APPLICANT : DELL Inc. **EQUIPMENT** : Tablet PC **BRAND NAME** : Dell MODEL NAME : T01C; T01C003 TYPE NAME : T01C003 FCC ID : E2K-T01C003 **STANDARD** : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** IEEE 1528-2003 We, SPORTON INTERNATIONAL (KUNSHAN) INC. would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC. the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Deputy Manager Erle huans Approved by: Jones Tsai / Manager **Report No. : FA422417** SPORTON INTERNATIONAL (KUNSHAN) INC. No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C. TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 Issued Date: May 27, 2014 Form version.: 140422 FCC ID: E2K-T01C003 Page 1 of 33 # **Table of Contents** Report No. : FA422417 | 1. Statement of Compliance | 4 | |---|----| | 2. Administration Data | 5 | | 3. Guidance Standard | 5 | | 4. Equipment Under Test (EUT) | 6 | | 4.1 General Information | | | 4.2 Maximum Tune-up Limit | 7 | | 5. RF Exposure Limits | | | 5.1 Uncontrolled Environment | 8 | | 5.2 Controlled Environment | | | 6. Specific Absorption Rate (SAR) | 9 | | 6.1 Introduction | 9 | | 6.2 SAR Definition | 9 | | 7. System Description and Setup | 10 | | 8. Measurement Procedures | | | 8.1 Spatial Peak SAR Evaluation | 11 | | 8.2 Power Reference Measurement | 12 | | 8.3 Area Scan | 12 | | 8.4 Zoom Scan | 13 | | 8.5 Volume Scan Procedures | 13 | | 8.6 Power Drift Monitoring | 13 | | 9. Test Equipment List | 14 | | 10. System Verification | | | 10.1 Tissue Verification | | | 10.2 System Performance Check Results | | | 11. RF Exposure Positions | 17 | | 11.1 SAR Testing for Tablet | | | 12. Conducted RF Output Power (Unit: dBm) | | | 13. Bluetooth Exclusions Applied | | | 14. Antenna Location | | | 15. SAR Test Results | | | 15.1 Body SAR | | | 15.2 Repeated SAR Measurement | | | 16. Simultaneous Transmission Analysis | | | 17. Uncertainty Assessment | | | 18. References | 33 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | Issued Date : May 27, 2014 Form version. : 140422 # **Revision History** Report No. : FA422417 | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|--------------| | FA422417 | Rev. 01 | Initial issue of report | May 27, 2014 | TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version. : 140422 FCC ID: E2K-T01C003 Page 3 of 33 # 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **DELL Inc.**, **Tablet PC**, **T01C**; T01C003, are as follows. Report No. : FA422417 | Equipment
Class | Frequency
Band | Operating
Mode | Highest SAR Summary Body 1g SAR (W/kg) (0cm Gap) | |--------------------|-------------------|-------------------|--| | DTS | WLAN 2.4GHz Band | Data | 0.85 | | סוט | WLAN 5.8GHz Band | Data | <mark>1.41</mark> | | | WLAN 5.2GHz Band | Data | 1.47 | | NII | WLAN 5.3GHz Band | Data | <mark>1.48</mark> | | | WLAN 5.5GHz Band | Data | 1.47 | | DSS | Bluetooth | Data | | | Date of Testing: | | | 04/21/2014 ~ 05/06/2014 | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003. TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 FCC ID: E2K-T01C003 Form version.: 140422 Page 4 of 33 # 2. Administration Data | Testing Laboratory | | | | | |--------------------|--|--|--|--| | Test Site | SPORTON INTERNATIONAL (KUNSHAN) INC. | | | | | Test Site Location | No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.
TEL: +86-0512-5790-0158
FAX: +86-0512-5790-0958 | | | | Report No.: FA422417 | Applicant | | | | | | |--|--|--|--|--|--| | Company Name DELL Inc. | | | | | | | Address One Dell Way, Round Rock, Texas 78682, United States | | | | | | | Manufacturer | | | | | |--|--|--|--|--| | Company Name DELL Inc. | | | | | | One Dell Way, Round Rock, Texas 78682, United States | | | | | # 3. Guidance Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2003 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03 - FCC KDB 865664 D02 SAR Reporting v01r01 - FCC KDB 447498 D01 General RF Exposure Guidance v05r02 - FCC KDB 248227 D01 SAR meas for 802 11abg v01r02 - FCC KDB 644545 D01 Guidance for IEEE 802 11ac v01r02 - FCC KDB 616217 D04 SAR for laptop and tablets v01r01 SPORTON INTERNATIONAL (KUNSHAN) INC. # 4. Equipment Under Test (EUT) ## 4.1 General Information | Product Feature & Specification | | | | | |--|---|--|--|--| | Equipment Name | Tablet PC | | | | | Brand Name | Dell | | | | | Model Name | T01C; T01C003 | | | | | Type Name | T01C003 | | | | | FCC ID | E2K-T01C003 | | | | | Wireless Technology and
Frequency Range | WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz
WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz
WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz
WLAN 5.5GHz Band: 5500 MHz ~ 5700 MHz
WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz
Bluetooth: 2402 MHz ~ 2480 MHz | | | | | Mode | 802.11a/b/g/n/ac HT20/HT40/VHT20/VHT40/VHT80 Bluetooth v3.0+EDR, Bluetooth v4.0 LE | | | | | HW Version | P708-B1-BOT | | | | | SW Version | YTP802A110830 | | | | | EUT Stage | Identical Prototype | | | | **Report No. : FA422417** Issued Date: May 27, 2014 #### Remark: - 1. Voice call is not supported. - 2. WLAN operation in 5600 MHz ~ 5650 MHz is notched. TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 FCC ID : E2K-T01C003 Page 6 of 33 Form version. : 140422 # 4.2 Maximum Tune-up Limit | | | Average Power (dBm) | | | | | | | |------------------|-----|---------------------|-----|----------|----------|----------|----------|----------| | Band | | IEEE 802.11 | | | | | | | | | 11a | 11b | 11g | 11n-HT20 | 11n-HT40 | ac-VHT20 | ac-VHT40 | ac-VHT80 | | WLAN 2.4GHz Band | | 14.5 | 13 | 11 | 11.5 | | | | | WLAN 5.3GHz Band | 12 | | | 12.5 | 13 | 12 | 12.5 | 13 | | WLAN 5.8GHz Band | 13 | | | 12.5 | 12.5 | 12 | 12 | 12 | Report No. : FA422417 | Band | Average Power (dBm) | | | | | | |------------------|---------------------|-------------|----------|----------|----------|----------| | WLAN 5.2GHz Band | | IEEE 802.11 | | | | | | Channel | 11a | 11n-HT20 | 11n-HT40 | ac-VHT20 | ac-VHT40 | ac-VHT80 | | CH 36 | 12 | 12.5 | | 13 | | | | CH 38 | | | 11 | | 13.5 | | | CH 40 | 12 | 12.5 | | 13 | | | | CH 42 | | | | | | 13.5 | | CH 44 | 12.5 | 12.5 | | 13 | | | | CH 46 | | | 13.5 | | 13.5 | | | CH 48 | 13.5 | 12.5 | | 13 | | | | Band | Average Power (dBm) | | | | | | |------------------|---------------------|-------------|----------|----------|----------|----------| | WLAN 5.5GHz Band | | IEEE 802.11 | | | | | | Channel | 11a | 11n-HT20 | 11n-HT40 | ac-VHT20 | ac-VHT40 | ac-VHT80 | | CH 100 | 12.5 | 10.5 | | 11 | | | | CH 102 | | | 7.5 | | 7.5 | | | CH 104 | 12.5 | 10.5 | | 11 | | | | CH 106 | | | | | | 11 | | CH 108 | 12.5 | 10.5 | | 11 | | | | CH 110 | | | 11 | | 11 | | | CH 112 | 12.5 | 10.5 | | 11 | | | | CH 116 | 12.5 | 10.5 | | 11 | | | | CH 134 | | | 11 | | 11 | | | CH 136 | 12.5 | 10.5 | | 11 | | | | CH 138 | | | | | | 11 | | CH 140 | 12.5 | 10.5 | | 7 | | | | Mode / Band | Bluetooth | | | | |------------------|----------------------|-------------------|--|--| | Mode / Barid | Bluetooth v3.0 + EDR | Bluetooth v4.0 LE | | | | 2.4GHz Bluetooth | 3 | 1.5 | | | TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version. : 140422 FCC ID: E2K-T01C003 Page 7 of 33 ## 5. RF Exposure Limits #### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA422417 #### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and
can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. ## 6. Specific Absorption Rate (SAR) #### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA422417 ### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 Issued Date: May 27, 2014 Form version.: 140422 FCC ID: E2K-T01C003 Page 9 of 33 • ## 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA422417 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, - The phantom, the device holder and other accessories according to the targeted measurement. TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 Issued Date: May 27, 2014 FCC ID : E2K-T01C003 Page 10 of 33 Form version. : 140422 ## 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> - (a) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (b) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> (a) Use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. Report No.: FA422417 - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g **SPORTON INTERNATIONAL (KUNSHAN) INC.**TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 #### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA422417 #### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | | | |--|--|--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz: } \le 12 \text{ mm}$
$4 - 6 \text{ GHz: } \le 10 \text{ mm}$ | | | | Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$ | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | | TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 Issued Date: May 27, 2014 Form version.: 140422 FCC ID: E2K-T01C003 Page 12 of 33 #### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is
done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA422417 Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|---|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded grid 1^{st} two points close to phantom surface $\Delta z_{Zoom}(n>1)$: | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | between subsequent | $\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$ | | | Minimum zoom scan
volume | X V 7 | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 Issued Date: May 27, 2014 Form version.: 140422 FCC ID: E2K-T01C003 Page 13 of 33 When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}, \leq 8 \text{ mm}, \leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 9. Test Equipment List | Mary Control | No see of Early and | T (0.0 1) | Ordel Novel and | Calib | ration | |---------------|-------------------------------|---------------|-----------------|---------------|---------------| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 736 | Aug. 23, 2013 | Aug. 22, 2014 | | SPEAG | 5000MHz System Validation Kit | D5000V2 | 1006 | Sep. 23, 2013 | Sep. 22, 2014 | | SPEAG | Data Acquisition Electronics | DAE4 | 1210 | Jun. 19, 2013 | Jun. 18, 2014 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3857 | Jun. 20, 2013 | Jun. 19, 2014 | | SPEAG | ELI4 Phantom | QD OVA 001 BB | 1079 | NCR | NCR | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Agilent | ENA Series Network Analyzer | E5071C | MY46317418 | May 24, 2013 | May 23, 2014 | | Agilent | Dielectric Probe Kit | 85070E | MY44300475 | NCR | NCR | | Agilent | Signal Generator | E4438C | MY49070755 | Oct. 08, 2013 | Oct. 07, 2014 | | Anritsu | Power Senor | MA2411B | 0917070 | Feb. 27, 2014 | Feb. 26, 2015 | | Anritsu | Power Meter | ML2495A | 1005002 | Feb. 27, 2014 | Feb. 26, 2015 | | ARRA | Power Divider | A3200-2 | N/A | NA | NA | | R&S | Spectrum Analyzer | FSP30 | 101399 | May 23, 2013 | May 22, 2014 | | Agilent | Dual Directional Coupler | 778D | 50422 | *C | BT | | Woken | Attenuator | WK0602-XX | N/A | *C | BT | | PE | Attenuator | PE7005-10 | N/A | *C | BT | | PE | Attenuator | PE7005- 3 | N/A | *CBT | | | AR | Power Amplifier | 5S1G4M2 | 0328767 | *C | ВТ | | Mini-Circuits | Power Amplifier | ZVE-3W | 162601250 | *C | ВТ | | Mini-Circuits | Power Amplifier | ZHL-42W+ | 13440021344 | *C | ВТ | Report No.: FA422417 #### **General Note:** - 1. The calibration certificate of DASY can be referred to appendix C of this report. - 2. *CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing an amplifier, coupler and attenuator were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurement. FCC ID : E2K-T01C003 Page 14 of 33 Form version. : 140422 # 10. System Verification ### 10.1 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. Report No.: FA422417 | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------|--| | For Body | | | | | | | | | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | Simulating Liquid for 5GHz, Manufactured by SPEAG | Ingredients | (% by weight) | | | | |--------------------|---------------|--|--|--| | Water | 64~78% | | | | | Mineral oil | 11~18% | | | | | Emulsifiers | 9~15% | | | | | Additives and Salt | 2~3% | | | | #### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(℃) | Conductivity
(σ) | Permittivity
(ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------|------------------------|---------------------|-----------------------------------|----------------------------|--|------------------|--------------------------------|-----------|-----------| | 2450 | Body | 22.7 | 1.941 | 50.933 | 1.95 | 52.7 | -0.46 | -3.35 | ±5 | 2014/4/21 | | 5200 | Body | 22.8 | 5.264 | 48.303 | 5.30 | 49.0 | -0.68 | -1.42 | ±5 | 2014/5/6 | | 5300 | Body | 22.8 | 5.404 | 48.094 | 5.42 | 48.9 | -0.30 | -1.65 | ±5 | 2014/5/6 | | 5600 | Body | 22.9 | 5.834 | 47.448 | 5.77 | 48.5 | 1.11 | -2.17 | ±5 | 2014/5/6 | | 5800 | Body | 22.8 | 6.096 | 46.929 | 6.00 | 48.2 | 1.60 | -2.64 | ±5 | 2014/5/6 | **SPORTON INTERNATIONAL (KUNSHAN) INC.**TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 ## 10.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
SAR
(W/kg) | Targeted
SAR
(W/kg) | Normalized
SAR
(W/kg) | Deviation
(%) | |-----------|--------------------|----------------|------------------------|---------------|--------------|------------|---------------------------|---------------------------|-----------------------------|------------------| | 2014/4/21 | 2450 | Body | 250 | 736 | 3857 | 1210 | 12.70 | 51.3 | 50.8 | -0.97 | | 2014/5/6 | 5200 | Body | 100 | 1006 | 3857 | 1210 | 7.30 | 71.5 | 73.0 | 2.10 | | 2014/5/6 | 5300 | Body | 100 | 1006 | 3857 | 1210 | 7.19 | 75.2 | 71.9 | -4.39 | | 2014/5/6 | 5600 | Body | 100 | 1006 | 3857 | 1210 | 7.56 | 77.8 | 75.6 | -2.83 | | 2014/5/6 | 5800 | Body | 100 | 1006 | 3857 | 1210 | 7.27 | 72.3 | 72.7 | 0.55 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo Report No.: FA422417 TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 Issued Date: May 27, 2014 FCC ID : E2K-T01C003 Page 16 of 33 Form version. : 140422 ## 11. RF Exposure Positions ### 11.1 SAR Testing for Tablet This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v05r02 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge
positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom. Report No.: FA422417 TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 FCC ID: E2K-T01C003 Form version.: 140422 Page 17 of 33 ## 12. Conducted RF Output Power (Unit: dBm) #### <WLAN Conducted Power> #### **General Note:** For IEEE802.11a/b/g SAR testing, highest average RF output power channel for the lowest data rate for 802.11b and 802.11a were selected for SAR evaluation. 802.11g were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of 802.11b mode. Report No.: FA422417 - 2. For IEEE802.11n/ac, SAR testing can be conducted on channel with the highest output power when taking into consideration tune-up tolerance for same test configuration that was identified during SAR evaluations for IEEE802.11a/b/g (as applicable) provided bandwidth and test position are the same. - For IEEE802.11n/ac with multiple channel BW configurations, highest channel BW configuration with highest output 3. power limit shall be tested. - 4. Testing of lower BW configurations is not required when the maximum average output of the default test channels in each lower BW configuration is less than 1/4dB higher than the default test channel in the highest BW