			
10.1	MEASUREMENT PROCEDURE			
10.2	Liмit			
10.3	TEST SET-UP (BLOCK DIAGRAM OF	Configuration)		
10.4	MEASUREMENT RESULTS			
11. B	AND EDGE			
	Measurement Procedure			
11.1	MEASUREMENT PROCEDURE			
11.2				
11.3	MEASUREMENT RESULTS			
12. A	NTENNA APPLICATION			
12.1	ANTENNA REQUIREMENT			
12.2	MEASUREMENT RESULTS			
13. C	ONDUCTED SPURIOUS EMISSIONS.			
13.1	MEASUREMENT PROCEDURE		<u> </u>	
13.2	Limit	V		
13.3	TEST SET-UP (BLOCK DIAGRAM OF	Configuration)		
13.4	MEASUREMENT RESULTS			
14. TI	EST EQUIPMENT LIST	~	\mathbf{v}	

Revision History of This Test Report

	<u></u>	
Report Number	Description	Issued Date
UNIA21052422ER-01	Initial Issue	2021-5-20
5	in in	
1		12
L. R	i in	
- 1		5
LA U	i in h	
1		5
L.	in in	
		S.
2	in in	4
1		5
n. N	in in	
i.		5
L.	17. N	j.
_		
L.	in in	- i
i la		V
	in in	
ia.		5
	in in	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

GENERAL INFORMATION

1.1 Product Description for Equipment under Test

Product Name:	37"Bluetooth Soundbar with Wireless Subwoofer		
Trade Mark:	SYLVANIA, PROSCAN		
Main Model:	PSB378W		
Additional Model:	SBB-55391, SB-75WUJ1, PSB378X, SBXXXXXXX (X means unit color and Buyer different, it can A to Z or N/A, the number of "X" can vary according to actual demand)		
Model Difference:	All models are identical in interior structure, electrical circuits and components, only different in model name, Therefore, only model PSB378W is for tests.		
FCC ID:	OKUSB75WUJ1		
Operation Frequency:	2402MHz~2480MHz		
Number of Channels:	79CH		
Modulation Type:	GFSK, π/4 DQPSK, 8DPSK		
Antenna Type:	PCB Antenna		
Antenna Gain:	0dBi		
Hardware Version:	V1.0		
Software Version:	V1.0		
Adapter:	Adapter 1: Model: GKYZD0150160US Input: AC100-240V 50/60Hz 0.8A Max Output: DC 16V/1.5A Adapter 2: Model: JY024160150AA-UL Input: 100-240V 50/60Hz 1.0A Max Output: DC 16V/1.5A		
Bluetooth Version:	5.0 BR+EDR		

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

LN

Report No.: UNIA21052422ER-01

Page 7 of 95 Bluetooth Channel List

Channel	Frequency MHz	Channel	Frequency MHz	Channel	Frequency MHz	Channel	Frequency MHz
1	2402	21	2422	41	2442	61	2462
2	2403	22	2423	42	2443	62	2463
3	2404	23	2424	43	2444	63	2464
4	2405	24	2425	44	2445	64	2465
5	2406	25	2426	45	2446	65	2466
6	2407	26	2427	46	2447	66	2467
7	2408	27	2428	47	2448	67	2468
8	2409	28	2429	48	2449	68	2469
9	2410	29	2430	49	2450	69	2470
10	2411	30	2431	50	2451	70	2471
11	2412	31	2432	51	2452	71	2472
12	2413	32	2433	52	2453	72	2473
13	2414	33	2434	53	2454	73	2474
14	2415	34	2435	54	2455	74	2475
15	2416	35	2436	55	2456	75	2476
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	79	2480
20	2421	40	2441	60	2461	×.	

Note: According to section 15.31(m), regards to the operating frequency range over 10MHz, the Lowest, middle, and the Highest frequency of channel were selected to perform the test. The selected frequency and test software see below:

_					
Channel		Frequency (MHz)			
	1	2402			
	40	2441			
	79	2480			
	100				

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: OKUSB75WUJ1 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rule.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters.

1.4 Equipment Modifications

Not available for this EUT intended for grant.

1.5 Support Device

	1		
Description	Manufacturer	Model	S/N
Mobile phone	Xiaomi	M1906G7E	25838/09WA04445
DVD Player	GIEC	BDP-G4350	BD43504KXM20121400050
USB Flash Disk	Kingston	USB 3.2 Gen DTKN	N/A

Test Facility and Location

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

The Designation Number is CN1227 FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 21947

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

1.7 Summary of Test Results

		1 A A A A A A A A A A A A A A A A A A A	
FCC Rules	FCC Rules Description Of Test		Result
§15.207 (a)	AC Power Line Conducted Emission	±1.06dB	Compliant
§15.247(d),§15.209, §15.205	Radiated Emission	±3.70dB	Compliant
§15.247(a)(1)	Channel Separation	±1.42 x10 ⁻⁴ %	Compliant
§15.247(a)(1)	20dB Bandwidth	±1.42 x10 ⁻⁴ %	Compliant
§15.247(a)(1)(iii)	17(a)(1)(iii) Hopping Channel Number		Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	±5%	Compliant
§15.247(b)	Max Peak Output Power	±1.06dB	Compliant
§15.247(d)	Band Edge	±1.70dB	Compliant
§15.203 Antenna Requirement		N/A	Compliant
§15.247(d) Conducted Spurious Emission		±1.70dB	Compliant

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

Page 11 of 95

2.2 Special Accessories

Not available for this EUT intended for grant. 2.3 Description of test modes

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and normal mode is programmed. The Lowest, middle and highest channel were chosen for testing, and all packets DH1, DH3, DH5, 2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3, 3-DH5 mode in all modulation type GFSK, π /4-DQPSK and 8DPSK were tested.

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

Test Item	Software	Description
Conducted RF Testing and Radiated testing	BT_Tool	Set the EUT to different modulation and channel

Output power setting table:

Test Mode	Set Tx Output Power	Data rate		
GFSK	7dBm	DH1		
π/4-DQPSK	7dBm	2-DH1		
8DPSK	7dBm	3-DH1		

BI_IOOI				×
OMx Baudrate				
Classic BLE				
Test Mode				
FCC Test 🖲			Run	
CBT Test 🔾	555555555	55		
RF Control				
RF Mode	TX TEST \sim	Packet Type	DH5	\sim
Hopping	OFF V	TX Frequency	2402	\sim
TX Power	6 ~	RX Frequency	2402	\sim
Scenario	PRBS Pattern			\sim
LOG: FCC test	mode			^
				~

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

Page 12 of 95 REQUENCY HOPPING SYSTEM REQUIREMENTS

3.1 Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3.2 EUT Pseudorandom Frequency Hopping Sequence

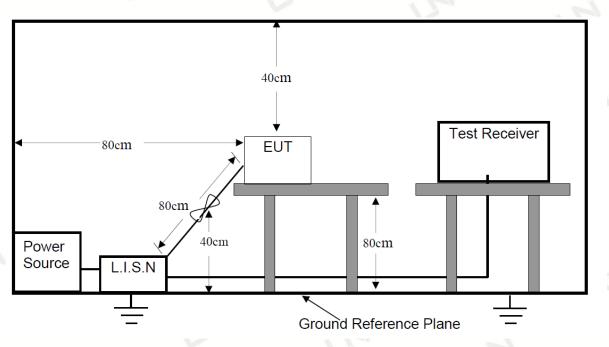
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 34, 51, 72, 09, 01, 64, 22, 33, 41, 32, 47, 65, 73, 53, 69, 06, 17, 04, 20, 36, 52, 38, 66, 70, 78, 68, 76, 21, 29, 10, 26, 49, 00, 58, 44, 59, 75, 13, 03, 14, 11, 35, 43, 37, 50, 61, 77, 55, 71, 02, 23, 07, 27, 39, 54, 46, 48, 15, 63, 62, 67, 25, 31, 12, 28, 19, 60, 42, 57, 74, 16, 05, 18, 30, 45, etc.

The system receiving have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.


Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

Page 14 of 95 POWER LINE CONDUCTED EMISSIONS

4.1 Test SET-UP (Block Diagram of Configuration)

4.2 Test Condition

Test Requirement: FCC Part 15.207

Frequency Range: 150kHz ~ 30MHz

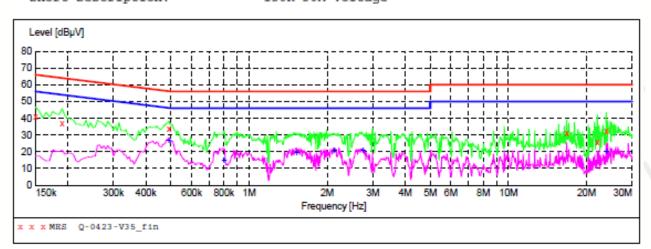
Detector: QP, AVG

Operation Mode: BT Communication

4.3 Measurement Results

PASS

Please refer to the following pages of the worst case


We have be tested for all avaiable U.S. Voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

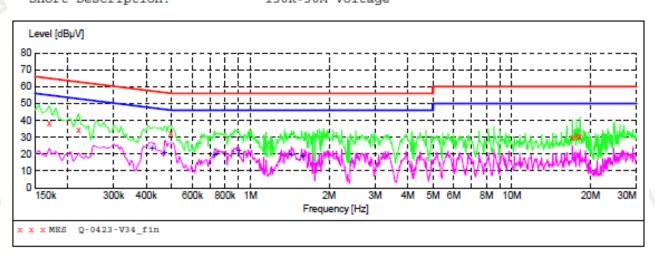
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Phase:	Line
Model No.:	PSB378W	Temperature:	25 ℃
Test Mode:	On with Bluetooth	Humidity:	50 %
Test Voltage:	AC 120V/60Hz	Test By:	PEI
Test Results:	PASS		
Adapter:	GKYZD0150160US		in in

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "Q-0423-V35 fin"

20	21-4-23 16:	50						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.150000 0.190000 0.490000 16.791865 22.028828 23.859737	41.00 37.20 33.80 30.90 26.10 32.20	8.1 8.6 10.1 10.5 10.6	66 64 56 60 60	25.0 26.8 22.4 29.1 33.9 27.8	QP QP QP QP OP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "Q-0423-V35 fin2"


20	021-4-23 16:	50							
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	
	MHZ	dBuV	dB	dBuV	dB				
	0.490000	27.10	8.6	46	19.1	AV	L1	GND	
	0.800000	15.40	8.6	46	30.6	AV	L1	GND	
	1.525000	19.60	8.8	46	26.4	AV	L1	GND	
	2.123419	21.20	8.8	46	24.8	AV	L1	GND	
	2.752498	21.10	8.9	46	24.9	AV	L1	GND	
	23.859737	20.70	10.6	50	29.3	AV	L1	GND	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

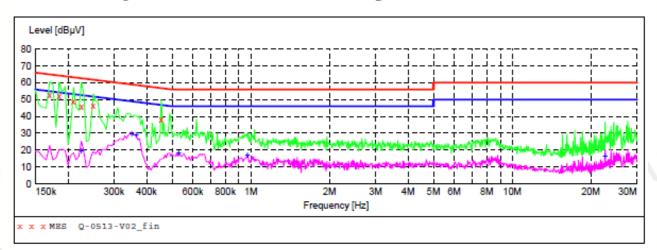
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Phase:	Neutral
Model No.:	PSB378W	Temperature:	25 °C
Test Mode:	On with Bluetooth	Humidity:	50 %
Test Voltage:	AC 120V/60Hz	Test By:	PEI
Test Results:	PASS	V	
Adapter:	GKYZD0150160US		

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "Q-0423-V34 fin"

203	21-4-23 16:4	16						
	Frequency	Level	Transd	Limit		Detector	Line	PE
	MHz	dBµV	dB	dBµV	dB			
	0.170000	38.30	8.1	65	26.7	OP	N	GND
	0.220000	34.70	8.2	63	28.1	QP	N	GND
	0.495000	32.60	8.6	56	23.5	QP	N	GND
	17.062151	30.10	10.1	60	29.9	QP	N	GND
	17.686308	30.80	10.1	60	29.2	QP	N	GND
	18.260257	30.30	10.2	60	29.7	QP	N	GND

MEASUREMENT RESULT: "Q-0423-V34 fin2"


20	21-4-23 16:4							
	Frequency	Level		Limit		Detector	Line	PE
	MHZ	dBµV	dB	dBµV	dB			
	0.420000	24.00	8.5	47	23.4	AV	N	GND
	0.470000	21.40	8.6	47	25.1	AV	N	GND
	0.730000	19.90	8.6	46	26.1	AV	N	GND
	0.900000	22.30	8.7	46	23.7	AV	N	GND
	1.435000	19.90	8.8	46	26.1	AV	N	GND
	1.575000	19.20	8.8	46	26.8	AV	N	GND

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

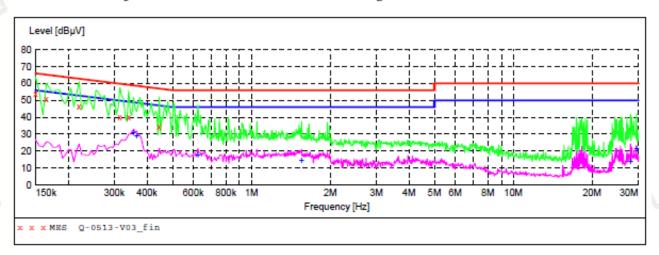
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Phase:	Line
Model No.:	PSB378W	Temperature:	25 ℃
Test Mode:	On with Bluetooth	Humidity:	50 %
Test Voltage:	AC 120V/60Hz	Test By:	PEI
Test Results:	PASS		
Adapter:	JY024160150AA-UL		in in

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "Q-0513-V02_fin"

20	21-5-14 14:4	45						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.170000	52.80	8.1	65	12.2	OP	L1	GND
	0.185000	51.90	8.1	64	12.4	Q₽	L1	GND
	0.210000	48.90	8.2	63	14.3	QP	L1	GND
	0.225000	45.90	8.2	63	16.7	QP	L1	GND
	0.250000	46.30	8.3	62	15.5	QP	L1	GND
	0.455000	38.20	8.6	57	18.6	QP	L1	GND

MEASUREMENT RESULT: "Q-0513-V02 fin2"


20	21-5-14 14:	45						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHZ	dBµV	dB	dBuV	dB			
	0.225000	20.00	8.2	53	32.6	AV	Ll	GND
	0.350000	30.30	8.4	49	18.7	AV	L1	GND
	0.365000	29.30	8.5	49	19.3	AV	L1	GND
	0.530000	18.50	8.6	46	27.5	AV	L1	GND
	0.970000	17.30	8.7	46	28.7	AV	L1	GND
	22.653087	17.00	10.5	50	33.0	AV	L1	GND

