SAR Reference Dipole Calibration Report Ref: ACR.156.6.15.SATU.A ## SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 1800 MHZ SERIAL NO.: SN 16/15 DIP 1G800-371 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2024 #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|-----------------| | Prepared by : | Jérôme LUC | Product Manager | 06/05/2024 | JE | | Checked by: | Jérôme LUC | Product Manager | 06/05/2024 | JE | | Approved by : | Kim RUTKOWSKI | Quality Manager | 06/05/2024 | Jum Pretthowski | | | Customer Name | |----------------|---------------------------------| | Distribution : | SSHENZHEN TONGCE
TESTING LAB | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 06/05/2024 | Initial release | | | | | | | | | | | | | | | | | Page: 2/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A ### TABLE OF CONTENTS | 1 | Intr | oduction4 | | |---|------|--|----| | 2 | Dev | rice Under Test4 | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | asurement Method | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Val | idation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | 10 | | Q | List | of Equipment 11 | | Page: 3/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A ### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | |---|------------------------|--|--|--| | Device Type COMOSAR 1800 MHz REFERENCE DIPO | | | | | | Manufacturer | MVG | | | | | Model | SID1800 | | | | | Serial Number | SN 16/15 DIP 1G800-371 | | | | | Product Condition (new / used) Used | | | | | A yearly calibration interval is recommended. ### 3 PRODUCT DESCRIPTION ## 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A Report No.: TCT240513E009 #### MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. ### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | | |----------------|-------------------------------------|--|--| | 400-6000MHz | 0.1 dB | | | ## 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|--------------------------------|--|--| | 3 - 300 | 0.05 mm | | | #### 5.3 <u>VALIDATION MEASUREMENT</u> The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | | |-------------|----------------------|--| | 1 g | 20.3 % | | Page: 5/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 467 of 548 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A | 10 g | 20.1 % | |------|--------| #### 6 CALIBRATION MEASUREMENT RESULTS #### 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) Return Loss (dB) | | Requirement (dB) | Impedance | | |----------------------------------|--------|------------------|-----------------------------|--| | 1800 | -36.92 | -20 | $48.3 \Omega - 0.5 j\Omega$ | | #### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 1800 | -24.67 | -20 | 47.6 Ω - 5.1 iΩ | ## 6.3 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | |------|-------------|------|-------------|------|------------|------| | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | PASS | 41.7 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | | | | | | - | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductivi | ity (σ) S/m | |------------------|--|----------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A | 1800 | 40.0 ±5 % | PASS | 1.40 ±5 % | PASS | |------|-----------|------|-----------|------| | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | ### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system
validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 41.8 sigma: 1.38 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 1800 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|-------------|-------------------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | 37.67(3.60) | 20.1 | 20.23 (2.15) | Page: 8/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A | 1900 | 39.7 | 20.5 | | |------|------|------|--| | 1950 | 40.5 | 20.9 | | | 2000 | 41.1 | 21.1 | | | 2100 | 43.6 | 21.9 | | | 2300 | 48.7 | 23.3 | | | 2450 | 52.4 | 24 | | | 2600 | 55.3 | 24.6 | | | 3000 | 63.8 | 25.7 | | | 3500 | 67.1 | 25 | | ### 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductiv | ity (σ) S/m | |------------------|--|----------|-----------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±5 % | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5 % | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | | 0.96 ±5 % | | | 835 | 55.2 ±5 % | | 0.97 ±5 % | | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06 ±5 % | | | 1450 | 54.0 ±5 % | | 1.30 ±5 % | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | PASS | 1.52 ±5 % | PASS | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5 % | | 1.52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7 ±5 % | | 1.95 ±5 % | | Page: 9/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.6.15.SATU.A | 2600 | 52.5 ±5 % | 2.16 ±5 % | |------|------------|------------| | 3000 | 52.0 ±5 % | 2.73 ±5 % | | 3500 | 51.3 ±5 % | 3.31 ±5 % | | 5200 | 49.0 ±10 % | 5.30 ±10 % | | 5300 | 48.9 ±10 % | 5.42 ±10 % | | 5400 | 48.7 ±10 % | 5.53 ±10 % | | 5500 | 48.6 ±10 % | 5.65 ±10 % | | 5600 | 48.5 ±10 % | 5.77 ±10 % | | 5800 | 48.2 ±10 % | 6.00 ±10 % | ## 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 53.0 sigma: 1.52 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 1800 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 1800 | 37.69 (3.65) | 20.57 (2.00) | Page: 10/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Report No.: TCT240513E009 Ref: ACR.156.6.15.SATU.A ## 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |------------------------------------|------------------------|-----------------|---|---|--| | Equipment
Description | Identification No. | | Next Calibration
Date | | | | SAM Phantom | MVG | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2024 | 02/2027 | | | Calipers | Carrera | CALIPER-01 | 02/2024 | 02/2027 | | | Reference Probe | MVG | EPG122 SN 18/11 | 02/2024 | 02/2025 | | | Multimeter | Keithley 2000 | 1188656 | 02/2024 | 02/2027 | | | Signal Generator | Agilent E4438C | MY49070581 | 02/2024 02/2027 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | HP E4418A | US38261498 | 02/2024 02/2027 | | | | Power Sensor | HP ECP-E26A | US37181460 | 02/2024 | 02/2027 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 02/2024 | 02/2027 | | Page: 11/11 # **SAR Reference Dipole Calibration Report** Ref: ACR.156.7.15.SATU.A ## SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 1900 MHZ SERIAL NO.: SN 16/15 DIP 1G900-372 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2024 #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. #### SAR REFERENCE DIPOLE CALIBRATION REPORT Report No.: TCT240513E009 Ref: ACR.156.7.15.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 06/05/2024 | JES | | Checked by: | Jérôme LUC | Product Manager | 06/05/2024 | JE | | Approved by: | Kim RUTKOWSKI | Quality Manager | 06/05/2024 | thim Puthowski | Distribution : Customer Name SHENZHEN TONGCE TESTING LAB | Issue | Date | Modifications | |-------|------------|-----------------| | A | 06/05/2024 | Initial release | | | | | | | | | | | | | | | ! | | Page: 2/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.7.15.SATU.A #### TABLE OF CONTENTS | 1 | intro | oduction | | |---|-------|--|----| | 2 | Dev | ice Under Test4 | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Val | dation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | 10 | | 8 | List | of Fauinment 11 | | Page: 3/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.7.15.SATU.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | | |---|------------------------|--|--|--|--| | Device Type COMOSAR 1900 MHz REFERENCE DIPO | | | | | | | Manufacturer MVG | | | | | | | Model | SID1900 | | | | | | Serial Number | SN 16/15 DIP 1G900-372 | | | | | | Product Condition (new / used) | Used | | | | | A yearly calibration interval is recommended. ## 3 PRODUCT DESCRIPTION ### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/11 SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR 156.7.15 SATU A Report No.: TCT240513E009 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ## 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB
| ## 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|--------------------------------|--|--| | 3 - 300 | 0.05 mm | | | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | | | |-------------|----------------------|--|--| | 1 g | 20.3 % | | | Page: 5/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 478 of 548 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.7.15.SATU.A | 10 g | 20.1 % | |------|--------| #### 6 CALIBRATION MEASUREMENT RESULTS ### 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 1900 | -25.64 | -20 | $51.6 \Omega + 4.9 j\Omega$ | #### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 1900 | -23.50 | -20 | $48.5 \Omega + 6.4 i\Omega$ | ### 6.3 MECHANICAL