configuration. TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 Issued Date: May 27, 2014 Form version.: 140422 FCC ID: E2K-T01C003 Page 18 of 33 #### <2.4GHz WLAN> | | WLAN 2.4GHz 802.11b Average Power (dBm) | | | | | | | | | | |---------|---|--------------------|---------------------|-----------|----------|--|--|--|--|--| | | Power vs. Channel | | Power vs. Data Rate | | | | | | | | | Channel | Frequency | Data Rate | 2Mbps | 5.5Mbps | 11Mbps | | | | | | | Channel | (MHz) | 1Mbps | | equivic.c | Trivibps | | | | | | | CH 1 | 2412 | 13.53 | | | | | | | | | | CH 6 | 2437 | 13.76 | 14.02 | 14.10 | 14.08 | | | | | | | CH 11 | 2462 | <mark>14.11</mark> | | | | | | | | | Report No. : FA422417 | | WLAN 2.4GHz 802.11g Average Power (dBm) | | | | | | | | | | | |----------|---|--------------------|--------------|---------------------|----------|--------|----------|----------|--------|--|--| | Po | wer vs. Chann | el | | Power vs. Data Rate | | | | | | | | | Channel | Channel Frequency Data Rate 9Mt | OMboo | 9Mbps 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | | | | | Chamilei | (MHz) | 6Mbps | 9Mbps | 121/10/05 | Tolvibps | 24Mbps | Solvibbs | 40101006 | 54Mbps | | | | CH 1 | 2412 | 12.11 | | | | | | | | | | | CH 6 | 2437 | 12.19 | 12.42 | 12.40 | 12.33 | 12.34 | 12.32 | 12.39 | 12.36 | | | | CH 11 | 2462 | <mark>12.45</mark> | | | | | | | | | | | | WLAN 2.4GHz 802.11n-HT20 Average Power (dBm) | | | | | | | | | | |---------|--|--------------------|---------|---------------------|-------|-------|-------|-------|-------|--| | Po | wer vs. Chann | el | | Power vs. MCS Index | | | | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | Onamici | (MHz) | MCS0 | IVICS I | MOOZ | WOOO | MOOT | MOCO | 10000 | WOOT | | | CH 1 | 2412 | 10.46 | | | | | | | | | | CH 6 | 2437 | 10.60 | 10.69 | 10.71 | 10.61 | 10.74 | 10.77 | 10.66 | 10.67 | | | CH 11 | 2462 | <mark>10.78</mark> | | | | | | | | | | | WLAN 2.4GHz 802.11n-HT40 Average Power (dBm) | | | | | | | | | | | |-------------------|--|--------------------|--------------|-------|---------------------|-------|-------|-------|------|--|--| | Power vs. Channel | | | | | Power vs. MCS Index | | | | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | Chamilei | (MHz) | MCS0 | IVICS I IVIC | MOSZ | WOOO | MOOT | WOOD | WOOO | WOO7 | | | | CH 3 | 2422 | 10.97 | | | | | | | | | | | CH 6 | 2437 | 11.06 | 11.19 11.21 | 11.14 | 11.20 | 11.14 | 11.05 | 11.06 | | | | | CH 9 | 2452 | <mark>11.23</mark> | | | | | | | | | | TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version. : 140422 FCC ID: E2K-T01C003 Page 19 of 33 #### <5GHz WLAN> | | | | WLAN 5GHz 802.11a Average Power (dBm) | | | | | | | | |----------|----------------|--------------------|---------------------------------------|----------|----------|----------------|----------|----------|--------|--| | Po | wer vs. Channe | el | | | Pov | ver vs. Data F | Rate | | | | | Channel | Frequency | Data Rate | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | | | Chamilei | (MHz) | 6Mbps | Bivibps | 12111048 | Tolvibha | 241010005 | Solvinhs | 40ivibps | 34WDP8 | | | CH 36 | 5180 | 11.64 | | | | | | | | | | CH 40 | 5200 | 11.56 | 12.32 | 12.15 | 12.11 | 12.09 | 11.86 | 11.94 | 11.53 | | | CH 44 | 5220 | 11.84 | 12.32 | 12.15 | 12.11 | 12.03 | 11.00 | 11.94 | 11.55 | | | CH 48 | 5240 | <mark>12.96</mark> | | | | | | | | | | CH 52 | 5260 | 11.72 | | | | | | | | | | CH 56 | 5280 | 11.71 | 11.78 | 11.72 | 11.66 | 11.66 | 11.71 | 11.81 | 11.59 | | | CH 60 | 5300 | 11.62 | 11.70 | | | 11.00 | | 11.01 | 11.59 | | | CH 64 | 5320 | <mark>11.82</mark> | | | | | | | | | | CH 100 | 5500 | <mark>12.34</mark> | | | | | | | | | | CH 104 | 5520 | 11.97 | | | | | | | | | | CH 108 | 5540 | 12.18 | | | | | | | | | | CH 112 | 5560 | 12.12 | 12.27 | 12.33 | 12.16 | 12.01 | 12.17 | 12.14 | 11.99 | | | CH 116 | 5580 | 12.31 | | | | | | | | | | CH 136 | 5680 | 11.79 | | | | | | | | | | CH 140 | 5700 | 11.92 | | | | | | | | | | CH 149 | 5745 | <mark>12.38</mark> | | | | | | | | | | CH 153 | 5765 | 12.31 | | | | | | | | | | CH 157 | 5785 | 12.31 | 12.11 | 11.94 | 11.96 | 11.90 | 11.88 | 11.99 | 11.38 | | | CH 161 | 5805 | 12.30 | | 11.01 | | | | | | | | CH 165 | 5825 | 12.37 | | | | | | | | | Report No. : FA422417 | | | \ | WLAN 5GHz | 802.11n-HT2 | 0 Average Po | wer (dBm) | | | | | |---------|----------------|--------------------|-----------|-------------|--------------|---------------|-------|-------|-------|--| | Po | wer vs. Channe | el | | | Pow | er vs. MCS Ir | ndex | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | Onamici | (MHz) | MCS0 | MICCI | M002 | MOCO | 10004 | MOOO | MOCO | WIGO! | | | CH 36 | 5180 | 12.02 | | | | | | | | | | CH 40 | 5200 | 11.95 | 12.01 | 12.09 | 11.99 | 12.20 | 12.16 | 12.19 | 11.71 | | | CH 44 | 5220 | 12.05 | 12.01 | 12.09 | 11.99 | 12.20 | 12.10 | 12.19 | 11.71 | | | CH 48 | 5240 | 12.29 | | | | | | | | | | CH 52 | 5260 | 11.99 | _ | | | | _ | _ | | | | CH 56 | 5280 | 11.92 | 11.90 | 11.88 | 11.80 | 11.98 | 12.01 | 11.91 | 11.43 | | | CH 60 | 5300 | 11.94 | 11.90 | | 11.60 | 11.90 | 12.01 | 11.91 | 11.43 | | | CH 64 | 5320 | <mark>12.05</mark> | | | | | | | | | | CH 