

Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2AXYP-OSW-802N

Product: Smart Watch

Model No.: OSW-802N

Trade Mark: oraimo

Report No.: WSCT-A2LA-R&E240200005A-BT

Issued Date: 08 March 2024

Issued for:

ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, Chinan & Tean

TEL: +86-755-26996192 FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

cation & Testino 世标检测认证股份 MOM # PIT

n Certification & Tost

WSEI

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

TABLE OF CONTENTS

	(1) P 1 4 B \ (1	- 1
1.	Test Certification	3
2.	Test Result Summary	4
3.	EUT Description	5
4.	Genera Information	7
	4.1. TEST ENVIRONMENT AND MODE	7
_/	4.2. DESCRIPTION OF SUPPORT UNITS	
5.		8
	5.1. FACILITIES	8
	5.2. ACCREDITATIONS	
	5.3. MEASUREMENT UNCERTAINTY	9
	5.4. MEASUREMENT INSTRUMENTS	10
6.	Test Results and Measurement Data	11
	6.1. ANTENNA REQUIREMENT	
	6.2. CONDUCTED EMISSION	12
1	6.3. CONDUCTED OUTPUT POWER	
	6.4. 20DB OCCUPY BANDWIDTH	22
	6.5. CARRIER FREQUENCIES SEPARATION	
,	6.6. HOPPING CHANNEL NUMBER	2007
1	6.7. DWELL TIME	/
	6.8. PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
The same	6.9. CONDUCTED BAND EDGE MEASUREMENT	-
-	6.10. CONDUCTED SPURIOUS EMISSION MEASUREMENT	
	O. II. KADIATED OPUKIOUS EMISSION WEASUKEMENT	0/

BB MIA Carbificate Number 5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240200005A-BT

1. Test Certification

Product:

Smart Watch

Model No .:

OSW-802N

Trade Mark:

oraimo

Applicant:

ORAIMO TECHNOLOGY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

19-25 SHAN MEI STREET FOTAN NT HONGKONG

Manufacturer:

Jiangsu Saibo Yuhua Technology Co.,Ltd

Building 8(D) of Yancheng High-Tech Zone Intelligent

Terminal Industrial Park, P.R.China.

Date of Test:

27 February 2024 to 08 March 2024

Applicable Standards:

FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

(Wang Xiang)

Checked By:

CHEN XI

(Chen Xu)

Approved By:

mudne

Date:

08

Anch 202

PHON

W51

on & Tes

(Liu Fuxin)

WSET

WSET

WSET

WSET

sication & Testino G.

WSET

AWSET

WSET

417-141

W5C7

dan Ration Certification & Toshin

世标检测认证股份 roup (Shenzhen) Co., Ltd. ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

WSE

WSE

Page 3 of 70

Mombar of the MISCTINIC

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

2. Test Result Summary

AUZIAM AUZIAM		N. C.	7 1 L T H H L
7	Requirement	CFR 47 Section	Result
	Antenna Requirement	§15.203/§15.247 (c)	PASS
3	AC Power Line Conducted Emission	§15.207	PASS
-	Conducted Peak Output Power	§15.247 (b)(1) §2.1046	PASS
6	20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS
	Carrier Frequencies Separation	§15.247 (a)(1)	PASS
	Hopping Channel Number	§15.247 (a)(1)	PASS
7	Dwell Time	§15.247 (a)(1)	PASS
	Radiated Emission	§15.205/§15.209 §2.1053, §2.1057	PASS
	Band Edge	§15.247(d) §2.1051, §2.1057	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

3. **EUT** Description

Product Name:	Smart Watch
Model:	OSW-802N
Trade Mark:	oraimo
Operation Frequency:	2402MHz~2480MHz
Channel Separation:	1MHz
Number of Channel:	79 W5/17 W5/17
Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK
Modulation Technology:	FHSS
Antenna Type:	PIFA antenna
Antenna Gain:	-2.17dBi
Operating Voltage	Li-ion Battery: 552123V Voltage: 3.8V Rated Capacity: 300mAh Limited Charge Voltage: 4.35V
Remark:	N/A.

Report No.: WSCT-A2LA-R&E240200005A-BT

Certificate #5768.01

Please Contact with WSCT wsct-cert.com

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK

							WANA
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
X		X		X		X	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	17674	
Domork	Channal O 3	0 0 70 ha	ve been too	tod for C	CCV T/A DO	ADOK OF	DOCK

Remark: Channel 0, 39 &78 have been tested for GFSK, π/4-DQPSK, 8DPSK modulation mode.

MOM * PIT

WSET

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wist-cert.com Http://www.wsct-cert.com

Certificate #\$768.01

lease Contact with WSCT www.wsct-cert.com

Genera Information 4.

4.1. Test environment and mode

Operating Environment:					
Temperature:	25.0 °C				
Humidity:	56 % RH				
Atmospheric Pressure:	1010 mbar				
Test Mode:					
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery				

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	XCU32	1	1	X 1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Certificate #5768.01

Please Contact with WSCT

5. Facilities and Accreditations

5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration

Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number: 5768.01

5.3. Measurement Uncertainty

Please Contact with WSCT www.wsct-cert.com

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1GHz)	±4.7dB
5	All emissions, radiated(>1GHz)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2.0%

MOM * PIT

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

5.4. MEASUREMENT INSTRUMENTS

					www.wa	7
NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	7
Test software		EZ-EMC	CON-03A	-	X	
Test software	- 1	MTS8310	17274	1	4100	
EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	(
LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	/
LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	þ
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	/
Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	2
Pre-Amplifier	CDSI	PAP-1G18-38	/	11/05/2023	11/04/2024	
Bi-log Antenna	SUNOL Sciences	JB3	A021907	11/05/2023	11/04/2024	
9*6*6 Anechoic	g A	1991	Waster	11/05/2023	11/04/2024	L
Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2023	11/04/2024	h
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	_
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	ě
System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	t
RF cable	Murata	MXHQ87WA300 0	-	11/05/2023	11/04/2024	
Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	7
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
Power sensor	Anritsu	MX248XD	17274	11/05/2023	11/04/2024	
Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	
	_					

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

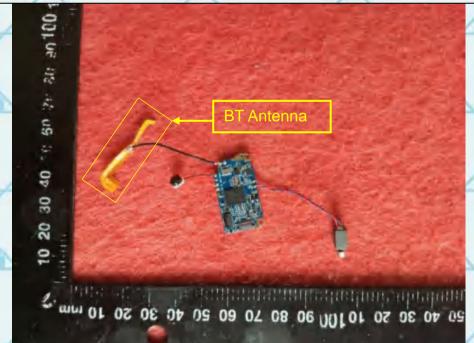
6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is -2.17dBi.