DIMENSIONS | Frequency MHz L mm | | h m | h mm | | d mm | | |--------------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.7.15.SATU.A | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | |-------------|-------------|------|-------------|------|------------|------| | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | PASS | 39.5 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | | - | | • | - | | • | ### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. #### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductiv | ity (σ) S/m | |------------------|--|----------|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.7.15.SATU.A | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | |------|-----------|------|-----------|------| | 1900 | 40.0 ±5 % | PASS | 1.40 ±5 % | PASS | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | ### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 40.4 sigma: 1.41 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 1900 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (| 1 g SAR (W/kg/W) | | (W/kg/W) | |------------------|-----------|------------------|----------|----------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | Page: 8/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.7.15.SATU.A | | _ | | | | |------|------|--------------|------|--------------| | 1900 | 39.7 | 39.26 (3.85) | 20.5 | 20.49 (2.12) | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | ### 7.3 BODY LIQUID MEASUREMENT | Relative permittivity (ε _r ') | | Conductivi | ity (σ) S/m | |--|--|--|--| | required | measured | required | measured | | 61.9 ±5 % | | 0.80 ±5 % | | | 58.2 ±5 % | | 0.92 ±5 % | | | 56.7 ±5 % | | 0.94 ±5 % | | | 55.5 ±5 % | | 0.96 ±5 % | | | 55.2 ±5 % | | 0.97 ±5 % | | | 55.0 ±5 % | | 1.05 ±5 % | | | 55.0 ±5 % | | 1.06 ±5 % | | | 54.0 ±5 % | | 1.30 ±5 % | | | 53.8 ±5 % | | 1.40 ±5 % | | | 53.3 ±5 % | | 1.52 ±5 % | | | 53.3 ±5 % | PASS | 1.52 ±5 % | PASS | | 53.3 ±5 % | | 1.52 ±5 % | | | 53.2 ±5 % | | 1.62 ±5 % | | | 52.7 ±5 % | | 1.95 ±5 % | | | | required 61.9 ±5 % 58.2 ±5 % 56.7 ±5 % 55.5 ±5 % 55.0 ±5 % 55.0 ±5 % 54.0 ±5 % 53.3 ±5 % 53.3 ±5 % 53.3 ±5 % | required measured 61.9 ±5 % 58.2 ±5 % 56.7 ±5 % 55.2 ±5 % 55.0 ±5 % 54.0 ±5 % 53.8 ±5 % 53.3 ±5 % PASS 53.3 ±5 % 53.2 ±5 % | required measured required 61.9 ± 5 % 0.80 ± 5 % 58.2 ± 5 % 0.92 ± 5 % 56.7 ± 5 % 0.94 ± 5 % 55.5 ± 5 % 0.96 ± 5 % 55.2 ± 5 % 0.97 ± 5 % 55.0 ± 5 % 1.05 ± 5 % 54.0 ± 5 % 1.30 ± 5 % 53.8 ± 5 % 1.40 ± 5 % 53.3 ± 5 % 1.52 ± 5 % 53.3 ± 5 % 1.52 ± 5 % 53.2 ± 5 % 1.62 ± 5 % | Page: 9/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.7.15.SATU.A | 52.5 ±5 % | 2.16 ±5 % | |------------|--| | 52.0 ±5 % | 2.73 ±5 % | | 51.3 ±5 % | 3.31 ±5 % | | 49.0 ±10 % | 5.30 ±10 % | | 48.9 ±10 % | 5.42 ±10 % | | 48.7 ±10 % | 5.53 ±10 % | | 48.6 ±10 % | 5.65 ±10 % | | 48.5 ±10 % | 5.77 ±10 % | | 48.2 ±10 % | 6.00 ±10 % | | | 52.0 ±5 %
51.3 ±5 %
49.0 ±10 %
48.9 ±10 %
48.7 ±10 %
48.6 ±10 % | ## 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 53.9 sigma: 1.55 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 1900 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | | |------------------|------------------|-------------------|--| | | measured | measured | | | 1900 | 38.71 (3.70) | 20.53 (2.12) | | Page: 10/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Report No.: TCT240513E009 Ref: ACR.156.7.15.SATU.A ## 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |------------------------------------
-------------------------|--------------------|---|---| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal
required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal
required. | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2024 | 02/2027 | | Calipers | Carrera | CALIPER-01 | 02/2024 | 02/2027 | | Reference Probe | MVG | EPG122 SN 18/11 | 02/2024 | 02/2025 | | Multimeter | Keithley 2000 | 1188656 | 02/2024 | 02/2027 | | Signal Generator | Agilent E4438C | MY49070581 | 02/2024 | 02/2027 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | HP E4418A | US38261498 | 02/2024 | 02/2027 | | Power Sensor | HP ECP-E26A | US37181460 | 02/2024 | 02/2027 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 02/2024 | 02/2027 | Page: 11/11 # **SAR Reference Dipole Calibration Report** Ref: ACR.156.9.15.SATU.A ## SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 16/15 DIP 2G450-374 