100 | 5500 | <mark>10.29</mark> | | | | | | | | | | CH 104 | 5520 | 9.93 | | | | | 10.23 | | | | | CH 108 | 5540 | 10.13 | | | | | | | | | | CH 112 | 5560 | 9.95 | 10.11 | 10.08 | 10.19 | 10.10 | | 10.18 | 10.28 | | | CH 116 | 5580 | 10.03 | | | | | | | | | | CH 136 | 5680 | 9.96 | | | | | | | | | | CH 140 | 5700 | 6.58 | | | | | | | | | | CH 149 | 5745 | 12.12 | | | | | | | | | | CH 153 | 5765 | 12.25 | | | | | | | | | | CH 157 | 5785 | 12.38 | 12.34 | 12.32 | 12.29 | 12.35 | 12.36 | 12.08 | 12.26 | | | CH 161 | 5805 | 12.35 | | 12.02 | .2.20 | 12.00 | | | | | | CH 165 | 5825 | 12.37 | | | | | | | | | TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version. : 140422 FCC ID: E2K-T01C003 Page 20 of 33 | | | 1 | WLAN 5GHz 802.11n-HT40 Average Power (dBm) | | | | | | | | | |----------|----------------|--------------------|--|-------|--------|---------------|-------|-------|-------|--|--| | Po | wer vs. Channe | el | | | Pow | er vs. MCS Ir | ndex | | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | Chamilei | (MHz) | MCS0 | IVIC3 I | WC32 | IVICSS | WC34 | MCSS | MCSO | WC37 | | | | CH 38 | 5190 | 10.78 | 12.54 | 12.72 | 12.52 | 12.73 | 12.90 | 12.81 | 12.82 | | | | CH 46 | 5230 | 13.16 | 12.54 | 12.72 | 12.52 | 12.73 | 12.90 | 12.01 | 12.02 | | | | CH 54 | 5270 | 12.36 | 12.45 | 12.46 | 12.32 | 12.39 | 12.47 | 12.54 | 12.54 | | | | CH 62 | 5310 | <mark>12.61</mark> | 12.40 | 12.40 | 12.32 | 12.39 | 12.47 | 12.54 | 12.54 | | | | CH 102 | 5510 | 7.06 | | | | | | | | | | | CH 110 | 5550 | 10.44 | 10.76 | 10.70 | 10.72 | 10.75 | 10.67 | 10.73 | 10.71 | | | | CH 114 | 5570 | 10.62 | 10.76 | 10.70 | 10.72 | 10.75 | 10.67 | 10.73 | 10.71 | | | | CH 134 | 5670 | <mark>10.82</mark> | | | | | | | | | | | CH 151 | 5755 | 11.77 | 12.04 | 12.05 | 11.98 | 12.14 | 12.21 | 12.11 | 11.67 | | | | CH 159 | 5795 | <mark>12.29</mark> | 12.04 | 12.05 | 11.90 | 12.14 | 12.21 | 12.11 | 11.07 | | | Report No. : FA422417 | | | | WLAN 5G | Hz 802.11a | c-VHT20 Ave | erage Power | (dBm) | | | | |---------|---------------|--------------------|---------|------------|-------------|-------------|-----------|-------|-------|-------| | Pov | ver vs. Chanr | nel | | | | Power vs. I | MCS Index | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | MCS8 | | Charine | (MHz) | MCS0 | IVIOOT | WOOZ | WOOO | WOOT | WOOD | WOOO | WOOT | WICCO | | CH 36 | 5180 | 12.29 | | | | | | | | | | CH 40 | 5200 | 12.05 | 12.16 | 12.21 | 12.28 | 12.35 | 12.43 | 12.34 | 12.24 | 12.29 | | CH 44 | 5220 | 12.19 | 12.10 | 12.21 | 12.20 | 12.33 | 12.43 | 12.54 | 12.24 | 12.29 | | CH 48 | 5240 | <mark>12.46</mark> | | | | | | | | | | CH 52 | 5260 | 11.72 | | | | | | | | | | CH 56 | 5280 | 11.78 | 11.64 | 11.72 | 11.59 | 11.64 | 11.71 | 11.60 | 11.44 | 11.52 | | CH 60 | 5300 | 11.68 | 11.04 | 11.72 | 11.59 | 11.04 | | | | 11.52 | | CH 64 | 5320 | 11.71 | | | | | | | | | | CH 100 | 5500 | 10.40 | | | | | | | | | | CH 104 | 5520 | 10.32 | | | | | | |
 | | CH 108 | 5540 | 10.26 | | | | | | | | | | CH 112 | 5560 | 10.15 | 10.22 | 10.32 | 10.34 | 10.22 | 10.24 | 10.13 | 10.05 | 10.11 | | CH 116 | 5580 | 10.29 | | | | | | | | | | CH 136 | 5680 | 10.00 | | | | | | | | | | CH 140 | 5700 | 6.65 | | | | | | | | | | CH 149 | 5745 | <mark>11.42</mark> | | | | | | | | | | CH 153 | 5765 | 11.19 | 11.27 | | | | | | | | | CH 157 | 5785 | 11.38 | | 11.14 | 10.90 | 11.06 | 11.12 | 11.18 | 11.16 | 11.14 | | CH 161 | 5805 | 11.35 | | 11.14 | . 3.00 | | | | | | | CH 165 | 5825 | 11.40 | | | | | | | | | TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version. : 140422 FCC ID: E2K-T01C003 Page 21 of 33 | | | | WLAN | N 5GHz 802 | 2.11ac-VHT | 40 Average | e Power (dE | Bm) | | | | |---------|--------------------|----------------------|-------|------------|------------|------------|-------------|-------|-------|-------|-------| | Pov | er vs. Chanr | nel | | | | Powe | er vs. MCS | Index | | | | | Channel | Frequency
(MHz) | MCS
Index
MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | MCS8 | MCS9 | | CH 38 | 5190 | 12.84 | 10.65 | 12.86 | 12.73 | 12.75 | 12.96 | 12.93 | 12.85 | 12.95 | 12.83 | | CH 46 | 5230 | <mark>13.16</mark> | 12.65 | 12.00 | 12.73 | 12.75 | 12.90 | 12.93 | 12.00 | 12.95 | 12.03 | | CH 54 | 5270 | 11.91 | 11.92 | 11.96 | 11.49 | 11.72 | 11.81 | 11.77 | 11.67 | 11.74 | 11.56 | | CH 62 | 5310 | <mark>12.03</mark> | 11.92 | 11.90 | 11.49 | 11.72 | 11.01 | 11.77 | 11.07 | 11.74 | 11.50 | | CH 102 | 5510 | 6.83 | | | | | | | | | | | CH 110 | 5550 | 10.03 | 9.79 | 9.66 | 9.64 | 9.71 | 9.62 | 9.62 | 9.83 | 9.82 | 9.61 | | CH 114 | 5570 | 10.11 | 9.79 | 9.00 | 9.04 | 9.71 | 9.62 | 9.62 | 9.03 | 9.02 | 9.61 | | CH 134 | 5670 | <mark>10.15</mark> | | | | | | | | | | | CH 151 | 5755 | 11.64 | 11.49 | 11.66 | 11.25 | 11.63 | 11.65 | 11.56 | 11.47 | 11.64 | 11.64 | | CH 159 | 5795 | <mark>11.77</mark> | 11.49 | 11.00 | 11.25 | 11.03 | 11.05 | 11.50 | 11.47 | 11.04 | 11.04 | Report No. : FA422417 | | WLAN 5GHz 802.11ac-VHT80 Average Power (dBm) | | | | | | | | | | | | | | |---------|--|--------------------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Pov | ver vs. Chanr | nel | Power vs. MCS Index | | | | | | | | | | | | | Channel | Frequency | MCS
Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | MCS8 | MCS9 | | | | | | (MHz) | MCS0 | | | | | | | | | | | | | | CH 42 | 5210 | 13.29 | 12.46 | 12.73 | 12.55 | 12.89 | 12.84 | 12.67 | 12.74 | 12.67 | 12.64 | | | | | CH 58 | 5290 | <mark>12.55</mark> | 12.55 | 12.40 | 12.12 | 12.48 | 12.40 | 12.40 | 12.51 | 12.31 | 12.55 | | | | | CH 106 | 5530 | 10.45 | 10.37 | 10.42 | 10.43 | 10.41 | 10.44 | 10.26 | 10.36 | 10.30 | 10.42 | | | | | CH 138 | 5690 | 10.31 | 10.37 | 10.42 | 10.43 | 10.41 | 10.44 | 10.20 | 10.30 | 10.30 | 10.42 | | | | | CH 155 | 5775 | <mark>11.83</mark> | 11.56 | 11.81 | 11.41 | 11.66 | 11.64 | 11.21 | 11.01 | 10.49 | 10.35 | | | | TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version. : 140422 FCC ID: E2K-T01C003 Page 22 of 33 # 13. Bluetooth Exclusions Applied | Mode Band | Average power(dBm) | | | | | | | | | |------------------|--------------------|-------------------|--|--|--|--|--|--|--| | Mode Ballu | Bluetooth v3.0+EDR | Bluetooth v4.0 LE | | | | | | | | | 2.4GHz Bluetooth | 3 | 1.5 | | | | | | | | **Report No. : FA422417** #### Note: 1. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation *distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | Bluetooth Max Power (dBm) | Separation Distance (mm) | Frequency (GHz) | exclusion thresholds | |---------------------------|--------------------------|-----------------|----------------------| | 3 | 0 | 2.48 | 0.63 | Note: Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.63 which is <= 3, SAR testing is not required. TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version.: 140422 FCC ID: E2K-T01C003 Page 23 of 33 Report No.: FA422417 # 14. Antenna Location Edge2 # Edge1 **Back View** Diagonal: 215mm Edge3 TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version. : 140422 FCC ID: E2K-T01C003 Page 24 of 33 #### **General Note:** 1. Above the table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW" Report No.: FA422417 - Maximum power is the source-based time-average power and represents the maximum RF output power among production units - 3. Per KDB 447498 D01v05r02, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - 4. Per KDB 447498 D01v05r02, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold. - 5. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - · The result is rounded to one decimal place for comparison - For < 50 mm distance, we just calculate mW of the exclusion threshold value (3.0) to do compare. This formula is [3.0] / [$\sqrt{f(GHz)}$] · [(min. test separation distance, mm)] = exclusion threshold of mW. - 6. Per KDB 447498 D01v05r02, at 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz #### SAR test exclusion table distance is ≤ 50mm | F | Wireless Interface | WLAN2.4GHz | WLAN5.2GHz | WLAN5.3GHz | WLAN5.5GHz | WLAN5.8GHz | |----------------------|-----------------------------|------------|------------|------------|------------|------------| | Exposure
Position | Calculated Frequency (MHz) | 2462 | 5240 | 5320 | 5700 | 5825 | | 1 3314311 | Tune-up Maximum power (dBm) | 14.5 | 13.5 | 13 | 12.5 | 13 | | | Antenna to user (mm) | 0 | 0 | 0 | 0 | 0 | | Bottom Face | SAR exclusion threshold | 9 | 7 | 10 | 10 | 10 | | | SAR testing required? | Yes | Yes | Yes | Yes | Yes | | | Antenna to user (mm) | 4 | 4 | 4 | 4 | 4 | | Edge1 | SAR exclusion threshold | 9 | 7 | 10 | 10 | 10 | | | SAR testing required? | Yes | Yes | Yes | Yes | Yes | | | Antenna to user (mm) | 14 | 14 | 14 | 14 | 14 | | Edge4 | SAR exclusion threshold | 3 | 2 | 3 | 3 | 3 | | | SAR testing required? | No | No | No | No | No | #### SAR test exclusion table distance is > 50mm | | Wireless Interface | WLAN2.4GHz | WLAN5.2GHz | WLAN5.3GHz | WLAN5.5GHz | WLAN5.8GHz | |----------|----------------------------------|------------|------------|------------|------------|------------| | Exposure | Calculated Frequency (MHz) | 2462 | 5240 | 5320 | 5700 | 5825 | | Position | Tune-up Maximum power (dBm) | 14.5 | 13.5 | 13 | 12.5 | 13 | | | Tune-up Maximum rated power (mW) | 28 | 22 | 20 | 18 | 20 | | | Antenna to user (mm) | 98 | 98 | 98 | 98 | 98 | | Edge2 | SAR exclusion threshold (mW) | 576 | 546 | 545 | 543 | 542 | | | SAR testing required? | No | No | No | No | No | | | Antenna to user (mm) | 188 | 188 | 188 | 188 | 188 | | Edge3 | SAR exclusion threshold (mW) | 1476 | 1446 | 1445 | 1443 | 1442 | | | SAR testing required? | No | No | No | No | No | TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 Issued Date: May 27, 2014 FCC ID : E2K-T01C003 Page 25 of 33 Form version. : 140422 # 15. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. **Report No. : FA422417** - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - 2. Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - \cdot \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - \cdot ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz ### 15.1 Body SAR #### <DTS WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Data
Rate
(bps) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) |
Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|--------------------|------------------|-------------|-----|----------------|-----------------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN 2.4GHz | 802.11b | Bottom Face | 0 | 11 | 2462 | 1M | 14.11 | 14.5 | 1.094 | - | - | 0.05 | 0.634 | 0.694 | | #01 | WLAN 2.4GHz | 802.11b | Edge1 | 0 | 11 | 2462 | 1M | 14.11 | 14.5 | 1.094 | - | 1 | 0.11 | 0.779 | <mark>0.852</mark> | | | WLAN 2.4GHz | 802.11b | Edge1 | 0 | 1 | 2412 | 1M | 13.53 | 14.5 | 1.250 | - | ı | 0.06 | 0.502 | 0.628 | | | WLAN 2.4GHz | 802.11b | Edge1 | 0 | 6 | 2437 | 1M | 13.76 | 14.5 | 1.186 | - | ı | -0.02 | 0.640 | 0.759 | | | WLAN 2.4GHz | 802.11n_HT40 | Edge1 | 0 | 9 | 2452 | MCS0 | 11.23 | 11.5 | 1.064 | 86.89 | 1.151 | 0.05 | 0.278 | 0.341 | | | WLAN 5.8GHz | 802.11a | Bottom Face | 0 | 149 | 5745 | 6M | 12.38 | 13 | 1.153 | 93.96 | 1.064 | 0.05 | 0.358 | 0.439 | | | WLAN 5.8GHz | 802.11a | Edge1 | 0 | 149 | 5745 | 6M | 12.38 | 13 | 1.153 | 93.96 | 1.064 | -0.04 | 1.110 | 1.362 | | | WLAN 5.8GHz | 802.11a | Edge1 | 0 | 157 | 5785 | 6M | 12.31 | 13 | 1.172 | 93.96 | 1.064 | 0.14 | 1.010 | 1.260 | | | WLAN 5.8GHz | 802.11a | Edge1 | 0 | 165 | 5825 | 6M | 12.37 | 13 | 1.156 | 93.96 | 1.064 | 0.05 | 1.050 | 1.292 | | | WLAN 5.8GHz | 802.11n
_HT40 | Edge1 | 0 | 159 | 5795 | MCS0 | 12.29 | 12.5 | 1.050 | 86.53 | 1.156 | 0.06 | 1.160 | 1.407 | | #02 | WLAN 5.8GHz | 802.11n
_HT40 | Edge1 | 0 | 151 | 5755 | MCS0 | 11.77 | 12.5 | 1.183 | 86.53 | 1.156 | 0.03 | 1.030 | <mark>1.409</mark> | | | WLAN 5.8GHz | 802.11ac
_VTH80 | Edge1 | 0 | 155 | 5775 | MCS0 | 11.83 | 12 | 1.040 | 76.96 | 1.299 | 0.12 | 0.988 | 1.335 | SPORTON INTERNATIONAL (KUNSHAN) INC. ### <UNII WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Data
Rate
(bps) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|--------------------|------------------|-------------|-----|----------------|-----------------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN 5.2GHz | 802.11a | Bottom Face | 0 | 48 | 5240 | 6M | 12.96 | 13.5 | 1.132 | 93.96 | 1.064 | 0.05 | 0.374 | 0.451 | | | WLAN 5.2GHz | 802.11a | Edge1 | 0 | 48 | 5240 | 6M | 12.96 | 13.5 | 1.132 | 93.96 | 1.064 | 0.04 | 1.150 | 1.386 | | | WLAN 5.2GHz | 802.11a | Edge1 | 0 | 36 | 5180 | 6M | 11.64 | 12 | 1.086 | 93.96 | 1.064 | -0.04 | 1.080 | 1.248 | | | WLAN 5.2GHz | 802.11n
_HT40 | Edge1 | 0 | 46 | 5230 | MCS0 | 13.16 | 13.5 | 1.081 | 86.53 | 1.156 | -0.04 | 1.150 | 1.438 | | | WLAN 5.2GHz | 802.11n
_HT40 | Edge1 | 0 | 38 | 5190 | MCS0 | 10.78 | 11 | 1.052 | 86.53 | 1.156 | 0.11 | 0.880 | 1.070 | | #03 | WLAN 5.2GHz | 802.11ac
_VTH80 | Edge1 | 0 | 42 | 5210 | MCS0 | 13.29 | 13.5 | 1.050 | 76.96 | 1.299 | -0.12 | 1.080 | <mark>1.472</mark> | | | WLAN 5.3GHz | 802.11a | Bottom Face | 0 | 64 | 5320 | 6M | 11.82 | 12 | 1.042 | 93.96 | 1.064 | -0.04 | 0.421 | 0.467 | | | WLAN 5.3GHz | 802.11a | Edge1 | 0 | 64 | 5320 | 6M | 11.82 | 12 | 1.042 | 93.96 | 1.064 | 0.06 | 1.110 | 1.231 | | | WLAN 5.3GHz | 802.11a | Edge1 | 0 | 52 | 5260 | 6M | 11.72 | 12 | 1.067 | 93.96 | 1.064 | 0.04 | 1.090 | 1.237 | | #04 | WLAN 5.3GHz | 802.11n
_HT40 | Edge1 | 0 | 62 | 5310 | MCS0 | 12.61 | 13 | 1.094 | 86.53 | 1.156 | 0.08 | 1.170 | 1.480 | | | WLAN 5.3GHz | 802.11n
_HT40 | Edge1 | 0 | 54 | 5270 | MCS0 | 12.36 | 13 | 1.159 | 86.53 | 1.156 | 0.07 | 1.100 | 1.474 | | | WLAN 5.3GHz | 802.11ac
_VTH80 | Edge1 | 0 | 58 | 5290 | MCS0 | 12.55 | 13 | 1.109 | 76.96 | 1.299 | 0.11 | 0.937 | 1.350 | | | WLAN 5.5GHz | 802.11a | Bottom Face | 0 | 100 | 5500 | 6M | 12.34 | 12.5 | 1.038 | 93.96 | 1.064 | 0.06 | 0.692 | 0.764 | | | WLAN 5.5GHz | 802.11a | Edge1 | 0 | 100 | 5500 | 6M | 12.34 | 12.5 | 1.038 | 93.96 | 1.064 | 0.07 | 1.290 | 1.424 | | | WLAN 5.5GHz | 802.11a | Bottom Face | 0 | 116 | 5580 | 6M | 12.31 | 12.5 | 1.045 | 93.96 | 1.064 | 0.08 | 0.568 | 0.631 | | | WLAN 5.5GHz | 802.11a | Bottom Face | 0 | 140 | 5700 | 6M | 11.92 | 12.5 | 1.143 | 93.96 | 1.064 | 0.06 | 0.400 | 0.486 | | #05 | WLAN 5.5GHz | 802.11a | Edge1 | 0 | 116 | 5580 | 6M | 12.31 | 12.5 | 1.045 | 93.96 | 1.064 | 0.02 | 1.320 | 1.467 | | | WLAN 5.5GHz | 802.11a | Edge1 | 0 | 140 | 5700 | 6M | 11.92 | 12.5 | 1.143 | 93.96 | 1.064 | -0.08 | 1.080 | 1.313 | | | WLAN 5.5GHz | 802.11n
_HT40 | Edge1 | 0 | 102 | 5510 | MCS0 | 7.06 | 7.5 | 1.107 | 86.53 | 1.156 | 0.04 | 0.478 | 0.611 | | | WLAN 5.5GHz | 802.11n
_HT40 | Edge1 | 0 | 110 | 5550 | MCS0 | 10.44 | 11 | 1.138 | 86.53 | 1.156 | 0.01 | 0.994 | 1.307 | | | WLAN 5.5GHz | 802.11n
_HT40 | Edge1 | 0 | 134 | 5670 | MCS0 | 10.82 | 11 | 1.042 | 86.53 | 1.156 | 0.1 | 0.954 | 1.149 | | | WLAN 5.5GHz | 802.11ac
_VTH80 | Edge1 | 0 | 106 | 5530 | MCS0 | 10.45 | 11 | 1.135 | 76.96 | 1.299 | 0.02 | 0.852 | 1.256 | | | WLAN 5.5GHz | 802.11ac
_VTH80 | Edge1 | 0 | 138 | 5690 | MCS0 | 10.31 | 11 | 1.172 | 76.96 | 1.299 | 0.18 | 0.806 | 1.227 | Report No. : FA422417 TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version. : 140422 FCC ID: E2K-T01C003 Page 27 of 33 ### 15.2 Repeated SAR Measurement | No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Data
Rate