Certificate #5768.01

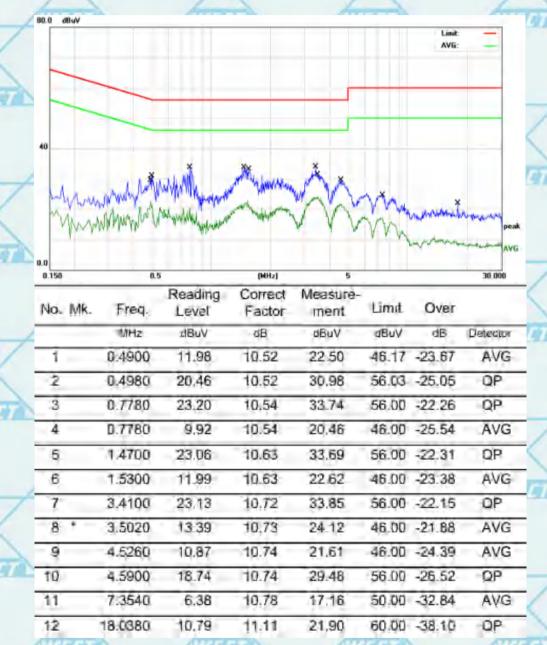
For Question,
Please Contact with WSCT
www.wsct-cert.com

6.2. Conducted Emission

6.2.1. Test Specification

6.2.1. Test Specification					
Test Requirement:	FCC Part15 C Section	15.207	X		
Test Method:	ANSI C63.10:2014	17479	NETH		
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto			
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50		
X	Reference	Plane			
NETT NET	40cm AC power	80cm LISN Filter	— AC power		
Test Setup:	Test table/Insulation plane	EMI Receiver	3		
Test Mode:	E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m Refer to item 4.1	twork	× 4		
Tost Mode.		atad to an adapta	or through a line		
TIFIE THE	The E.U.T is connect impedance stabilized provides a 50 ohm/5 measuring equipmer The peripheral deviced power through a Little	ation network OuH coupling import. es are also conne SN that provides	(L.I.S.N.). This pedance for the ected to the main a 500hm/50uH		
Test Procedure:	coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum				
Mich & Testy	conducted interferent emission, the relative the interface cables ANSI C63.10:2014 of the interface cables and the interface cables are also also also also also also also also	nce. In order to fine e positions of equi must be changed	nd the maximum ipment and all of according to		
Test Result:	PASS	V			
W. 322 0	\wedge	\wedge	\wedge		

Tell and the second


Certificate #5768.01

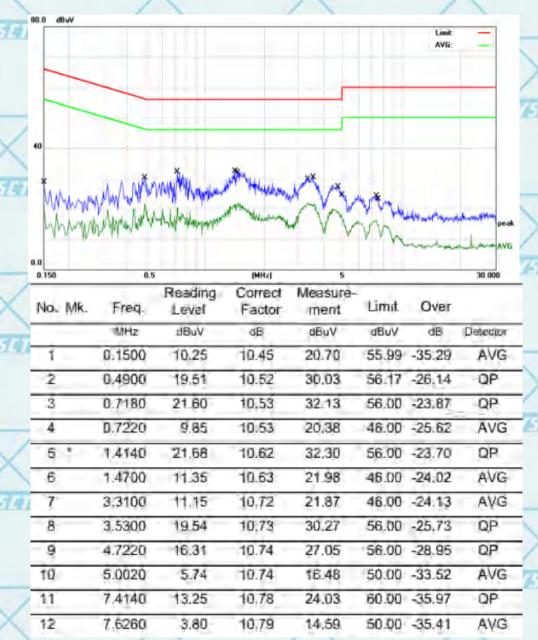
For Question, Please Contact with WSCT www.wsct-cert.com

6.2.2. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

ADD: Building A-B Baoshi Science's Technology Park, Baoshi Read, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wist-cert.com Http://www.wsct-cert.com



For Question, www.wsct-cert.com

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) Please Contact with WSCT

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Lisn factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

NOM * PIT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.3. Conducted Output Power

6.3.1. Test Specification

FCC Part15 C Section 15.247 (b)(3)		
ANSI C63.10:2014		
Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.		
Spectrum Analyzer EUT		
Transmitting mode with modulation		
Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.		
PASS		

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.3.2. Test Data

GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	7.28	20.97	PASS		
Middle	6.91	20.97	PASS		
Highest	6.19	20.97	PASS		

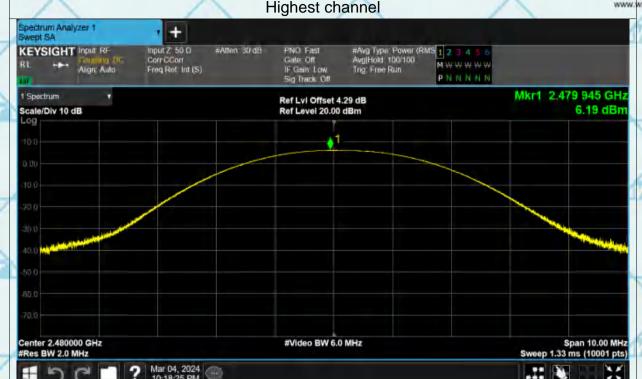
	20172 4 4 4 4 4 4	2011 2 d d d d d d d d d d d d d d d d d d	2 4 4 4 4 5	7444		
7	Pi/4DQPSK mode					
	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
	Lowest	8.77	20.97	PASS		
	Middle	8.18	20.97	PASS		
	Highest	7.75	20.97	PASS		

	8DPSK mode			
	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Ī	Lowest	8.62	20.97	PASS
	Middle	8.75	20.97	PASS
I	Highest	7.88	20.97	PASS

Test plots as follows:

Report No.: WSCT-A2LA-R&E240200005A-BT

Certificate #5768.01



Report No.: WSCT-A2LA-R&E240200005A-BT

Report No.: WSCT-A2LA-R&E240200005A-BT

Pi/4DQPSK Modulation

Certificate #5768.01 For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240200005A-BT

For Question,
Please Contact with WSCT
www.wsct-cert.com

8DPSKModulation

ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-2698192 26992306 FAX:86-755-86376605 E-mail: Fengling Wang@wist-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240200005A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

è	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
	Test Method:	ANSI C63.10:2014		
	Limit:	N/A		
7	Test Setup:	Spectrum Analyzer EUT		
	Test Mode:	Transmitting mode with modulation		
	Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤ RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 		
	Test Result:	PASS		

Report No.: WSCT-A2LA-R&E240200005A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.4.2. Test data

- 6						
	Test channel	-20dB Occupy Bandwidth (MHz)				
		GFSK	π/4-DQPSK	8DPSK	Conclusion	
	Lowest	0.946	1.318	1.299	PASS	
	Middle	0.939	1.316	1.297	PASS	
1	Highest	0.941	1.314	1.296	PASS	

Test plots as follows:

世标检算认证股份 gramp(Sheruhen) Co. Ltd.