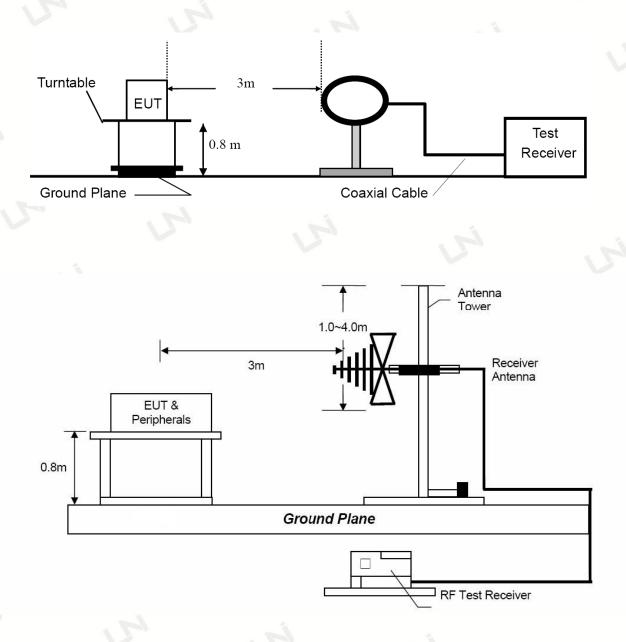
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Phase:	Neutral
Model No.:	PSB378W	Temperature:	25 ℃
Test Mode:	On with Bluetooth	Humidity:	50 %
Test Voltage:	AC 120V/60Hz	Test By:	PEI
Test Results:	PASS	V	
Adapter:	JY024160150AA-UL		

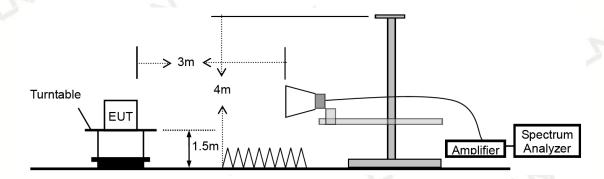
SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "Q-0513-V03_fin"

2021-5-14 14:	48					_	
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.150000	54.10	8.1	66	11.9	OP	N	GND
					~		
0.165000	51.00	8.1	65	14.2	QP	N	GND
0.220000	46.40	8.2	63	16.4	QP	N	GND
0.315000	40.40	8.4	60	19.4	QP	N	GND
0.340000	40.30	8.4	59	18.9	QP	N	GND
0.445000	34.50	8.6	57	22.5	QP	N	GND


MEASUREMENT RESULT: "Q-0513-V03_fin2"

20	021-5-14 14:4	48						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.355000	31.30	8.4	49	17.5	AV	N	GND
	0.365000	29.40	8.5	49	19.2	AV	N	GND
	0.625000	18.10	8.6	46	27.9	AV	N	GND
	1.555000	15.10	8.8	46	30.9	AV	N	GND
	27.990726	14.30	11.0	50	35.7	AV	N	GND
	29.481694	21.80	11.1	50	28.2	AV	N	GND


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

RADIATED EMISSION5.1 Test SET-UP (Block Diagram of Configuration)

5.1.1 Radiated Emission Test Set-Up, Frequency below 30MHz

5.1.2 Radiated Emission Test Set-Up, Frequency above 1GHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Measurement Procedure

- a. Blow 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.
- g. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

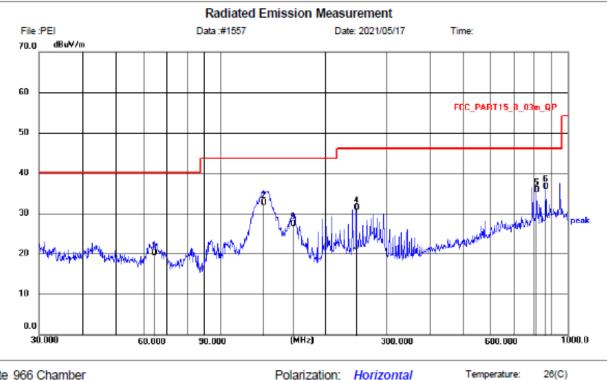
During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band (MHz)	Level	Resolution Bandwidth	Video Bandwidth			
30 to 1000	QP	120 kHz	300 kHz			
1	Peak	1 MHz	3 MHz			
Above 1000	U	N.	If D≥98 then VBW ≥			
	Average	1 MHz	3*RBW,			
, F		L.	If D≤98 then VBW ≥1/T			

5.3 Limit

Frequency range	Distance Meters	Field Strengths Limit (15.209)
MHz		μV/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

Remark : (1) Emission level (dB) μ V = 20 log Emission level μ V/m


- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

5.4 Measurement Results

Please refer to following plots of the worst case: 8DPSK mode. Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit. Therefore, 9kHz-30MHz data were not recorded.

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal 🐁
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2402MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		-
Adapter:	GKYZD0150160US		5

 Site 966 Chamber
 Polarization:
 Horizontal

 Limit: FCC_PART15_B
 Power:
 AC120/60Hz

 EUT:
 Distance:
 3m

 M/N:
 PSB378W
 Distance:
 3m

 Mode:
 TX 2402MHz
 Vireless Subwoofer

<u>. </u>											
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	64.4330	6.83	13.37	20.20	40.00	19.80	QP	220	236	Р	
2	133.1510	18.34	14.37	32.71	43.50	10.79	QP	200	254	Р	
3	162.1833	11.57	15.78	27.35	43.50	16.15	QP	200	163	Р	
4	245.7353	17.99	13.45	31.44	46.00	14.56	QP	150	57	Р	
5	815.2527	12.54	23.16	35.70	46.00	10.30	QP	150	68	P	
6 *	864.5706	13.11	23.60	36.71	46.00	9.29	QP	175	265	Р	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

Humidity:

54 %

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2402MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		Ĺ,

 Site 966 Chamber
 Polarization:
 Vertical

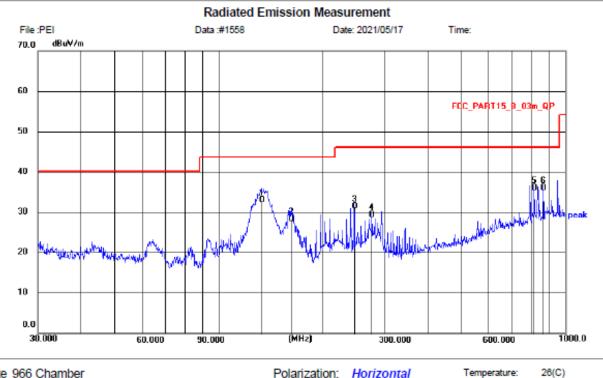
 Limit: FCC_PART15_B
 Power:
 AC120/60Hz

 EUT:
 Distance:
 3m

 M/N:
 PSB378W
 Mode:
 TX 2402MHz

 Note:
 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	30.0526	15.41	14.40	29.81	40.00	10.19	QP	100	256	Р	
2	63.3132	11.12	13.58	24.70	40.00	15.30	QP	100	63	Р	
3	94.0978	16.39	11.48	27.87	43.50	15.63	QP	105	44	Р	
4	104.6277	12.30	12.40	24.70	43.50	18.80	QP	105	250	Р	
5 *	138.9952	20.53	13.92	34.45	43.50	9.05	QP	100	257	Р	
6	825.3200	12.86	23.23	36.09	46.00	9.91	QP	110	269	Р	


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited Humidity:

54 %

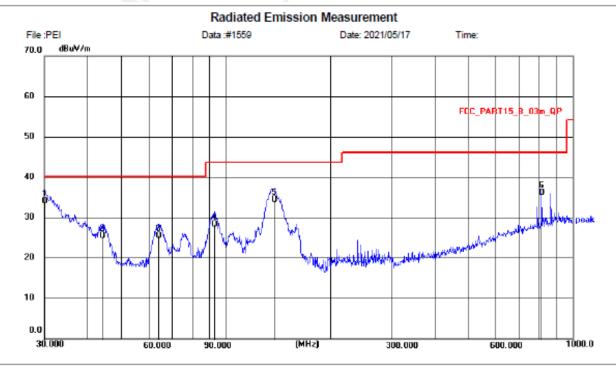
54 %

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Model No.: 🔦	PSB378W	Temperature:	26 °C
Test Mode:	TX 2441MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		<u>.</u>
Adapter:	GKYZD0150160US		5

 Site 966 Chamber
 Polarization: Horizontal
 Temperature:

 Limit: FCC_PART15_B
 Power: AC120/60Hz
 Humidity:

 EUT:
 Distance: 3m
 M/N: PSB378W


 Mode: TX 2441MHz
 Note: 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	133.0344	18.64	14.38	33.02	43.50	10.48	QP	200	245	Р	
2	161.8993	12.41	15.81	28.22	43.50	15.28	QP	185	39	Р	
3	245.7352	18.02	13.45	31.47	46.00	14.53	QP	185	175	Р	
4	276.6080	15.05	14.21	29.26	46.00	16.74	QP	185	268	Ρ	
5	815.2527	12.75	23.16	35.91	46.00	10.09	QP	200	146	Р	
6 *	864.5706	12.35	23.60	35.95	46.00	10.05	QP	205	206	Ρ	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 25 of 95

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2441MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		í,

 Site 966 Chamber
 Polarization: Vertical
 Temperature: 2

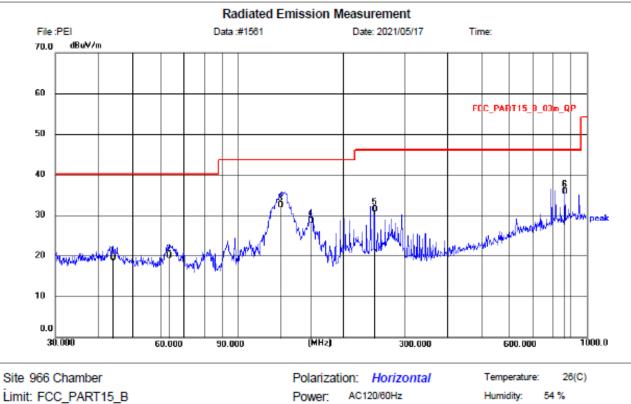
 Limit: FCC_PART15_B
 Power: AC120/60Hz
 Humidity: 54 %

 EUT:
 Distance: 3m

 M/N: PSB378W
 Mode: TX 2441MHz

Note: 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	30.0000	19.66	14.40	34.06	40.00	5.94	QP	185	224	Р	
2	44.1200	10.44	15.02	25.46	40.00	14.54	QP	185	162	Ρ	
3	64.0948	11.94	13.44	25.38	40.00	14.62	QP	105	228	Р	
4	92.8685	16.96	11.38	28.34	43.50	15.16	QP	105	85	Р	
5	138.0234	20.39	13.99	34.38	43.50	9.12	QP	100	74	Р	
6	815.2527	13.00	23.16	36.16	46.00	9.84	QP	100	152	Ρ	


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

LN

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

26(C)

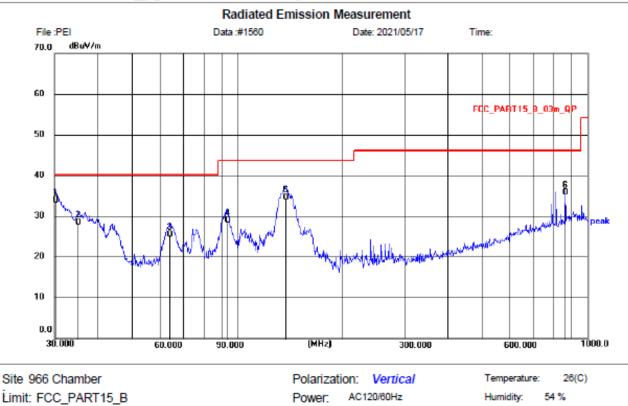
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2480MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US	1	5

EUT:

M/N: PSB378W

Mode: TX 2480MHz

Note: 37"Bluetooth Soundbar with Wireless Subwoofer


1											
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	44.0042	4.49	15.03	19.52	40.00	20.48	QP	205	182	Р	
2	63.5356	6.48	13.55	20.03	40.00	19.97	QP	205	145	Р	
3	132.5687	18.12	14.42	32.54	43.50	10.96	QP	200	323	Р	
4	161.6157	12.70	15.83	28.53	43.50	14.97	QP	200	333	Р	
5	245.7352	17.93	13.45	31.38	46.00	14.62	QP	208	47	Р	
6 *	864.5706	12.24	23.60	35.84	46.00	10.16	QP	210	195	Ρ	

Distance: 3m

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

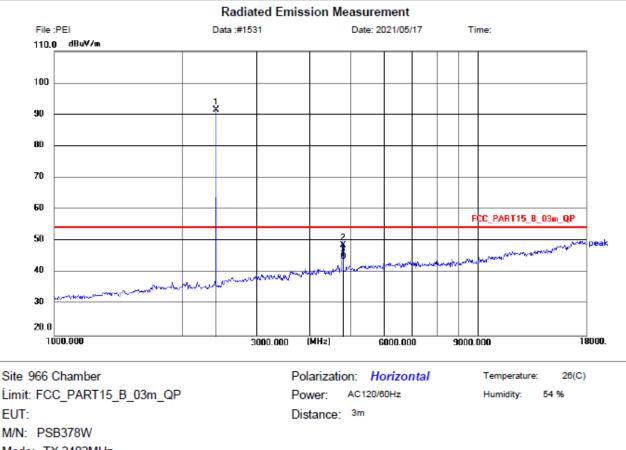
LN

	Sector Se		
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2480MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		í,
1			

Distance: 3m

Mode: TX 2480MHz

M/N: PSB378W

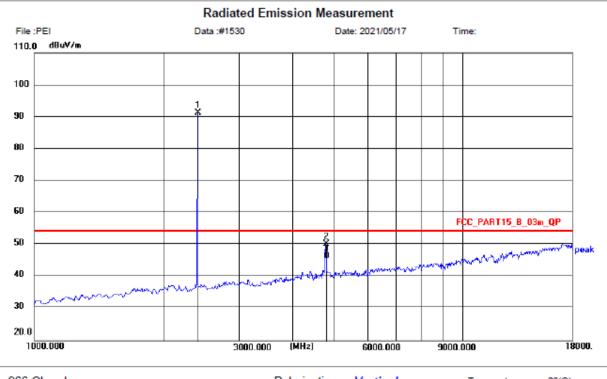

EUT:

Note: 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	30.1314	19.41	14.40	33.81	40.00	6.19	QP	100	225	Р	
2	35.2201	13.73	14.64	28.37	40.00	11.63	QP	105	74	Р	
3	64.3200	11.99	13.40	25.39	40.00	14.61	QP	105	63	Р	
4	93.5220	17.50	11.43	28.93	43.50	14.57	QP	100	89	P	
5	137.4200	20.48	14.04	34.52	43.50	8.98	QP	100	147	Р	
6	864.5706	12.13	23.60	35.73	46.00	10.27	QP	100	358	Р	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2402MHz (8DPSK)	Humidity:	54 %
Frequency Range:	1GHz-18GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US	N 1	5


Mode: TX 2402MHz

Note: 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	2402.000	87.48	3.94	91.42	1	1	peak	205	163	1	
2	4804.026	38.97	9.77	48.74	74.00	25.26	peak	210	185	Р	
3	4804.026	35.21	9.77	44.98	54.00	9.02	AVG	210	185	Р	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

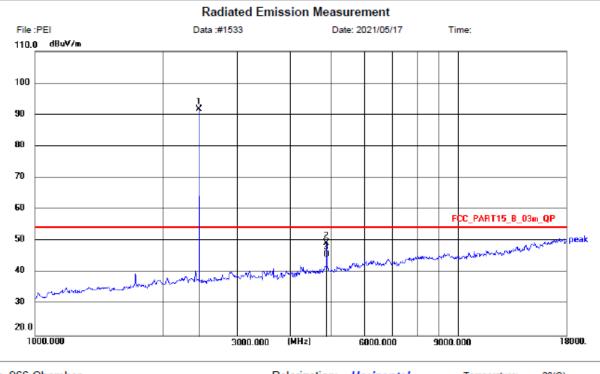
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2402MHz (8DPSK)	Humidity:	54 %
Frequency Range:	1GHz-18GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		L.

