FCC Test Report Report No.: RFBHQC-WTW-P22030336-2 **FCC ID:** 2AQ68RLP0003 Test Model: RLP0003 Received Date: Mar. 08, 2022 Test Date: May 09, 2022 ~ Jun. 23, 2022 **Issued Date:** Jun. 23, 2022 Applicant: Hon Lin Technology Co., Ltd. Address: 11F, No. 32, Jihu Rd., Neihu Dist., Taipei City 114, Taiwan R.O.C. Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN FCC Registration / 788550 / TW0003 **Designation Number:** This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Report No.: RFBHQC-WTW-P22030336-2 Page No. 1 / 55 Report Format Version: 6.1.1 ## **Table of Contents** | R | Release Control Record4 | | | | | | | |---|-------------------------|--|----|--|--|--|--| | 1 | (| Certificate of Conformity | 5 | | | | | | 2 | , | Summary of Test Results | 6 | | | | | | | 2.1 | Measurement Uncertainty | 6 | | | | | | | 2.2 | Modification Record | | | | | | | 3 | | General Information | 7 | | | | | | • | | | | | | | | | | 3.1
3.2 | General Description of EUT | | | | | | | | 3.2 | Description of Test Modes | | | | | | | | 3.3.1 | Test Mode Applicability and Tested Channel Detail | | | | | | | | 3.4 | Duty Cycle of Test Signal | | | | | | | | 3.5 | Description of Support Units | | | | | | | | 3.5.1 | • | | | | | | | | 3.6 | General Description of Applied Standards and References | 12 | | | | | | 4 | - | Fest Types and Results | 13 | | | | | | | 4.1 | Radiated Emission and Bandedge Measurement | 13 | | | | | | | | Limits of Radiated Emission and Bandedge Measurement | | | | | | | | 4.1.2 | Test Instruments | 14 | | | | | | | | Test Procedures | | | | | | | | | Deviation from Test Standard | | | | | | | | | Test Setup | | | | | | | | | EUT Operating Conditions | | | | | | | | | Test Results (Radiated Measurement) | | | | | | | | 4.1.8 | Test Results (Conducted Measurement) Conducted Emission Measurement | | | | | | | | | Limits of Conducted Emission Measurement | | | | | | | | | Test Instruments | | | | | | | | | Test Procedures | | | | | | | | | Deviation from Test Standard | | | | | | | | 4.2.5 | Test Setup | 37 | | | | | | | | EUT Operating Conditions | | | | | | | | | Test Results | | | | | | | | 4.3 | Number of Hopping Frequency Used | | | | | | | | | Limits of Hopping Frequency Used Measurement | | | | | | | | | Test Setup | | | | | | | | | Test Instruments | | | | | | | | | Deviation fromTest Standard | | | | | | | | | Test Results | | | | | | | | 4.4 | Dwell Time on Each Channel | | | | | | | | 4.4.1 | Limits of Dwell Time on Each Channel Measurement | | | | | | | | 4.4.2 | Test Setup | 42 | | | | | | | | Test Instruments | | | | | | | | | Test Procedures | | | | | | | | | Deviation from Test Standard | | | | | | | | | Test Results | | | | | | | | 4.5
4.5.1 | Channel Bandwidth Limits of Channel Bandwidth Measurement | | | | | | | | | Test Setup | | | | | | | | | Test Instruments | | | | | | | | | Test Procedure | | | | | | | | | Deviation from Test Standard | | | | | | | | | EUT Operating Condition | | | | | | | | | | | | | | | | 4.5.7 Test Results | | |--|------| | 4.6 Hopping Channel Separation | | | 4.6.1 Limits of Hopping Channel Separation Measurement | . 47 | | 4.6.2 Test Setup | | | 4.6.3 Test Instruments | | | 4.6.4 Test Procedure | | | 4.6.5 Deviation from Test Standard | | | 4.6.6 Test Results | | | 4.7 Maximum Output Power | | | 4.7.1 Limits of Maximum Output Power Measurement | | | 4.7.2 Test Setup | | | 4.7.3 Test Instruments | | | 4.7.4 Test Procedure | | | 4.7.5 Deviation fromTest Standard | | | 4.7.6 EUT Operating Condition | . 49 | | 4.7.7 Test Results | | | 4.8 Conducted Out of Band Emission Measurement | | | 4.8.1 Limits Of Conducted Out Of Band Emission Measurement | | | 4.8.2 Test Instruments | | | 4.8.3 Test Procedure | | | 4.8.4 Deviation from Test Standard | | | 4.8.5 EUT Operating Condition | | | 4.8.6 Test Results | . 51 | | 5 Pictures of Test Arrangements | . 54 | | Appendix – Information of the Testing Laboratories | . 55 | ## **Release Control Record** | Issue No. | Description | Date Issued | |------------------------|------------------|---------------| | RFBHQC-WTW-P22030336-2 | Original Release | Jun. 23, 2022 | Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 Page No. 4 / 55 Report Format Version: 6.1.1 #### 1 Certificate of Conformity Product: Wi-Fi 6E BT5.2 WLAN Module Brand: Foxconn Test Model: RLP0003 Sample Status: Engineering Sample **Applicant:** Hon Lin Technology Co., Ltd. **Test Date:** May 09, 2022 ~ Jun. 23, 2022 **Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10:2013 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report. Prepared by: ______, Date: ______, Jun. 23, 2022 Vera Huang / Specialist Approved by : , Date: Jun. 23, 2022 Jeremy Lin / Project Engineer Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 Page No. 5 / 55 Report Format Version: 6.1.1 #### 2 Summary of Test Results | | 47 CFR FCC Part 15, Subpart C (Section 15.247) | | | | | | | | | |-----------------------------|--|--------|---|--|--|--|--|--|--| | FCC
Clause | Test Item | Result | Remarks | | | | | | | | 15.207 | | | Meet the requirement of limit. Minimum passing margin is -4.65dB at 0.27350MHz. | | | | | | | | 15.247(a)(1)
(iii) | | | Meet the requirement of limit. | | | | | | | | 15.247(a)(1)