DUOM * PIT

Report No.: WSCT-A2LA-R&E240200005A-BT

DUOM * PT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E240200005A-BT

Pi/4DQPSK Modulation

Certificate #5768.01

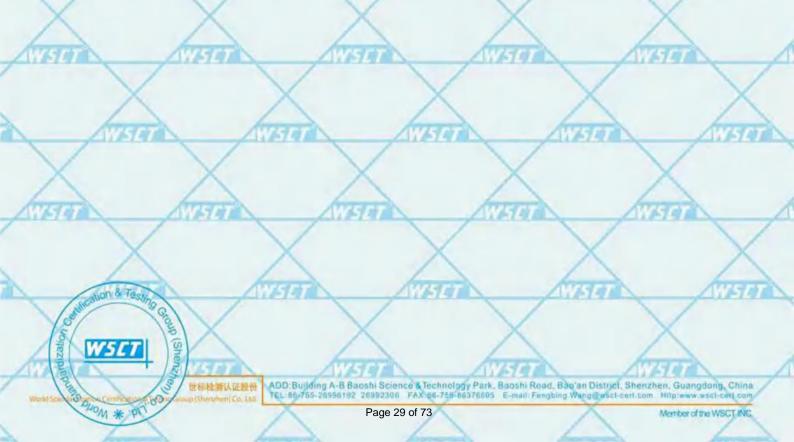
Report No.: WSCT-A2LA-R&E240200005A-BT

Report No.: WSCT-A2LA-R&E240200005A-BT 8DPSKModulation

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-2698192 26992306 FAX:66-755-86376605 E-mail: Fengbing Wang@ wist-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E240200005A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2014		
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Hopping mode		
Test Procedure:			
Test Result:	PASS		

Certificate #5768.01

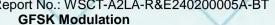
Please Contact with WSCT www.wsct-cert.com

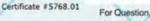
6.5.2. Test data

	GFSK mode			
	Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
	Lowest	1.042	2/3*20dB BW	PASS
	Middle	0.956	2/3*20dB BW	PASS
l	Highest	1.044	2/3*20dB BW	PASS

Pi/4 DQPSK mode				
Test channel Carrier Frequencies Separation (MHz)		Limit (MHz)	Result	
Lowest 1.004		2/3*20dB BW	PASS	
Middle	1.008	2/3*20dB BW	PASS	
Highest	1.090	2/3*20dB BW	PASS	

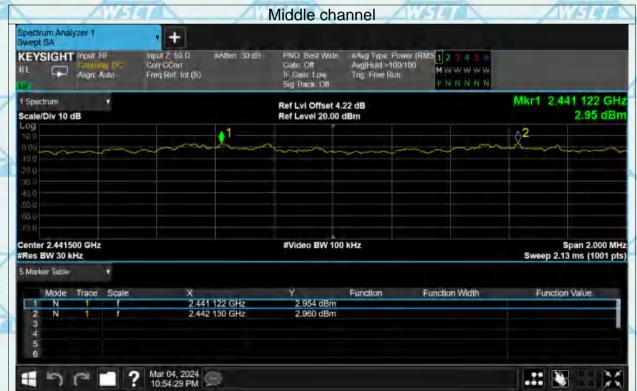
Test	channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
Lo	owest	1.094	2/3*20dB BW	PASS
M	iddle	1.002	2/3*20dB BW	PASS
Hi	ghest	1.082	2/3*20dB BW	PASS





Report No.: WSCT-A2LA-R&E240200005A-BT

Report No.: WSCT-A2LA-R&E240200005A-BT


Report No.: WSCT-A2LA-R&E240200005A-BT

Pi/4DQPSK Modulation

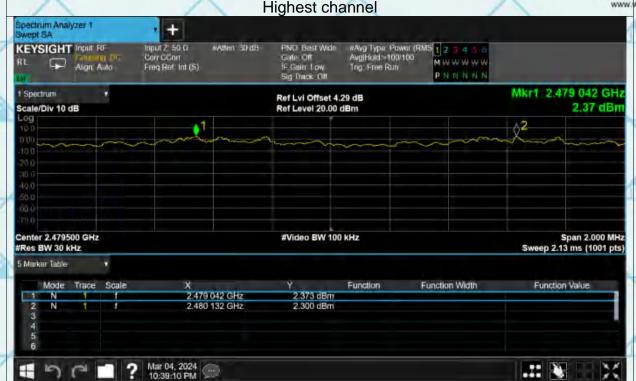
Certificate #5768.01

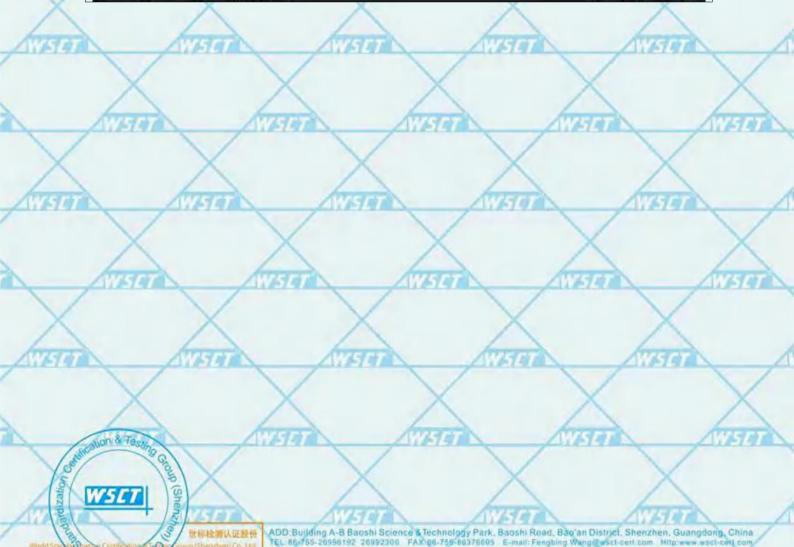
Please Contact with WSCT
www.wsct-cert.com

ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-2698192 26992306 FAX:86:755-86376605 E-mail: Fengling Wang@wist-cert.com Http://www.wsci-cert.com

DUOM * PT

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.