(bps) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|-------------|------------------|------------------|-------------|-----|----------------|-----------------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|-------|------------------------------| | 1st | WLAN 5.2GHz | 802.11a | Edge1 | 0 | 48 | 5240 | 6M | 12.96 | 13.5 | 1.132 | 93.96 | 1.064 | 0.04 | 1.150 | 1 | 1.386 | | 2nd | WLAN 5.2GHz | 802.11a | Edge1 | 0 | 48 | 5240 | 6M | 12.96 | 13.5 | 1.132 | 93.96 | 1.064 | 0.07 | 1.120 | 1.027 | 1.349 | | 1st | WLAN 5.3GHz | 802.11n
_HT40 | Edge1 | 0 | 62 | 5310 | MCS0 | 12.61 | 13 | 1.094 | 86.53 | 1.156 | 0.08 | 1.170 | 1 | 1.480 | | 2nd | WLAN 5.3GHz | 802.11n
_HT40 | Edge1 | 0 | 62 | 5310 | MCS0 | 12.61 | 13 | 1.094 | 86.53 | 1.156 | 0.10 | 1.110 | 1.054 | 1.404 | | 1st | WLAN 5.5GHz | 802.11a | Edge1 | 0 | 116 | 5580 | 6M | 12.31 | 12.5 | 1.045 | 93.96 | 1.064 | 0.02 | 1.320 | 1 | 1.467 | | 2nd | WLAN 5.5GHz | 802.11a | Edge1 | 0 | 116 | 5580 | 6M | 12.31 | 12.5 | 1.045 | 93.96 | 1.064 | 0.04 | 1.300 | 1.015 | 1.445 | | 1st | WLAN 5.8GHz | 802.11n
_HT40 | Edge1 | 0 | 159 | 5795 | MCS0 | 12.29 | 12.5 | 1.050 | 86.53 | 1.156 | 0.06 | 1.160 | 1 | 1.407 | | 2nd | WLAN 5.8GHz | 802.11n
_HT40 | Edge1 | 0 | 159 | 5795 | MCS0 | 12.29 | 12.5 | 1.050 | 86.53 | 1.156 | 0.01 | 1.080 | 1.074 | 1.310 | Report No. : FA422417 #### **General Note:** - 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg - 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. ## 16. Simultaneous Transmission Analysis | NO. | Simultaneous Transmission Configurations | |-----|--| | 1. | None | Report No.: FA422417 #### **General Note:** - 1. WLAN2.4GHz and Bluetooth share the same antenna, and cannot transmit simultaneously. - 2. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment. - 3. The Reported SAR summation is calculated based on the same configuration and test position. Test Engineer: Fulu Hu ## 17. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. Report No.: FA422417 A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and
properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### Table 17.1. Standard Uncertainty for Assumed Distribution The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 Issued Date: May 27, 2014 FCC ID : E2K-T01C003 Page 30 of 33 Form version : 140422 | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | | | |-------------------------------|-------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------|--|--| | Measurement System | • | | | | | • | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | | | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | Probe Positioner | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | Test Sample Related | | | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | | | Phantom and Setup | | | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | | | Combined Standard Uncertainty | Combined Standard Uncertainty | | | | | | | | | | Coverage Factor for 95 % | | | | | | K | K=2 | | | | Expanded Uncertainty | Expanded Uncertainty | | | | | | | | | Report No.: FA422417 Table 17.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version. : 140422 FCC ID: E2K-T01C003 Page 31 of 33 | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | | | |-------------------------------|-------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------|--|--| | Measurement System | | | | | | | | | | | Probe Calibration | 6.55 | Normal | 1 | 1 | 1 | ± 6.55 % | ± 6.55 % | | | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | | | Boundary Effects | 2.0 | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2 % | | | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | Probe Positioner | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | | | Probe Positioning | 9.9 | Rectangular | √3 | 1 | 1 | ± 5.7 % | ± 5.7 % | | | | Max. SAR Eval. | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | | | Test Sample Related | | | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | | | Phantom and Setup | • | | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | | | Combined Standard Uncertainty | Combined Standard Uncertainty | | | | | | | | | | Coverage Factor for 95 % | | | | | | K | K=2 | | | | Expanded Uncertainty | Expanded Uncertainty | | | | | | | | | Report No.: FA422417 Table 17.3. Uncertainty Budget for frequency range 3 GHz to 6 GHz TEL: +86-0512-5790-0158 / FAX:+86-0512-5790-0958 Issued Date: May 27, 2014 Form version. : 140422 FCC ID: E2K-T01C003 Page 32 of 33 ## 18. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" Report No.: FA422417 - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - [4] SPEAG DASY System Handbook - [5] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014 - [6] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007 - [7] FCC KDB 644545 D01 v01r02, "Guidance for IEEE 802.11ac and Pre-ac Device Emission Testing", October, 2013. - [8] FCC KDB 616217 D04 v01r01, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", May 2013 - [9] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014. - [10] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013. TEL: +86-0512-5790-0158 / FAX: +86-0512-5790-0958 Issued Date: May 27, 2014 FCC ID : E2K-T01C003 Page 33 of 33 Form version. : 140422