

TEST REPORT

Product Name : Tablet

Model Number : LNG-PRN-0137 Contains FCC ID : 2AAGE9260NG

Prepared for : Chengdu Vantron Technology Co., Ltd.

Address : No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan,

ChengDu, China

Prepared by : EMTEK (SHENZHEN) CO., LTD.

Address : Building 69, Majialong Industry Zone, Nanshan District,

Shenzhen, Guangdong, China

Tel: (0755) 26954280 Fax: (0755) 26954282

Report Number : ENS2208310090W00203R

Date(s) of Tests : January 4, 2023 to January 11, 2023

Date of issue : January 11, 2023

TABLE OF CONTENTS

1 7	TEST RESULT CERTIFICATION	3
2 1	EUT TECHNICAL DESCRIPTION	5
3 5	SUMMARY OF TEST RESULT	6
4	TEST METHODOLOGY	7
4.1		
4.2		7
4.3	B DESCRIPTION OF TEST MODES	9
5 1	FACILITIES AND ACCREDITATIONS	11
5.1	11101211120	
5.2	C =	
5.3	LABORATORY ACCREDITATIONS AND LISTINGS	11
6	TEST SYSTEM UNCERTAINTY	12
7 5	SETUP OF EQUIPMENT UNDER TEST	13
7.1		13
7.2	2 RADIO FREQUENCY TEST SETUP 2	13
7.3	COLD COLD DESCRIPTION OF THE PROPERTY OF THE P	
7.4	DESCRIPTION OF THE PROPERTY OF	
7.5		17
7.6		18

1 TEST RESULT CERTIFICATION

Applicant

Chengdu Vantron Technology Co., Ltd.

Address

No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, ChengDu, China

Manufacturer

Chengdu Vantron Technology Co., Ltd.

Address

No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, ChengDu, China

EUT

Tablet

Model Name

LNG-PRN-0137

Trademark

Vantron

Measurement Procedure Used:

APPLICABLE STANDARDS	
STANDARD	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS
IC RSS-GEN, Issue 5(04-2018)+A1(03-2019)+A2(02-2021) IC RSS-247 Issue 2(02-2017)	PASS

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2, Part 15.247, IC RSS-247 Issue 2 and IC RSS-GEN, Issue 5.

The test results of this report relate only to the tested sample identified in this report.

Date of Test :	January 4, 2023 to January 11, 2023
Prepared by :	Lus Peivle Luo peiye/Editor
	Luo peiye/Editor
Reviewer:	Tue Ava
	Joe Xia/Supervisor o
	NG. NENZ
Approve & Authorized Signer:	Lisa Wang/Manager

Modified History

Version	Report No.	Revision Date	Summary
Ver.1.0	ENS2208310090W00203R	/	Original Report

Note: This change is to request approval for Portable category specific host Tablet, Antenna Type is FPC antenna, According to the requirements for antenna Change in KDB178919 D01 Permissive Change Policy v06, the antenna types are different and the gain value becomes smaller, Radiated Spurious Emission tests were performed to verify RF compliance, and the results of other test items remained unchanged based on the original report:170524-01.TR04

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description			
Product:	Tablet			
Model Number:	LNG-PRN-0137			
Sample Number:	2#			
IEEE 802.11 WLAN Mode Supported:	802.11b 802.11g 802.11n(20MHz channel bandwidth) 802.11n(40MHz channel bandwidth)			
Modulation:	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;			
Operating Frequency Range:	2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11n(HT40)			
Number of Channels:	13 channels for 802.11b/g/n(HT20) 11 Channels for 802.11n(HT40)			
Antenna Type:	FPC Antenna			
Antenna Gain:	Antenna 1:1.64dBi Antenna 1:1.64dBi			
Power Supply:	AC 120V/60Hz			
Date of Received January 4, 2023				
Temperature Range	0-40°C			

Note: for more details, please refer to the User's manual of the EUT.