(iii) | Dwell Time on Each Channel | Pass | Meet the requirement of limit. | | | | | | | | 15.247(a)(1) | Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System | Pass | Meet the requirement of limit. | | | | | | | | 15.247(a)(1) | Maximum Peak Output Power | Pass | Meet the requirement of limit. | | | | | | | | 15.205 & 209
& 15.247(d) | Radiated Emissions & Band Edge
Measurement | Pass | Meet the requirement of limit. Minimum passing margin is -2.31dB at 2223.43MHz. | | | | | | | | 15.247(d) | Antenna Port Emission | Pass | Meet the requirement of limit. | | | | | | | | 15.203 | Antenna Requirement | Pass | Antenna connector is i-pex (MHF 4L) not a standard connector. | | | | | | | #### Note: - 1. If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater. - 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. ## 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|-----------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 2.79 dB | | | 9kHz ~ 30MHz | 3.04 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 200MHz | 2.93 dB | | | 200MHz ~1000MHz | 2.95 dB | | Radiated Emissions above 1 GHz | 1GHz ~ 18GHz | 2.26 dB | | Radiated Emissions above 1 GHz | 18GHz ~ 40GHz | 1.94 dB | #### 2.2 Modification Record There were no modifications required for compliance. Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 V-P22030336-2 Page No. 6 / 55 Report Format Version: 6.1.1 #### 3 General Information #### 3.1 General Description of EUT | Product | Wi-Fi 6E BT5.2 WLAN Module | | | | | |-----------------------|-----------------------------|--|--|--|--
 | Brand | Foxconn | | | | | | Test Model | RLP0003 | | | | | | Sample Status | Engineering Sample | | | | | | Power Supply Rating | 3.3Vdc from host equipment | | | | | | Modulation Type | GFSK, π /4-DQPSK, 8DPSK | | | | | | Modulation Technology | FHSS | | | | | | Transfer Rate | 1/2/3Mbps | | | | | | Operating Frequency | 2402~2480MHz | | | | | | Number of Channel | 79 | | | | | | Output Power | 27.861mW | | | | | | Antenna Type | Refer to section 3.2 | | | | | | Antenna Connector | Refer to section 3.2 | | | | | | Accessory Device | NA | | | | | | Cable Supplied | NA | | | | | #### Note: - 1. This report is prepared for FCC class II permissive change. The difference compared with the original report (BV CPS report no.: RF201119E01-2) are changed FCC ID, applicant, brand name, model name and added antenna. Therefore, the EUT with new antenna is re-tested and recorded in this report. - 2. This device of WLAN (2.4GHz & 5GHz U-NII-1 Band) can support hotspot mode. 3. Simultaneously transmission condition. | Condition Technology | | | | | | |----------------------|--------------|------------|--|--|--| | 1 | WLAN(2.4GHz) | WLAN(6GHz) | | | | | 2 | WLAN(2.4GHz) | WLAN(5GHz) | | | | | 3 | WLAN(6GHz) | Bluetooth | | | | | 4 | WLAN(5GHz) | Bluetooth | | | | Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found. 4. The device of WLAN (2.4GHz) and Bluetooth technology can't transmit simultaneously, it was used timely shared coexistence technology. 5. The module has two variant designs as following table: | SKU No. | Description | |---------|-----------------| | SKU #1 | M.2 2230 E-key | | SKU #2 | M.2 2230 AE-key | From the above variants designs, the worst case was found in SKU #1. Therefore only the test data of the mode was recorded in this report. - 6. The product provides option to depopulate external LNA (Low-Noise amplifier) from 5GHz/6GHz receive path. This test report covers variation of with/without external LNA and test was conducted to confirm not change in RF compliance and EMC. And worst case was found in without external LNA. - 7. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual. Report No.: RFBHQC-WTW-P22030336-2 ## 3.2 Description of Antenna The antenna gain was declared by client; please refer to the following table: | Antenna
Set | RF
Chain
No. | Brand | Model | Antenna Net
Gain (dBi) | Frequency Range (GHz) | Cable
Loss (dB) | Antenna
Type | Connector
Type | Cable
Length | |----------------|--------------------|--------|--------------------------------------|---|--|---|-----------------|-------------------|------------------| | 1 | Chain0/1 | HONGBO | 260-25094 | 3.53
3.06
3.07
4.81
4.20 | 2.40~2.4835
5.150~5.250
5.250~5.350
5.470~5.725
5.725~5.850 | 0.76
1.16
1.18
1.2
1.27 | PIFA | i-pex
(MHF 4L) | 300mm | | 2 | Chain0/1 | HONGBO | 260-25083 | 5.09
5.14
5.09
5.16
5.12 | 5.850~5.895
5.925~6.425
6.425~6.525
6.525~6.875
6.875~7.125 | 1.29
1.32
1.35
1.4
1.45 | PIFA | i-pex
(MHF 4L) | 300mm | | 3 | Chain0/1 | HONGBO | 260-25084 | 3.22
3.35
3.42
4.77
4.72
4.71
4.75
4.29
4.81
4.74 | 2.40~2.4835
5.150~5.250
5.250~5.350
5.470~5.725
5.725~5.850
5.850~5.895
5.925~6.425
6.425~6.525
6.525~6.875
6.875~7.125 | 0.5
0.76
0.78
0.81
0.85
0.86
0.87
0.91
0.96
0.98 | Monopole | i-pex
(MHF 4L) | 200mm | | 4 | Chain0/1 | Auden | ANTRG6U123-1801 /
ANTRG6U123-1802 | 5.13 / 4.64
2.70 / 3.36
2.70 / 3.07
2.50 / 1.08
2.68 / 0.42
2.18 / 1.20
1.98 / 0.59
2.42 / 1.72
1.48 / 0.62 | 2.40~2.4835
5.150~5.250
5.250~5.350
5.470~5.725
5.725~5.850
5.925~6.425
6.425~6.525
6.525~6.875
6.875~7.125 | - | PIFA (Slot) | i-pex
(MHF 4L) | 460mm /