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2024 ### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|-----------------| | Prepared by : | Jérôme LUC | Product Manager | 06/05/2024 | JES | | Checked by : | Jérôme LUC | Product Manager | 06/05/2024 | JES | | Approved by : | Kim RUTKOWSKI | Quality Manager | 06/05/2024 | thim Putthowski | | | Customer Name | |----------------|-----------------| | Distribution: | SHENZHEN TONGCE | | Distribution . | TESTING LAB | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 06/05/2024 | Initial release | | | | | | | | | | | | | | | | | Page: 2/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A ### TABLE OF CONTENTS | I | Intro | oduction4 | | |---|-------|--|---| | 2 | Dev | ice Under Test4 | | | 3 | Proc | duct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | | | | 7.4 | SAR Measurement Result With Body Liquid | | | 0 | T :-4 | of Equipment | | Page: 3/11 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A ### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | D | Device Under Test | | | | | | |--------------------------------|-----------------------------------|--|--|--|--|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | | | | | Manufacturer | MVG | | | | | | | Model | SID2450 | | | | | | | Serial Number | SN 16/15 DIP 2G450-374 | | | | | | | Product Condition (new / used) | Used | | | | | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION ## 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/11 mvg #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A Report No.: TCT240513E009 #### MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ## 4.1 <u>RETURN LOSS REQUIREMENTS</u> The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | ## 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | Page: 5/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 489 of 548 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | 10 g | 20.1 % | |------|--------| ### 6 CALIBRATION MEASUREMENT RESULTS ## 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|------------------------| | 2450 | - 29.05 | -20 | 46.7 Ω - 0.2 jΩ | #### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|------------------------| | 2450 | -32.86 | -20 | 48.6 Ω - 1.9 jΩ | ## 6.3 MECHANICAL DIMENSIONS | Frequency MHz | ncy MHz L mm | | h m | m | d n | nm | |---------------|--------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | 90.0 ±1 %. | | 1667410/ | | 6.05.14.07 | | |------------|---|--
--|---|---| | | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 76.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 61.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 49.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 39.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 30.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 58.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 56.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 54.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 51.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 51.5 ±1 %. | PASS | 30.4 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 18.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 11.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | | 51.0 ±1 %. 49.0 ±1 %. 49.0 ±1 %. 99.1 ±1 %. 99.0 ±1 %. 52.2 ±1 %. 42.0 ±1 %. 48.0 ±1 %. 46.3 ±1 %. 41.0 ±1 %. 55.5 ±1 %. 41.5 ±1 %. 41.5 ±1 %. 41.5 ±1 %. 41.5 ±1 %. 41.7 ±1 %. 41.7 ±1 %. 41.7 ±1 %. 41.7 ±1 %. 41.7 ±1 %. 41.7 ±1 %. 41.7 ±1 %. 41.7 ±1 %. 41.7 ±1 %. 41.7 ±1 %. 41.7 ±1 %. | 51.0 ±1 %. 49.0 ±1 %. 49.0 ±1 %. 99.1 ±1 %. 99.0 ±1 %. 52.2 ±1 %. 52.0 ±1 %. 63.3 ±1 %. 64.5 ±1 %. 61.0 ±1 %. FASS 8.5 ±1 %. 61.5 ±1 %. 63.5 ±1 %. 63.5 ±1 %. 63.5 ±1 %. 63.5 ±1 %. 63.5 ±1 %. 63.5 ±1 %. 63.5 ±1 %. 63.5 ±1 %. 63.5 ±1 %. 63.6 ±1 %. 64.5 ±1 %. 65.5 ±1 %. 65.5 ±1 %. 65.5 ±1 %. 65.5 ±1 %. 65.5 ±1 %. 65.5 ±1 %. 65.5 ±1 %. 65.5 ±1 %. | 51.0 ±1 %. 89.8 ±1 %. 89.1 ±1 %. 51.7 ±1 %. 50.5 ±1 %. 50.0 ±1 %. 50.0 ±1 %. 45.7 ±1 %. 42.9 ±1 %. 42.9 ±1 %. 41.7 ±1 %. 88.0 ±1 %. 39.5 ±1 %. 39.5 ±1 %. 39.5 ±1 %. 31.5 ±1 %. 31.5 ±1 %. 32.6 ±1 %. 32.6 ±1 %. 32.6 ±1 %. 32.6 ±1 %. 33.5 ±1 %. 32.6 ±1 %. 32.6 ±1 %. 33.5 ±1 %. 32.6 ±1 %. 33.5 ±1 %. 34.5 ±1 %. 35.7 ± | 51.0 ±1 %. 89.8 ±1 %. 83.3 ±1 %. 99.1 ±1 %. 51.7 ±1 %. 50.0 ±1 %. 99.0 ±1 %. 45.7 ±1 %. 99.0 ±1 %. 42.9 ±1 %. 22.0 ±1 %. 39.5 ±1 %. 39.5 ±1 %. 39.5 ±1 %. 39.5 ±1 %. 39.5 ±1 %. 37.5 ±1 %. 37.5 ±1 %. 37.5 ±1 %. 32.6 ±1 %.