Report No.: WSCT-A2LA-R&E240200005A-BT

For Question,
Please Contact with WSCT
www.wsct-cert.com

Page 35 of 73

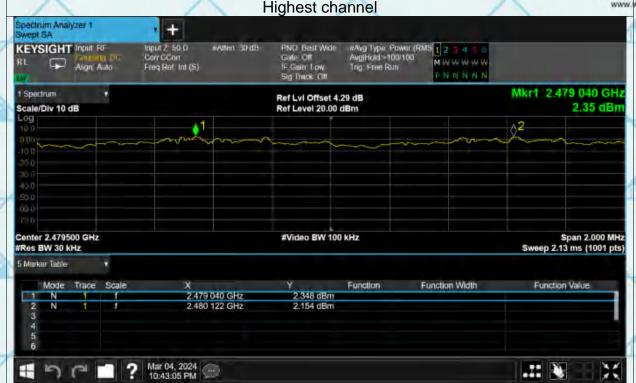
Member of the WSCT INC.

Report No.: WSCT-A2LA-R&E240200005A-BT 8DPSKModulation

Certificate #5768.01

DUOM * PT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.



Report No.: WSCT-A2LA-R&E240200005A-BT

For Question,
Please Contact with WSCT
www.wsct-cert.com

Page 37 of 73

Member of the WSCT INC.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.6. Hopping Channel Number

6.6.1. Test Specification

S	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2014
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
>	Test Setup:	Spectrum Analyzer EUT
	Test Mode:	Hopping mode
	Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel.
		7. Record the measurement data in report.
	Test Result:	PASS

Report No.: WSCT-A2LA-R&E240200005A-BT

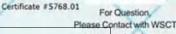
Certificate #5768.01

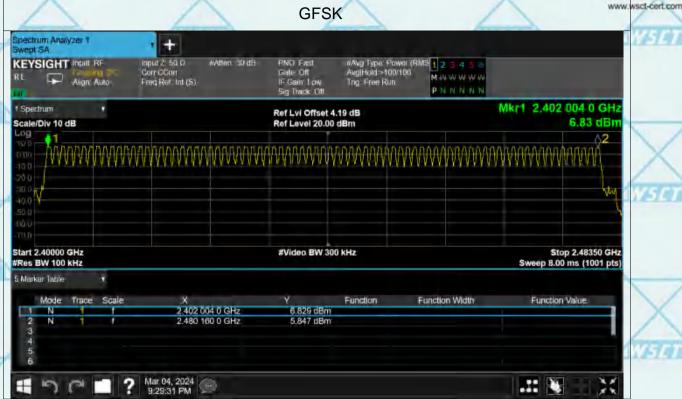
Please Contact with WSCT www.wsct-cert.com

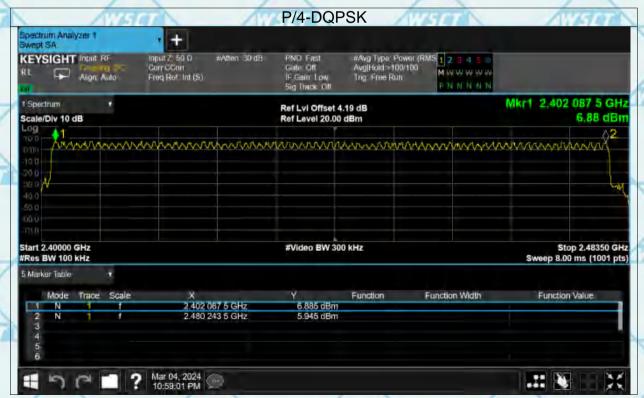
6.6.2. Test data

DHOM * PT

Mode	Hopping channel numbers	Limit	Result
GFSK, P/4-DQPSK, 8DPSK	79	15	PASS

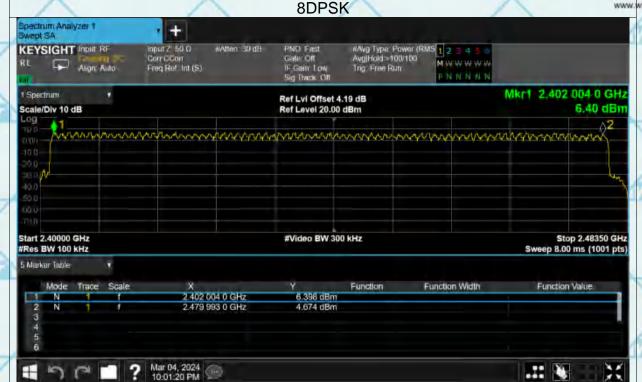

	GFSK, P/4-DQPSK, 8DPSK	79	15	PASS	
ATHIA	Test plots as follows:	NISTA	17419	W-10	1
	V	V	\ \		
	\triangle				
	WHEN	ATTE OF	NIE!	AVE TO	
X	X	X	X	X	
NVET 4 A	WESTER	A1140	17279	Wedge)
	\wedge	\wedge			
	AVSTOT	17779	NIS.	AVETA	A
X	X	X	X	X	
NYSTON	11519	NISTED AND THE PARTY OF THE PAR	WSIG	175100	,
- INCIAN					
	X	X		X	
	AVETON AVETON	17514	AVE	1771	
X	X	X	X	X	
A 13 3 3	17570	West and	VI510	77100	
110191	1	10130	1019	110130	1
	XX	X	X	X	
	AVETO AVETO	17619	175	17670	
V		X	X		
AVISTA	NATA .	AVE T	ATE TO S	NISTON.	1
	X	X	×	X	
	ation & Testin	17599	ATE!	77.74	1
Spille	S Grage	/		/	
zatio	WSCT Sp				
James V	W5年7 Qque Shetden (Co. 14)	ng A-B Baoshi Science & Technol	ogy Park, Baoshi Road, Bao'an D	listrict, Shenzhen, Guangdonn, China Bylistricati.com Hillp:www.wscl-com	1
World Strucking Prof	Company to Continue (Sheuten) Co. Ltd. TEL: 86,755-	26996192 26992306 FAX186-755	86376605 E-mail: Fengling Wange	wscl-cert.com Hilp:www.wscl-cert.com	





DUOM * PT

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.