740mm | #### Note: - 1. Antenna Set 4 is the new antenna to be applied for this time. - 2. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible. Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 Page No. 8 / 55 #### **Description of Test Modes** 3.3 79 channels are provided to this EUT: | Channel | Freq. (MHz) | |---------|-------------|---------|-------------|---------|-------------|---------|-------------| | 0 | 2402 | 20 | 2422 | 40 | 2442 | 60 | 2462 | | 1 | 2403 | 21 | 2423 | 41 | 2443 | 61 | 2463 | | 2 | 2404 | 22 | 2424 | 42 | 2444 | 62 | 2464 | | 3 | 2405 | 23 | 2425 | 43 | 2445 | 63 | 2465 | | 4 | 2406 | 24 | 2426 | 44 | 2446 | 64 | 2466 | | 5 | 2407 | 25 | 2427 | 45 | 2447 | 65 | 2467 | | 6 | 2408 | 26 | 2428 | 46 | 2448 | 66 | 2468 | | 7 | 2409 | 27 | 2429 | 47 | 2449 | 67 | 2469 | | 8 | 2410 | 28 | 2430 | 48 | 2450 | 68 | 2470 | | 9 | 2411 | 29 | 2431 | 49 | 2451 | 69 | 2471 | | 10 | 2412 | 30 | 2432 | 50 | 2452 | 70 | 2472 | | 11 | 2413 | 31 | 2433 | 51 | 2453 | 71 | 2473 | | 12 | 2414 | 32 | 2434 | 52 | 2454 | 72 | 2474 | | 13 | 2415 | 33 | 2435 | 53 | 2455 | 73 | 2475 | | 14 | 2416 | 34 | 2436 | 54 | 2456 | 74 | 2476 | | 15 | 2417 | 35 | 2437 | 55 | 2457 | 75 | 2477 | | 16 | 2418 | 36 | 2438 | 56 | 2458 | 76 | 2478 | | 17 | 2419 | 37 | 2439 | 57 | 2459 | 77 | 2479 | | 18 | 2420 | 38 | 2440 | 58 | 2460 | 78 | 2480 | | 19 | 2421 | 39 | 2441 | 59 | 2461 | | | #### 3.3.1 Test Mode Applicability and Tested Channel Detail | EUT Configure | | Applic | able to | | D | |---------------|-----------|--------|--------------|------|-------------| | Mode | RE≥1G | RE<1G | PLC | APCM | Description | | - | $\sqrt{}$ | V | \checkmark | √ | - | Where RE≥1G: Radiated Emission above 1GHz & Bandedge RE<1G: Radiated Emission below 1GHz Measurement PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement Note: Radiated emission test (below 1GHz) and power line conducted emission test items chosen the worst maximum power. #### **Radiated Emission Test (Above 1GHz):** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Available Channel | Tested Channel | Modulation
Technology | Modulation Type | Pakcet Type | |-----------------------|-------------------|----------------|--------------------------|-----------------|-------------| | - | 0 to 78 | 0, 39, 78 | FHSS | GFSK | DH5 | | - | 0 to 78 | 0, 39, 78 | FHSS | 8DPSK | 3DH5 | #### **Radiated Emission Test (Below 1GHz):** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure Mode Available Channel | | Tested Channel Modulation Technology | | Modulation Type | Pakcet Type | | |---------------------------------------|---------|--------------------------------------|------|-----------------|-------------|--| | - | 0 to 78 | 0 | FHSS | GFSK | DH5 | | #### **Power Line Conducted Emission Test:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Available Channel | Tested Channel | Modulation
Technology | Modulation Type | Pakcet Type | | |-----------------------|-------------------|----------------|--------------------------|-----------------|-------------|--| | - | 0 to 78 | 0 | FHSS | GFSK | DH5 | | #### **Antenna Port Conducted Measurement:** This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | | | Modulation
Technology | Modulation Type | Pakcet Type | | |-----------------------|---------|-----------|--------------------------|-----------------|-------------|--| | - | 0 to 78 | 0, 39, 78 | FHSS | GFSK | DH5 | | | - | 0 to 78 | 0, 39, 78 | FHSS | 8DPSK | 3DH5 | | Report No.: RFBHQC-WTW-P22030336-2 Page No. 10 / 55 Report Format Version: 6.1.1 ## **Test Condition:** | Applicable to | Applicable to Environmental Conditions | | Tested by | |---------------|--|--------------|--------------| | RE≥1G | 19 deg. C, 68% RH | 120Vac, 60Hz | Thomas Cheng | | RE<1G | 25 deg. C, 60% RH | 120Vac, 60Hz | Jisyong Wang | | RE<1G | 23 deg. C, 64% RH | 120Vac, 60Hz | Thomas Cheng | | PLC | PLC 25 deg. C, 75 RH | | Rex Wang | | APCM | 25 deg. C, 60% RH | 120Vac, 60Hz | Jisyong Wang | # 3.4 Duty Cycle of Test Signal $\underline{\text{Duty cycle} = 3.4/100 = 0.034, \text{ duty cycle correction factor} = 20 * \log(0.034) = -29.37}$ ### 3.5 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a
representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|-----------|----------|-----------|------------|------------------|--------------------| | A. | Notebook | Tongfang | GK5NPFO | NA | FCC DoC Approved | Provided by client | | B. | Test Tool | Foxconn | N/A | N/A | N/A | Provided by client | Note: All power cords of the above support units are non-shielded (1.8m). ### 3.5.1 Configuration of System under Test ### 3.6 General Description of Applied Standards and References The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references: #### Test standard: FCC Part 15, Subpart C (15.247) ANSI C63.10:2013 All test items have been performed and recorded as per the above standards. ### **References Test Guidance:** KDB 558074 D01 15.247 Meas Guidance v05r02 All test items have been performed as a reference to the above KDB test guidance. Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 Page No. 12 / 55 Report Format Version: 6.1.1 ### 4 Test Types and Results ### 4.1 Radiated Emission and Bandedge Measurement ### 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power: | Frequencies (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |-------------------|-----------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | #### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Report No.: RFBHQC-WTW-P22030336-2 Page No. 13 / 55 Report Format Version: 6.1.1 #### 4.1.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---|-----------------------|-------------------------------|---------------|---------------| | Spectrum Analyzer