 Site 966 Chamber
 Polarization:
 Vertical
 Temperature:
 28(C)

 Limit: FCC_PART15_B_03m_QP
 Power:
 AC120/60Hz
 Humidity:
 54 %

 EUT:
 Distance:
 3m

 M/N:
 PSB378W


 Mode:
 TX 2402MHz

 Note:
 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	2402.000	87.17	3.94	91.11	1	1	peak	105	256	1	
2	4804.025	40.45	9.77	50.22	74.00	3.78	peak	105	158	Ρ	
3	4804.025	36.58	9.77	46.35	54.00	7.65	AVG	105	158	Р	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal 🐁
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2441MHz (8DPSK)	Humidity:	54 %
Frequency Range:	1GHz-18GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		

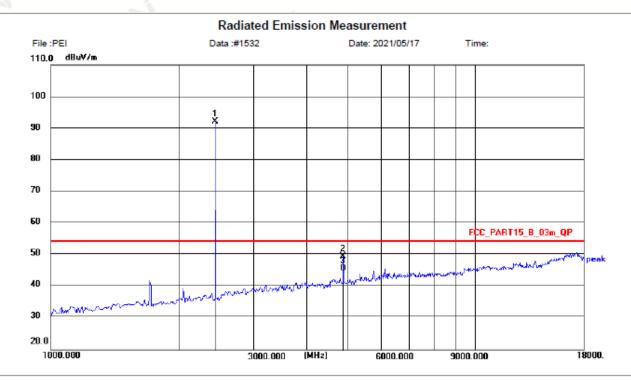
 Site 966 Chamber
 Polarization:
 Horizontal
 Temperature:
 28(C)

 Limit: FCC_PART15_B_03m_QP
 Power:
 AC120/60Hz
 Humidity:
 54 %

 EUT:
 Distance:
 3m

 M/N:
 PSB378W

 Mode:
 TX 2441MHz


 Note:
 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	2441.000	87.45	4.11	91.56	1	1	peak	185	67	1	
2	4882.024	39.36	10.06	49.42	74.00	24.58	peak	205	145	Ρ	
3	4882.024	35.79	10.06	45.85	54.00	8.15	AVG	205	145	Р	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 31 of 95

	and the second		
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2441MHz (8DPSK)	Humidity:	54 %
Frequency Range:	1GHz-18GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		Č,

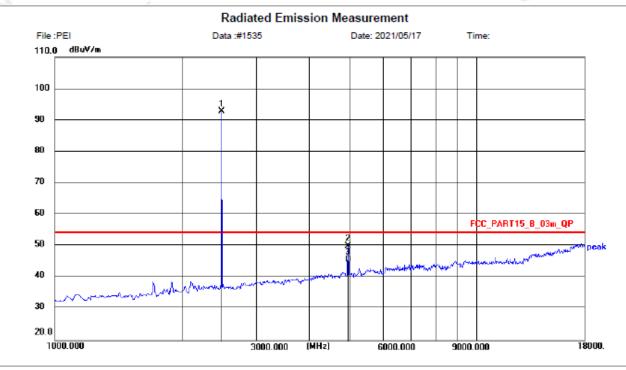
 Site 966 Chamber
 Polarization:
 Vertical
 Temperature:
 28(C)

 Limit: FCC_PART15_B_03m_QP
 Power:
 AC120/60Hz
 Humidity:
 54 %

 EUT:
 Distance:
 3m

 M/N:
 PSB378W

 Mode:
 TX 2441MHz

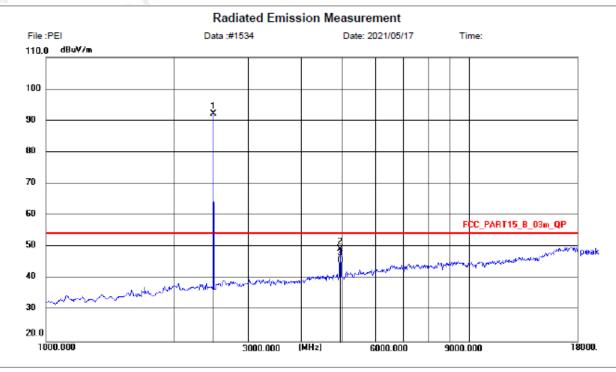

 Note:
 37"Bluetooth Soundbar with Wireless Subwoofer

Frequency Reading Factor Level Limit Margin Height Azimuth P/F No. Detector Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 87.94 92.05 1 * 2441.000 4.11 100 247 1 1 peak 1 2 Ρ 4882.027 39.42 10.06 49.48 74.00 24.52 100 36 peak 3 35.64 45.70 Ρ 4882.027 10.06 54.00 8.30 100 AVG 36

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

LN

Test Mode:TX 2480MHz (8DPSK)Humidity:54Frequency Range:1GHz-18GHzTest By:PE	J.T:	7"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Frequency Range:1GHz-18GHzTest By:PETest Distance:3mTest Voltage:AC	odel No.:	2SB378W	Temperature:	26 °C
Test Distance: 3m Test Voltage: AC	st Mode:	X 2480MHz (8DPSK)	Humidity:	54 %
	equency Range:	GHz-18GHz	Test By:	PEI
Test Results: PASS	st Distance:	m	Test Voltage:	AC 120V/60Hz
	st Results:	ASS		
Adapter: GKYZD0150160US	apter:	SKYZD0150160US		j.

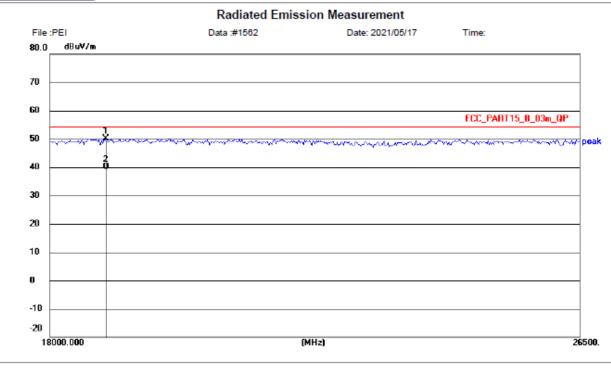


Site 966 Chamber	Polarization: Horizontal	Temperature: 26(C)
Limit: FCC_PART15_B_03m_QP	Power: AC120/60Hz	Humidity: 54 %
EUT:	Distance: ^{3m}	
M/N: PSB378W		
Mode: TX 2480MHz		
Note: 37"Bluetooth Soundbar with Wireless	Subwoofer	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	2480.000	88.50	4.27	92.77	1	- 1	peak	210	58	1	
2	4960.028	39.71	10.35	50.06	74.00	23.94	peak	215	169	Р	
3	4960.028	35.42	10.35	45.77	54.00	8.23	AVG	215	169	Ρ	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2480MHz (8DPSK)	Humidity:	54 %
Frequency Range:	1GHz-18GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		í,


Site 966 Chamber	Polarization: Vertical	Temperature: 26(C)
Limit: FCC_PART15_B_03m_QP	Power: AC120/60Hz	Humidity: 54 %
EUT:	Distance: ^{3m}	
M/N: PSB378W		
Mode: TX 2480MHz		

Note: 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	2480.000	87.74	4.27	92.01	1	1	peak	105	263	1	
2	4960.030	39.11	10.35	49.46	74.00	24.54	peak	110	150	Ρ	
3	4960.030	35.32	10.35	45.67	54.00	8.33	AVG	100	150	Ρ	

LN

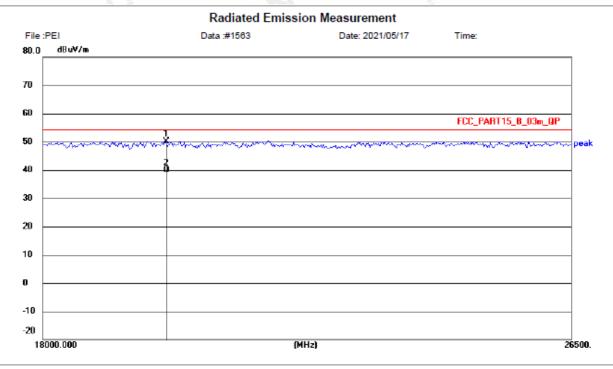
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2402MHz (8DPSK)	Humidity:	54 %
Frequency Range:	18GHz-26.5GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		i.

 Site 966 Chamber
 Polarization: Horizontal
 Temperature:
 26(C)

 Limit: FCC_PART15_B_03m_QP
 Power:
 AC120/60Hz
 Humidity:
 54 %

 EUT:
 Distance:
 3m

 M/N:
 PSB378W

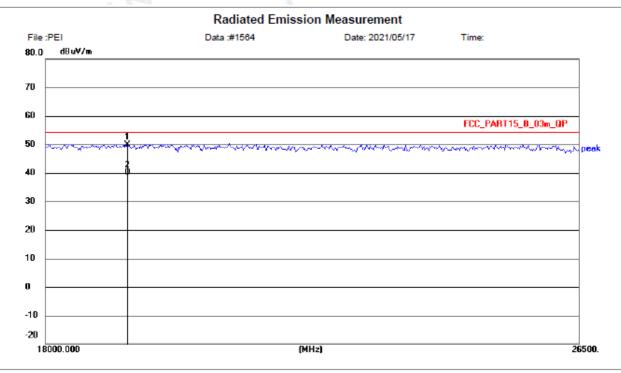

 Mode:
 TX 2402MHz

 Note:
 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	18749.499	40.69	9.50	50.19	74.00	23.81	peak	205	354	Р	
2	18749.499	30.52	9.50	40.02	54.00	13.98	AVG	205	354	Ρ	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2402MHz (8DPSK)	Humidity:	54 %
Frequency Range:	18GHz-26.5GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		í.


Site 966 ChamberPolarization: VerticalTemperature: 28(C)Limit: FCC_PART15_B_03m_QPPower: AC120/80HzHumidity: 54 %EUT:Distance: 3mDistance: 3mM/N: PSB378WMode: TX 2402MHzLimit State S

Note: 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	19703.407	37.74	12.44	50.18	74.00	23.82	peak	110	157	Ρ	
2	19703.407	27.56	12.44	40.00	54.00	14.00	AVG	110	157	Р	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

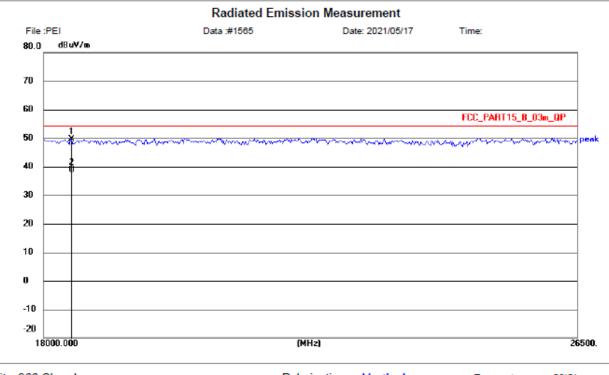
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Model No.: 🔦	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2441MHz (8DPSK)	Humidity:	54 %
Frequency Range:	18GHz-26.5GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US	1	2

 Site 966 Chamber
 Polarization: Horizontal
 Temperature:
 28(C)

 Limit: FCC_PART15_B_03m_QP
 Power:
 AC120/80Hz
 Humidity:
 54 %

 EUT:
 Distance:
 3m

 M/N:
 PSB378W


 Mode:
 TX 2441MHz

 Note:
 37"Bluetooth Soundbar with Wireless Subwoofer

ĺ	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
	1 *	19107.214	39.20	10.70	49.90	74.00	24.10	peak	210	218	Р	
	2	19107.214	29.35	10.70	40.05	54.00	13.95	AVG	210	218	Р	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

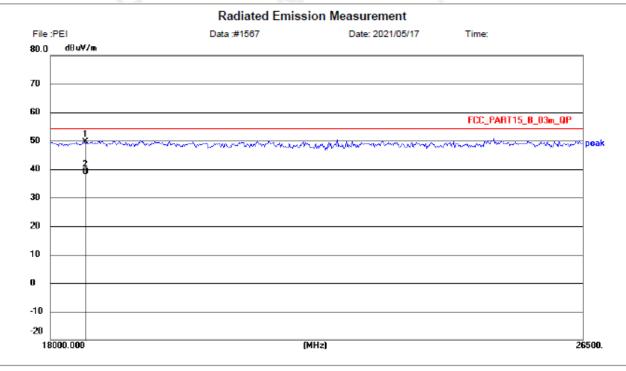
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2441MHz (8DPSK)	Humidity:	54 %
Frequency Range:	18GHz-26.5GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		í,
1			

 Site 966 Chamber
 Polarization:
 Vertical
 Temperature:
 26(C)

 Limit: FCC_PART15_B_03m_QP
 Power:
 AC120/60Hz
 Humidity:
 54 %

 EUT:
 Distance:
 3m

 M/N:
 PSB378W


 Mode:
 TX 2441MHz

 Note:
 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1*	18374.749	41.37	8.14	49.51	74.00	24.49	peak	100	158	Ρ	
2	18374.749	30.85	8.14	38.99	54.00	15.01	AVG	100	158	Ρ	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

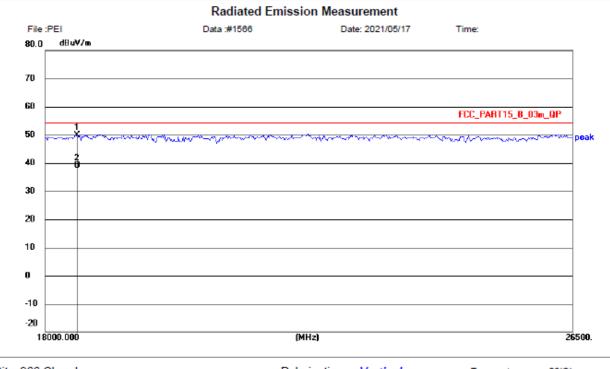
197			
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2480MHz (8DPSK)	Humidity:	54 %
Frequency Range:	18GHz-26.5GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		1
Adapter:	GKYZD0150160US	\ \	5

 Site 966 Chamber
 Polarization: Horizontal
 Temperature:
 28(C)

 Limit: FCC_PART15_B_03m_QP
 Power:
 AC120/60Hz
 Humidity:
 54 %

 EUT:
 Distance:
 3m

 M/N:
 PSB378W


 Mode:
 TX 2480MHz

 Note:
 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	18459.920	41.29	8.46	49.75	74.00	24.25	peak	200	163	Р	
2	18459.920	30.65	8.46	39.11	54.00	14.89	AVG	200	163	P	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