32.6 ±1 %. | 51.0 ±1 %. 89.8 ±1 %. 3.6 ±1 %. 49.0 ±1 %. 83.3 ±1 %. 3.6 ±1 %. 99.1 ±1 %. 51.7 ±1 %. 3.6 ±1 %. 90.5 ±1 %. 3.6 ±1 %. 3.6 ±1 %. 99.0 ±1 %. 45.7 ±1 %. 3.6 ±1 %. 52.2 ±1 %. 42.9 ±1 %. 3.6 ±1 %. 42.0 ±1 %. 3.6 ±1 %. 3.6 ±1 %. 48.0 ±1 %. 39.5 ±1 %. 3.6 ±1 %. 44.5 ±1 %. 37.5 ±1 %. 3.6 ±1 %. 41.0 ±1 %. 35.7 ±1 %. 3.6 ±1 %. 45.5 ±1 %. 32.6 ±1 %. 3.6 ±1 %. 45.5 ±1 %. 28.8 ±1 %. 3.6 ±1 %. 47.5 ±1 %. 3.6 ±1 %. 3.6 ±1 %. 47.5 ±1 %. 3.6 ±1 %. 3.6 ±1 %. | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductiv | ity (σ) S/m | |------------------|--|----------|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | 40.0 ±5 % | | 1.40 ±5 % | | |-----------|---|---|---| | 40.0 ±5 % | | 1.40 ±5 % | | | 40.0 ±5 % | | 1.40 ±5 % | | | 40.0 ±5 % | | 1.40 ±5 % | | | 39.8 ±5 % | | 1.49 ±5 % | | | 39.5 ±5 % | | 1.67 ±5 % | | | 39.2 ±5 % | PASS | 1.80 ±5 % | PASS | | 39.0 ±5 % | | 1.96 ±5 % | | | 38.5 ±5 % | | 2.40 ±5 % | | | 37.9 ±5 % | | 2.91 ±5 % | | | | 40.0 ±5 %
40.0 ±5 %
40.0 ±5 %
39.8 ±5 %
39.5 ±5 %
39.2 ±5 %
39.0 ±5 % | 40.0 ±5 %
40.0 ±5 %
40.0 ±5 %
39.8 ±5 %
39.5 ±5 %
39.2 ±5 % PASS
39.0 ±5 %
38.5 ±5 % | 40.0 ±5 % 1.40 ±5 % 40.0 ±5 % 1.40 ±5 % 40.0 ±5 % 1.40 ±5 % 39.8 ±5 % 1.49 ±5 % 39.5 ±5 % 1.67 ±5 % 39.0 ±5 % 1.96 ±5 % 38.5 ±5 % 2.40 ±5 % | ## 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 38.3 sigma: 1.80 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2450 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR | (W/kg/W) | |------------------|------------------|----------|----------|----------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | Page: 8/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | 1900 | 39.7 | | 20.5 | | |------|------|--------------|------|--------------| | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | 53.26 (5.38) | 24 | 24.15 (2.49) | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | ## 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ϵ_{r}') | | Conductiv | ity (σ) S/m | |------------------|---|----------|-----------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±5 % | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5 % | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | | 0.96 ±5 % | | | 835 | 55.2 ±5 % | | 0.97 ±5 % | | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06 ±5 % | | | 1450 | 54.0 ±5 % | | 1.30 ±5 % | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | | 1.52 ±5 % | | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5 % | | 1.52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7 ±5 % | PASS | 1.95 ±5 % | PASS | Page: 9/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | 2600 | 52.5 ±5 % | 2.16 ±5 % | |------|------------|------------| | 3000 | 52.0 ±5 % | 2.73 ±5 % | | 3500 | 51.3 ±5 % | 3.31 ±5 % | | 5200 | 49.0 ±10 % | 5.30 ±10 % | | 5300 | 48.9 ±10 % | 5.42 ±10 % | | 5400 | 48.7 ±10 % | 5.53 ±10 % | | 5500 | 48.6 ±10 % | 5.65 ±10 % | | 5600 | 48.5 ±10 % | 5.77 ±10 % | | 5800 | 48.2 ±10 % | 6.00 ±10 % | ## 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Body Liquid Values: eps': 52.7 sigma: 1.94 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2450 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 2450 | 50.63 (5.01) | 23.40 (2.37) | Page: 10/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A ## 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |------------------------------------|-------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2024 | 02/2027 | | | Calipers | Carrera | CALIPER-01 | 02/2024 | 02/2027 | | | Reference Probe | MVG | EPG122 SN 18/11 | 02/2024 | 02/2025 | | | Multimeter | Keithley 2000 | 1188656 | 02/2024 | 02/2027 | | | Signal Generator | Agilent E4438C | MY49070581 | 02/2024 | 02/2027 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | HP E4418A | US38261498 | 02/2024 | 02/2027 | | | Power Sensor | HP ECP-E26A | US37181460 | 02/2024 | 02/2027 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 02/2024 | 02/2027 | | Page: 11/11 # **SAR Reference Dipole Calibration Report** Ref: ACR.156.10.15.SATU.A ## SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA ## MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2600 MHZ SERIAL NO.: SN 16/15 DIP 2G600-375 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2024 ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.10.15.SATU.A | | Name | Function | Date | Signature | |--------------|---------------|-----------------|------------|----------------| | Prepared by: | Jérôme LUC | Product Manager | 06/05/2024 | J3 | | Checked by : | Jérôme LUC | Product Manager | 06/05/2024 | JS | | Approved by: | Kim RUTKOWSKI | Quality Manager | 06/05/2024 | Mim Puthroushi | | Customer Name | |--------------------------------| | SHENZHEN TONGCE
TESTING LAB | | | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 06/05/2024 | Initial release | | | | | | | | | | | | | Page: 2/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.10.15.SATU.A #### TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|--|---| | 2 | Dev | ice Under Test4 | | | 3 | Prod | luct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement
Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | | | | 7.4 | SAR Measurement Result With Body Liquid | | | 8 | List | of Equipment 11 | | Page: 3/11 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR 156 10.15 SATU A # 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ### 2 DEVICE UNDER TEST | Device Under Test | | | | |--------------------------------|-----------------------------------|--|--| | Device Type | COMOSAR 2600 MHz REFERENCE DIPOLE | | | | Manufacturer | MVG | | | | Model SID2600 | | | | | Serial Number | SN 16/15 DIP 2G600-375 | | | | Product Condition (new / used) | Used | | | A yearly calibration interval is recommended. ### 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – MVG COMOSAR Validation Dipole Page: 4/11 Ref: ACR.156.10.15.SATU.A Report No.: TCT240513E009 # 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. ### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. ### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | ### 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | |-------------|--------------------------------|--| | 3 - 300 | 0.05 mm | | ## 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | Page: 5/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 500 of 548 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.10.15.SATU.A | | 10 g | 20.1 % | |---|------|--------| | 1 | | | # 6 CALIBRATION MEASUREMENT RESULTS ### 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 2600 | -22.81 | -20 | $55.3 \Omega - 5.1 j\Omega$ | ### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 2600 | -24.71 | -20 | 51.5 Ω - 5.5 iΩ | ### 6.3 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | h m | m | d n | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.10.15.SATU.A | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | |------|-------------|------|-------------|------|------------|------| | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | PASS | 28.8 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | | | | | | | | ### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (ε _r ') | | ity (σ) S/m | |------------------|--------------|--|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.10.15.SATU.A | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | |------|-----------|------|-----------|------| | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | PASS | 1.96 ±5 % | PASS | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | # 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 38.2 sigma: 1.93 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2600 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency
MHz | 1 g SAR (| 1 g SAR (W/kg/W) | | (W/kg/W) | |------------------|-----------|------------------|----------|----------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | Page: 8/11 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.10.15.SATU.A | 1900 | 39.7 | | 20.5 | | |------|------|--------------|------|--------------| | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | 54.31 (5.36) | 24.6 | 24.14 (2.42) | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | # 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductiv | ity (σ) S/m | |------------------
--|----------|-----------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±5 % | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5 % | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | | 0.96 ±5 % | | | 835 | 55.2 ±5 % | | 0.97 ±5 % | | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06 ±5 % | | | 1450 | 54.0 ±5 % | | 1.30 ±5 % | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | | 1.52 ±5 % | | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5 % | | 1.52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7 ±5 % | | 1.95 ±5 % | | Page: 9/11 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.10.15.SATU.A | 2600 | 52.5 ±5 % | PASS | 2.16 ±5 % | PASS | |------|------------|------|------------|------| | 3000 | 52.0 ±5 % | | 2.73 ±5 % | | | 3500 | 51.3 ±5 % | | 3.31 ±5 % | | | 5200 | 49.0 ±10 % | | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | | 6.00 ±10 % | | ### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | OPENSAR V4 | |--| | SN 20/09 SAM71 | | SN 18/11 EPG122 | | Body Liquid Values: eps': 51.6 sigma: 2.21 | | 10.0 mm | | dx=8mm/dy=8mm | | dx=5mm/dy=5mm/dz=5mm | | 2600 MHz | | 20 dBm | | 21 °C | | 21 °C | | 45 % | | | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 2600 | 53.26 (5.12) | 23.89 (2.30) | Page: 10/11 Report No.: TCT240513E009 Ref. ACR.156.10.15.SATU.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |------------------------------------|------------------------|-----------------|---|---| | Equipment
Description | I IIdeni | | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | MVG | SN-20/09-SAM71 | randatou. The oan | Validated. No cal
required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal
required. | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2024 | 02 <i>1</i> 2024 | | Calipers | Carrera | CALIPER-01 | 02 <i>1</i> 2024 | 02/2027 | | Reference Probe | MVG | EPG122 SN 18/11 | 02/2024 | 02/2025 | | Multimeter | Keithley 2000 | 1188656 | 02/2024 | 02/2027 | | Signal Generator | Agilent E4438C | MY49070581 | 02 <i>1</i> 2024 | 02/2027 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | HP E4418A | US38261498 | 02/2024 | 02/2027 | | Power Sensor | HP ECP-E26A | US37181460 | 02/2024 | 02/2027 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 09/2023 | 09/2024 | Page: 11/11 # **SAR Reference Dipole Calibration Report** Ref: ACR.49.13.22.BES.A # SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA FREQUENCY: 3500 MHZ SERIAL NO.: SN 07/22 DIP3G500-664 ### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 02/06/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction. # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/13 Ref: ACR.49.13.22.BES.A Report No.: TCT240513E009 | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 2/6/2023 | JES | | Checked by : | Jérôme Luc | Technical Manager | 2/6/2023 | JS | | Approved by : | Yann Toutain | Laboratory Director | 2/6/2023 | Gann TOUTANN | 2023.02.09 11:24:58 +01'00' | | Customer Name | |---------------|--------------------------------| | Distribution: | SHENZHEN TONGCE
TESTING LAB | | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 2/6/2023 | Initial release | Page: 2/13 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.49.13.22.BES.A ### TABLE OF CONTENTS | 1 | Intro | duction4 | | |---|-------|--|----| | 2 | Dev | ice Under Test4 | | | 3 | Proc | luct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 7 | | 7 | Vali | dation measurement | | | | 7.1 | Head Liquid Measurement | 8 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 11 | | | 7.4 | SAR Measurement Result With Body Liquid | 12 | | Q | List | of Equipment 12 | | Page: 3/13 Report No.: TCT240513E009 Ref: ACR.49.13.22.BES.A #### INTRODUCTION 1 This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST 2 | Device Under Test | | | |--------------------------------|-----------------------------------|--| | Device Type | COMOSAR 3500 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model | SID3500 | | | Serial Number | SN 07/22 DIP3G500-664 | | | Product Condition (new / used) | New | | #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – MVG COMOSAR Validation Dipole Page: 4/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 510 of 548 Ref: ACR.49.13.22.BES.A Report No.: TCT240513E009 ## 4 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. # 4.2 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. ### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | # 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | # 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. Page: 5/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 511 of 548 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.49.13.22.BES.A | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 19 % (SAR) | | 10 g | 19 % (SAR) | # 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------
-----------------| | 3500 | -26.19 | -20 | 54.4 Ω - 2.0 iΩ | # 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 3500 | -23.13 | -20 | 56.7 Ω - 1.8 jΩ | Page: 6/13 # $Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR\ Reference\ Dipole\ vJ$ Report No.: TCT240513E009 Ref: ACR.49.13.22.BES.A # 6.3 MECHANICAL DIMENSIONS | Frequency MHz | Ln | nm | h m | ım | d r | mm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 86.2 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3300 | - | | - | | - | | | 3500 | 37.0±1 %. | 37.01 | 26.4 ±1 %. | 26.43 | 3.6 ±1 %. | 3.58 | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3900 | - | | - | | - | | | 4200 | - | | - | | - | | | 4600 | - | | - | | - | | | 4900 | - | | - | | | | # 7 VALIDATION MEASUREMENT The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. Page: 7/13 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.49.13.22.BES.A # 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (s _r ') | Conductiv | ity (σ) S/m | |------------------|--------------|------------------------------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | | 2100 | 39.8 ±10 % | | 1.49 ±10 % | | | 2300 | 39.5 ±10 % | | 1.67 ±10 % | | | 2450 | 39.2 ±10 % | | 1.80 ±10 % | | | 2600 | 39.0 ±10 % | | 1.96 ±10 % | | | 3000 | 38.5 ±10 % | | 2.40 ±10 % | | | 3300 | 38.2 ±10 % | | 2.71 ±10 % | | | 3500 | 37.9 ±10 % | 37.1 | 2.91 ±10 % | 3.05 | | 3700 | 37.7 ±10 % | | 3.12 ±10 % | | | 3900 | 37.5 ±10 % | | 3.32 ±10 % | | | 4200 | 37.1 ±10 % | | 3.63 ±10 % | | | 4600 | 36.7 ±10 % | | 4.04 ±10 % | | | 4900 | 36.3 ±10 % | | 4.35 ±10 % | | # 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 8/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.49.13.22.BES.A | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 37.1 sigma: 3.05 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=4mm | | Frequency | 3500 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency
MHz | 1 g SAR (| W/kg/W) | 10 g SAR | (W/kg/W) | |------------------|-----------|--------------|----------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3300 | - | | - | | | 3500 | 67.1 | 69.64 (6.96) | 25 | 25.71 (2.57) | | 3700 | 67.4 | | 24.2 | | | 3900 | - | | - | | | 4200 | - | | - | | | 4600 | - | | - | | | 4900 | - | | - | | Page: 9/13 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.49.13.22.BES.A Page: 10/13 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.49.13.22.BES.A # BODY LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (ε _r ') | Conductiv | ity (σ) S/m | |------------------|--------------|------------------------------|------------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±10 % | | 0.80 ±10 % | | | 300 | 58.2 ±10 % | | 0.92 ±10 % | | | 450 | 56.7 ±10 % | | 0.94 ±10 % | | | 750 | 55.5 ±10 % | | 0.96 ±10 % | | | 835 | 55.2 ±10 % | | 0.97 ±10 % | | | 900 | 55.0 ±10 % | | 1.05 ±10 % | | | 915 | 55.0 ±10 % | | 1.06 ±10 % | | | 1450 | 54.0 ±10 % | | 1.30 ±10 % | | | 1610 | 53.8 ±10 % | | 1.40 ±10 % | | | 1800 | 53.3 ±10 % | | 1.52 ±10 % | | | 1900 | 53.3 ±10 % | | 1.52 ±10 % | | | 2000 | 53.3 ±10 % | | 1.52 ±10 % | | | 2100 | 53.2 ±10 % | | 1.62 ±10 % | | | 2300 | 52.9 ±10 % | | 1.81 ±10 % | | | 2450 | 52.7 ±10 % | | 1.95 ±10 % | | | 2600 | 52.5 ±10 % | | 2.16 ±10 % | | | 3000 | 52.0 ±10 % | | 2.73 ±10 % | | | 3300 | 51.6 ±10 % | | 3.08 ±10 % | | | 3500 | 51.3 ±10 % | 48.6 | 3.31 ±10 % | 3.29 | | 3700 | 51.0 ±10 % | | 3.55 ±10 % | | | 3900 | 50.8 ±10 % | | 3.78 ±10 % | | | 4200 | 50.4 ±10 % | | 4.13 ±10 % | | | 4600 | 49.8 ±10 % | | 4.60 ±10 % | | | 4900 | 49.4 ±10 % | | 4.95 ±10 % | | | 5200 | 49.0 ±10 % | | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | | 6.00 ±10 % | | Page: 11/13 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.49.13.22.BES.A # SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Body Liquid Values: eps': 48.6 sigma: 3.29 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=4mm | | Frequency | 3500 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 3500 | 65.20 (6.52) | 24.68 (2.47) | Page: 12/13 Report No.: TCT240513E009 Ref: ACR.49.13.22.BES.A # LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | SAM Phantom | MVG | I SN 13/09 SAM68 | Validated. No cal
required. | Validated. No cal
required. | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2021 | 10/2024 | | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2021 | 05/2024 | | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | | | Calipers | Mitutoyo | SN 0009732 | 10/2021 | 10/2024 | | | | | Reference Probe | MVG | SN 41/18 EPGO333 | 10/2021 | 10/2024 | | | | | Multimeter | Keithley 2000 | 1160271 | 02/2021 | 02/2024 | | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2021 | 04/2024 | | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | | | Power Meter | Rohde & Schwarz
NRVD | 832839-056 | 11/2021 | 11/2024 | | | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | | | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | | | | Page: 13/13 # **SAR
Reference Dipole Calibration Report** Ref: ACR.49.14.22.BES.A # SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA FREQUENCY: 3700 MHZ SERIAL NO.: SN 07/22 DIP3G700-665 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 02/06/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction. ### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/13 Report No.: TCT240513E009 Ref: ACR.49.14.22.BES.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 2/6/2023 | JES | | Checked by : | Jérôme Luc | Technical Manager | 2/6/2023 | JES | | Approved by : | Yann Toutain | Laboratory Director | 2/6/2023 | Gann TOUTANN | 2023.02.09 11:25:28 +01'00' Customer Name SHENZHEN TONGCE Distribution: TESTING LAB | | Issue | Name | Date | Modifications | |---|-------|------------|----------|-----------------| | | A | Jérôme Luc | 2/6/2023 | Initial release | - | | I. | I | | Page: 2/13