Report No.: WSCT-A2LA-R&E240200005A-BT

For Question,
Please Contact with WSCT
www.wsct-cert.com

Page 41 of 73

Member of the WSCT INC.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

6.7. Dwell Time

6.7.1. Test Specification

	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Ì	Test Method:	ANSI C63.10:2014
	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Setup:	Spectrum Analyzer EUT
Ì	Test Mode:	Hopping mode
	Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
	Test Result:	PASS

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7.2. Test Data

Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
1-DH1	2402	0.372	118.668	319	31600	400	Pass
1-DH1	2441	0.371	118.349	319	31600	400	Pass
1-DH1	2480	0.371	118.349	319	31600	400	Pass
1-DH3	2402	1.628	263.736	162	31600	400	Pass
1-DH3	2441	1.627	258.693	159	31600	400	Pass
1-DH3	2480	1.628	249.084	153	31600	400	Pass
1-DH5	2402	2.875	299	104	31600	400	Pass
1-DH5	2441	2.875	284.625	99	31600	400	Pass
1-DH5	2480	2.875	347.875	121	31600	400	Pass

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.

For DH1, With channel hopping rate (1600/2/79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600/2/79) \times (0.4 \times 79) = 320$ hops

For DH3, With channel hopping rate (1600/4/79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600/4/79) \times (0.4 \times 79) = 160$ hops

For DH5, With channel hopping rate (1600/6/79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600/6/79) \times (0.4 \times 79) = 106.67$ hops

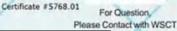
2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

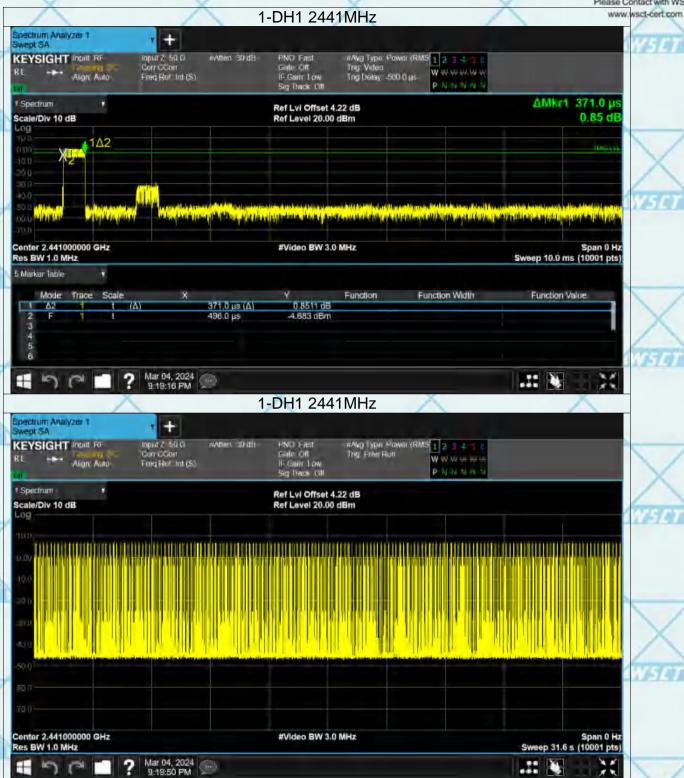
Test plots as follows:



Report No.: WSCT-A2LA-R&E240200005A-BT

Certificate #5768.01 For Question,

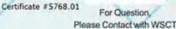


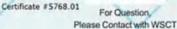


Report No.: WSCT-A2LA-R&E240200005A-BT

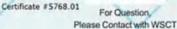
Certificate #5768.01

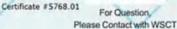
For Question, Please Contact with WSCT

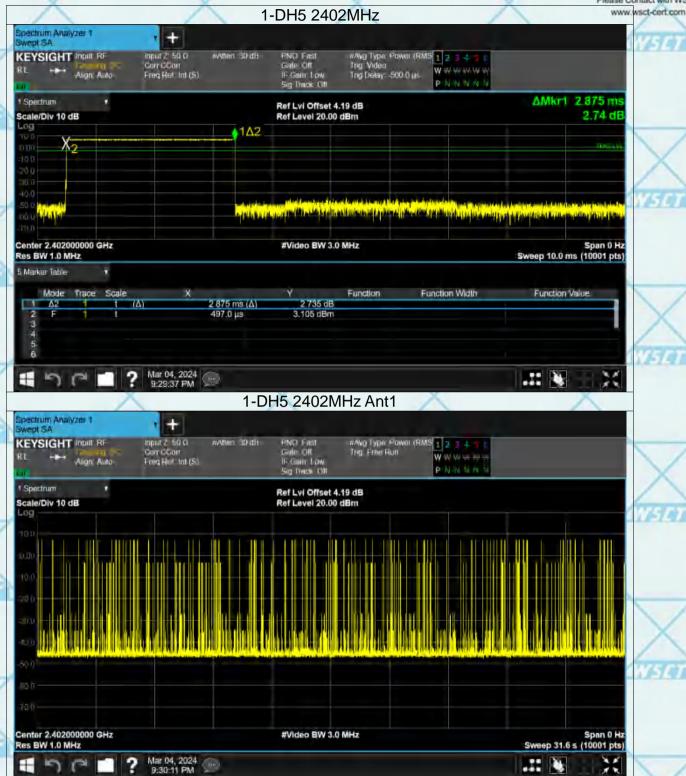

.:: 🔖





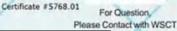






Report No.: WSCT-A2LA-R&E240200005A-BT

Certificate #5768.01 For Question,
Please Contact with WSCT

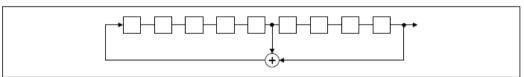


Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

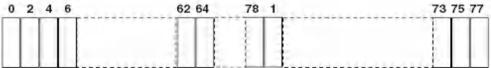
6.8. Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Certificate #5768.01