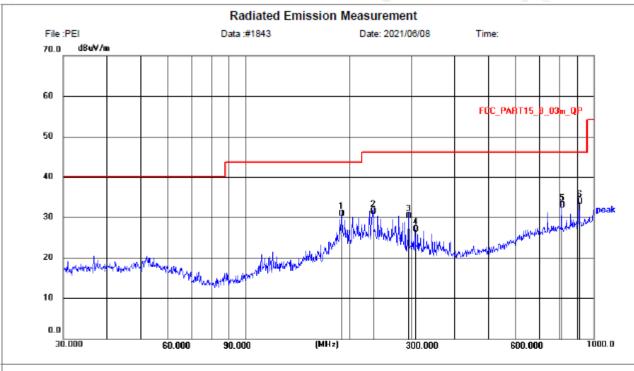
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.: 🔌	PSB378W	Temperature:	26 °C
Test Mode:	TX 2480MHz (8DPSK)	Humidity:	54 %
Frequency Range:	18GHz-26.5GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	GKYZD0150160US		2

 Site 966 Chamber
 Polarization: Vertical
 Temperature:
 26(C)

 Limit: FCC_PART15_B_03m_QP
 Power:
 AC120/60Hz
 Humidity:
 54 %

 EUT:
 Distance:
 3m

 M/N:
 PSB378W


 Mode:
 TX 2480MHz

 Note:
 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	18409.182	41.61	8.27	49.88	74.00	24.12	peak	105	226	Р	
2	18409.182	30.74	8.27	39.01	54.00	14.99	AVG	105	226	Р	

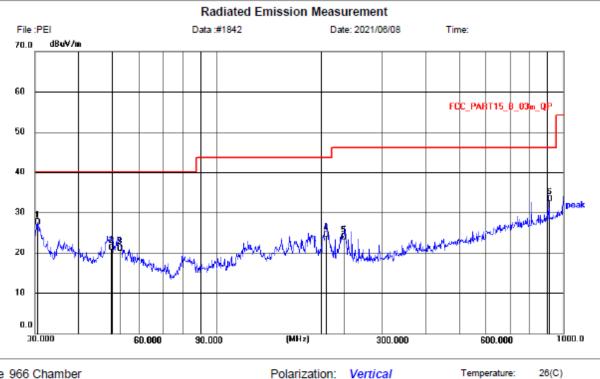
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

N	Page 40 of 95	Report No.: UN	IA21052422ER-0
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2402MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS	V	1
Adapter:	JY024160150AA-UL		

Site 966 Chamber Limit: FCC_PART15_B EUT: M/N: PSB378W Mode: TX 2402MHz

Polarization: Horizontal Power: AC120/60Hz

Distance: 3m


26(C) Temperature: Humidity: 54 %

Note: 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	189.4061	18.56	12.41	30.97	43.50	12.53	QP	200	145	Р	
2	232.5318	18.28	13.05	31.33	46.00	14.67	QP	200	39	Р	
3	294.8881	15.70	14.64	30.34	46.00	15.66	QP	205	254	Р	
4	307.2919	12.02	14.94	26.96	46.00	19.04	QP	205	179	Ρ	
5	812.3990	9.86	23.13	32.99	46.00	13.01	QP	200	358	Ρ	
6 *	910.4643	9.61	24.17	33.78	46.00	12.22	QP	200	109	Ρ	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

1. 2			
E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2402MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	JY024160150AA-UL		í_
1			

Site 966 Chamber Limit: FCC_PART15_B EUT: M/N: PSB378W Mode: TX 2402MHz

Power: AC120/60Hz Distance: 3m Temperature: 26(C) Humidity: 54 %

Azimuth

(deg.)

208

39

247

195

58

195

P/F

Ρ

Ρ

Ρ

Ρ

Ρ

Р

Remark

Height

(cm)

100

100

110

110

100

105

Note: 37"Bluetooth Soundbar with Wireless Subwoofer Frequency Reading Factor Level Limit Margin No. Detector (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 27.59 1 * 30.4771 13.17 14.42 40.00 12.41 QP 21.30 2 49.8813 6.41 14.89 40.00 18.70 QP

14.71

12.05

13.09

24.17

21.01

24.47

23.92

33.28

40.00

43.50

46.00

46.00

18.99

19.03

22.08

12.72

QP

QP

QP

QP

6.30

12.42

10.83

9.11

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

52.6674

207.3042

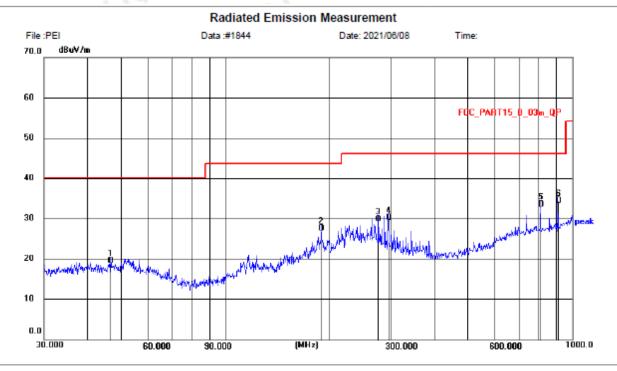
233.5533

910.4643

3

4

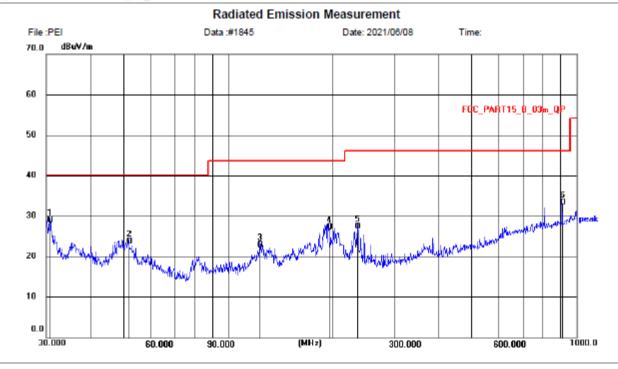
5


6

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

http://www.uni-lab.hk

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal 🐁
Model No.: 🔌	PSB378W	Temperature:	26 °C
Test Mode:	TX 2441MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	JY024160150AA-UL		2


Site 966 ChamberPolarization: HorizontalTemperature:26(C)Limit: FCC_PART15_BPower:AC120/60HzHumidity:54 %EUT:Distance:3mM/N:PSB378WMode:TX 2441MHz

Note: 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	46.7072	4.62	14.94	19.56	40.00	20.44	QP	205	144	Р	
2	189.5722	15.11	12.39	27.50	43.50	16.00	QP	205	164	Ρ	
3	276.3657	15.61	14.20	29.81	46.00	16.19	QP	200	122	Ρ	
4	294.8882	15.52	14.64	30.16	46.00	15.84	QP	200	168	Р	
5	812.3991	10.38	23.13	33.51	46.00	12.49	QP	205	68	Ρ	
6 *	910.4644	10.30	24.17	34.47	46.00	11.53	QP	200	185	Ρ	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2441MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	JY024160150AA-UL		í.

Polarization:

Distance: 3m

Power:

Vertical

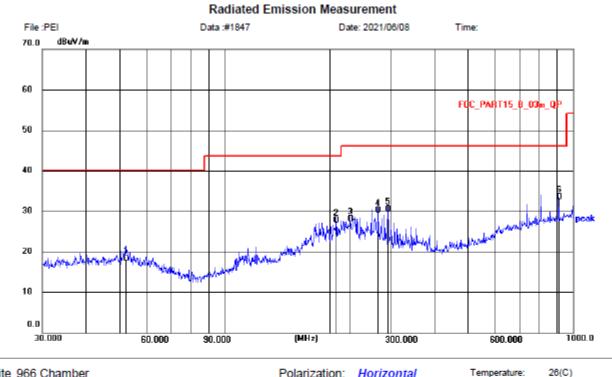
AC120/60Hz

Temperature:

Humidity:

26(C)

54 %


Site 966 Chamber F Limit: FCC_PART15_B F EUT: C M/N: PSB378W Mode: TX 2441MHz Note: 37"Bluetooth Soundbar with Wireless Subwoofer

Reading Factor Level Limit Margin Frequency Height Azimuth No. Detector P/F Remark (deg.) (cm) (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 30.7724 14.58 14.43 29.01 40.00 10.99 QP 100 211 Ρ 2 51.9795 9.04 14.75 23.79 40.00 16.21 QP 100 153 Ρ 3 123.5900 8.55 14.26 22.81 43.50 20.69 QP 100 250 Ρ 4 194.4534 15.14 12.09 27.23 43.50 16.27 QP 105 285 Ρ 5 235.1970 14.28 13.17 27.45 46.00 18.55 QP 105 139 Ρ 6 910.4644 9.16 24.17 33.33 46.00 12.67 QP 100 252 Ρ

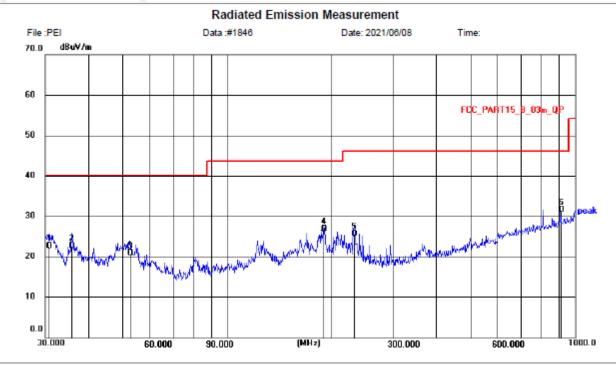
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

54 %

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2480MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	JY024160150AA-UL	1	5

 Site 966 Chamber
 Polarization: Horizontal
 Tempera

 Limit: FCC_PART15_B
 Power: AC120/60Hz
 Humidity:


 EUT:
 Distance: 3m
 M/N: PSB378W

 Mode: TX 2480MHz
 Vireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	52.2993	3.61	14.74	18.35	40.00	21.65	QP	205	116	Р	
2	209.3129	15.68	12.13	27.81	43.50	15.69	QP	205	217	Р	
3	229.2930	15.15	12.92	28.07	46.00	17.93	QP	210	236	Р	
4	276.3657	16.07	14.20	30.27	46.00	15.73	QP	210	285	Р	
5	294.8881	15.82	14.64	30.46	46.00	15.54	QP	200	185	Р	
6 *	910.4643	9.26	24.17	33.43	46.00	12.57	QP	200	59	Р	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2480MHz (8DPSK)	Humidity:	54 %
Frequency Range:	30MHz-1GHz	Test By:	PEI
Test Distance:	3m	Test Voltage:	AC 120V/60Hz
Test Results:	PASS		
Adapter:	JY024160150AA-UL		Č,

Site 966 ChamberPolarization: VerticalTemperature:26(C)Limit: FCC_PART15_BPower:AC120/60HzHumidity:54 %EUT:Distance:3mM/N:PSB378WMode:TX 2480MHz

Note: 37"Bluetooth Soundbar with Wireless Subwoofer

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	30.7185	8.24	14.42	22.66	40.00	17.34	QP	110	185	P	
2	35.7804	8.01	14.73	22.74	40.00	17.26	QP	105	263	P	
3	52.4372	6.14	14.73	20.87	40.00	19.13	QP	105	285	Р	
4	190.2381	14.62	12.33	26.95	43.50	16.55	QP	105	95	Р	
5	232.1245	12.65	13.03	25.68	46.00	20.32	QP	110	136	Р	
6 *	910.4644	7.49	24.17	31.66	46.00	14.34	QP	110	227	Р	

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level + Factor
- (3) Factor= Antenna Gain + Cable Loss Amplifier Gain

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 46 of 95

Report No.: UNIA21052422ER-01

- (4) Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits, therefore, than 20 dB below the limit do no reported.
- (5) Measurement uncertainty: ±3.7dB.
- (6) Horn antenna used for the emission over 1000MHz.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

6.1 Measurement Procedure

Minimum Hopping Channel Carrier Frequency Separation, FCC Rule 15.247(a)(1):

Connect EUT antenna terminal to the spectrum analyzer with a low loss cable, and using the Marker and Max-Hold function to record the separation of two adjacent channels.

6.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

6.3 Test SET-UP (Block Diagram of Configuration)

EUT -	Low Loss	 Spectrum Analyzer

6.4 Measurement Results

Refer to attached data chart.

RBW:	30kHz	Temperature:	24 ℃
VBW:	100kHz	Humidity:	50 %
Spectrum Detector:	PK	Test By:	PEI
Packet:	DH1, 2DH1, 3DH1(Worst case)	Test Date:	May 14, 2021
Test Result:	PASS	V	1

Channel	Test Frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Bandwidth (kHz)
	G	FSK	
Lowest	2402	1.002	>612.7
Middle	2441	1.005	>578.7
Highest	2480	0.993	>584.7
	π/4-	DQPSK	
Lowest	2402	0.993	>861.3
Middle	2441	1.134	>832.0
Highest	2480	0.999	>862.7
	81	DPSK	
Lowest	2402	1.002	>811.3
Middle	2441	1.002	>806.7
Highest	2480	0.999	>806.0

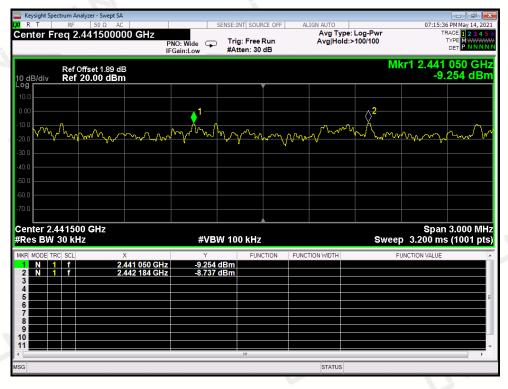
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

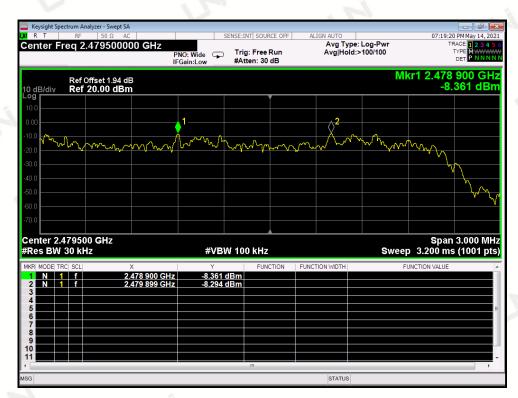
Page 49 of 95 GFSK Lowest Channel

GFSK Middle Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 50 of 95 GFSK Highest Channel

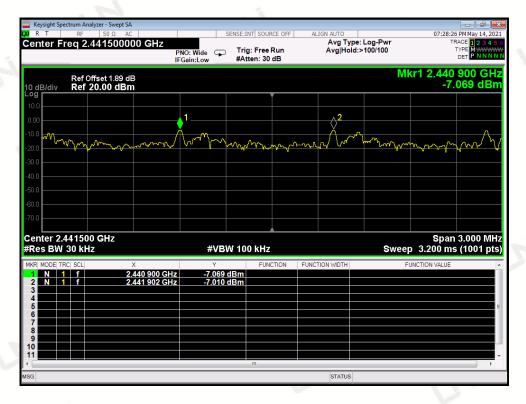

π/4-DQPSK Lowest Channel


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 51 of 95 R π/4-DQPSK Middle Channel

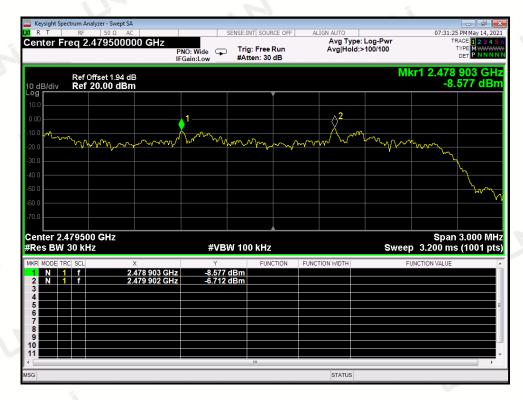
π/4-DQPSK Highest Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited



Page 52 of 95 Report No.: UNIA21052422ER-01

8DPSK Lowest Channel


8DPSK Middle Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 53 of 95 8DPSK Highest Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

ODB BANDWIDTH

7.1 Measurement Procedure

Maximum 20dB RF Bandwidth, FCC Rule 15.247(a)(1):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.

