Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Sporton Certificate No: D750V3-1087_Feb22 # **CALIBRATION CERTIFICATE** Object D750V3 - SN:1087 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 24, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | Millery | | Approved by | NII - Isaas | 200450200000 | XIII | | Approved by: | Niels Kuster | Quality Manager | 1/8 | Issued: March 2, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Report No.: FA510740 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1087_Feb22 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.4 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.58 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.65 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1087_Feb22 Appendix C Report No. : FA510740 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.6 Ω - 2.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.1 dB | | #### General Antenna Parameters and Design | TO SECURE A CONTRACT OF THE SECURITY SE | Sc. Principle by a min | |--|------------------------| | Electrical Delay (one direction) | 1.034 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------|--| Certificate No: D750V3-1087_Feb22 Page 4 of 6
DASY5 Validation Report for Head TSL Date: 24.02.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1087 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 42.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.64 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 2.83 W/kg ### Impedance Measurement Plot for Head TSL # D750V3, Serial No. 1087 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D750V3 – serial no. 1087 | | | | | | | |--------------------------|---------------------|--------------|----------------------|----------------|---------------------------|----------------| | | 750 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real Impedance (ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2022.2.24 | -29.078 | | 52.625 | | -2.4779 | | | 2023.2.23 | -25.021 | -13.95 | 49.974 | 2.651 | -5.5764 | 3.0985 | | 2024.2.23 | -27.142 | -6.66 | 53.849 | -1.224 | -1.9335 | -0.5444 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### Dipole Verification Data> D750V3, serial no. 1087 #### 750MHz - Head-2023.2.23 #### 750MHz - Head-2024.2.23 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servicio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Shenzhen Certificate No. D835V2-4d162_Dec24 #### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d162 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date December 13, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 22-Jul-24 (No. 4030A315008547) | Jul-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 24-Sep-24 (No. OCP-DAK12-1016_Sep24) | Sep-25 | | OCP DAK-3.5 | SN: 1249 | 23-Sep-24 (No. OCP-DAK3.5-1249_Sep24) | Sep-25 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 28-Oct-24 (No. DAE4ip-1836_Oct24) | Oct-25 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 675-CAL16-S4588-240528) | May-25 | | Mismatch; SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch_SMA-240522) | May-25 | Name Function Calibrated by Krešimir Franjić Laboratory Technician Approved by Sven Kühn Technical Manager Issued: December 13, 2024 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d162 Dec24 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation · DASY System Handbook #### Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d162_Dec24 Page 2 of 6 D835V2 - SN: 4d162 December 13, 2024 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|-------------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with spacer | | Zoom Scan Resolution | dx, $dy = 6mm$, $dz = 1.5mm$ | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 835MHz ±1MHz | | # Head TSL parameters at 835 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.900 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 41.5 ±6% | 0.900 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 835 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.08 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 1.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.85 W/kg ±16.5% (k = 2) | Certificate No: D835V2-4d162_Dec24 D835V2 - SN: 4d162 December 13, 2024 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 835 MHz | Impedance | 50.2 Ω – 8.5 jΩ | |-------------|-----------------| | Return Loss | -21.4 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.44 ns | |----------------------------------|---------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of
the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |--|---| | 32 C 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (| 900 - 000 - | Certificate No: D835V2-4d162_Dec24 Page 4 of 6 D835V2 - SN: 4d162 December 13, 2024 #### System Performance Check Report #### Summary | Dipole | Frequency [MHz] | TSL. | Power (dBm) | | |------------------|-----------------|------|-------------|--| | D835V2 - SN4d162 | 835 | HSL | 24 | | #### **Exposure Conditions** | Phantom Section, TSL | Test Distance [mm] | Band | Group, UID | Frequency [MHz], Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | |----------------------|--------------------|------|------------|---------------------------------|-------------------|------------------------|------------------| | Flat | 15 | | CW, 0 | 835, 0 | 9.61 | 0.90 | 41.5 | #### Hardware Setup | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | |---------------|--------------------|-----------------------------|---------------------------|--| | Flat V4.9 mod | HSL, 2024-12-13 | EX3DV4 - SN7349, 2024-06-03 | DAE4ip Sn1836, 2024-10-28 | | #### Scans Setup | cans setup | | |---------------------|-----------------| | | Zoom Scan | | Grid Extents (mm) | 30 x 30 x 30 | | Grid Steps [mm] | 6.0 × 6.0 × 1.5 | | Sensor Surface [mm] | 1.4 | | Graded Grid | Yes | | Grading Ratio | 1.5 | | MAIA | N/A | | Surface Detection | VMS + 6p | | Scan Method | Measured | | | | #### Measurement Results | neasurement Results | | |---------------------|---------------------| | | Zoom Scan | | Date | 2024-12-13 | | psSAR1g [W/Kg] | 2.28 | | psSAR10g [W/Kg] | 1.47 | | Power Drift [dB] | -0.01 | | Power Scaling | Disabled | | Scaling Factor [dB] | | | TSL Correction | Positive / Negative | 0 dB = 3.60 W/Kg D835V2 - SN: 4d162 December 13, 2024 ### Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d162_Dec24 Page 6 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D1750V2-1090 Feb22 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1090 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 24, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 |
SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | Apley is | | Name and the same of | | | 1/18 | | Approved by: | Niels Kuster | Quality Manager | 1/1000 | Issued: March 3, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1090_Feb22 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1090_Feb22 Page 2 of 6 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|----------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm with Space | | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.5 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.9 Ω - 1.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 37.1 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.221 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| Certificate No: D1750V2-1090_Feb22 # DASY5 Validation Report for Head TSL Date: 24.02.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1090 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.9 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.14 W/kg; SAR(10 g) = 4.84 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 55% Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.50 dBW/kg #### Impedance Measurement Plot for Head TSL # D1750V2, Serial No. 1090 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D1750V2 – serial no. 1090 | | | | | | | |---------------------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | 1750 Head | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2022.2.24 | -37.115 | | 49.899 | | -1.3891 | | | 2023.2.23 | -35.184 | -5.2 | 49.092 | 0.807 | -2.9814 | 1.5923 | | 2024.2.23 | -36.717 | -1.07 | 50.143 | -0.244 | -1.4581 | 0.069 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### Dipole Verification Data> D1750V2, serial no. 1090 #### 1750MHz - Head - 2023-2-23 1750MHz - Head - 2024-2-23 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D1900V2-5d118 Mar22 Client Sporton # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d118 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: March 30, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------
--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | diffellestoj | | Approved by: | Sven Kühn | Deputy Manager | C + | Issued: March 31, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Report No.: FA510740 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d118_Mar22 Page 2 of 6 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.85 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d118_Mar22 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $52.6 \Omega + 6.5 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.4 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.201 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | [28-27] (1-28-7) Wes | | |----------------------|--------| | Manufactured by | SPEAG | | 3 | or LAG | Page 4 of 6 Certificate No: D1900V2-5d118_Mar22 # Date: 30.03.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d118 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.40 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.4 W/kg ### SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.11 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.4% Maximum value of SAR (measured) = 15.4 W/kg 0 dB = 15.4 W/kg = 11.88 dBW/kg ### Impedance Measurement Plot for Head TSL # D1900V2, Serial No. 5d118 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary anothe calibration interval can be extended. | | | D1900V2 | – serial no. 5d | 118 | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | 1900 Head | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2022.3.30 | -23.393 | | 52.598 | | 6.4525 | | | 2023.3.29 | -25.861 | 10.55 | 50.443 | 2.155 | 4.8447 | 1.6078 | | 2024.3.29 | -23.315 | -0.33 | 52.154 | 0.444 | 4.5235 | 1.929 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### Dipole Verification Data> D1900V2, serial no. 5d118 #### 1900MHz - Head - 2023-3-29 1900MHz - Head - 2024-3-29 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Kunshan City** Certificate No. D2300V2-1055_Aug23 # **CALIBRATION CERTIFICATE** Object D2300V2 - SN:1055 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 21, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations
have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349_Jan23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | MINDEL | | Approved by: | Sven Kühn | Technical Manager | | | 00050 c 200000 0050 20 | | roomical wanager | S.CA | Issued: August 22, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Report No.: FA510740 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | 702.10.1 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | war opacer | | Frequency | 2300 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.7 ± 6 % | 1.67 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 48.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 16.5 % (k=2) | Certificate No: D2300V2-1055_Aug23 # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.6 Ω - 4.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.7 dB | | | - 25.7 UB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.169 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2300V2-1055_Aug23 Page 4 of 6 Page: 32/131 # DASY5 Validation Report for Head TSL Date: 21.08.2023 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1055 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.67$ S/m; $\varepsilon_r = 38.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 10.01.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.3 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 21.9 W/kg SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.95 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 56.3% Maximum value of SAR (measured) = 18.9 W/kg # Impedance Measurement Plot for Head TSL # D2300V2, Serial No. 1055 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D2300V2 – serial no. 1055 | | | | | | | |---------------------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | | 2300 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2023.8.21 | -25.741 | | 47.552 | | -4.4083 | | | 2024.8.20 | -24.901 | -3.26 | 45.499 | 2.053 | -3.0690 | -1.3393 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ### Dipole Verification Data> D2300V2, serial no. 1055 2300MHz – Head – 2024.8.20 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Sporton **Kunshan City** Certificate No. D2450V2-1095_Feb24 # CALIBRATION CERTIFICATE Object D2450V2 - SN:1095 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 08, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties
with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 03-Nov-23 (No. EX3-7349_Nov23) | Nov-24 | | DAE4 | SN: 601 | 30-Jan-24 (No. DAE4-601_Jan24) | Jan-25 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check; Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | - | | | | | - | | Approved by: | Sven Kühn | Technical Manager | CA | Issued: February 9, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-1095_Feb24 Report No.: FA510740 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-1095_Feb24 Page 2 of 7 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-1095_Feb24 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.3 Ω + 6.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.3 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.147 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | · · | | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: D2450V2-1095_Feb24 #### **DASY5 Validation Report for Head TSL** Date: 08.02.2024 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1095 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 03.11.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.01.2024 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 26.7 W/kg #### SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.27 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.6% Maximum value of SAR (measured) = 21.8 W/kg 0 dB = 21.8 W/kg = 13.38 dBW/kg Certificate No: D2450V2-1095_Feb24 Page 5 of 7 # Impedance Measurement Plot for Head TSL