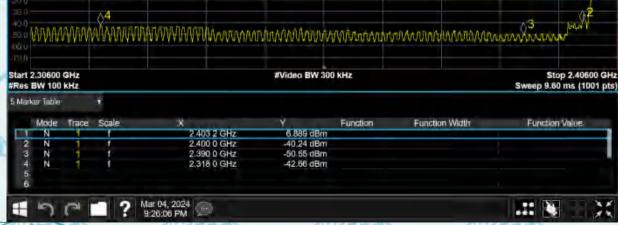
For Question,
Please Contact with WSCT
www.wsct-cert.com

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2014					
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 					
Test Result:	PASS					





6.9.2. Test Data

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992308 FAX:86-755-86376605 E-mail:Fengbing Wang@wict-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.10. Conducted Spurious Emission Measurement

6.10.1. Test Specification

	Test Requirement:	FCC Part15 C Section 15.247 (d)
8	Test Method:	ANSI C63.10:2014
	Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
	Test Setup:	Spectrum Analyzer EUT
	Test Mode:	Transmitting mode with modulation
	Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
	Test Result:	PASS

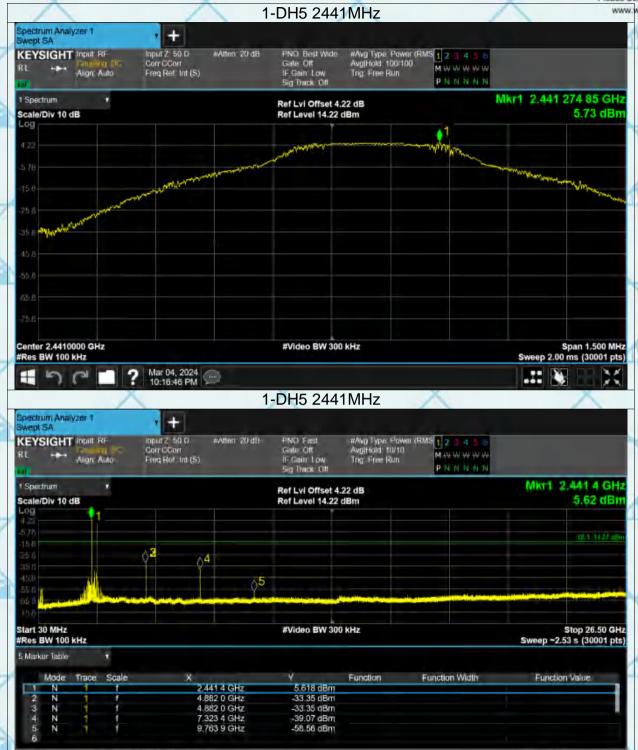
Report No.: WSCT-A2LA-R&E240200005A-BT

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Test Data GFSK mode

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-2698192 26992306 FAX:66-755-86376605 E-mail: Fengbing Wang@ wist-cert.com Http://www.wsct-cert.com