7.2 Test SET-UP (Block Diagram of Configuration)

7.3 Measurement Results

Refer to attached data chart.

RBW:	30kHz	Temperature:	24 °C
VBW:	100kHz	Humidity:	50 %
Spectrum Detector:	РК	Test By:	PEI
Packet:	DH1, 2DH1, 3DH1(Worst case)	Test Date:	May 14, 2021
Test Result:	PASS	i.	

Channel	Test Frequency (MHz)	20dB Down BW (MHz)
	GFSK	
Lowest	2402	0.919
Middle	2441	0.868
Highest	2480	0.877
	π/4-DQPSK	
Lowest	2402	1.292
Middle	2441	1.248
Highest	2480	1.294
	8DPSK	
Lowest	2402	1.217
Middle	2441	1.210
Highest	2480	1.209

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 55 of 95 GFSK Lowest Channel

GFSK Middle Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

STATU

Page 56 of 95 Report No.: UNIA21052422ER-01

GFSK Highest Channel

π/4-DQPSK Lowest Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 57 of 95 R π/4-DQPSK Middle Channel

π/4-DQPSK Highest Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 58 of 95

Report No.: UNIA21052422ER-01

8DPSK Lowest Channel


8DPSK Middle Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 59 of 95 8DPSK Highest Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 60 of 95
PPING CHANNEL NUMBER

8.1 Measurement Procedure

Minimum Number of Hopping Frequencies, FCC Rule 15.247(a)(1)(iii):

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum, and the spectrum analyzer set to MAX HOLD readings were taken for 3-5 minutes. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

8.2 Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

8.3 Test SET-UP (Block Diagram of Configuration)

8.4 Measurement Results

RBW:	100kHz	Temperature:	24 ℃
VBW:	300kHz	Humidity:	50 %
Spectrum Detector:	РК	Test By:	PEI
Packet:	DH1, 2DH1, 3DH1(Worst case)	Test Date:	May 14, 2021
Test Result:	PASS		

Hopping Channel Frequency Range	Number of Hopping Channels	Limit
2400-2483.5	79	≥15

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 61 of 95 GFSK

M Keysight Spectrum Analyz M R T RF Center Freq 2.44 Ref Offs

Keysight Spectrum Analyzer - Swept SA				
R T RF 50Ω AC	SENSE	INT SOURCE OFF AL	LIGN AUTO Avg Type: Log-Pwr	06:44:07 PM May 14, 202
enter Freq 2.441750000 GHz		rig: Free Run Atten: 30 dB	Avg Hold: 2000/2000	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNN
Ref Offset 1.95 dB 0 dB/div Ref 20.00 dBm			Mk	r1 2.402 004 0 GH -7.890 dBr
og		Ĭ		
0.00 1				. 2
	AV KAPADAADU			
			******	Att att a to a to a to a to a to a to a
J.O - 1				ما ا
art 2.40000 GHz	#VBW 30	00 kHz	Swee	
art 2.40000 GHz Res BW 100 kHz R MODE[TRC] SCL] X	Y	FUNCTION FUNC		
20 GHz art 2.40000 GHz Res BW 100 kHz R MODE TRC SCL X N 1 f 2.402 004 0 G 2 N 1 f 2.480 243 5 G	۲ Hz -7.890 dBm	FUNCTION FUNC		ep 8.000 ms (1001 pt
10 art 2.40000 GHz Res BW 100 kHz x R MODE TRC SCL x N 1 f 2.402 004 0 G N 1 f 2.402 004 0 G N 1 f 2.402 004 0 G	۲ Hz -7.890 dBm	FUNCTION FUNC		ep 8.000 ms (1001 pt
ID art 2.40000 GHz Res BW 100 KHz R R MODE[TRC] SCL X N 1 f 2.402 004 0 G 2 N 1 f 2.402 004 0 G 3 1 f 2.402 024 3 5 G	۲ Hz -7.890 dBm	FUNCTION FUNC		ep 8.000 ms (1001 pt
00 cart 2.40000 GHz Res BW 100 kHz x R MODE TRC SCL x 2 N 1 1 1 2 N 1 4 5 5 6 7 0	۲ Hz -7.890 dBm	FUNCTION FUNC		ep 8.000 ms (1001 pt
0.0 tart 2.40000 GHz Res BW 100 kHz R MODE TRC SCL X 1 N 1 f 2.402 004 0 G	۲ Hz -7.890 dBm	FUNCTION FUNC		ep 8.000 ms (1001 pt
00 GHz cart 2.40000 GHz Constraint 2.40200 GHz Ces BW 100 kHz X N 1 f 2.00 X X N 1 f 2.00 X X 1 f 2.402 004 0 G 2 N 1 f 2.480 243 5 G 5 5 3 5 5 6 5 5 7 4 5 8 5 5 0 5 5	۲ Hz -7.890 dBm	FUNCTION FUNC		ep 8.000 ms (1001 pt
10	۲ Hz -7.890 dBm	FUNCTION FUNC		Stop 2.48350 GF 20 8.000 ms (1001 pt FUNCTION VALUE

π/4-DQPSK

200								
	ctrum Analyzer - Sw	1						- F
RT	RF 50 Ω		SENS	SE:INT SOURCE OFF	ALIGN AUTO	e: Log-Pwr		PM May 14,
enter Fr	eq 2.44175		PNO: Fast ↔ ·	Trig: Free Run		i: 2000/2000		TYPE M WWW
				#Atten: 30 dB				DET P N N
						Mki	r1 2.401 9	20 5 G
) dB/div	Ref Offset 1.9 Ref 20.00 (948 dE
	Rei 20.00 (
0.0								
						a akarda.		
┣_/┦/\/	ᡗᡐᢦᡐᡁᠯᡐᡐᡁᠲᢩᢔ	MANAMANAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ՠ֎֍ՠՠՠՠՠՠՠՠ	ᢣᡀᡘ᠋ᢣᡛᢦᢑᡡᡘᡁᡗᠿᡧᡁ	ᢉ᠇ᡎᡗᡃ᠋ᠯᡎᡀᠰᡗᢍ	┉୰ୢୢୄ୳ୄ୷୳ୄ୰ୢ୷୶୶	olydol VINY
D.O 🕂 —		· ·			'	·		
0.0								
).0								
).0 								
3.0 								
1.0								
art 2.40	000 GHz						Stop 2.	48350 G
	100 kHz		#VBW 3	300 kHz		Swee	ep 8.000 ms	(1001 p
R MODE TR		X	Y	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
	f	2.401 920 5 GHz			TONCTION WIDTH		I DIVETION VALUE	
2 N 1	f	2.480 577 5 GHz						
				_				
5								
6								
3				_				
0								
1								
•								
					STATUS			

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 62 of 95 8DPSK

LXI R T	RF	llyzer - Swept SA 50 Ω AC 44175000	P	PNO: Fast ↔ Gain:Low	SENSE:INT SOUR Trig: Free #Atten: 30	Run	ALIGN AUTO Avg Typ Avg Hol	e: Log-Pwr d: 2000/2000		6 PM May 14, 2021 RACE 1 2 3 4 5 6 TYPE WWWWW DET PNNNNN
10 dB/div		ffset 1.94 dE 2 0.00 dBm						Mkr	1 2.401 8 -10.	37 0 GHz 130 dBm
10.0 0.00 1 -										<mark>2</mark>
-10.0 -20.0 -30.0	NWW	ᢣᡟᢩᠺ᠕᠕ᡁ᠕	www.phy	┝╱┪┎┸╍┝╱┪╱┑╢	ለኮላላለሳሳሳላ	ՠՠՠ	₩₩₩₩₩₩₩	ᢣᢧᡀᡘᡪᢩᡀᢂᡁᠬᢦᢇ	<u>∤</u> ≁₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-40.0										
-60.0 -70.0										<u> </u>
Start 2.40 #Res BW				#VB	W 300 kHz			Swee	Stop 2. 5 8.000 ms	48350 GHz s (1001 pts)
MKR MODE TR 1 N 1 2 N 1 3			1 837 0 GHz 0 076 5 GHz	+ -10.130 -6.566	dBm	CTION	FUNCTION WIDTH	F	UNCTION VALUE	
4 5 6 7										=
8 9 10 11										
MSG							STATUS			• •

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 63 of 95

TIME OF OCCUPANCY (DWELL TIME)

9.1 Measurement Procedure

Average Channel Occupancy Time, FCC Ref:15.247(a)(1)(iii):

Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. The spectrum analyzer center frequency was set to one of the known hopping channels. The Sweep was set to 10 ms, the SPAN was set to Zero SPAN. The time duration of the transmissions so captured was measured with the Marker Delta function

9.2 Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

9.3 Test SET-UP (Block Diagram of Configuration)

EUT	Low Loss	 Spectrum Analyzer

9.4 Measurement Results

Refer to attached data chart.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

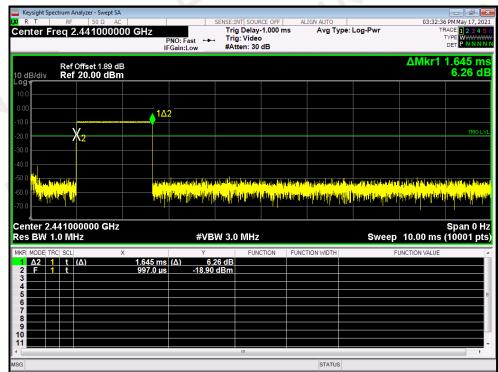
The maximum number of hopping channels in 31.6s (0.4s/Channel x 79 Channel)

RBW:	1MHz	Temperature:	24 °C
VBW:	3MHz	Humidity:	50 %
Spectrum Detector:	PK	Test By:	PEI
Test Result:	PASS	Test Date:	May 14, 2021

Page 64 of 95

Packet	Frequency (MHz)		Result (msec)		Limit (msec)
			GFSK		
DH1	2441	0.389	(ms)*(1600/(2*79))*31.6=	124.48	400
DH3	2441	1.645	(ms)*(1600/(4*79))*31.6=	263.20	400
DH5	2441	2.893	(ms)*(1600/(6*79))*31.6=	308.59	400
			π/4-DQPSK		
2-DH1	2441	0.397	(ms)*(1600/(2*79))*31.6=	127.04	400
2-DH3	2441	1.650	(ms)*(1600/(4*79))*31.6=	264.00	400
2-DH5	2441	2.897	(ms)*(1600/(6*79))*31.6=	309.01	400
			8DPSK		
3-DH1	2441	0.399	(ms)*(1600/(2*79))*31.6=	127.68	400
3-DH3	2441	1.649	(ms)*(1600/(4*79))*31.6=	263.84	400
3-DH5	2441	2.900	(ms)*(1600/(6*79))*31.6=	309.33	400

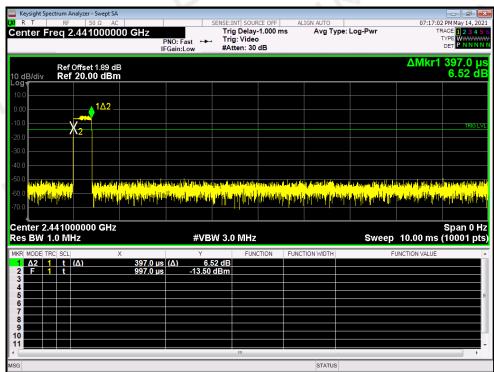
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited


-

R T	_R ⊧ Freq 2.44	50 Ω AC			Trig	nt source o g Delay-1.00 g: Video		Avg Type	: Log-Pwr	Т	8 PM May 14 RACE 1 2 3 TYPE WWW
				PNO: Fast + FGain:Low		tten: 30 dB					DET P N N
	Ref Offs	et 1.89 dB								ΔMkr1	
dB/div g √	Ref 20	.00 dBm									3.47
00		+									
		-◆1∆2									
	<u>X</u> 2										TRI
·											
1.0		and the second s		100 100 100	1.0.1		. 1 .	and the strength	discontration of a	and the second second	
100 B			De la planteura T	hat a standard b	and the first of	A STREET, STREE	ALC: NO.	al attanti attalia	an <mark>da ka k</mark> i ka ku	a the state in the proof in the	A REALIZATION AND
100 B	al a la carrante Trainclea contin	and the second	na separatina na na <mark>C</mark> alborado de la C	n sangan se Ing biological se		a de la calendada. Un a calendada a	in proprince Marine text in		n an	n an	lind Donald in Lind State
1.0 <mark> 141 11</mark>	ali perana Pripis (pul)			<mark>bleger bereden.</mark> Alleger bereden						<mark>o talponio (sina</mark>	inder aller Inder aller
		and the second			and Angel a Angel and Angel and An				i a faran a fa Tanan a faran a	<mark>, Manalajaira</mark>	enple-onlph
	4410000 1.0 MHz	and the second		pp helefphetekoj	anti plupa ni d	dill and the second			<mark>) (p), k al manifetta (kan a</mark>	<mark>de la la constanta (al constanta) (al constanta) (al constanta) (al constanta) (al constanta) (al constanta) (a Constanta) (al constanta) (al constanta) (al constanta) (al constanta) (al constanta) (al constanta) (al constant Constanta) (al constanta) (a</mark>	Span (
enter 2.	1.0 MHz	00 GHz	<mark>i pitangingka</mark> k	1000-1010-1010 #\	/BW 3.0) MHz	1 ⁴³⁰ 116 p. 14		Sweet	<mark>a 10.00 ms</mark>	Span (
enter 2. s BW 7	1.0 MHz TRC SCL 1 t (Δ)	and the second	<mark>арынарадары</mark> 389.0 µs	μηλιήματος #\ (Δ)	/BW 3.0	dill and the second	1 ⁴³⁰ 116 p. 14		Sweet	<mark>de la la constanta (al constanta) da constanta (al constanta) da constanta (al constanta) da constanta (al cons Constanta (al constanta) da constanta (al constanta) da constanta (al constanta) da constanta (al constanta) da</mark>	Span (
no conter 2. enter 2. R Mode T A2 F	1.0 MHz	00 GHz	i and a start of the second	μηλιήματος #\ (Δ)	/BW 3.0) MHz	1 ⁴³⁰ 116 p. 14		Sweet	<mark>a 10.00 ms</mark>	Span (
enter 2. es BW 7	1.0 MHz TRC SCL 1 t (Δ)	00 GHz	<mark>арынарадары</mark> 389.0 µs	μηλιήματος #\ (Δ)	/BW 3.0) MHz	1 ⁴³⁰ 116 p. 14		Sweet	<mark>a 10.00 ms</mark>	Span (
enter 2. es BW 7	1.0 MHz TRC SCL 1 t (Δ)	00 GHz	<mark>арынарадары</mark> 389.0 µs	μηλιήματος #\ (Δ)	/BW 3.0) MHz	1 ⁴³⁰ 116 p. 14		Sweet	<mark>a 10.00 ms</mark>	Span (
enter 2.	1.0 MHz TRC SCL 1 t (Δ)	00 GHz	<mark>арынарадары</mark> 389.0 µs	μηλιήματος #\ (Δ)	/BW 3.0) MHz	1 ⁴³⁰ 116 p. 14		Sweet	<mark>a 10.00 ms</mark>	Span (
R MODE TI	1.0 MHz TRC SCL 1 t (Δ)	00 GHz	<mark>арынарадары</mark> 389.0 µs	μηλιήματος #\ (Δ)	/BW 3.0) MHz	1 ⁴³⁰ 116 p. 14		Sweet	<mark>a 10.00 ms</mark>	Span (
R MODE T	1.0 MHz TRC SCL 1 t (Δ)	00 GHz	<mark>арынарадары</mark> 389.0 µs	μηλιήματος #\ (Δ)	/BW 3.0) MHz	1 ⁴³⁰ 116 p. 14		Sweet	<mark>a 10.00 ms</mark>	Span (
R MODE TT	1.0 MHz TRC SCL 1 t (Δ)	00 GHz	<mark>арынарадары</mark> 389.0 µs	μηλιήματος #\ (Δ)	/BW 3.0) MHz	1 ⁴³⁰ 116 p. 14		Sweet	<mark>a 10.00 ms</mark>	Span (
R MODE TI	1.0 MHz TRC SCL 1 t (Δ)	00 GHz	<mark>арынарадары</mark> 389.0 µs	μηλιήματος #\ (Δ)	/BW 3.0) MHz	1 ⁴³⁰ 116 p. 14		Sweet	<mark>a 10.00 ms</mark>	Span (