Agilent | N9010A | MY52220314 | Dec. 03, 2021 | Dec. 02, 2022 | | Spectrum Analyzer ROHDE & SCHWARZ | FSU43 | 101261 | Apr. 11, 2022 | Apr. 10, 2023 | | Broadband Horn Antenna
SCHWARZBECK | BBHA 9170 | 148 | Nov. 14, 2021 | Nov. 13, 2022 | | HORN Antenna
SCHWARZBECK | BBHA 9120D | 9120D-969 | Nov. 14, 2021 | Nov. 13, 2022 | | BILOG Antenna
SCHWARZBECK | VULB 9168 | 9168-472 | Oct. 28, 2021 | Oct. 27, 2022 | | Fixed Attenuator
WOKEN | MDCS18N-10 | MDCS18N-10-01 | Apr. 05, 2022 | Apr. 04, 2023 | | MXG Vector signal generator
Agilent | N5182B | MY53050430 | Nov. 25, 2021 | Nov. 24, 2022 | | Loop Antenna
TESEQ | HLA 6121 | 45745 | Jul. 21, 2021 | Jul. 20, 2022 | | Preamplifier
EMCI | EMC001340 | 980201 | Sep. 15, 2021 | Sep. 14, 2022 | | Preamplifier
EMCI | EMC 012645 | 980115 | Oct. 05, 2021 | Oct. 04, 2022 | | Preamplifier
EMCI | EMC 184045 | 980116 | Oct. 05, 2021 | Oct. 04, 2022 | | Preamplifier
EMCI | EMC 330H | 980112 | Oct. 05, 2021 | Oct. 04, 2022 | | Peak Power Analyzer
KEYSIGHT | 8990B | MY51000485 | Jan. 18, 2022 | Jan. 17, 2023 | | Wideband Power Sensor
KEYSIGHT | N1923A | MY58020002 | Jan. 17, 2022 | Jan. 16, 2023 | | RF Coaxial Cable
EMCI | EMC104-SM-SM-800
0 | 171005 | Oct. 05, 2021 | Oct. 04, 2022 | | RF Coaxial Cable
HUBER+SUHNNER | SUCOFLEX 104 | EMC104-SM-SM-1000
(140807) | Oct. 05, 2021 | Oct. 04, 2022 | | RF Coaxial Cable WOKEN | 8D-FB | Cable-Ch10-01 | Oct. 05, 2021 | Oct. 04, 2022 | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | | Software
BV ADT | E3
6.120103 | NA | NA | NA | | Antenna Tower
MF | MFA-440H | NA | NA | NA | | Turn Table
MF | MFT-201SS | NA | NA | NA | | Antenna Tower &Turn Table
Controller
MF | MF-7802 | NA | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. 2. The test was performed in HwaYa Chamber 10. Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 Page No. 14 / 55 Report Format Version: 6.1.1 #### 4.1.3 Test Procedures Following FCC KDB 558074 D01 DTS Meas. Guidance: Radiated versus Conducted Measurements. The unwanted emission limits in both the restricted and non-restricted bands are based on antenna-port conducted measurements in conjunction with cabinet emissions tests are permitted to demonstrate compliance. The following steps was performed: - a. Cabinet emissions measurements. Radiated measurement was performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna was replaced by a termination matching the nominal impedance of the antenna. - b. Conducted tests was performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT - c. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater - d. EIRP adjustments for multiple outputs. (Follow the procedures specified in FCC KDB Publication 662911) - e. For all of Radiation emission test #### For Radiated emission below 30MHz - e-1.1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - e-1.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - e-1.3. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - e-1.4. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e-1.5. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. - 2. KDB 414788 OATS and Chamber Correlation Justification - Based on FCC 15.31(f)(2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempts should be made to avoid making measurements in the near field. - OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result. Report No.: RFBHQC-WTW-P22030336-2 Page No. 15 / 55 Report Format Version: 6.1.1 #### For Radiated emission above 30MHz - e-2.1. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - e-2.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - e-2.3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e-2.4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e-2.5. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - e-2.6. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detector (AV) at frequency above 1GHz. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty cycle correction factor. The duty cycle correction factor refer to Chapter 3.3 of this report. - 3. All modes of operation were investigated and the worst-case emissions are reported. #### 4.1.4 Deviation from Test Standard No deviation. Report No.: RFBHQC-WTW-P22030336-2 Page No. 16 / 55 Report Format Version: 6.1.1 ## 4.1.5 Test Setup ## For Radiated Configuration: ## For Radiated emission below 30MHz #### For Radiated emission 30MHz to 1GHz #### For Radiated emission above 1GHz ## For Conducted Configuration: For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.1.6 EUT Operating Conditions a. Set the EUT under transmission condition