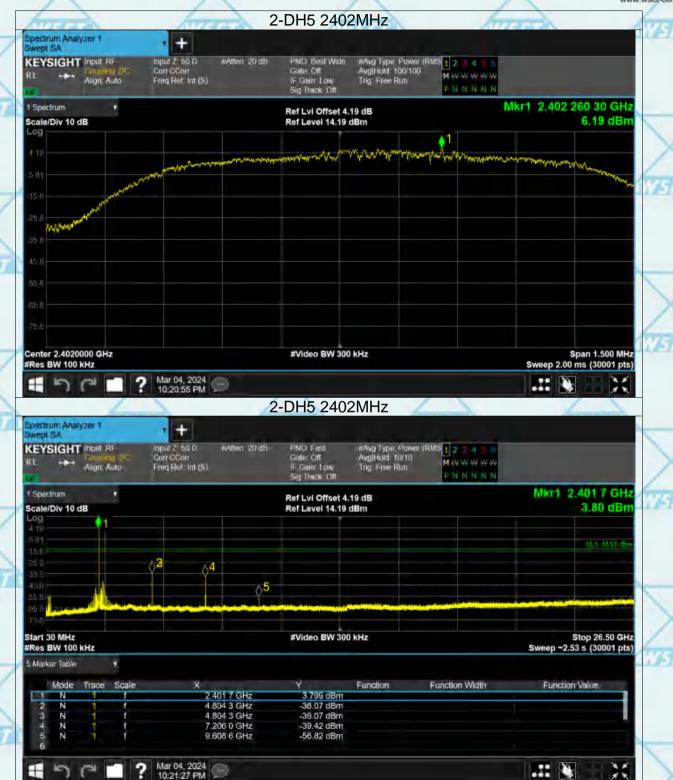
Report No.: WSCT-A2LA-R&E240200005A-BT

For Question,
Please Contact with WSCT
www.wsct-cert.com

Mar 04, 2024 10:17:18 PM

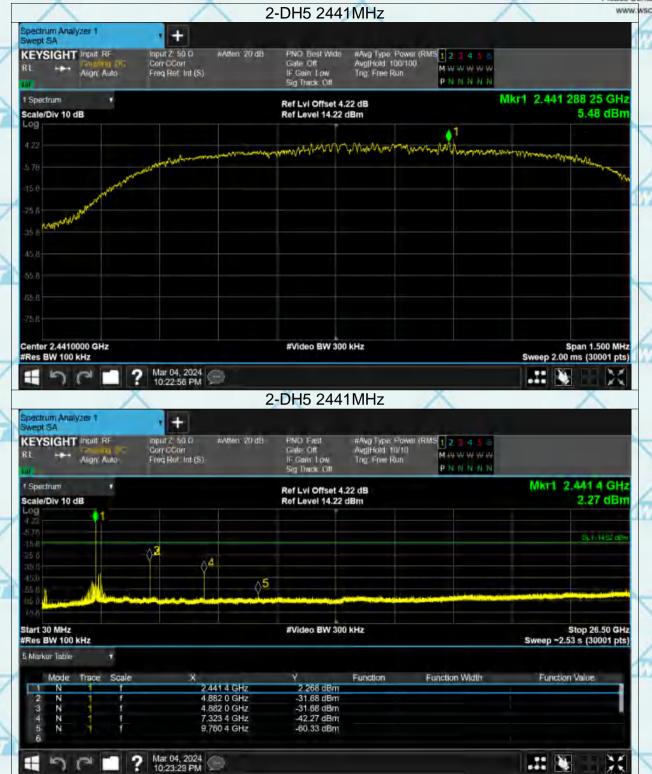


Report No.: WSCT-A2LA-R&E240200005A-BT



Report No.: WSCT-A2LA-R&E240200005A-BT Pi/4DQPSK mode

Certificate #5768.01



Report No.: WSCT-A2LA-R&E240200005A-BT

Report No.: WSCT-A2LA-R&E240200005A-BT

Report No.: WSCT-A2LA-R&E240200005A-BT 8DPSK mode

Certificate #5768.01

For Question,
Please Contact with WSCT

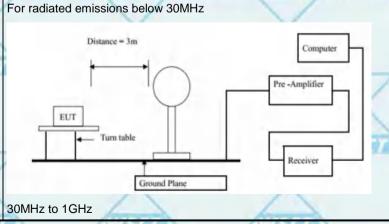
Mar 04, 2024 10:27:56 PM

Report No.: WSCT-A2LA-R&E240200005A-BT

Report No.: WSCT-A2LA-R&E240200005A-BT

Certificate #5768.01

Certificate #5768.01


For Question,
Please Contact with WSCT
www.wsct-cert.com

6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

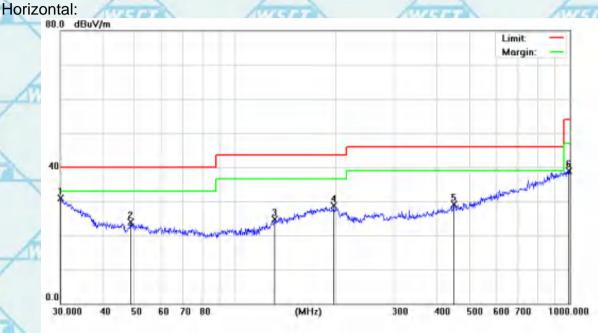
7	6.11.1. Test Specification	1/					
	Test Requirement:	FCC Part15	C Section	on 15.209			X
	Test Method:	ANSI C63.10):2014	13499	1	1	174700
	Frequency Range:	9 kHz to 25 (GHz		1	/	
	Measurement Distance:	3 m			/		
,	Antenna Polarization:	Horizontal &	Vertical		AVIS	TA	
C		Frequency	Detecto	or RBW	VBW	ı	Remark
	X	9kHz- 150kHz	Quasi-pe	ak 200Hz	1kHz	Quas	i-peak Value
Š		150kHz-	Quasi-pe	ak 9kHz	30kHz	Quas	i-peak Value
	Receiver Setup:	30MHz		17270			WST
		30MHz-1GHz	Quasi-pe		300KHz		i-peak Value
	X	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz		eak Value rage Value
			reak	TIVITZ	1002	Ave	rage value
,	AVETO AVETO	Frequen	су	Field Str (microvolts			asurement nce (meters)
		0.009-0.4	190	2400/F(KHz)		300	
	X	0.490-1.7	705	24000/F	(KHz)		30
S		1.705-3	0	30	1		30
	N/SIGN.	30-88		100			3
	Limit:	88-216	7 /	150			3
	LIIIIX X	216-96 Above 9		500			3
		Above 9	00	300			3
	AV4-14 AV4-14		457 574		Measure	ment	
/		Frequency		eld Strength	Distan	ice	Detector
	X	X	(mic	crovolts/meter)	(mete	rs)	X
		Above 1GHz	2	500	3		Average
ì	102300	ATTERES		5000	3		Peak
		1	1	/			

Test setup:

Report No.: WSCT-A2LA-R&E240200005A-BT ontact with WSCT vsct-cert com Coaxial cable (1m)-Above 1GHz Pre-amplifier Receiver-Coaxial cable (1m)-Test Mode: Transmitting mode with modulation The testing follows the guidelines in Spurious of ANSI Radiated **Emissions** C63.10:2014 Measurement Guidelines. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. Test Procedure: For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final

Report No	o.: WSCT-A2LA-R&E240200005	A-BT		Certificate #S768.01	antion /
	\times		neasurement antenna elevation sh naximizes the emissions. The mea		ct with WSCT
1	2500		antenna elevati <mark>on for maximum</mark> em		900
			estricted to a range of heights of fr		
X	X		above the ground or reference grou		
			Set to the maximum power setting	g and enable the	
7-140	1115781	2010	EUT transmit continuously.	N/4901	
1		4.	Use the following spectrum analyze		/
	\times		Span shall wide enough to fully emission being measured;	capture the	X
-	1999		(2) Set RBW=100 kHz for $f < 1$ GH	Hz, RBW=1MHz	900
/			for f>1GHz ; VBW≥RBW;		
X	X		Sweep = auto; Detector functi = max hold for peak	ion = peak; Trace	
15/41	WSB	1	(3) For average measurement: us	se duty cycle	
1			correction factor method per		/
	X		15.35(c). Duty cycle = On time		X
7			On time = $N1*L1+N2*L2++Nr$	n-1*LNn-1+Nn*Ln	1
	199 NATO		Where N1 is number of type 1	pulses, L1 is	941
		-	length of type 1 pulses, etc.		
X	X		Average Emission Level = Pe	ak Emission	
		1	Level + 20*log(Duty cycle)		
7791	17579	1	Corrected Reading: Antenna F	actor + Cable	
			Loss + Read Level - Preamp F	actor = Level	/
Те	st results:	PAS	S		X
	THE AVERA	1	WATER WA	744	90

Certificate #5768.01


Please Contact with WSCT www.wsct-cert.com

6.11.2. **Test Data**

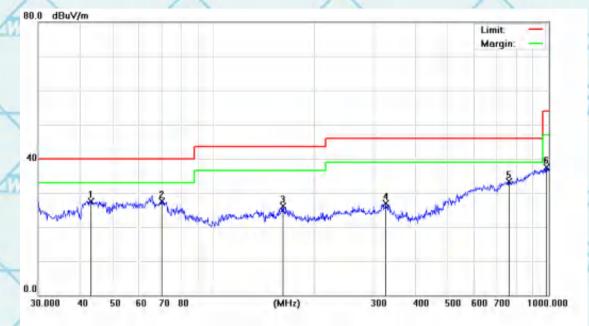
Please refer to following diagram for individual

Below 1GHz

(the worst case)

	No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over	
6			MHI	dBuV	dB	dBuV/m	dBuV/m	qВ	Detactor
-	1	1	30.0000	28.77	2.19	30.96	40.00	-9.04	QP
	2		48.6719	20.94	2,89	23.83	40.00	-16,17	QP
	3		131.2965	22.66	1.97	24.63	43.50	-18.87	QP
`	4		197.2001	29.69	-1.03	28.66	43.50	-14.84	QP
	5	-	449.5558	23.34	5.75	29.09	46.00	-16.91	QP
6	6		993.0114	23.07	15.81	38.88	54.00	-15.12	QP.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wist-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E240200005A-BT Vertical:

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

7	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	-
			MHz	dBu√	dB	dEuV/m	dBuVim	08	Detector
	1	-	43.0504	24.49	3.08	27.57	40.00	-12.43	QP
1	2		70.0902	27.44	0.09	27.53	40.00	-12.47	QP
	3		160.9088	23.08	3.07	26.15	43.50	-17.35	QP
5	4	-	326.7395	24.00	2.89	26.89	46.00	-19.11	QP
	5		760.7036	21.81	11.48	33.29	46.00	-12.71	OF
	6	- 5	982.6200	21.98	15.55	37.53	54.00	-16.47	10P

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit $(dB\mu V)$ = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

e 150 kHz to 30MHz.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Above 1GHz

GFSK

Frog		Low channel: 2402MHz							
Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
(IVI□Z)	H/V	PK	AV	PK	AV	PK	AV		
4804	V	58.20	39.95	74	54	-15.80	-14.05		
7206	V	58.61	40.74	74	54	-15.39	-13.26		
4804	Н	58.64	39.21	74	54	-15.36	-14.79		
7206	Н	59.69	40.69	74	54	-14.31	-13.31		

-	A 177 J - B - L - B - L		20 7 7 7 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20.1		40.0			
ř	Freq. (MHz)	Middle channel: 2441MHz							
		Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
		H/V	PK	AV	PK	AV	PK	AV	
١	4882	V	60.48	41.68	74	54	-13.52	-12.32	
1	7323	V	58.41	39.30	74	54	-15.59	-14.70	
	4882	Η	58.39	40.54	74	54	-15.61	-13.46	
	7323	Н	59.52	40.52	74	54	-14.48	-13.48	

	Freq. (MHz)	High channel: 2480MHz							
		Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
		H/V	PK	AV	PK	AV	PK	AV	
	4960	V	58.05	41.37	74	54	-15.95	-12.63	
	7440	V	59.84	40.48	74	54	-14.16	-13.52	
	4960	Η	59.09	40.63	74	54	-14.91	-13.37	
	7440	Η	59.75	40.75	74	54	-14.25	-13.25	

Note:

- 1. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 2. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240200005A-BT Restricted Bands Requirements

Test result for GFSK Mode(the worst case)

OF OF OR WI	Jue (ine worst case)			777733A			
Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector	
(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V		
Low Channel							
62.43	-8.76	53.67	74	20.33	H	PK	
56.32	-8.76	47.56	54	6.44	Н	AV	
62.23	-8.73	53.50	74	20.50	V	PK	
54.92	-8.73	46.19	54	7.81	V/5/	AV	
62.26	-8.76	53.50	74	20.50	Н	PK	
55.66	-8.76	46.90	54	7.10	Н	AV	
62.55	-8.73	53.82	74	20.18	V	PK	
57.62	-8.73	48.89	54	5.11	V	AV	
High Channel							
60.70	-8.76	51.94	74	22.06	T	PK	
55.94	-8.76	47.18	54	6.82	THE	AV	
63.13	-8.73	54.40	74	19.60	V	PK	
56.19	-8.73	47.46	54	6.54	V	AV	
	Reading (dBuV/m) 62.43 56.32 62.23 54.92 62.26 55.66 62.55 57.62 60.70 55.94 63.13 56.19	Reading (dBuV/m) Correct Factor 62.43 -8.76 56.32 -8.76 62.23 -8.73 54.92 -8.73 62.26 -8.76 55.66 -8.76 62.55 -8.73 57.62 -8.73 60.70 -8.76 63.13 -8.73	Reading (dBuV/m) Correct Factor Emission Level (dBuV/m) dB/m (dBuV/m) Low Cha 62.43 -8.76 53.67 56.32 -8.76 47.56 62.23 -8.73 53.50 54.92 -8.73 46.19 62.26 -8.76 53.50 55.66 -8.76 46.90 62.55 -8.73 53.82 57.62 -8.73 48.89 High Cha 60.70 -8.76 51.94 55.94 -8.76 47.18 63.13 -8.73 54.40 56.19 -8.73 47.46	Reading (dBuV/m) Correct Factor Emission Level Limit Level (dBuV/m) (dBuV/m) (dBuV/m) Low Channel 62.43 -8.76 53.67 74 56.32 -8.76 47.56 54 62.23 -8.73 53.50 74 54.92 -8.73 46.19 54 62.26 -8.76 53.50 74 55.66 -8.76 46.90 54 62.55 -8.73 53.82 74 57.62 -8.73 48.89 54 High Channel 60.70 -8.76 51.94 74 55.94 -8.76 47.18 54 63.13 -8.73 54.40 74 56.19 -8.73 47.46 54	Reading (dBuV/m) Correct Factor Emission Level Limit Level Margin (dBuV/m) Low Channel 62.43 -8.76 53.67 74 20.33 56.32 -8.76 47.56 54 6.44 62.23 -8.73 53.50 74 20.50 54.92 -8.73 46.19 54 7.81 62.26 -8.76 53.50 74 20.50 55.66 -8.76 46.90 54 7.10 62.55 -8.73 53.82 74 20.18 57.62 -8.73 48.89 54 5.11 High Channel 60.70 -8.76 51.94 74 22.06 55.94 -8.76 47.18 54 6.82 63.13 -8.73 54.40 74 19.60 56.19 -8.73 47.46 54 6.54	Factor (dBuV/m) Level (dBuV/m) (dBuV/m) (dBuV/m) H/V Low Channel 62.43 -8.76 53.67 74 20.33 H 56.32 -8.76 47.56 54 6.44 H 62.23 -8.73 53.50 74 20.50 V 54.92 -8.73 46.19 54 7.81 V 62.26 -8.76 53.50 74 20.50 H 55.66 -8.76 46.90 54 7.10 H 62.55 -8.73 53.82 74 20.18 V 57.62 -8.73 48.89 54 5.11 V High Channel 60.70 -8.76 51.94 74 22.06 H 55.94 -8.76 47.18 54 6.82 H 63.13 -8.73 54.40 74 19.60 V 56.19 -8.73 47.46 54 6.54	

Note: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$

Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Level $(dB\mu V)$ – Limits $(dB\mu V)$

*****END OF REPORT*****