Page 65 of 95

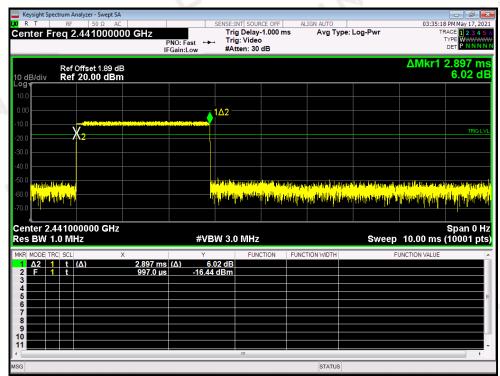
GFSK (DH1)


GFSK (DH3)

Page 66 of 95 **GFSK (DH5)**

LXI R T	RF	Analyzer - Swept SA 50 Ω AC 2.44100000	Р	NO: Fast ↔ Gain:Low	Trig , Trig	nt sour Delay- J: Video ten: 30	-1.000 m		IGN AUTO Avg Type:	Log-Pwr	TF	2 PM May 17, 2021 RACE 1 2 3 4 5 6 TYPE WWWWWWWW DET P N N N N
10 dB/div Log √		Offset 1.89 d⊟ 7 20.00 dBm									ΔMkr1	2.893 ms 8.80 dB
10.0 0.00					1Δ2							
-10.0 -20.0		X ₂										TRIG LVL
-30.0												
-60.0 <mark>(4)(4)</mark> -70.0									e de la constante de la constan	<mark>i di bana kana kalangan.</mark> I <mark>di bana kana kana kana kana kana kana kana</mark>	I DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	4.1 6
Center : Res BW		00000 GHz Hz		#VE	3W 3.0	MHz				Sweep	10.00 ms	Span 0 Hz (10001 pts)
MKR MODE) (Д)	2.893 ms	Y	.80 dB	FUNC	CTION	FUNCT	ION WIDTH	F	UNCTION VALUE	A
2 F 3 4	1 t		2.893 ms 996.0 μs		7 dBm							
5 6 7												E
8 9 10 11												
												E E
MSG									STATUS			

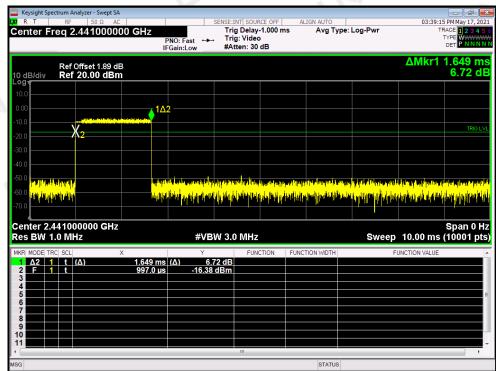
π/4-DQPSK (2-DH1)


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 67 of 95 **π/4-DQPSK (2-DH3)**

Keysight Spectrum Analyzer - Swept SA R T RF 50 Ω AC			INT SOURCE OFF	ALIGN AUTO			PM May 17, 20
enter Freq 2.441000000	PN	O East +++ T	rig Delay-1.000 ı rig: Video Atten: 30 dB	ms Avg Type:	Log-Pwr	TR	ACE 1 2 3 4 S TYPE WWWWW DET P N N N
Ref Offset 1.89 dB D dB/div Ref 20.00 dBm						ΔMkr1	1.650 m 2.90 d
0.0							
0.0							TRIG L'
0.0 X2							TRUGIL
0.0							
	ر بر الله من ال المراجع الله من	<mark>la particula postela de la desenta da seconda da seconda de la constanta da seconda da seconda da seconda da se Al posteria da seconda d</mark>	<mark>i de la presidencia d Esta de la presidencia de la presidencia</mark>	<mark>ulaurika (nakalita).</mark> Manaka	<mark>delar peridakan al</mark>	<mark>a haran (</mark> ara) Tang tang tan	<mark>n (n) nin (n) n</mark> Marina (n)
enter 2.441000000 GHz es BW 1.0 MHz		#VBW 3	.0 MHz		Sweep	10.00 ms (Span 0 F (10001 pt
KR MODE TRC SCL X		Y	FUNCTION	FUNCTION WIDTH		JNCTION VALUE	
1 Δ2 1 t (Δ) 2 F 1 t 3	1.650 ms (/ 997.0 µs	∆) 2.90 dE -17.00 dBm					
4 5 6							
7 8							
9							
							•

π/4-DQPSK (2-DH5)



深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 68 of 95 8DPSK (3-DH1)

	pectrum Analyze	r - Swept SA										- đ 赵
l <mark>XI</mark> RT	RF	50 Ω AC				NT SOUF			IGN AUTO			6 PM May 14, 2021
Center F	req 2.44	100000					-1.000 m	IS	Avg Typ	e: Log-Pwr	т	RACE 1 2 3 4 5 TYPE WWWWW
			F	NO: Fast Gain:Low		g: Video ten: 30						DET P NNNN
-			IF	-Gain:Low	#/\	ten. oo	ub					
	RefOffe	et 1.89 dB									ΔMkr1	399.0 µs
10 dB/div		00 dBm										6.39 dE
Log												
10.0												
0.00		<u></u> 1Δ2										
-10.0	X_2											TRIG LVL
-20.0	<u></u>											
-30.0												
-40.0				ի	N							
-50.0				. Ma	d							
al man	<mark>Yellinger</mark>	and the live	al all a subble	A ALA A A	n Manuelle	No. Dela	(belief all the	di dahi.	A Sheep and she	the dependent of the state		and the standard stand
-60.0 <mark>16, 14</mark>	uha man ^a	a da	uini dan r	all plant	n nin nin nin nin nin nin nin nin nin n	a <mark>bhaitheanna a</mark>	أأفر فأبازوان	- Hanta (M		لاسادا أأعاده فلافتها والروطكان	والتشمر أبا يطار البلغ ا	أالأل والأأطأر والروالا وأمران
-70.0		<u>r j</u> .	· · · · [<u> </u>	1 1 1 1 1 1 1		
	.4410000	00 GHz										Span 0 Hz
Res BW	1.0 MHz			#	VBW 3.0) MHz				Sweep	10.00 ms	(10001 pts
MKR MODE 1		X			Y	ELIN	CTION	ELINCI	TION WIDTH		UNCTION VALUE	
	1 t (Δ)	~	399.0 µs		6.39 dB	1010	onon	1 onto			01101101101202	
2 F	1 t		997.0 µs		.09 dBm							
3												
4 5												
6												
7												
8												
9												
11												
•						111						•
MSG									STATUS			
							_	_				

8DPSK (3-DH3)

Page 69 of 95 8DPSK (3-DH5)

RT	RF	alyzer - Swept SA 50 Ω AC 441000000	PNC): Fast ↔ in:Low	SENSE:INT SOU Trig Dela Trig: Vide #Atten: 3	y-1.000 n		AUTO	Log-Pwr	TF	5 PM May 17, 2 RACE 1 2 3 4 TYPE WWWW DET P NNN
0 dB/div og√r		0ffset 1.89 dB 20.00 dBm								ΔMkr1	2.900 n 7.05 d
10.0 .00			43 (1) 1 (1 (2) 1) ⁽¹ (1) 1) (1 (1) (1) (1) (1) (1)	dife any strategical back	Δ2 ——						
0.0	>	2									TRIG
	da dadi <mark>bi nadi</mark> ri						A DESCRIPTION OF A		na bhantachaite Na bhantachaite	- 10 1. 1	and could be contracted
		0000 GHz					1 1	, 19 F. 19 F			Span 0
ES BW 1					A/ 3.0 MH		FUNCTION			10.00 ms	(10001 p
1 Δ2 1 2 F 1 3 4	t (<u></u> Δ)	2.900 ms (∆ 997.0 µs	Y .) 7.0 -16.65	5 dB	NCTION	FUNCTIO	NWIDTH	FU	INCTION VALUE	
5 6 7 8											
9 0 1											
G								STATUS			

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 70 of 95

MAXIMUM PEAK OUTPUT POWER

10.1 Measurement Procedure

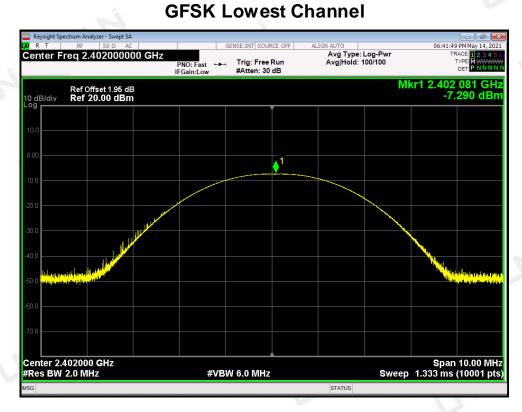
Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(1):

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum. The analyzer was set for RBW > 20dB bandwidth and power was read directly in dBm. Cable loss was considered during this measurement.

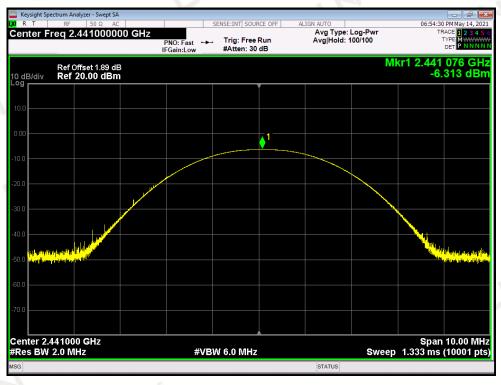
10.2 Limit

For all other frequency hopping systems in the 2400-2483.5MHz band: 0.125 watts. **10.3** Test SET-UP (Block Diagram of Configuration)

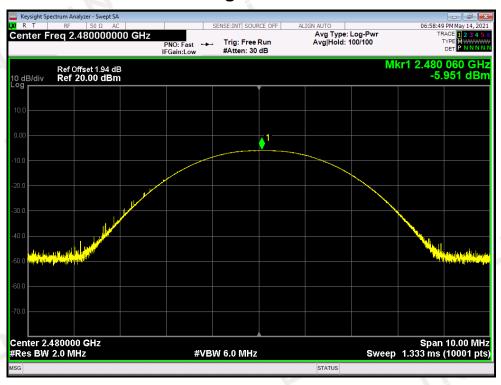
10.4 Measurement Results

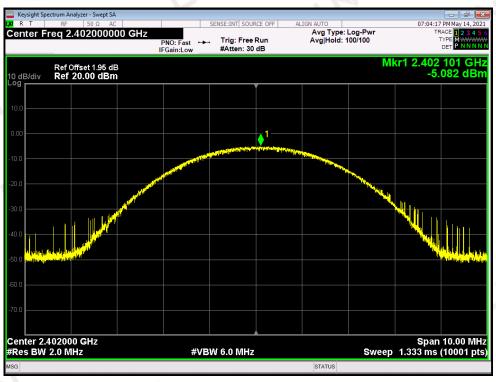

RBW:	2MHz	Temperature:	24 ℃
VBW:	6MHz	Humidity:	50 %
Spectrum Detector:	PK	Test By:	PEI
Packet:	DH1, 2DH1, 3DH1(Worst case)	Test Date:	May 14, 2021

Channel Frequency (MHz)	Peak Power output (dBm)	Peak Power output (W)	Peak Power Limit (dBm/W)	Results
		GFSK		
2402.00	-7.290	0.000187	21/0.125	PASS
2441.00	-6.313	0.000243	21 / 0.125	PASS
2480.00	-5.951	0.000254	21/0.125	PASS
		π/4-DQPSK		
2402.00	-5.082	0.000310	à 21 / 0.125	PASS
2441.00	-4.030	0.000395	21/0.125	PASS
2480.00	-3.663	0.000430	21/0.125	PASS
		8DPSK		
2402.00	-4.311	0.000371	21/0.125	PASS
2441.00	-3.326	0.000465	21/0.125	PASS
2480.00	-2.898	0.000513	21/0.125	PASS

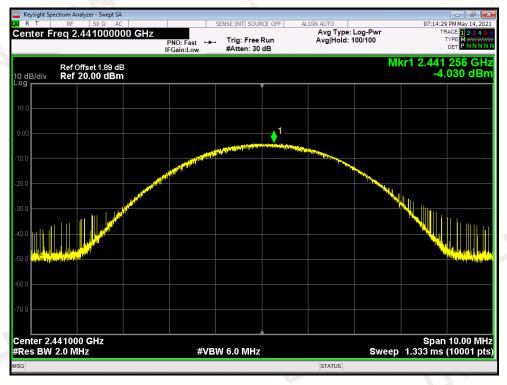

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

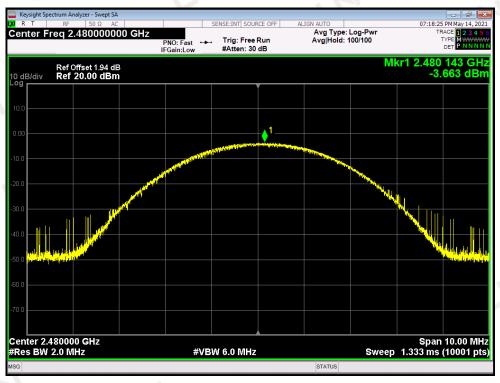
Page 71 of 95 Report No.: UNIA21052422ER-01