continuously at specific channel frequency. | Radiated versus Conducted Measurement | | | | | | | |---|------------------------|--|--|--|--|--| | Conducted measurement | □ Radiated measurement | | | | | | | r Radiated measurement: e level of unwanted emissions was measured when the the antenna connector(s) terminated by a specific r Conducted measurement: e level of unwanted emissions was measured as the hissions). | #### Below 1GHz worst-case data: | RF Mode | TX BT_GFSK | Channel | CH 0: 2402 MHz | |-----------------|-------------|-------------------|-----------------| | Frequency Range | 9kHz ~ 1GHz | Detector Function | Quasi-Peak (QP) | | | Antenna Polarity & Test Distance : Horizontal at 3 m | | | | | | | | |----|--|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | 67.83 | 29.5 QP | 40.0 | -10.5 | 1.85 H | 50 | 44.1 | -14.6 | | 2 | 173.57 | 33.9 QP | 43.5 | -9.6 | 1.64 H | 337 | 47.3 | -13.4 | | 3 | 266.70 | 35.4 QP | 46.0 | -10.6 | 1.18 H | 266 | 49.0 | -13.6 | | 4 | 436.47 | 31.8 QP | 46.0 | -14.2 | 1.24 H | 336 | 39.4 | -7.6 | | 5 | 599.45 | 33.1 QP | 46.0 | -12.9 | 3.94 H | 135 | 36.7 | -3.6 | | 6 | 900.18 | 33.9 QP | 46.0 | -12.1 | 1.61 H | 271 | 32.3 | 1.6 | #### Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz. - 5. The emission levels were very low against the limit of frequency range 9 kHz \sim 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 Page No. 20 / 55 Report Format Version: 6.1.1 | RF Mode | TX BT_GFSK | Channel | CH 0: 2402 MHz | |-----------------|-------------|-------------------|-----------------| | Frequency Range | 9kHz ~ 1GHz | Detector Function | Quasi-Peak (QP) | | | Antenna Polarity & Test Distance : Vertical at 3 m | | | | | | | | |----|--|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | 34.85 | 32.5 QP | 40.0 | -7.5 | 1.42 V | 323 | 46.2 | -13.7 | | 2 | 190.07 | 29.7 QP | 43.5 | -13.8 | 2.57 V | 275 | 45.2 | -15.5 | | 3 | 336.55 | 37.6 QP | 46.0 | -8.4 | 3.38 V | 182 | 48.3 | -10.7 | | 4 | 539.30 | 32.4 QP | 46.0 | -13.6 | 2.45 V | 206 | 37.8 | -5.4 | | 5 | 671.24 | 36.1 QP | 46.0 | -9.9 | 1.70 V | 343 | 38.2 | -2.1 | | 6 | 898.24 | 32.8 QP | 46.0 | -13.2 | 3.45 V | 289 | 31.2 | 1.6 | #### Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz. - 5. The emission levels were very low against the limit of frequency range 9 kHz \sim 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 Page No. 21 / 55 #### 4.1.8 Test Results (Conducted Measurement) | Radiated versus Conducted Measurement | | | | | | | | |---|-----------------------------|--|--|--|--|--|--| | □ Conducted measurement | ☐ Radiated measurement | | | | | | | | For Radiated measurement: The level of unwanted emissions was measured when with the antenna connector(s) terminated by a specific For Conducted measurement: The level of unwanted emissions was measured as the emissions). | ed load (cabinet radiation) | | | | | | | #### Conducted Measurement Factor - a. The composite gain will be used when signal support the correlated signal. - b. For the out of band spurious the gain for the specific band may have been used rather than the highest gain across all bands. - c. For the band edge the gain for the specific band may have been used. - d. In restricted bands below 1000 MHz, add upper bound on ground plane reflection: For f = 30 1000 MHz, add 4.7 dB. Note: The conducted emission test was considered some factor to compute test result. Report No.: RFBHQC-WTW-P22030336-2 Page No. 22 / 55 Report Format Version: 6.1.1 #### Above 1GHz data: #### GFSK - Channel 0 ## Conducted spurious emission table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 4800 | 49.91 PK | 74 | -24.09 | -50.48 | 5.13 | -45.35 | | 2 | 4804.68 | 38.01 AV | 54 | -15.99 | -62.38 | 5.13 | -57.25 | - 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters. - 2. Non-restricted frequency, the limit was restricted at the conducted out of band emission. ## Bandedge table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 2380.82 | 57.68 PK | 74 | -16.32 | -42.71 | 5.13 | -37.58 | | 2 | 2380.6 | 48.51 AV | 54 | -5.49 | -51.88 | 5.13 | -46.75 | | 3 | 2493.77 | 54.51 PK | 74 | -19.49 | -45.88 | 5.13 | -40.75 | | 4 | 2483.73 | 41.09 AV | 54 | -12.91 | -59.3 | 5.13 | -54.17 | #### Note: 1. Emission Level (dBuV/m) = EIRP Level (dBm) – 20log(d) + 104.8 d = measurement distance in 3 meters. ## GFSK - Channel 39 #### Conducted spurious emission table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 4885.93 | 49.61 PK | 74 | -24.39 | -50.78 | 5.13 | -45.65 | | 2 | 4881.25 | 37.92 AV | 54 | -16.08 | -62.47 | 5.13 | -57.34 | | 3 | 7323.43 | 50.61 PK | 74 | -23.39 | -49.78 | 5.13 | -44.65 | | 4 | 7323.43 | 39.31 AV | 54 | -14.69 | -61.08 | 5.13 | -55.95 | - 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters. - 2. Non-restricted frequency, the limit was restricted at the conducted out of band emission. ## Bandedge table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 2380.6 | 56.68 PK | 74 | -17.32 | -43.71 | 5.13 | -38.58 | | 2 | 2380.72 | 48.47 AV | 54 | -5.53 | -51.92 | 5.13 | -46.79 | | 3 | 2498.48 | 55.03 PK | 74 | -18.97 | -45.36 | 5.13 | -40.23 | | 4 | 2490.88 | 41.21 AV | 54 | -12.79 | -59.18 | 5.13 | -54.05 | #### Note: 1. Emission Level (dBuV/m) = EIRP Level (dBm) – 20log(d) + 104.8 d = measurement distance in 3 meters. #### GFSK - Channel 78 ### Conducted spurious emission table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 4960.93 | 49.75 PK | 74 | -24.25 | -50.64 | 5.13 | -45.51 | | 2 | 4967.18 | 38.13 AV | 54 | -15.87 | -62.26 | 5.13 | -57.13 | | 3 | 7435.93 | 50.44 PK | 74 | -23.56 | -49.95 | 5.13 | -44.82 | | 4 | 7439.06 | 39.14 AV | 54 | -14.86 | -61.25 | 5.13 | -56.12 | | 5 | 2223.43 | 55.37 PK | 74 | -18.63 | -45.02 | 5.13 | -39.89 | | 6 | 2223.43 | 51.69 AV | 54 | -2.31 | -48.7 | 5.13 | -43.57 | - 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters. - 2. Non-restricted frequency, the limit was restricted at the conducted out of band emission. # Bandedge table | No. |
Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 2326.55 | 55.74 PK | 74 | -18.26 | -44.65 | 5.13 | -39.52 | | 2 | 2380.77 | 48.4 AV | 54 | -5.6 | -51.99 | 5.13 | -46.86 | | 3 | 2483.63 | 58.47 PK | 74 | -15.53 | -41.92 | 5.13 | -36.79 | | 4 | 2483.51 | 48.17 AV | 54 | -5.83 | -52.22 | 5.13 | -47.09 | #### Note: 1. Emission Level (dBuV/m) = EIRP Level (dBm) – 20log(d) + 104.8 d = measurement distance in 3 meters. #### 8DPSK - Channel 0 ### Conducted spurious emission table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 4795.31 | 49.5 PK | 74 | -24.5 | -50.89 | 5.13 | -45.76 | | 2 | 4803.12 | 37.77 AV | 54 | -16.23 | -62.62 | 5.13 | -57.49 | - 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters. - 2. Non-restricted frequency, the limit was restricted at the conducted out of band emission. # Bandedge table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 2380.65 | 57.85 PK | 74 | -16.15 | -42.54 | 5.13 | -37.41 | | 2 | 2380.7 | 49.03 AV | 54 | -4.97 | -51.36 | 5.13 | -46.23 | | 3 | 2485.51 | 55.37 PK | 74 | -18.63 | -45.02 | 5.13 | -39.89 | | 4 | 2485.29 | 41.16 AV | 54 | -12.84 | -59.23 | 5.13 | -54.10 | #### Note: 1. Emission Level (dBuV/m) = EIRP Level (dBm) – 20log(d) + 104.8 d = measurement distance in 3 meters. #### 8DPSK - Channel 39 #### Conducted spurious emission table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 4879.68 | 48.74 PK | 74 | -25.26 | -51.65 | 5.13 | -46.52 | | 2 | 4884.37 | 37.31 AV | 54 | -16.69 | -63.08 | 5.13 | -57.95 | | 3 | 7326.56 | 50.26 PK | 74 | -23.74 | -50.13 | 5.13 | -45.00 | | 4 | 7332.81 | 39.02 AV | 54 | -14.98 | -61.37 | 5.13 | -56.24 | | 5 | 2226.56 | 54.1 PK | 74 | -19.9 | -46.29 | 5.13 | -41.16 | | 6 | 2226.56 | 46.62 AV | 54 | -7.38 | -53.77 | 5.13 | -48.64 | - 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters. - 2. Non-restricted frequency, the limit was restricted at the conducted out of band emission. ## Bandedge table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 2380.75 | 56.79 PK | 74 | -17.21 | -43.6 | 5.13 | -38.47 | | 2 | 2380.6 | 48.87 AV | 54 | -5.13 | -51.52 | 5.13 | -46.39 | | 3 | 2497.17 | 55.23 PK | 74 | -18.77 | -45.16 | 5.13 | -40.03 | | 4 | 2485.18 | 41.28 AV | 54 | -12.72 | -59.11 | 5.13 | -53.98 | #### Note: 1. Emission Level (dBuV/m) = EIRP Level (dBm) – 20log(d) + 104.8 d = measurement distance in 3 meters. #### 8DPSK - Channel 78 ### Conducted spurious emission table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 4962.5 | 50.18 PK | 74 | -23.82 | -50.21 | 5.13 | -45.08 | | 2 | 4959.37 | 38.42 AV | 54 | -15.58 | -61.97 | 5.13 | -56.84 | | 3 | 7448.43 | 51 PK | 74 | -23 | -49.39 | 5.13 | -44.26 | | 4 | 7439.06 | 39.21 AV | 54 | -14.79 | -61.18 | 5.13 | -56.05 | | 5 | 1967.18 | 53.99 PK | 74 | -20.01 | -46.4 | 5.13 | -41.27 | | 6 | 1967.18 | 47.02 AV | 54 | -6.98 | -53.37 | 5.13 | -48.24 | - 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters. - 2. Non-restricted frequency, the limit was restricted at the conducted out of band emission. ## Bandedge table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 2326.03 | 56.06 PK | 74 | -17.94 | -44.33 | 5.13 | -39.20 | | 2 | 2380.63 | 47.71 AV | 54 | -6.29 | -52.68 | 5.13 | -47.55 | | 3 | 2483.82 | 59.28 PK | 74 | -14.72 | -41.11 | 5.13 | -35.98 | | 4 | 2483.51 | 43.44 AV | 54 | -10.56 | -56.95 | 5.13 | -51.82 | #### Note: 1. Emission Level (dBuV/m) = EIRP Level (dBm) – 20log(d) + 104.8 d = measurement distance in 3 meters. #### Below 1GHz worst-case data: #### GFSK - Channel 0 ## Conducted spurious emission table | No. | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Raw Value
(dBm) | Correction
Factor
(dB) | EIRP
Level
(dBm) | |-----|--------------------|-------------------------------|-------------------|----------------|--------------------|------------------------------|------------------------| | 1 | 30.36 | 33.45 | 40 | -6.55 | -66.94 | 5.13 | -61.81 | | 2 | 152.94 | 32.3 | 43.5 | -11.2 | -68.09 | 5.13 | -62.96 | | 3 | 311.66 | 34.27 | 46 | -11.73 | -66.12 | 5.13 | -60.99 | | 4 | 418.24 | 36.25 | 46 | -9.75 | -64.14 | 5.13 | -59.01 | | 5 | 754.59 | 33.73 | 46 | -12.27 | -66.66 | 5.13 | -61.53 | | 6 | 971.14 | 35.08 | 54 | -18.92 | -65.31 | 5.13 | -60.18 | - 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters. - 2. Non-restricted frequency, the limit was restricted at the conducted out of band emission. #### **Conducted Emission Measurement** 4.2 #### 4.2.1 Limits of Conducted Emission Measurement | Fraguency (MHz) | Conducted Limit (dBuV) | | | | |-----------------|------------------------|---------|--|--| | Frequency (MHz) | Quasi-peak | Average | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | 0.50 - 5.0 | 56 | 46 | | | | 5.0 - 30.0 | 60 | 50 | | | Note: 1. The lower limit shall apply at the transition frequencies. #### 4.2.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |--|--------------------------|----------------|---------------|---------------| | Test Receiver ROHDE & SCHWARZ | ESR3 | 102783 | Dec. 20, 2021 | Dec. 19, 2022 | | RF signal cable (with 10dB PAD)
Woken | 5D-FB | Cable-cond2-01 | Sep. 04, 2021 | Sep. 03, 2022 | | LISN
ROHDE & SCHWARZ
(EUT) | ESH2-Z5 | 100100 | Feb. 17, 2022 | Feb. 16, 2023 | | LISN
ROHDE & SCHWARZ
(Peripheral) | ESH3-Z5 | 100312 | Sep. 17, 2021 | Sep. 16, 2022 | | Software
ADT | BV ADT_Cond_
V7.3.7.4 | NA | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Shielded Room 2. - 3. The VCCI Site Registration No. is C-12047. ^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. #### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded. Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. ### 4.2.4 Deviation from Test Standard No deviation. ### 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.2.6 EUT Operating Conditions Same as 4.1.6. #### 4.2.7 Test Results ## Worst-case data: ## GFSK - Channel 0 | Phase | Line (L) | Detector Function | Quasi-Peak (QP) / | |--------|----------|--------------------|-------------------| | rilase | Line (L) | Detector i unction | Average (AV) | | | Eroa | Corr. | Readin | g Value | Emissio | n Level | Lir | nit | Mai | rgin | |----|---------|--------|--------|---------|---------|---------|-------|-------|--------|--------| | No | Freq. | Factor | [dB (| (uV)] | [dB | (uV)] | [dB | (uV)] | (d | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.17000 | 10.13 | 40.84 | 39.28 | 50.97 | 49.41 | 64.96 | 54.96 | -13.99 | -5.55 | | 2 | 0.20200 | 10.14 | 39.06 | 27.14 | 49.20 | 37.28 | 63.53 | 53.53 | -14.33 | -16.25 | | 3 | 0.23351 | 10.14 | 42.43 | 35.49 | 52.57 | 45.63 | 62.32 | 52.32 | -9.75 | -6.69 | | 4 | 0.27350 | 10.15 |
36.97 | 36.21 | 47.12 | 46.36 | 61.01 | 51.01 | -13.89 | -4.65 | | 5 | 0.34200 | 10.15 | 34.33 | 31.80 | 44.48 | 41.95 | 59.15 | 49.15 | -14.67 | -7.20 | | 6 | 0.88331 | 10.18 | 28.87 | 23.12 | 39.05 | 33.30 | 56.00 | 46.00 | -16.95 | -12.70 | #### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|-------------|-------------------|-----------------------------------| |-------|-------------|-------------------|-----------------------------------| | | Eroa | Corr. | Readin | g Value | Emissio | n Level | Lir | nit | Ма | rgin | |----|---------|--------|--------|---------|---------|---------|-------|-------|--------|--------| | No | Freq. | Factor | [dB (| (uV)] | [dB | (uV)] | [dB (| (uV)] | (d | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.17000 | 10.14 | 34.12 | 31.90 | 44.26 | 42.04 | 64.96 | 54.96 | -20.70 | -12.92 | | 2 | 0.20200 | 10.15 | 37.22 | 26.93 | 47.37 | 37.08 | 63.53 | 53.53 | -16.16 | -16.45 | | 3 | 0.22985 | 10.15 | 41.44 | 34.92 | 51.59 | 45.07 | 62.46 | 52.46 | -10.87 | -7.39 | | 4 | 0.27350 | 10.16 | 33.16 | 30.41 | 43.32 | 40.57 | 61.01 | 51.01 | -17.69 | -10.44 | | 5 | 0.34577 | 10.16 | 30.96 | 25.10 | 41.12 | 35.26 | 59.06 | 49.06 | -17.94 | -13.80 | | 6 | 0.88200 | 10.19 | 29.13 | 23.59 | 39.32 | 33.78 | 56.00 | 46.00 | -16.68 | -12.22 | ### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 Page No. 39 / 55 ## 4.3 Number of Hopping Frequency Used ## 4.3.1 Limits of Hopping Frequency Used Measurement At least 15 channels frequencies, and should be equally spaced. ### 4.3.2 Test Setup #### 4.3.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.3.4 Test Procedure - a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator. - b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range. - c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded. - d. Set the SA on View mode and then plot the result on SA screen. - e. Repeat above procedures until all frequencies measured were complete. ### 4.3.5 Deviation fromTest Standard No deviation. ### 4.3.6 Test Results There are 79 hopping frequencies in the hopping mode. Please refer to the test result. On the plots, it shows that the hopping frequencies are equally spaced. #### 4.4 Dwell Time on Each Channel ### 4.4.1 Limits of Dwell Time on Each Channel Measurement The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. ## 4.4.2 Test Setup ### 4.4.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.4.4 Test Procedures - a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator. - b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range. - c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value. - d. Measure the time duration of one transmission on the measured frequency. And then plot the result with ime difference of this time duration. - e. Repeat above procedures until all different time-slot modes have been completed. ### 4.4.5 Deviation from Test Standard No deviation. Report No.: RFBHQC-WTW-P22030336-2 Page No. 42 / 55 Report Format Version: 6.1.1 Reference No.: 201119E01 ### 4.4.6 Test Results ## **GFSK** | Mode | Number of transmission in a 31.6 (79Hopping*0.4) | Length of transmission time (msec) | Result
(msec) | Limit
(msec) | |------|--|------------------------------------|------------------|-----------------| | DH1 | 50 (times / 5 sec) * 6.32 = 316.00 times | 0.456 | 144.1 | 400 | | DH3 | 27 (times / 5 sec) * 6.32 = 171.00 times | 1.75 | 299.25 | 400 | | DH5 | 16 (times / 5 sec) * 6.32 = 102.00 times | 3.008 | 306.82 | 400 | ### 8DPSK | Mode | Number of transmission in a 31.6 (79Hopping*0.4) | Length of transmission time (msec) | Result
(msec) | Limit
(msec) | |------|--|------------------------------------|------------------|-----------------| | 3DH1 | 50 (times / 5 sec) * 6.32 = 316.00 times | 0.45 | 142.2 | 400 | | 3DH3 | 26 (times / 5 sec) * 6.32 = 165.00 times | 1.69 | 278.85 | 400 | | 3DH5 | 18 (times / 5 sec) * 6.32 = 114.00 times | 2.976 | 339.26 | 400 | Note: Test plots of the transmitting time slot are shown as below. #### 4.5 **Channel Bandwidth** ### **Limits of Channel Bandwidth Measurement** The 20 dB bandwidth test value is the reference value for the measurement of the frequency hopping channel interval. #### 4.5.2 **Test Setup** #### 4.5.3 **Test Instruments** Refer to section 4.1.2 to get information of above instrument. #### 4.5.4 Test Procedure - a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value. - c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth. - d. Repeat above procedures until all frequencies measured were complete. #### **Deviation from Test Standard** 4.5.5 No deviation. #### **EUT Operating Condition** 4.5.6 The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually. Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 Page No. 45 / 55 Report Format Version: 6.1.1 ## 4.5.7 Test Results | Channal | Fragues ov (MILIT) | 20dB Bandwidth (MHz) | | | | | |---------|--------------------|----------------------|-------|--|--|--| | Channel | Frequency (MHz) | GFSK | 8DPSK | | | | | 0 | 2402 | 0.93 | 1.29 | | | | | 39 | 2441 | 0.94 | 1.30 | | | | | 78 | 2480 | 0.94 | 1.30 | | | | ## 4.6 Hopping Channel Separation ## 4.6.1 Limits of Hopping Channel Separation Measurement At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater). ### 4.6.2 Test Setup #### 4.6.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.6.4 Test Procedure Measurement Procedure REF - a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. - c. By using the MaxHold function record the separation of two adjacent channels. - d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen. - e. Repeat above procedures until all frequencies measured were complete. ## 4.6.5 Deviation from Test Standard No deviation. ## 4.6.6 Test Results | Channel | hannel Frequency | | Adjacent Channel
Separation (MHz) | | 20dB
Bandwidth (MHz) | | Minimum Limit (MHz) | | |---------|------------------|------|--------------------------------------|------|-------------------------|------|---------------------|-------------| | Onamici | (MHz) | GFSK | 8DPSK | GFSK | 8DPSK | GFSK | 8DPSK | Pass / Fail | | 0 | 2402 | 1.00 | 1.00 | 0.93 | 1.29 | 0.62 | 0.86 | Pass | | 39 | 2441 | 1.00 | 1.00 | 0.94 | 1.30 | 0.63 | 0.87 | Pass | | 78 | 2480 | 1.00 | 1.00 | 0.94 | 1.30 | 0.63 | 0.87 | Pass | Note: The minimum limit is two-third 20dB bandwidth. Report Format Version: 6.1.1 ## 4.7 Maximum Output Power ## 4.7.1 Limits of Maximum Output Power Measurement Refer to Regulation 15.247 (a)(1), the Maximum Output Power Measurement is 125 mW. ## 4.7.2 Test Setup #### 4.7.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.7.4 Test Procedure For Peak Power A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level. ### For Average Power Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value. #### 4.7.5 Deviation fromTest Standard No deviation. ## 4.7.6 EUT Operating Condition The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually. Report No.: RFBHQC-WTW-P22030336-2 Page No. 49 / 55 Reference No.: 201119E01 # 4.7.7 Test Results ## For Peak Power | Channel | Channel Frequency | | Output Power (mW) | | Power
Bm) |
Power | Pass / Fail | |---------|-------------------|--------|-------------------|-------|--------------|------------|---------------| | Onamici | (MHz) | GFSK | 8DPSK | GFSK | 8DPSK | Limit (mW) | 1 433 / 1 411 | | 0 | 2402 | 27.861 | 20.559 | 14.45 | 13.13 | 125 | Pass | | 39 | 2441 | 27.29 | 19.953 | 14.36 | 13.00 | 125 | Pass | | 78 | 2480 | 23.55 | 16.904 | 13.72 | 12.28 | 125 | Pass | # For Average Power | Channel | Frequency | Output
(m | Power
W) | Output
(dE | Power
Bm) | |---------|-----------|--------------|-------------|---------------|--------------| | Onamici | (MHz) | GFSK | 8DPSK | GFSK | 8DPSK | | 0 | 2402 | 26.182 | 10.617 | 14.18 | 10.26 | | 39 | 2441 | 25.823 | 10.186 | 14.12 | 10.08 | | 78 | 2480 | 22.542 | 9.036 | 13.53 | 9.56 | Report No.: RFBHQC-WTW-P22030336-2 Reference No.: 201119E01 Page No. 50 / 55 Report Format Version: 6.1.1 #### 4.8 Conducted Out of Band Emission Measurement ### 4.8.1 Limits Of Conducted Out Of Band Emission Measurement Below 20dB of the highest emission level of operating band (in 100kHz RBW). #### 4.8.2 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.8.3 Test Procedure The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded. #### 4.8.4 Deviation from Test Standard No deviation. ### 4.8.5 EUT Operating Condition The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually. #### 4.8.6 Test Results The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement. | 5 Pictures of Test Arrangements Please refer to the attached file (Test Setup Photo). | |---| | Please refer to the attached file (Test Setup Photo). | ## Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END --- Report No.: RFBHQC-WTW-P22030336-2 Page No. 55 / 55 Report Format Version: 6.1.1 Reference No.: 201119E01