3 SUMMARY OF TEST RESULT

FCC PartClause	IC Part Clause	Test Parameter	Verdict	Remark
15.247(d) 15.209 15.205	RSS-Gen 8.9 RSS-Gen 8.10 RSS-Gen 6.13 RSS-247 3.3 RSS-2475.5	Radiated Spurious Emission	PASS	

NOTE1:N/A (Not Applicable)

NOTE2:According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for **Contains FCC ID:2AAGE9260NG** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards:

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

IC RSS-GEN, Issue 5(04-2018)+A1(03-2019)+A2(02-2021)

IC RSS-247 Issue 2(02-2017)

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

4.2 MEASUREMENT EQUIPMENT USED

Conducted Emission Test Equipment

Equipment Manufa		Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
	EMI Test Receiver	Rohde & Schwarz	ESCI	101384	2022/5/14	1Year
	AMN	Rohde & Schwarz	ENV216	101161	2022/5/14	1Year
	AMN	Kyoritsu	KNW-407	8-1492-9	2022/5/15	1Year

For Spurious Emissions Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Pre-Amplifier	HP	8447F	2944A07999	2022/5/14	1Year
EMI Test Receiver	Rohde & Schwarz	ESCI	101414	2022/5/14	1Year
Bilog Antenna	Schwarzbeck	VULB9163	712	2022/7/5	2 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1178	2022/7/4	2 Year
Pre-Amplifie	Lunar EM	LNA1G18-48	J101113101000 1	2022/5/15	1Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	2022/5/14	1Year
Horn antenna	Schwarzbeck	BBHA9170	9170-399	2021/6/12	2 Year
Cable	H+B	NmSm-05-C15052	N/A	2022/5/15	1 Year
Cable	H+B	NmSm-2-C15201	N/A	2022/5/15	1 Year
Cable	H+B	NmNm-7-C15702	N/A	2022/5/15	1 Year
Cable	H+B	SAC-40G-1	414	2022/5/15	1 Year
Cable	H+B	SUCOFLEX104	MY14871/4	2022/5/15	1 Year
Cable	H+B	BLU18A-NmSm-650 0	D8501	2022/5/15	1 Year
Band reject Filter(50dB)	WI/DE	WRCGV-2400(2400- 2485MHz)	2	2022/5/15	1 Year

For other test items:

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Signal Analyzer	Agilent	N9010A	MY53470879	2022/5/14	1Year
Vector Signal Generater	Agilent	N5182B	MY53050878	2022/5/14	1Year
Analog Signal Generator	Agilent	N5171B	MY53050553	2022/5/14	1Year
Power Meter	Agilent	PS-X10-100	\	2022/5/15	1Year
Blocking Box	THEDA	AD211	TW5451140	2022/5/14	1Year

Switchgroup	THEDA	ETF-025(VASC6)	TW5451008	N/A	N/A
MIMO Matrix Switch	IMO Matrix Switch THEDA 4P5		TW5451009	N/A	N/A
Temperature&Humidity Chamber	ESPEC	EL-02KA	12107166	2022/7/3	1 Year

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0;) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for 802.11 b/g/n(HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447	12	2467
13	2472				

Frequency and Channel list for 802.11n(HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	6	2437	9	2452
4	2427	7	2442	10	2457
5	2432	8	2447	11	2462

Test Frequency and Channel for 802.11 b/g/n(HT20):

Lowest F	Lowest Frequency		requency	Highes	st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442	11	2462

Test out of band emissions:

Lowest F	requency	Middle Frequency		Middle Frequency Highest Freque		st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2412	/	/	11	2462	
				12	2467	
				13	2472	

Test Frequency and channel for 802.11n(HT40):

est requeries and charmer or 602.1111(11140).							
Lowest I	Frequency	ncy Middle F		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
3	2422	6	2437	9	2452		

Test out of band emissions:

Lowest F	requency	Middle F	requency	Highe	st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	/	/	9	2452
				11	2462

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at:

EMTEK (Shenzhen) Co., Ltd.

Building 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTINGS

C:1~	Des		~ 4:		
SIT 🗀	1100	401111	61 I	m	

EMC Lab. : Accredited by CNAS

The Certificate Registration Number is L2291.

The Laboratory has been assessed and proved to be in compliance

with CNAS-CL01 (identical to ISO/IEC 17025:2017)

Accredited by FCC

Designation Number: CN1204

Test Firm Registration Number: 882943

Accredited by A2LA

The Certificate Number is 4321.01.

Accredited by Industry Canada

The Conformity Assessment Body Identifier is CN0008

Name of Firm : EMTEK (SHENZHEN) CO., LTD.

Site Location : Building 69, Majialong Industry Zone,

Nanshan District, Shenzhen, Guangdong, China

TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the

apparatus:

apparatus.	
Test Parameter	Measurement Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5°C
Humidity	±3%


Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

Above 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Measurements shall be taken, using the following steps, at a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment (see RSS-Gen for applicable versions of ANSI and CISPR standards).

- (1) Line the ground plane with absorbers between the transmitter and the receive antenna to minimize reflections. The absorbers used should have a minimum-rated attenuation of 20 dB through the measurement frequency range of interest. The absorbers shall be positioned to replicate the layout used when compliance with the applicable acceptability criterion was achieved, as set forth in the aforementioned standards on site validation.
- (2) Set the height of the receive antenna to 1.5 m. The receive antenna must be one that was designed and fabricated to operate over the entire frequency range of interest, for example, an appropriate standard gain horn.
- (3) The distance between the receive antenna and the radiating source shall be sufficient in order to ensure far-field conditions.
- (4) Mount the transmitter at a height of 1.5 m.
- (5) Configure the device under test (DUT) to produce the maximum power spectral density as measured while assessing compliance with Section 6.2.2 (i.e. channel frequency, modulation type and data rate). If the DUT is equipped with a detachable antenna and the antenna is intended for remote installation (i.e.

tower-mounted), the DUT may be substituted with a suitable signal generator. The level and frequency settings on the generator shall be set so as to reproduce the maximum power spectral density, measured within a 1 MHz bandwidth, obtained while assessing compliance to Section 6.2.2.

- (6) Position the transmitter or the radiating antenna so that elevation pattern measurements can be taken.
- (7) Find the 0° reference point in the horizontal plane.
- (8) Care should be taken when positioning the receive antenna to avoid cross-polarization. Antennas of known mounting polarization should be assessed with the receive antenna oriented in the same polarity. If the polarization of the transmit antenna is unknown or the transmit antenna can be mounted in either polarization, e.i.r.p. measurements should be performed to find which
- mounting polarity provides the highest e.i.r.p. value. Testing shall be carried out with the receive antenna and the DUT mounted in each polarity.
- (9) The emission shall be centred on the display of the spectrum analyzer with the following settings:
- i. If the power spectral density of the DUT was assessed with a peak detector and the antenna cannot be detached from the DUT, the spectrum analyzer shall be set to a peak detector with a resolution bandwidth and video bandwidth of 1 MHz.
- ii. If the power spectral density of the DUT was assessed using a sample detector with power averaging and the antenna cannot be detached from the DUT, the spectrum analyzer shall be set to a sample detector, configured to produce 100 power averages and set with a resolution bandwidth, as well as a video bandwidth of 1 MHz.
- iii. If the antenna can be detached from the DUT, a continuous wave (CW) signal equal to that of the power spectral density measurement may be used, the spectrum analyzer shall be set to peak detector with a resolution bandwidth and video bandwidth of 1 MHz.
- (10) Rotate the turntable 360° recording the field strength at each step. Throughout the main beam of the antenna, the step size shall be kept to a maximum of 1°.

Once outside the main beam of the antenna, the maximum step size shall be as follows, when compared to the requirements of Section 6.2.2:

- i. Between 0° and 8°, maximum step size of 2°;
- ii. Between 8° and 40°, maximum step size of 4°;
- iii. Between 40° and 45°, maximum step size of 1°;
- iv. Between 45° and 90°, maximum step size of 5°.

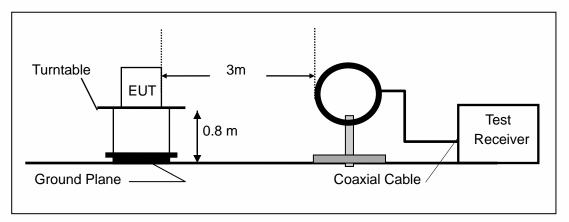
Once the mask reaches 90°, the mask will be inverted and the step size will follow in the same manner as above.

For the purpose of this procedure, the main beam of the antenna is defined as the 3 dB beamwidth.

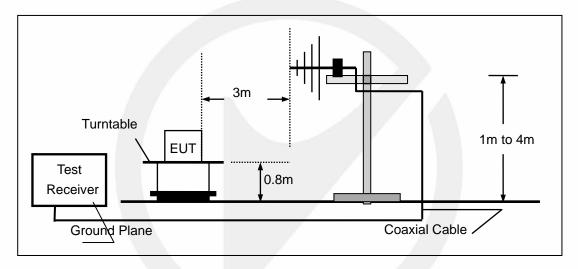
(11) Convert the measured field strength values in terms of e.i.r.p. density (dBW/1 MHz) using the following equation:

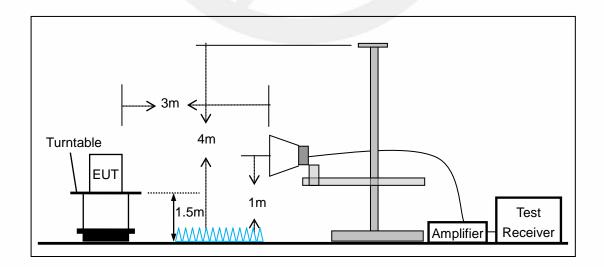
 \square \square \square \square \square \square e.i.r.p density(dBW/MHz)=10log((E*r)²/30)

E = field strength in V/m


r = measurement distance in metres

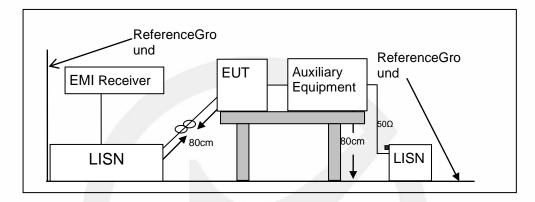
- (12) Plot the results against the emission mask with reference to the horizontal plane.
- (13) Using the plot, the 0° can be rotated to determine the worst-case installation tilt angle.
- (14) Testing shall be performed using the highest gain antenna for every antenna type, if applicable.
- (15) Antenna type(s), antenna model number(s), and worst-case tilt angle(s) necessary to remain compliant with the elevation mask requirement set forth in Section 6.2.2(3) of RSS-247 shall be clearly indicated in the user manual.


The following figure is an example of a polar elevation mask measured using the Method 1 reference to dBuV/m at 3 m.


(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

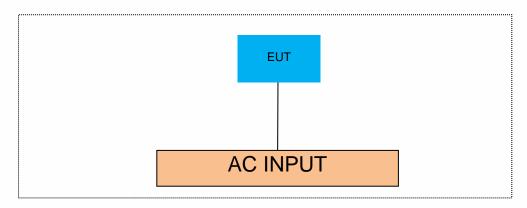
(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
1	/	1	/

Auxiliary Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
1	/	/	/	

Auxiliary Equipment List and Details				
Description Manufacturer Model Serial Number				
/	/	1	/	

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7.6 RADIATED SPURIOUS EMISSION

7.6.1 Applicable Standard

According to FCC Part 15.247(d),15.205, 15.209 and KDB 558074 D01 15.247 Meas Guidancev05r02 According to IC RSS-Gen and RSS-247

7.6.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to IC RSS-Gen 8.10: radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits.

According to IC RSS-Gen, Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part 15.205 the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

According to IC RSS-Gen 8.9, the level of any transmitter spurious emission in Restricted bands shall not

exceed the level of the emission specified in the following table

	poloti opocinioa ni aro ronovi	ing table	
Restricted	Field Strength (µV/m)	Field Strength	Measurement
Frequency(MHz)		(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

7.6.3 Test Configuration

Test according to clause 6.2 radio frequency test setup

7.6.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 1GHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz for

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 30MHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 9kHz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 150KHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 200Hz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit. Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

7.6.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

■ Spurious Emission below 30MHz(9KHz to 30MHz)

Freq. (MHz)	Ant.Pol.	Emis Level(d		Limit 3m((dBuV/m)	Over(dB)		
	H/V	PK `	ΑÝ	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible

limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);
Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission Above 1GHz(1GHz to 25GHz)

All theantenna(Antenna 1&2)and modes(802.11b/g/n)have been tested and the worst(Antenna 1,802.11n(HT20)) resultrecorded was report as below:

Test mode:	802.11n(HT20)		Frequency:		Channel	l 1: 2412MHz	
Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
11308.12	V	60.52	46.82	74.00	54.00	-13.48	-7.18
14647.5	V	63.62	48.46	74.00	54.00	-10.38	-5.54
17626.87	V	69.25	50.14	74.00	54.00	-4.75	-3.86
11491.87	Н	60.66	47.43	74.00	54.00	-13.34	-6.57
14617.5	Н	63.26	49.41	74.00	54.00	-10.74	-4.59
17636.25	Н	68.86	49.84	74.00	54.00	-5.14	-4.16

Test mode:	802.11n(HT20)	Frequency:	Channel 7: 2442MHz

Freq. (MHz)	Ant.Pol.		ssion BuV/m) Limit 3m(o		(dBuV/m)	Over(dB)	
(IVITZ)	H/V	PK	AV	PK	AV	PK	AV
11319.37	V	60.04	46.10	74.00	54.00	-13.96	-7.90
14553.75	V	63.72	48.65	74.00	54.00	-10.28	-5.35
17983.12	V	69.64	49.21	74.00	54.00	-4.36	-4.79
11458.12	Н	59.81	46.31	74.00	54.00	-14.19	-25.50
14626.87	Н	63.63	49.24	74.00	54.00	-10.37	-19.20
17600.62	Н	68.93	50.32	74.00	54.00	-5.07	-8.80

Test mode:	802.11n(HT20)	Frequency:	Channel 11: 2462MHz

Freq. (MHz)	Ant.Pol.		ssion BuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
11505	V	60.49	46.78	74.00	54.00	-13.51	-7.22	
14647.5	V	64.47	49.09	74.00	54.00	-9.53	-4.91	
17625	V	69.78	50.18	74.00	54.00	-4.22	-3.82	
11540.62	Н	60.18	46.72	74.00	54.00	-13.82	-7.28	
14626.87	Н	63.51	49.31	74.00	54.00	-10.49	-4.69	
17971.87	Н	69.41	48.37	74.00	54.00	-4.59	-5.63	

Note:

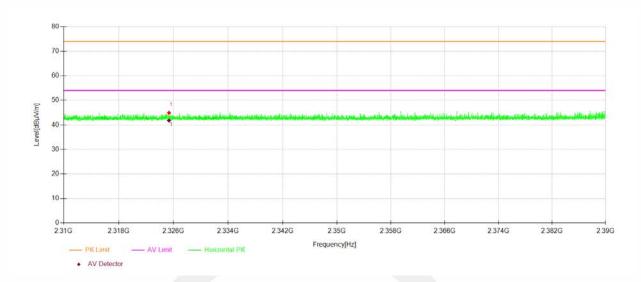
- (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).
- (2) Emission Level= Reading Level+Correct Factor.
- (3) Correct Factor= Ant_F + Cab_L Preamp
- (4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz All the antenna(Antenna 1&2) and modes(802.11b/g/n) have been tested and the worst(Antenna 1,802.11n(HT20)) resultrecorded was report as below:

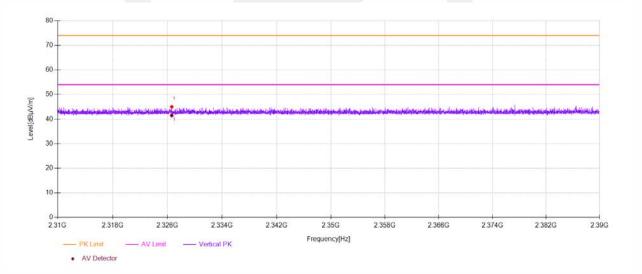
Test mode: 802.11n(HT2		T20) Frequ	ency: (Channel 1: 2412MHz		
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	
2325.35	Н	44.91	74.00	41.77	54.00	
2326.63	V	44.97	74.00	41.45	54.00	

rest mode: 802.11n(H120) Frequency: Channel 11: 2462MH2							
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)		
2484.24	Н	46.18	74.00	43.19	54.00		
2484.21	V	46.75	74.00	43.62	54.00		

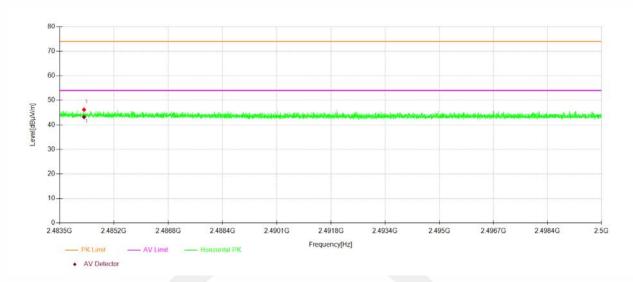
rest mode:	802.11n(H	120) Freque	ency: C	Channel 12: 246/MHZ			
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)		
2483.71	Н	54.32	74.00	39.00	54.00		
2483.62	V	66.99	74.00	48.99	54.00		

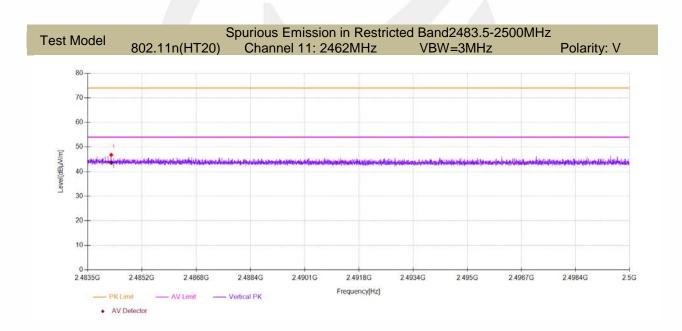

Test mode:	802.11n(H	T20) Freque	ency: C	Channel 13: 2472MHz		
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	
2483.59	Н	56.74	74.00	46.19	54.00	
2483.68	V	67.18	74.00	50.97	54.00	

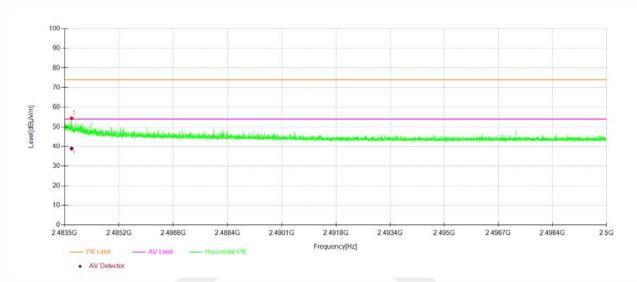
Note:

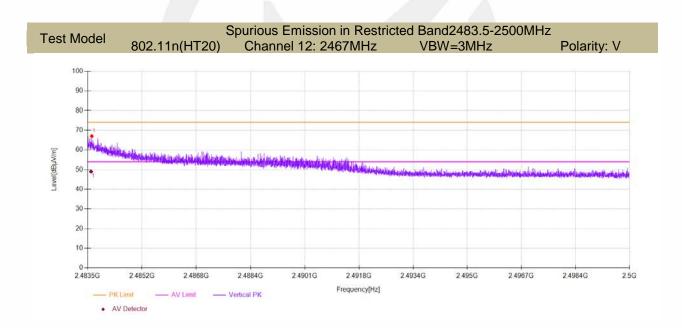

- (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).
- (2) Emission Level= Reading Level+Correct Factor.
- (3) Correct Factor= Ant_F + Cab_L Preamp
- (4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

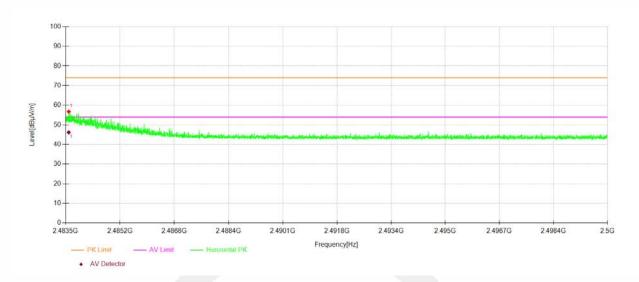
Test Model Spurious Emission in Restricted Band 2310-2390MHz 802.11n(HT20) Channel 1: 2412MHz VBW=3MHz Polarity: H



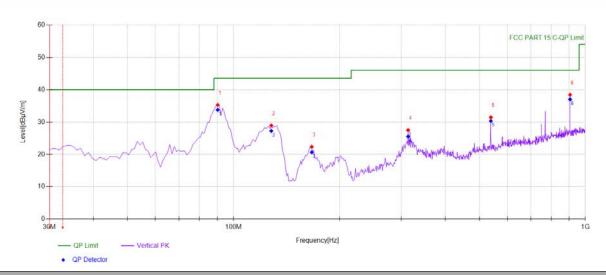


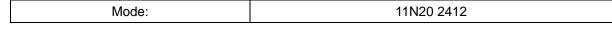

Test Model Spurious Emission in Restricted Band 2483.5-2500MHz 802.11n(HT20) Channel 11: 2462MHz VBW=3MHz Polarity: H

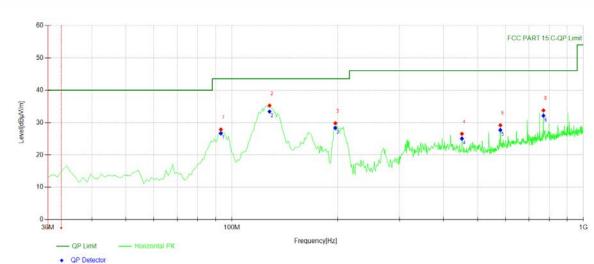



Test Model Spurious Emission in Restricted Band 2483.5-2500MHz 802.11n(HT20) Channel 12: 2467MHz VBW=3MHz Polarity: H

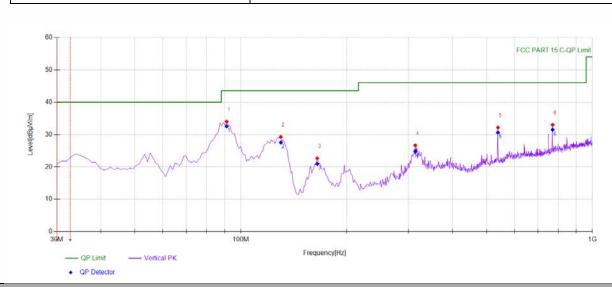
Test Model Spurious Emission in Restricted Band 2483.5-2500MHz 802.11n(HT20) Channel 13: 2472MHz VBW=3MHz Polarity: H



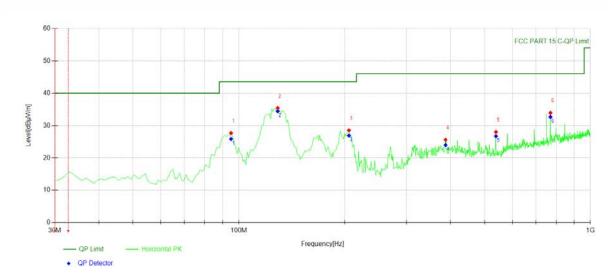

■ Spurious Emission below 1GHz (30MHz to 1GHz)
All the antenna(Antenna 1&2) and modes(802.11b/g/n) have been tested and the worst(Antenna 1,802.11n(HT20)) resultrecorded was report as below:



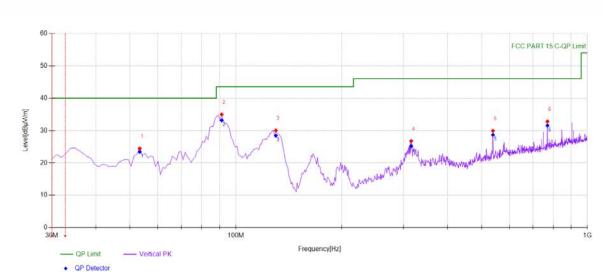
Susp	Suspected Data List										
NO	Freq. [MHz]	Readin g [dBµV]	Facto r [dB/m]	Level [dBµV/ m]	Detect or	Limit [dBµV/ m]	Margi n [dB]	Polarit y	Angle[°]	Height[c m]	
1	90.2002	54.39	-19.1 2	35.27	PK	43.50	8.23	Vertic al	141	100	
2	128.068 1	47.72	-18.7 9	28.93	PK	43.50	14.57	Vertic al	196	100	
3	166.906 9	41.51	-19.1 6	22.35	PK	43.50	21.15	Vertic al	224	100	
4	313.523 5	41.64	-14.1 4	27.50	PK	46.00	18.50	Vertic al	311	100	
5	538.788 8	40.70	-9.26	31.44	PK	46.00	14.56	Vertic al	113	100	
6	904.844 8	41.24	-2.82	38.42	PK	46.00	7.58	Vertic al	109	100	



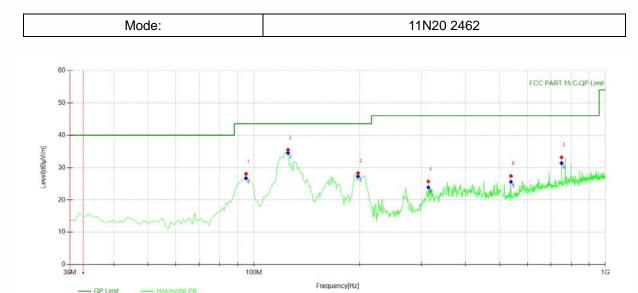
Susp	Suspected Data List										
NO	Freq. [MHz]	Readin g [dBµV]	Facto r [dB/ m]	Level [dBµV/ m]	Detect or	Limit [dBµV/ m]	Margi n [dB]	Polarity	Angle[°]	Height[c m]	
1	93.1131	46.28	-18.4 3	27.85	PK	43.50	15.65	Horizont al	113	100	
2	128.068 1	54.04	-18.7 9	35.25	PK	43.50	8.25	Horizont al	329	100	
3	197.007	47.11	-17.3 1	29.80	PK	43.50	13.70	Horizont al	100	100	
4	451.401 4	37.64	-11.1 2	26.52	PK	46.00	19.48	Horizont al	118	100	
5	580.540 5	36.31	-7.14	29.17	PK	46.00	16.83	Horizont al	360	100	
6	769.879 9	38.77	-5.01	33.76	PK	46.00	12.24	Horizont al	122	100	


Mode: 11N20 2442

Suspected Data List										
NO	Freq. [MHz]	Readin g [dBµV]	Facto r [dB/m]	Level [dBµV/ m]	Detect or	Limit [dBµV/ m]	Margi n [dB]	Polarit y	Angle[°]	Height[c m]
1	91.1712	52.88	-18.8 8	34.00	PK	43.50	9.50	Vertic al	72	100
2	130.01	48.27	-19.0 0	29.27	PK	43.50	14.23	Vertic al	329	100
3	164.965	41.94	-19.2 9	22.65	PK	43.50	20.85	Vertic al	265	100
4	313.523 5	40.81	-14.1 4	26.67	PK	46.00	19.33	Vertic al	307	100
5	538.788 8	41.41	-9.26	32.15	PK	46.00	13.85	Vertic al	113	100
6	770.850 9	37.97	-4.97	33.00	PK	46.00	13.00	Vertic al	49	100



Suspected Data List											
NO	Freq. [MHz]	Readin g [dBµV]	Facto r [dB/ m]	Level [dBµV/ m]	Detect or	Limit [dBµV/ m]	Margi n [dB]	Polarity	Angle[°]	Height[c m]	
1	95.0551	45.64	-17.9 7	27.67	PK	43.50	15.83	Horizont al	120	100	
2	129.039	54.32	-18.9 0	35.42	PK	43.50	8.08	Horizont al	280	100	
3	205.745 7	45.67	-17.1 3	28.54	PK	43.50	14.96	Horizont al	101	100	
4	387.317 3	37.44	-11.8 3	25.61	PK	46.00	20.39	Horizont al	139	100	
5	538.788 8	37.25	-9.26	27.99	PK	46.00	18.01	Horizont al	186	100	
6	769.879 9	38.94	-5.01	33.93	PK	46.00	12.07	Horizont al	130	100	



Mode: 11N20 2462

Suspected Data List											
NO	Freq. [MHz]	Readin g [dBµV]	Facto r [dB/m]	Level [dBµV/ m]	Detect or	Limit [dBµV/ m]	Margi n [dB]	Polarit y	Angle[°]	Height[c m]	
1	53.3033	42.08	-17.6 5	24.43	PK	40.00	15.57	Vertic al	268	100	
2	91.1712	53.85	-18.8 8	34.97	PK	43.50	8.53	Vertic al	114	100	
3	130.01	49.05	-19.0 0	30.05	PK	43.50	13.45	Vertic al	198	100	
4	315.465 5	40.92	-14.1 4	26.78	PK	46.00	19.22	Vertic al	320	100	
5	538.788 8	39.20	-9.26	29.94	PK	46.00	16.06	Vertic al	315	100	
6	769.879 9	37.81	-5.01	32.80	PK	46.00	13.20	Vertic al	30	100	

Suspected Data List										
NO	Freq. [MHz]	Readin g [dBµV]	Facto r [dB/ m]	Level [dBµV/ m]	Detect or	Limit [dBµV/ m]	Margi n [dB]	Polarity	Angle[°]	Height[c m]
1	95.0551	46.03	-17.9 7	28.06	PK	43.50	15.44	Horizont al	124	100
2	125.155 2	53.98	-18.4 7	35.51	PK	43.50	7.99	Horizont al	293	100
3	197.978	45.54	-17.2 5	28.29	PK	43.50	15.21	Horizont al	96	100
4	313.523 5	39.84	-14.1 4	25.70	PK	46.00	20.30	Horizont al	54	100
5	538.788 8	36.65	-9.26	27.39	PK	46.00	18.61	Horizont al	185	100
6	750.460 5	38.49	-5.33	33.16	PK	46.00	12.84	Horizont al	242	100

*** End of Report ***

QP Detector