GFSK Middle Channel


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

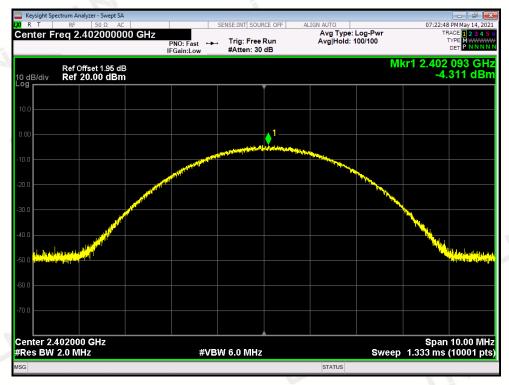
Page 72 of 95 F GFSK Highest Channel


π/4-DQPSK Lowest Channel

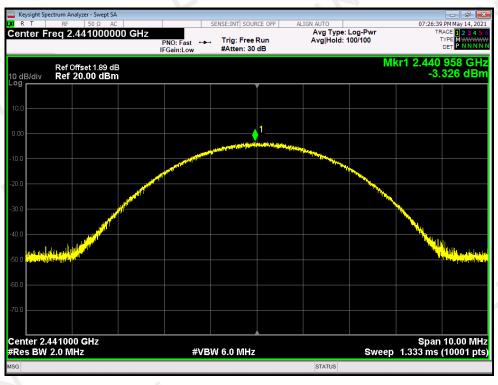

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 73 of 95 R π/4-DQPSK Middle Channel

π/4-DQPSK Highest Channel

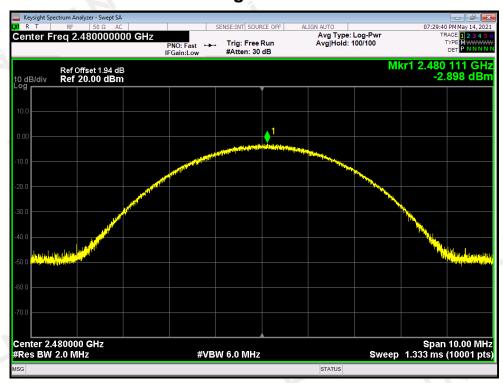


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited



Page 74 of 95 Report No.: UNIA21052422ER-01

8DPSK Lowest Channel


8DPSK Middle Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 75 of 95 Re 8DPSK Highest Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

1. BAND EDGE 11.1 Measurement Procedure

Out of Band Emissions, FCC Rule 15.247(d):

During the radiated emission test, the spectrum analyzer was set with the following configurations:

1. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.

2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

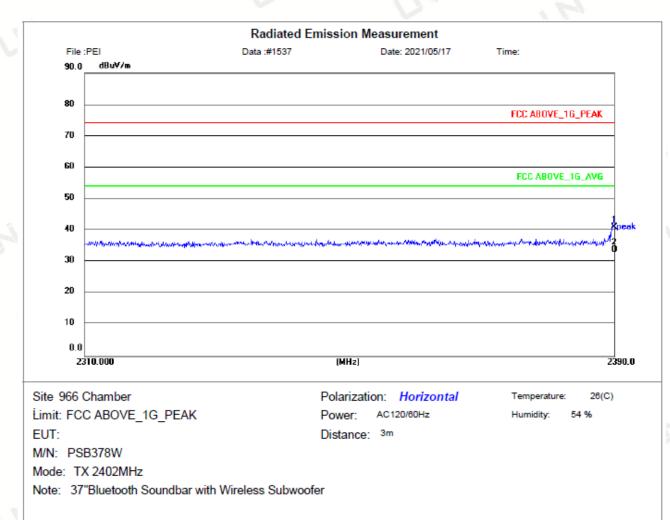
During the conducted emission test, the spectrum analyzer was set with the following configurations:

The transmitter output is connected to spectrum analyzer. The resolution bandwidth is set to100KHz, and the video bandwidth set to 300kHz.

11.2 Limit

15.247(d)In any 100KHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

11.3 Measurement Results

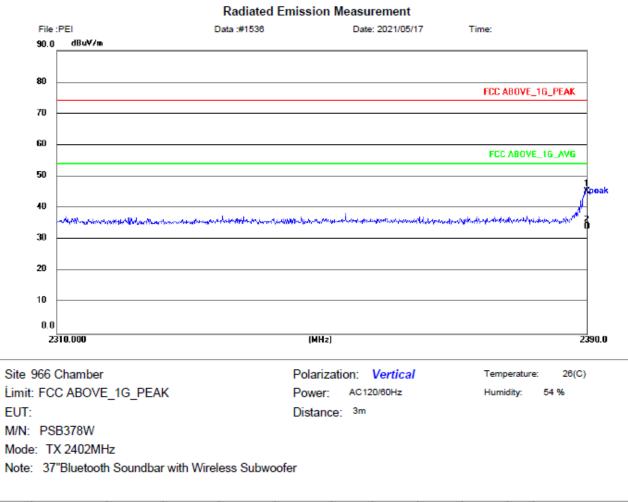

Please see below test table and plots.

Note: All modes of operation were investigated and the worst case (8DPSK Mode) emissions are reported.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

For Radiated restricted band:

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2402MHz (8DPSK)	Humidity:	54 %
Test Distance:	3m	Test By:	PEI
Test Results:	PASS	Test Voltage	AC 120V/60Hz



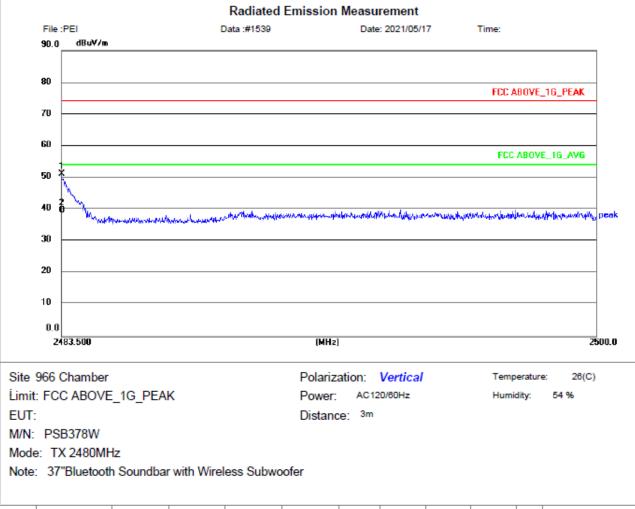
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2390.000	37.17	3.90	41.07	74.00	32.93	peak	210	195	Р	
2 *	2390.000	29.86	3.90	33.76	54.00	20.24	AVG	210	195	Р	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2402MHz (8DPSK)	Humidity:	54 %
Test Distance:	3m	Test By:	PEI
Test Results:	PASS	Test Voltage	AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2390.000	41.35	3.90	45.25	74.00	28.75	peak	110	278	Р	
2 *	2390.000	30.28	3.90	34.18	54.00	19.82	AVG	110	278	Р	

LN

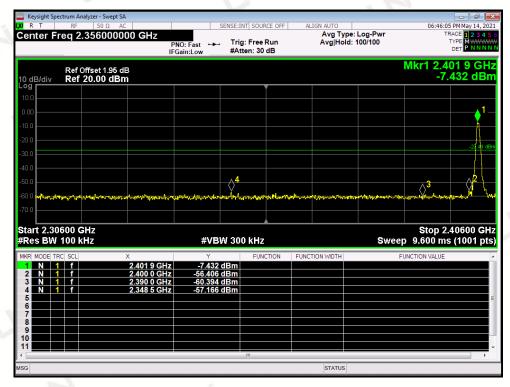

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Horizontal
Model No.:	PSB378W	Temperature:	26 ℃
Test Mode:	TX 2480MHz (8DPSK)	Humidity:	54 %
Test Distance:	3m	Test By:	PEI
Test Results:	PASS	Test Voltage	AC 120V/60Hz

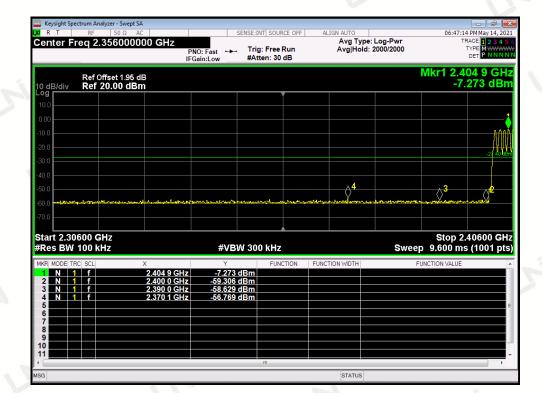
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2483.500	40.46	4.28	44.74	74.00	29.26	peak	200	142	P	
2 *	2483.500	31.65	4.28	35.93	54.00	18.07	AVG	200	142	Р	

E.U.T:	37"Bluetooth Soundbar with Wireless Subwoofer	Polarization:	Vertical
Model No.:	PSB378W	Temperature:	26 °C
Test Mode:	TX 2480MHz (8DPSK)	Humidity:	54 %
Test Distance:	3m	Test By:	PEI
Test Results:	PASS	Test Voltage	AC 120V/60Hz

N	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
	1	2483.500	46.81	4.28	51.09	74.00	22.91	peak	105	257	Р	
1	2 *	2483.500	35.51	4.28	39.79	54.00	14.21	AVG	105	257	Р	

Note:


- (1) Result= Reading + Factor
- (2) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (3) Horn antenna used for the emission over 1000MHz.


深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

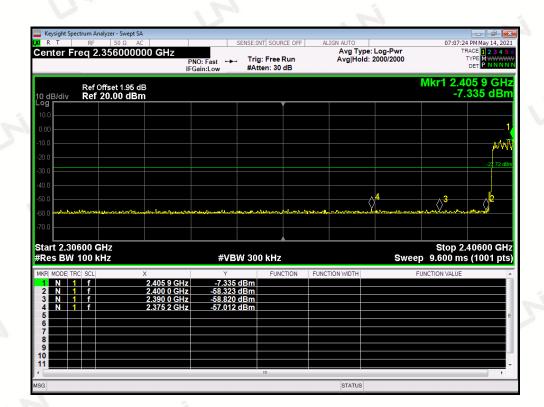
or RF Conducted restricted band:

GFSK Lowest Channel

Page 81 of 95

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 82 of 95 GFSK Highest Channel


RT	RF	zer - Swept SA 50 Ω AC 260000	00 GHz	PNO: Fast ↔	. Trig: I	SOURCE OFF	ALI	IGN AUTO Avg Type: Avg Hold:	Log-Pwr 100/100		9 PM May 14, 2 RACE 1 2 3 4 TYPE MWWW DET P NNN
) dB/div		set 1.94 di 0 .00 dB n	3	Gam.cow						Mkr1 2.4 -6	79 9 GI 039 dB
0.0											
	1										
0.0											
0.0											-26.03
0.0											
0.0	1 (s ²⁴										
0.0 44,44	Vallenger	สามพายุAdvAnw	Martin Kyylettakoven	toriorital production	appear of the second of the	and the second s	يدارو _{يو م} وراناني	and the second	₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	and the second	uphhormon
tart 2.47 Res BW				#VE	W 300 I	kHz			Swee	stop 2 p 9.600 m	.57600 G s (1001 p
KR MODE TF			X	Y		FUNCTION	FUNCT	ION WIDTH		FUNCTION VALUE	
1 N 1 2 N 1	f		2.479 9 GHz 2.483 5 GHz	-6.039 -59.608							
3 N 1 4 N 1	f		2.500 0 GHz 2.484 1 GHz	<u>-62.314</u> -58.470							
5			2.404 1 0112	-30.470	abiii						
6 7	+										
8											
9											
1											
1								STATUS			

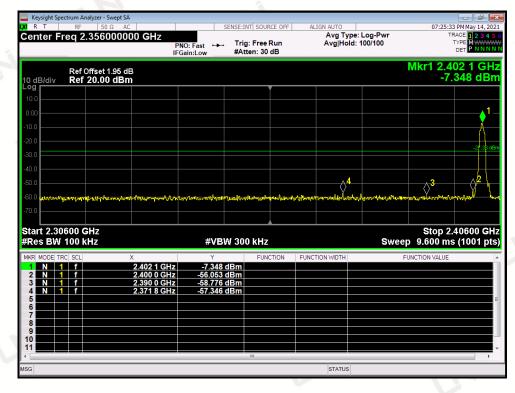
Keysight Spectrum Analyzer - Swept SA						
R T RF 50 Ω AC	SENSE:IN	T SOURCE OFF	ALIGN AUTO			8 PM May 14, 2
enter Freq 2.526000000 GHz		: Free Run en: 30 dB	Avg Type: Avg Hold:			RACE 1 2 3 4 TYPE MWWW DET PNNN
Ref Offset 1.94 dB 0 dB/div Ref 20.00 dBm					Mkr1 2.4 -6.	79 9 GI 126 dB
		<u> </u>				
).00 1						
						-26.10
0.0						
0.0						
1.0 2 4 3						
0.0 when a hord and a second	engen Allenton and Stranger and	production and the second	and the second	and the solution	han an a	-llanderroom
0.0						
tart 2.47600 GHz Res BW 100 kHz	#VBW 300	kHz		Swee	Stop 2. p 9.600 ms	.57600 G s (1001 p
KR MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
1 N 1 f 2.479 9 G						
2 N 1 f 2.483 5 G 3 N 1 f 2.500 0 G						
4 N 1 f 2.488 4 G						
5						
6						
8						
9						
0						
0 1 		m				

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 83 of 95 Re π/4-DQPSK Lowest Channel

enter F	req 2.3560		NO:East →→ Trig	IT SOURCE OFF	ALIGN AUTO Avg Type: Avg Hold:		07:06:25 PM May 14, TRACE 1 2 3 TYPE MWW DET P NN
) dB/div	Ref Offset 1 Ref 20.00			•			Mkr1 2.401 9 G -7.436 dE
.00							
).0).0							
).0).0							-27.4
).0).0 <mark>#haurra</mark>		ger palation that the agent water has	๛ _{๛๗๛} ๗๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	การสุขมาย ปลเปลี่ย า	Roaphard all and a low and and	hardmarken	3 12
	0600 GHz 100 kHz		#VBW 30) kHz		Sweep	Stop 2.40600 0 9.600 ms (1001)
	RC SCL	× 2.401 9 GHz	Y -7.436 dBm	FUNCTION	FUNCTION WIDTH	FL	JNCTION VALUE
N 1 N 1 N 1	f	2.401 9 GHz 2.400 0 GHz 2.390 0 GHz 2.313 8 GHz	-59.896 dBm -59.478 dBm -57.579 dBm				
N 1	f	2.400 0 GHz 2.390 0 GHz	-59.478 dBm				

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited


Page 84 of 95 Re π/4-DQPSK Highest Channel

RT	RF	alyzer - Swept SA 50 Ω A0 .5260000	00 GHz	PNO: Fast ↔	. Trig:	SOURCE OFF Free Run 1: 30 dB	Avg	Type: Log-P Hold: 100/10	wr 0	TR	PM May 14, 20 ACE 1 2 3 4 YPE MWWW DET P N N N
) dB/div		Offset 1.94 d 20.00 dBr							M	kr1 2.4 -6.	79 9 GI 446 dB
0.0											
0.00											
0.0											-26.16 0
0.0											
	1										
0.0 0.0	1 Westin	Ţ₩ĨĮŲŀſĿ ^Ĕ ĬĬţŀſ¥ŦĊŖŲ	andrahan an a	A way of the states	Villian January 18	orahangan karin	-สี _เ กิจะเห ¹ าไขให้เรอบ สมุณระจะไ	light and a later of	and a state of a state of a	l-particular	ՠֈֈֈֈՠֈֈֈ
tart 2.47 Res BW				#VE	SW 300	kHz			Sweep 9		57600 GI (1001 pt
KR MODE TR	C SCL		× 2.479 9 GHz	Y	dBm	FUNCTION	FUNCTION WID	тн	FUNC	TION VALUE	
2 N 1 3 N 1 4 N 1	f f f		2.483 5 GHz 2.500 0 GHz 2.483 9 GHz	-60.181	dBm dBm						
5 6 7											
8											
9 0 1											•

RT		50 Ω AC	SENSE:	INT SOURCE OFF	ALIGN AUTO	e: Log-Pwr	07:21:10 PM Ma TRACE	
enter F	req 2.520			g: Free Run tten: 30 dB		d: 2000/2000	TYPE	234 1 2 1 1 2 1 2 1 4
) dB/div	Ref Offse Ref 20.0					Ν	/kr1 2.478 / -6.485	
								-26.33
0.0								
0.0		A4 0						
0.0	2 Marine			hall a start and a start and a start a	and any and a second	and an and a second statements		wanteday
ro.o								
tart 2.47	/600 GHz						Stop 2.576	00 C
	100 kHz		#VBW 30	0 kHz		Sweep	9.600 ms (10	01 p
KR MODE T	RC SCL	× 2.478 1 GHz	۲ -6.485 dBm	FUNCTION	FUNCTION WIDTH	FUI	NCTION VALUE	
2 N	f	2.483 5 GHz	-58.588 dBm					
3 N 1		2.500 0 GHz 2.494 3 GHz	-59.214 dBm -57.034 dBm					
5 6								
8								
9								

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 85 of 95 8DPSK Lowest Channel

Keysight	Spectrum A	Analyzer - Swept S	5A							
RT	RF	50 Ω /	AC		SENSE:INT	SOURCE OFF	ALIGN AUTO			0 PM May 14, 20
enter	Freq 2	2.3560000	F	PNO: Fast ↔ Gain:Low		Free Run n: 30 dB		pe: Log-Pwr ld: 2000/2000	TF	RACE 1 2 3 4 1 TYPE MWWW DET P N N N
0 dB/div		Offset 1.95 of 20.00 dB							Mkr1 2.4 -7.	05 1 GF 253 dB
og 10.0						l l				
D.00										
10.0										5.5.7
20.0										γuγ
30.0										-27.37 d
40.0										
50.0						. 4				. 2
	بر استان ا	a di tarih nadi	and a second second second second	ubber and the second	and the Box	and the second	under la carde carde es	half in the term		and a start
60.0 70.0										
/0.0										
	30600 W 100			#VE	W 300 I	٢		Swe	Stop 2. ep 9.600 ms	40600 GH s (1001 pt
IKR MODE			Х	Y		FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
1 N 2 N	1 f 1 f		2.405 1 GHz 2.400 0 GHz							
3 N	1 f		2.390 0 GHz 2.358 9 GHz	-59.279	dBm					
5	1 T		2.358 9 GHZ	-57.320	aBm					
6										
8										
10										
10 11										•

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 86 of 95 8DPSK Highest Channel

RT	ctrum Analyzer - Sv RF 50 G Teq 2.5260	2 AC 00000 GHz	PNO: Fast ↔	SENSE:INT SOU	Run	ALIGN AUTO Avg Typ Avg Hold	e: Log-Pwr I: 100/100		2 PM May 14, 20 RACE 1234 TYPE M
0 dB/div	Ref Offset 1 Ref 20.00	.94 dB	Gain:Low	#Atten: 30	dB			Mkr1 2.4 -6	79 9 GH
og 10.0									
80.0									-25.99
i0.0	2	Annun Antonia Annun Antonia	estoryon-m	- Anton Marked	Jun	anty property and the second	+	ngunglingtrownfigwarerstattyse	
10.0	600 CH-							Stop 2	.57600 G
Res BW	100 kHz			W 300 kHz			Swe	ep 9.600 ms	s (1001 p
KR MODE TRO 1 N 1 2 N 1 3 N 1 4 N 1 5	f f f	× 2.479 9 GHz 2.483 5 GHz 2.500 0 GHz 2.483 5 GHz	<u>-58.507</u> -60.187	dBm dBm dBm	CTION	FUNCTION WIDTH		FUNCTION VALUE	
5 6 7 8 9									
0				III					
G					_	STATUS			

and an E				SENSE:INT	SOURCE OFF	ALIGN AUT	ro g Type: Log-	Duer		2 PM May 14, 2 RACE 1 2 3 4
enter F	req 2.5260		PNO: Fast ↔ FGain:Low		Free Run n: 30 dB		Hold: 2000			
) dB/div	Ref Offset								Mkr1 2.4 -6	80 1 GI .043 dB
og 0.0					Ĭ					
	1									
o.o <mark>UNA</mark> A										
0.0										-26.08
0.0										
0.0		4								
0.0	$\langle \rangle^2 = \langle \rangle$	⁴	all a file barren de confide	a chara sa	a dan bar an and	www.handreen	مورمورو		noo- ntou unite	Martin of all hears of
0.0										
									e t	57000 0
	600 GHz 100 kHz		#VE	W 300	kHz			Sweep	Stop 2 9.600 m	.57600 G s (1001 p
KR MODE TF		X	Y		FUNCTION	FUNCTION WIE	отн	FL	INCTION VALUE	
1 N 1		2.480 1 GHz 2.483 5 GHz					_			
2 N 1	f	2.500 0 GHz 2.490 4 GHz								
3 N 1 4 N 1 5										
3 N 1 4 N 1 5 6 7										
3 N 1 4 N 1 5 6										

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2. ANTENNA APPLICATION 12.1 Antenna requirement

According to of FCC part 15C section 15.203 and 15.240:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

12.2 Measurement Results

The EUT antenna is PCB antenna. It comply with the standard requirement.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 88 of 95 CONDUCTED SPURIOUS EMISSIONS

13.1 Measurement Procedure


Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):

The transmitter output is connected to spectrum analyzer. All spurious emission and up tp the tenth harmonic was measured and they were found to be at least 20dB below the highest level of the desired power in the passband.

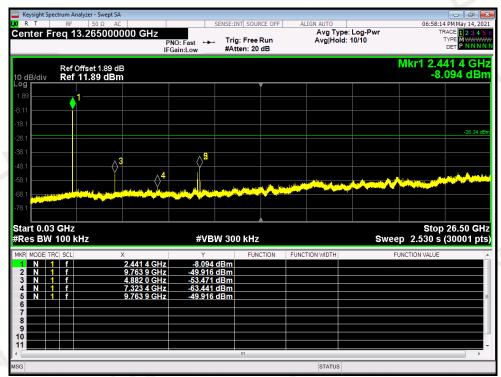
13.2 Limit

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

13.3 Test SET-UP (Block Diagram of Configuration)

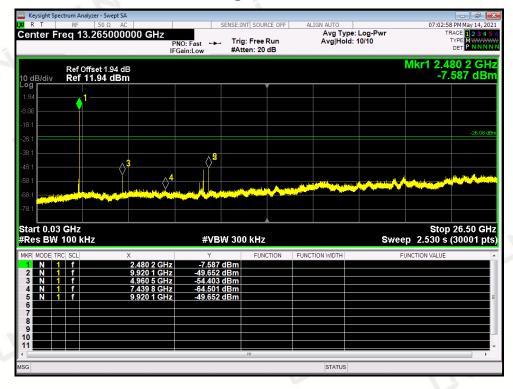
13.4 Measurement Results

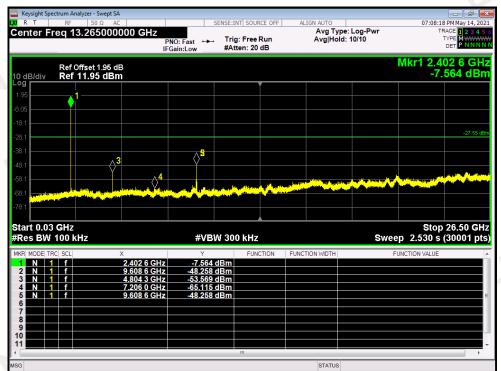
Pass


Please refer to following plots.

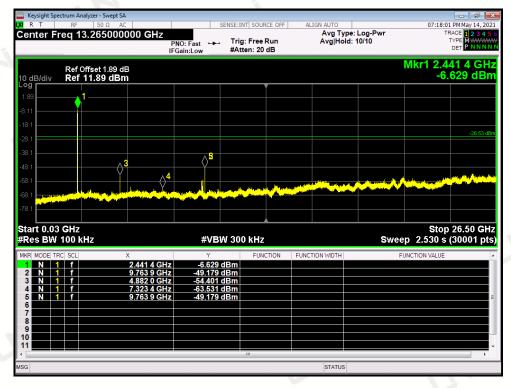
Page 89 of 95 GFSK Lowest Channel

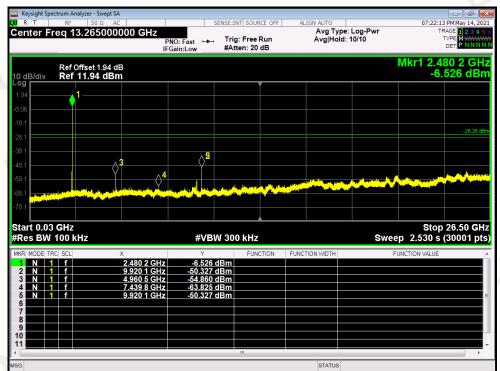
URT	RF		a IC 1000 GHz	PNO: Fast ↔		: Free I	Run	AL	IGN AUTO Avg Typ Avg Hold	e: Log-Pwr : 10/10	06:53	3:54 PM May 14, 20 TRACE 1 2 3 4 TYPE MWWW
10 dB/div		Offset 1.95 dB		IFGain:Low	#At	ten: 20	dB					401 7 GH 7.429 dB
1.95 8.05	•	1										
18.1 28.1 38.1				A								-27.46 0
18.1 58.1			3 4								and the second second	
78.1	CH7		ng panalaking padarangking padarangking padarangking panalaking padarangking padarangking padarangking padarang								Ste	op 26.50 Gl
Res BW	100				3W 30					Swe	eep 2.530	s (30001 p
KR MODE TI 1 N 1 2 N 1 3 N 1 4 N 1 5 N 1			X 2.401 7 GH 9.608 6 GH 4.804 3 GH 7.206 0 GH 9.608 6 GH	z -48.791 z -56.820 z -60.352	0 dBm 2 dBm	FUNC	CTION	FUNCT	TION WIDTH		FUNCTION VALU	E
6 7 8 9 0												
1						III			STATUS			•
_	_					_						


GFSK Middle Channel

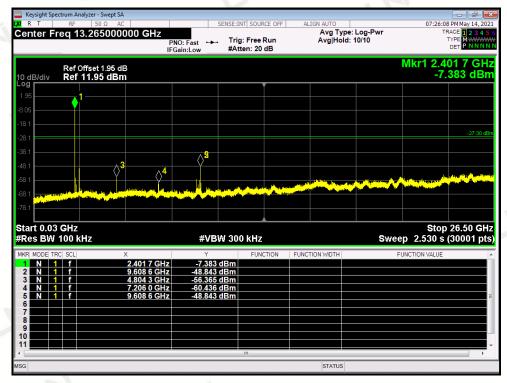

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 90 of 95 GFSK Highest Channel


π/4-DQPSK Lowest Channel

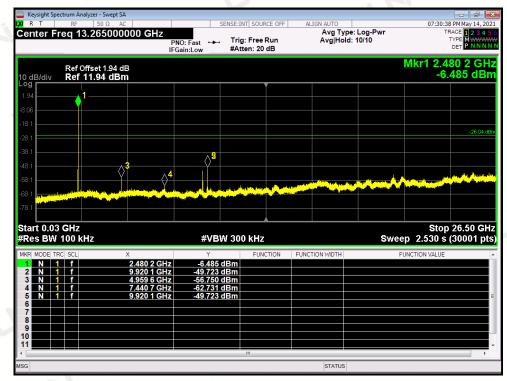

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 91 of 95 R π/4-DQPSK Middle Channel


π/4-DQPSK Highest Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

8DPSK Lowest Channel


8DPSK Middle Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

8DPSK Highest Channel

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

4. TEST EQUIPMENT LIST

ltem	Equipment	Manufacturer	Model No.	Serial No.	Calibrated dates	Cal. Interval
1	Conducted Emission Test Software	EZ-EMC	Ver.CCS-3A1- CE	N/A	N/A	N/A
2	AMN	Schwarzbeck	NNLK8121	8121370	2020.10.13	1 Year
3	AMN	ETS	3810/2	00020199	2020.10.13	1 Year
4	AAN	TESEQ	T8-Cat6	38888	2020.10.13	1 Year
5	Pulse Limiter	CYBRTEK	EM5010	E115010056	2021.05.19	1 Year
6	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2020.10.13	1 Year
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2020.10.19	1 Year
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2021.03.02	1 Year
4	PREAMP	HP	8449B	3008A00160	2020.10.13	1 Year
5	PREAMP	HP	8447D	2944A07999	2021.05.19	1 Year
6	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2020.10.13	1 Year
7	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2020.10.13	1 Year
8	Signal Generator	Agilent	E4421B	MY4335105	2020.11.12	1 Year
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2020.10.13	1 Year
10	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2020.10.13	1 Year
11	RF Power sensor	DARE	RPR3006W	15100041SNO88	2021.05.19	1 Year
12	RF Power sensor	DARE	RPR3006W	15100041SNO89	2021.05.19	1 Year
13	RF power divider	Anritsu	K241B	992289	2020.10.13	1 Year
14	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2020.10.13	1 Year
15	Active Loop Antenna	Com-Power	AL-130R	10160009	2021.05.19	1 Year
16	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2021.05.19	1 Year
17	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2021.05.19	1 Year
18	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2020.11.05	1 Year
19	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2020.10.13	1 Year
20	Signal Generator	Agilent	N5183A	MY47420153	2020.10.13	1 Year
21	Spctrum Analyzer	Rohde&Schwarz	FSP 40	100501	2020.10.13	1 Year
22	Power Meter	KEYSIGHT	N1911A	MY50520168	2020.10.13	1 Year
23	Frequency Meter	VICTOR	VC2000	997406086	2020.10.13	1 Year
24	DC Power Source	HYELEC	HY5020E	055161818	2020.10.13	1 Year
				•		

APPENDIX-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

---END----

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited