## **APPENDIX G: CALIBRATION CERTIFICATES**

REV 1.0 04/06/2020 © 2022 ELEMENT

#### Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D750V3-1097\_Sep20

## **CALIBRATION CERTIFICATE**

Object D750V3 - SN:1097

Calibration procedure(s) QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

 $\sqrt{87}$  9/8/2021

Calibration date:

September 08, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP                 | SN: 104778         | 01-Apr-20 (No. 217-03100/03101)   | Apr-21                 |
| Power sensor NRP-Z91            | SN: 103244         | 01-Apr-20 (No. 217-03100)         | Apr-21                 |
| Power sensor NRP-Z91            | SN: 103245         | 01-Apr-20 (No. 217-03101)         | Apr-21                 |
| Reference 20 dB Attenuator      | SN: BH9394 (20k)   | 31-Mar-20 (No. 217-03106)         | Apr-21                 |
| Type-N mismatch combination     | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104)         | Apr-21                 |
| Reference Probe EX3DV4          | SN: 7349           | 29-Jun-20 (No. EX3-7349_Jun20)    | Jun-21                 |
| DAE4                            | SN: 601            | 27-Dec-19 (No. DAE4-601_Dec19)    | Dec-20                 |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B              | SN: GB39512475     | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Jeton Kastrati     | Laboratory Technician             | -1/1-                  |
|                                 |                    |                                   |                        |
| Approved by:                    | Katja Pokovic      | Technical Manager                 | 0000                   |
|                                 |                    |                                   |                        |

Issued: September 9, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

## Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 750 MHz ± 1 MHz        |             |

**Head TSL parameters**The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 42.4 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.08 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 8.21 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.35 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.34 W/kg ± 16.5 % (k=2) |

## **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5         | 0.96 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.3 ± 6 %   | 0.97 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.12 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 8.41 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.41 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 5.60 W/kg ± 16.5 % (k=2) |

Certificate No: D750V3-1097\_Sep20 Page 3 of 8

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 54.0 Ω - 0.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.3 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 49.3 Ω - 3.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.9 dB       |

#### **General Antenna Parameters and Design**

| 1 |                                  |          |
|---|----------------------------------|----------|
| 1 | Electrical Delay (one direction) | 1.034 ns |
|   | <del></del>                      |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| ODEAC                 |                 |       |
|-----------------------|-----------------|-------|
| Manufactured by SPEAG | Manufactured by | SPEAG |

Certificate No: D750V3-1097\_Sep20 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 08.09.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.91 \text{ S/m}$ ;  $\varepsilon_r = 42.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.97, 9.97, 9.97) @ 750 MHz; Calibrated: 29.06.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

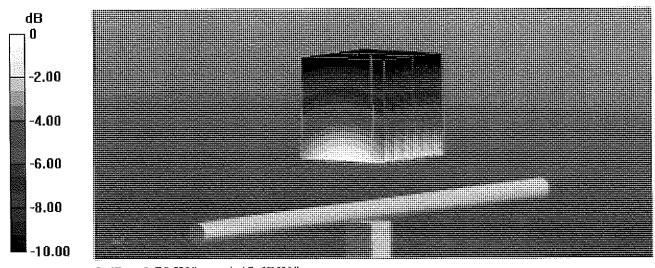
• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

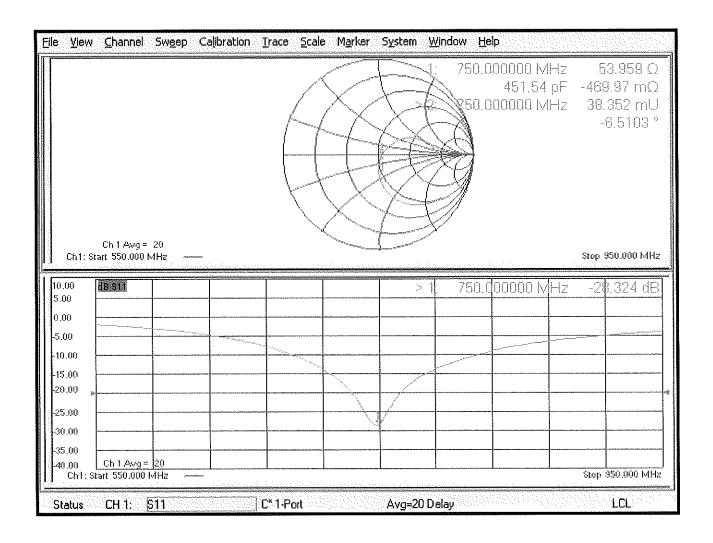
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.27 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.13 W/kg

SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.35 W/kg

Smallest distance from peaks to all points 3 dB below = 20.6 mm


Ratio of SAR at M2 to SAR at M1 = 66.3%

Maximum value of SAR (measured) = 2.78 W/kg



0 dB = 2.78 W/kg = 4.45 dBW/kg

## Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 08.09.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.97 \text{ S/m}$ ;  $\varepsilon_r = 55.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.98, 9.98, 9.98) @ 750 MHz; Calibrated: 29.06.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

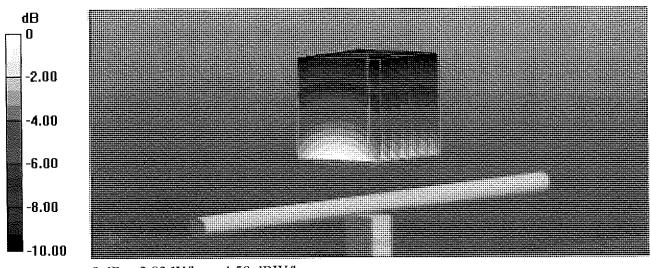
Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

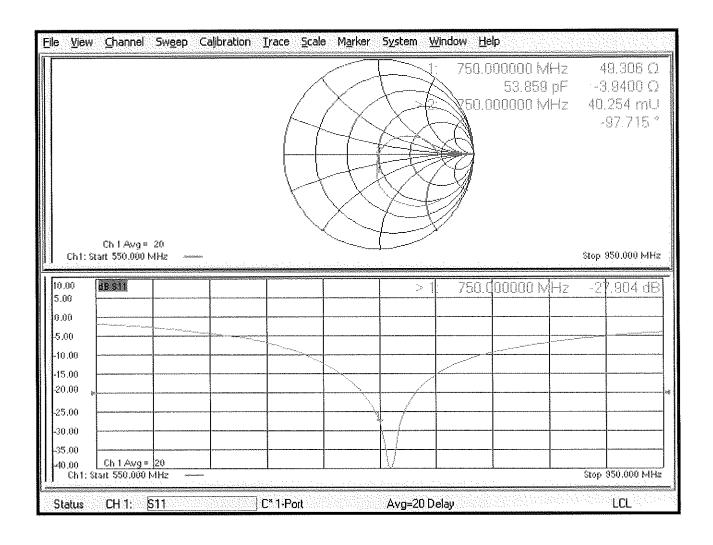
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.40 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 3.17 W/kg

SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.41 W/kg

Smallest distance from peaks to all points 3 dB below = 17.5 mm


Ratio of SAR at M2 to SAR at M1 = 67%

Maximum value of SAR (measured) = 2.82 W/kg



0 dB = 2.82 W/kg = 4.50 dBW/kg

## Impedance Measurement Plot for Body TSL





#### **PCTFST**

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D750V3 – SN: 1097

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 8, 2021

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

| Manufacturer       | Model     | Description                                   | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|-----------|-----------------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES    | S-Parameter Network Analyzer                  | 4/14/2021  | Annual       | 4/14/2022  | US39170118    |
| Agilent            | E4438C    | ESG Vector Signal Generator                   | 9/29/2020  | Annual       | 9/29/2021  | MY45093852    |
| Amplifier Research | 15S1G6    | Amplifier                                     | CBT        | N/A          | CBT        | 343972        |
| Anritsu            | ML2495A   | Power Meter                                   | 1/18/2021  | Annual       | 1/18/2022  | 0941001       |
| Anritsu            | MA2411B   | Pulse Power Sensor                            | 3/9/2021   | Annual       | 3/9/2022   | 1207470       |
| Anritsu            | MA2411B   | Pulse Power Sensor                            | 3/8/2021   | Annual       | 3/8/2022   | 1339007       |
| Control Company    | 4040      | Therm./ Clock/ Humidity Monitor               | 3/12/2021  | Biennial     | 3/12/2023  | 210201956     |
| Control Company    | 4353      | Long Stem Thermometer                         | 10/28/2020 | Biennial     | 10/28/2022 | 200670653     |
| Agilent            | 85033E    | 3.5mm Standard Calibration Kit                | 7/7/2021   | Annual       | 7/7/2022   | MY53402352    |
| Mini-Circuits      | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits      | NLP-2950+ | Low Pass Filter DC to 2700 MHz                | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3    | Attenuator (3dB)                              | CBT        | N/A          | CBT        | 9406          |
| Pasternack         | PE2208-6  | Bidirectional Coupler                         | CBT        | N/A          | CBT        | N/A           |
| Pasternack         | NC-100    | Torque Wrench                                 | 8/4/2020   | Biennial     | 8/4/2022   | N/A           |
| SPEAG              | DAK-3.5   | Dielectric Assessment Kit                     | 5/12/2021  | Annual       | 5/12/2022  | 1070          |
| SPEAG              | EX3DV4    | SAR Probe                                     | 4/19/2021  | Annual       | 4/19/2022  | 7532          |
| SPEAG              | DAE4      | Data Acquisition Electronics                  | 4/13/2021  | Annual       | 4/13/2022  | 501           |

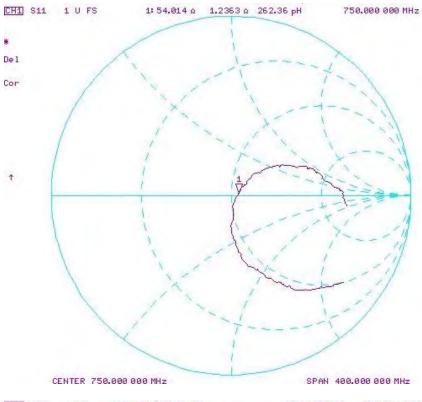
## Measurement Uncertainty = ±23% (k=2)

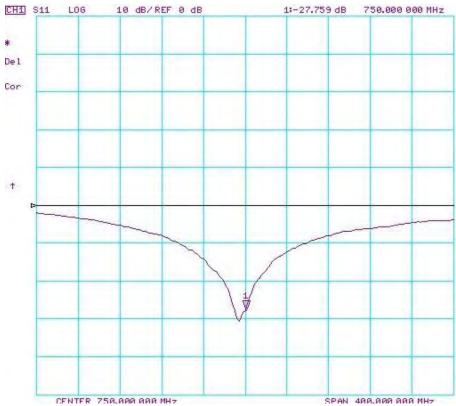
|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | 20K          |

| Object:           | Date Issued: | Page 1 of 4 |
|-------------------|--------------|-------------|
| D750V3 – SN: 1097 | 09/08/2021   | Page 1 of 4 |

#### **DIPOLE CALIBRATION EXTENSION**

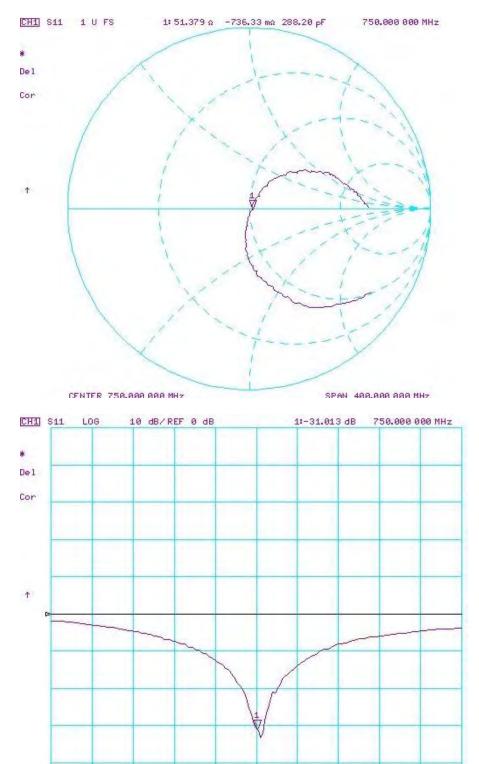
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |      | Measured<br>Head SAR (1g)<br>W/kg @ 23.0<br>dBm | /0/ \ | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 23.0<br>dBm | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|------|-------------------------------------------------|-------|---------------------------------------------------------------|--------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 9/8/2020            | 9/8/2021          | 1.034                                   | 1.64 | 1.70                                            | 3.53% | 1.07                                                          | 1.11         | 3.93%                | 54.0                                           | 54.0                                        | 0                        | -0.5                                                | 1.2                                              | 1.7                              | -28.3                                   | -27.8                                | 1.90%         | PASS      |
|                     |                   |                                         |      |                                                 |       |                                                               |              |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |      | Measured<br>Body SAR (1g)<br>W/kg @ 23.0<br>dBm | /0/ \ | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 23.0<br>dBm | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 9/8/2020            | 9/8/2021          | 1.034                                   | 1.68 | 1.75                                            | 4.04% | 1.12                                                          | 1.16         | 3.57%                | 49.3                                           | 51.4                                        | 2.1                      | -3.9                                                | -0.7                                             | 3.2                              | -27.9                                   | -31.0                                | -11.20%       | PASS      |

| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| D750V3 - SN: 1097 | 09/08/2021   | Fage 2 01 4 |


### Impedance & Return-Loss Measurement Plot for Head TSL





| Object:           | Date Issued: | Dogo 2 of 4 |
|-------------------|--------------|-------------|
| D750V3 - SN: 1097 | 09/08/2021   | Page 3 of 4 |

## Impedance & Return-Loss Measurement Plot for Body TSL



CENTER 750,000 000 MHz

| Object:           | Date Issued: | Page 4 of 4 |
|-------------------|--------------|-------------|
| D750V3 - SN: 1097 | 09/08/2021   | raye 4 01 4 |

SPAN 400.000 000 MHz

#### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Element

Certificate No: D835V2-4d040 May22

## CALIBRATION CERTIFICATE

Object D835V2 - SN:4d040

QA CAL-05.v11 Calibration procedure(s)

Calibration Procedure for SAR Validation Sources between 0.7-3

May 16, 2022 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cal Date (Certificate No.)        | Scheduled Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power meter NRP                 | SN: 104778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04-Apr-22 (No. 217-03525/03524)   | Apr-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power sensor NRP-Z91            | SN: 103244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04-Apr-22 (No. 217-03524)         | Apr-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power sensor NRP-Z91            | SN: 103245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04-Apr-22 (No. 217-03525)         | Apr-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reference 20 dB Attenuator      | SN: BH9394 (20k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 04-Apr-22 (No. 217-03527)         | Apr-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Type-N mismatch combination     | SN: 310982 / 06327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04-Apr-22 (No. 217-03528)         | Apr-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reference Probe EX3DV4          | SN: 7349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31-Dec-21 (No. EX3-7349_Dec21)    | Dec-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DAE4                            | SN: 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02-May-22 (No. DAE4-601_May22)    | May-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Secondary Standards             | ID#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Check Date (in house)             | Scheduled Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Power meter E4419B              | SN: GB39512475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power sensor HP 8481A           | SN: US37292783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power sensor HP 8481A           | SN: MY41093315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07-Oct-15 (in house check Oct-20) | in house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RF generator R&S SMT-06         | SN: 100972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Network Analyzer Agilent E8358A | SN: US41080477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Function                          | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Calibrated by:                  | Aidonia Georgiadou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Laboratory Technician             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 4/5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | And the second s |                                   | And the second s |
| Approved by:                    | Sven Kühn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Technical Manager                 | $\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ''                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Issued: May 17, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d040 May22

Page 1 of 8

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

c) DASY System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                 | V52.10.4                                |
|------------------------------|------------------------|-----------------------------------------|
| Extrapolation                | Advanced Extrapolation |                                         |
| Phantom                      | Modular Flat Phantom   |                                         |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer                             |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      | *************************************** |
| Frequency                    | 835 MHz ± 1 MHz        |                                         |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.7 ± 6 %   | 0.92 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | FR 50-544    | ****             |

#### SAR result with Head TSL

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 2.50 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 9.79 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.62 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.38 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.9 ± 6 %   | 0.97 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm³ (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 2.46 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 9.79 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.63 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.50 W/kg ± 16.5 % (k=2) |

Certificate No: D835V2-4d040\_May22 Page 3 of 8

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 50.8 Ω - 1.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 34.9 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.7 Ω - 6.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.2 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1 202    |
|----------------------------------|----------|
| Licetical Delay (one direction)  | 1.393 ns |
| 1                                |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
| L               |       |

#### **DASY5 Validation Report for Head TSL**

Date: 16.05.2022

Test Laboratory: SPEAG, Zurich, Switzerland

**DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040** 

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.92$  S/m;  $\varepsilon_r = 40.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

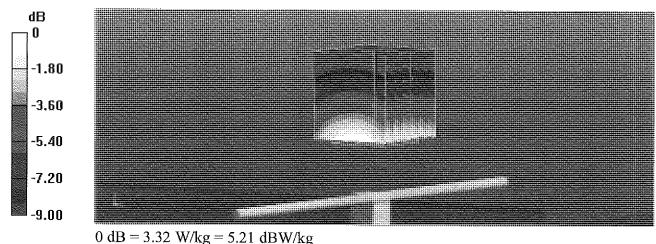
• Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 31.12.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.68 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 3.80 W/kg

#### SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.62 W/kg

Smallest distance from peaks to all points 3 dB below = 17 mm

Ratio of SAR at M2 to SAR at M1 = 65.8%

Maximum value of SAR (measured) = 3.32 W/kg



O CD 3.32 WING 3.21 CD WINE

## Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 16.05.2022

Test Laboratory: SPEAG, Zurich, Switzerland

**DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040** 

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.97$  S/m;  $\varepsilon_r = 53.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.85, 9.85, 9.85) @ 835 MHz; Calibrated: 31.12.2021

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.05,2022

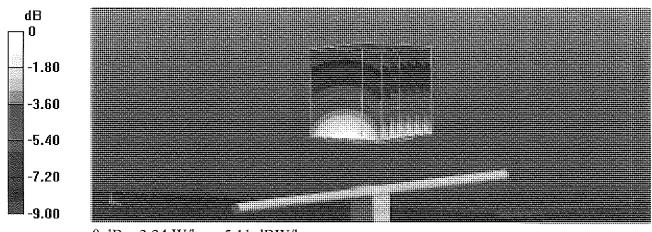
Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

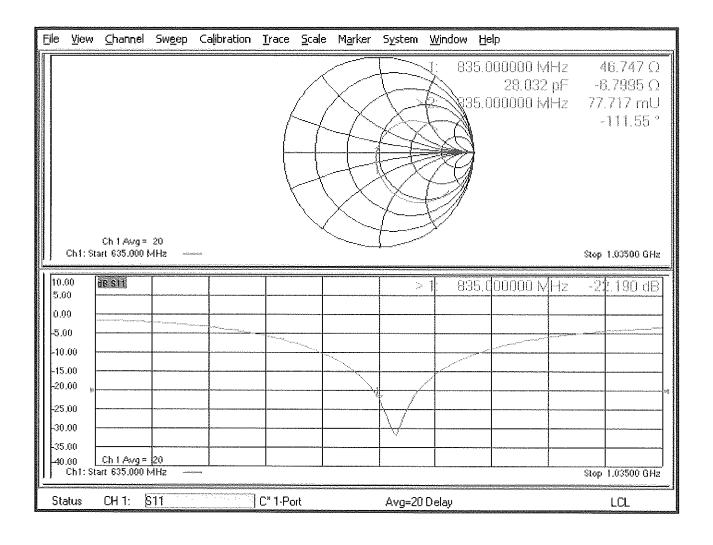
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.41 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.63 W/kg

Smallest distance from peaks to all points 3 dB below = 15 mm


Ratio of SAR at M2 to SAR at M1 = 68%

Maximum value of SAR (measured) = 3.24 W/kg



0 dB = 3.24 W/kg = 5.11 dBW/kg

## Impedance Measurement Plot for Body TSL



## Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D1900V2-5d181\_Sep20

CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d181

A7M

W 10/30

Calibration procedure(s)

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

September 10, 2020

A7M

9/10/2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

|                                 |                    |                                   | •                      |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
| Power meter NRP                 | SN: 104778         | 01-Apr-20 (No. 217-03100/03101)   | Apr-21                 |
| Power sensor NRP-Z91            | SN: 103244         | 01-Apr-20 (No. 217-03100)         | Apr-21                 |
| Power sensor NRP-Z91            | SN: 103245         | 01-Apr-20 (No. 217-03101)         | Apr-21                 |
| Reference 20 dB Attenuator      | SN: BH9394 (20k)   | 31-Mar-20 (No. 217-03106)         | Apr-21                 |
| Type-N mismatch combination     | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104)         | Apr-21                 |
| Reference Probe EX3DV4          | SN: 7349           | 29-Jun-20 (No. EX3-7349_Jun20)    | Jun-21                 |
| DAE4                            | SN: 601            | 27-Dec-19 (No. DAE4-601_Dec19)    | Dec-20                 |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B              | SN: GB39512475     | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Claudio Leubler    | Laboratory Technician             | (W)                    |
| Approved by:                    | Katja Pokovic      | Technical Manager                 |                        |

Issued: September 10, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d181\_Sep20

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

**TSL** 

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 1900 MHz ± 1 MHz       |             |

Head TSL parameters

The following parameters and calculations were applied.

| Temperature                             |                 | Permittivity Conductivit |                  |
|-----------------------------------------|-----------------|--------------------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0                     | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.2 ± 6 %               | 1.37 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |                          |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.83 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 40.1 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.14 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.8 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

| <u> </u>                                | Temperature     | Permittivity     | Conductivity     |
|-----------------------------------------|-----------------|------------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3             | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.9 ± 6 %       | 1.49 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | No and date life |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9. <b>7</b> 9 W/kg       |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 39.7 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.20 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.0 W/kg ± 16.5 % (k=2) |

Certificate No: D1900V2-5d181\_Sep20

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.5 Ω + 3.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.5 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 48.8 Ω + 5.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.0 dB       |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.204 ns |
|----------------------------------|----------|
| 1                                |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

#### **DASY5 Validation Report for Head TSL**

Date: 10.09.2020

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d181

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.37 \text{ S/m}$ ;  $\varepsilon_r = 41.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 29.06.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

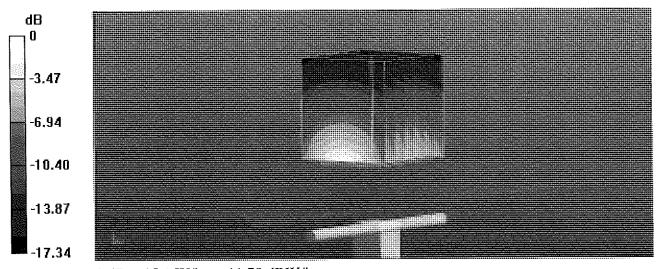
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

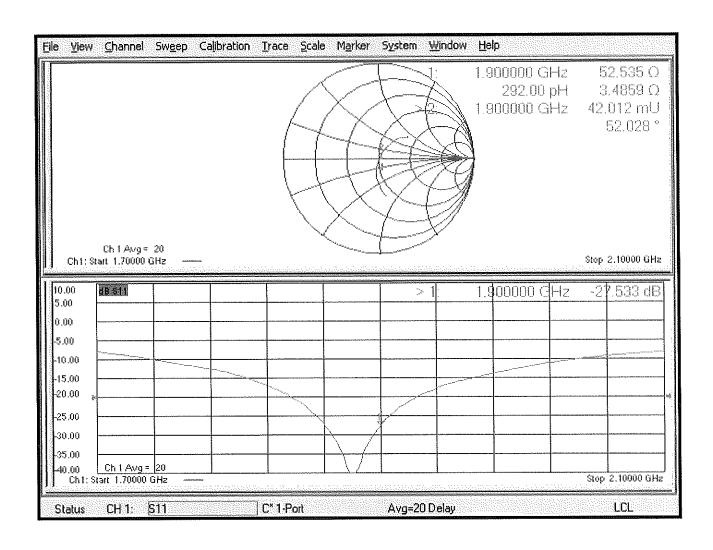
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.5 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 18.1 W/kg

### SAR(1 g) = 9.83 W/kg; SAR(10 g) = 5.14 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm


Ratio of SAR at M2 to SAR at M1 = 54.8%

Maximum value of SAR (measured) = 15.1 W/kg



0 dB = 15.1 W/kg = 11.79 dBW/kg

## Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 10.09.2020

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d181

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.49 \text{ S/m}$ ;  $\varepsilon_r = 53.9$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.21, 8.21, 8.21) @ 1900 MHz; Calibrated: 29.06.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.12.2019

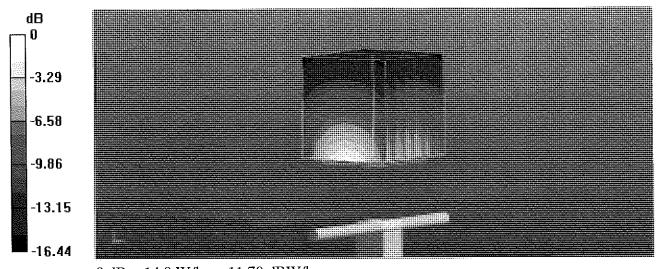
Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

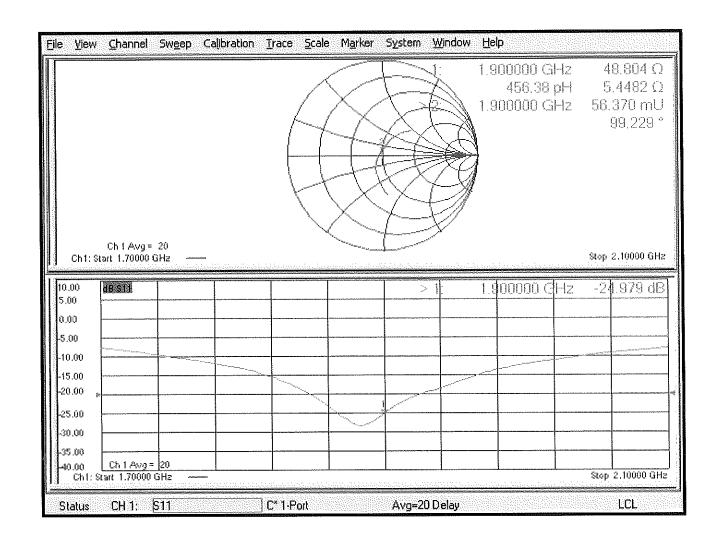
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.3 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.79 W/kg; SAR(10 g) = 5.2 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 58.1%

Maximum value of SAR (measured) = 14.8 W/kg



0 dB = 14.8 W/kg = 11.70 dBW/kg

## Impedance Measurement Plot for Body TSL





#### **PCTFST**

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D1900V2 – SN: 5d181

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 10, 2021

Description: SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

| Manufacturer       | Model     | Description                                   | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|-----------|-----------------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES    | S-Parameter Network Analyzer                  | 4/14/2021  | Annual       | 4/14/2022  | US39170118    |
| Agilent            | E4438C    | ESG Vector Signal Generator                   | 9/29/2020  | Annual       | 9/29/2021  | MY45093852    |
| Amplifier Research | 15S1G6    | Amplifier                                     | CBT        | N/A          | CBT        | 343972        |
| Anritsu            | ML2495A   | Power Meter                                   | 1/18/2021  | Annual       | 1/18/2022  | 0941001       |
| Anritsu            | MA2411B   | Pulse Power Sensor                            | 3/9/2021   | Annual       | 3/9/2022   | 1207470       |
| Anritsu            | MA2411B   | Pulse Power Sensor                            | 3/8/2021   | Annual       | 3/8/2022   | 1339007       |
| Control Company    | 4040      | Therm./ Clock/ Humidity Monitor               | 3/12/2021  | Biennial     | 3/12/2023  | 210201956     |
| Control Company    | 4353      | Long Stem Thermometer                         | 10/28/2020 | Biennial     | 10/28/2022 | 200670653     |
| Agilent            | 85033E    | 3.5mm Standard Calibration Kit                | 7/7/2021   | Annual       | 7/7/2022   | MY53402352    |
| Mini-Circuits      | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits      | NLP-2950+ | Low Pass Filter DC to 2700 MHz                | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3    | Attenuator (3dB)                              | CBT        | N/A          | CBT        | 9406          |
| Pasternack         | PE2209-10 | Bidirectional Coupler                         | CBT        | N/A          | CBT        | N/A           |
| Pasternack         | NC-100    | Torque Wrench                                 | 8/4/2020   | Biennial     | 8/4/2022   | N/A           |
| SPEAG              | DAK-3.5   | Dielectric Assessment Kit                     | 5/12/2021  | Annual       | 5/12/2022  | 1070          |
| SPEAG              | DAE4      | Data Acquisition Electronics                  | 4/13/2021  | Annual       | 4/13/2022  | 501           |
| SPEAG              | EX3DV4    | SAR Probe                                     | 4/19/2021  | Annual       | 4/19/2022  | 7532          |

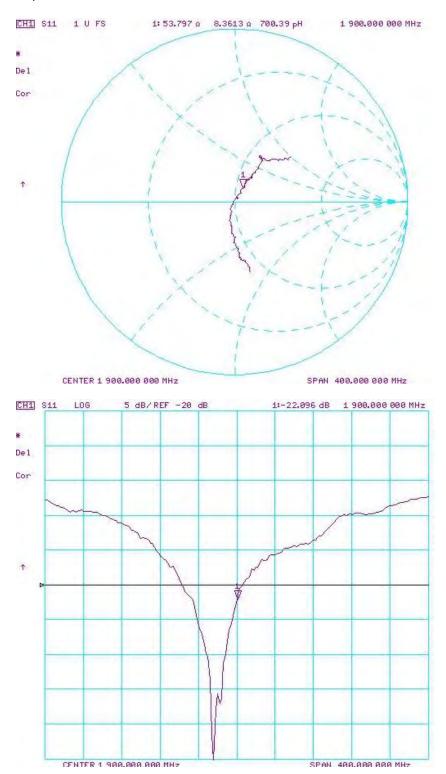
## Measurement Uncertainty = ±23% (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | 20K          |

| Object:             | Date Issued: | Page 1 of 4 |
|---------------------|--------------|-------------|
| D1900V2 - SN: 5d181 | 09/10/2021   | Page 1 of 4 |

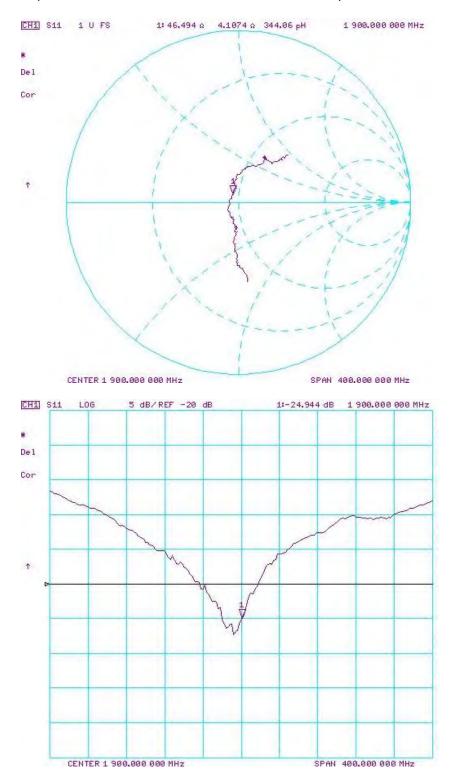
### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | W//kg @ 20.0                                    | Deviation 1g<br>(%) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|---------------------|---------------------------------------------------------------|--------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 9/10/2020           | 9/10/2021         | 1.204                                   | 4.01                                                         | 4.26                                            | 6.23%               | 2.08                                                          | 2.19         | 5.29%                | 52.5                                           | 53.8                                        | 1.3                      | 3.5                                                 | 8.4                                              | 4.9                              | -27.5                                   | -22.1                                | 19.70%        | PASS      |
|                     |                   |                                         |                                                              |                                                 |                     |                                                               |              |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |                                                              | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (0/3                | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm | (40-) 14// @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 9/10/2020           | 9/10/2021         | 1.204                                   | 3.97                                                         | 3.96                                            | -0.25%              | 2.1                                                           | 2.06         | -1.90%               | 48.8                                           | 46.5                                        | 2.3                      | 5.4                                                 | 4.1                                              | 1.3                              | -25.0                                   | -24.9                                | 0.20%         | PASS      |


| Object:             | Date Issued: | Page 2 of 4 |
|---------------------|--------------|-------------|
| D1900V2 - SN: 5d181 | 09/10/2021   | Page 2 of 4 |

### Impedance & Return-Loss Measurement Plot for Head TSL



| Object:             | Date Issued: | Page 3 of 4 |
|---------------------|--------------|-------------|
| D1900V2 - SN: 5d181 | 09/10/2021   | rage 3 01 4 |

## Impedance & Return-Loss Measurement Plot for Body TSL



| Object:             | Date Issued: | Page 4 of 4 |
|---------------------|--------------|-------------|
| D1900V2 - SN: 5d181 | 09/10/2021   | Page 4 of 4 |

## Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

02/08/22

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D2300V2-1064\_Nov20

## **CALIBRATION CERTIFICATE**

Object

D2300V2 - SN:1064

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

November 10, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                   | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|-----------------------|-----------------------------------|------------------------|
| Power meter NRP                 | SN: 104778            | 01-Apr-20 (No. 217-03100/03101)   | Apr-21                 |
| Power sensor NRP-Z91            | SN: 103244            | 01-Apr-20 (No. 217-03100)         | Apr-21                 |
| Power sensor NRP-Z91            | SN: 103245            | 01-Apr-20 (No. 217-03101)         | Apr-21                 |
| Reference 20 dB Attenuator      | SN: BH9394 (20k)      | 31-Mar-20 (No. 217-03106)         | Apr-21                 |
| Type-N mismatch combination     | SN: 310982 / 06327    | 31-Mar-20 (No. 217-03104)         | Apr-21                 |
| Reference Probe EX3DV4          | SN: 7405              | 29-Jun-20 (No. EX3-7405_Jun20)    | Jun-21                 |
| DAE4                            | SN: 601               | 02-Nov-20 (No. DAE4-601_Nov20)    | Nov-21                 |
| Secondary Standards             | ID#                   | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B              | SN: GB39512475        | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 |
| Power sensor HP 8481A           | SN: US37292783        | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 |
| Power sensor HP 8481A           | SN: MY41092317        | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 |
| RF generator R&S SMT-06         | SN: 100972            | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 |
| Network Analyzer Agilent E8358A | SN: US41080477        | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 |
|                                 | Name                  | Function                          | Signature              |
| Calibrated by:                  |                       | Laboratory Technician             | 11.16Set               |
| Approved by:                    | <b>K</b> atja Pokovic | Technical Manager                 | MUG                    |
|                                 |                       |                                   |                        |

Issued: November 11, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 2300 MHz ± 1 MHz       |             |

#### **Head TSL parameters**

The following parameters and calculations were applied

|                                         | Temperature     | Permittivity  | Conductivity     |
|-----------------------------------------|-----------------|---------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.5          | 1.67 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.7 ± 6 %    | 1.70 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | to the second |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 12.4 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 48.9 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 250 mW input power | 5.91 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 23.4 W/kg ± 16.5 % (k=2) |

**Body TSL parameters**The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.9         | 1.81 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.2 ± 6 %   | 1.86 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 12.3 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 48.4 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 250 mW input power | 5.88 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 23.3 W/kg ± 16.5 % (k=2) |

Page 3 of 8 Certificate No: D2300V2-1064\_Nov20

# Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 49.2 Ω - 3.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 30.2 dB       |

## **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 49.6 Ω - 4.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.1 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.168 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
| l               |       |

Certificate No: D2300V2-1064\_Nov20 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 10.11.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1064

Communication System: UID 0 - CW; Frequency: 2300 MHz

Medium parameters used: f = 2300 MHz;  $\sigma = 1.7 \text{ S/m}$ ;  $\varepsilon_r = 38.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

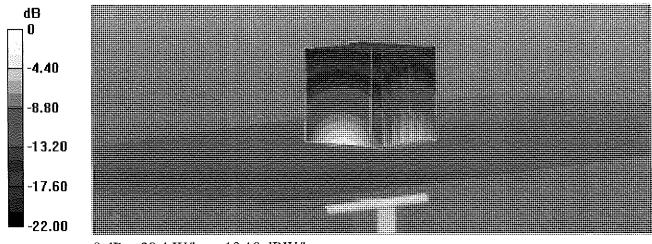
• Probe: EX3DV4 - SN7405; ConvF(8.03, 8.03, 8.03) @ 2300 MHz; Calibrated: 29.06.2020

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

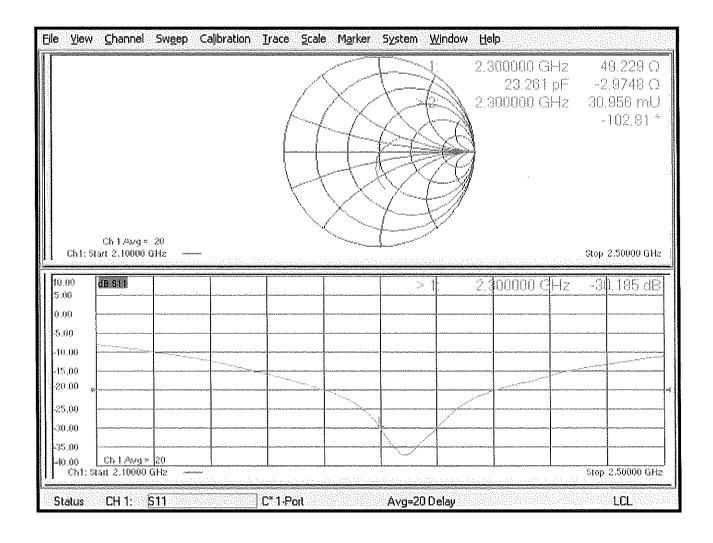
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 114.1 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 24.6 W/kg

#### SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.91 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 50.8%

Maximum value of SAR (measured) = 20.4 W/kg



0 dB = 20.4 W/kg = 13.10 dBW/kg

# Impedance Measurement Plot for Head TSL



## **DASY5 Validation Report for Body TSL**

Date: 10.11.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1064

Communication System: UID 0 - CW; Frequency: 2300 MHz

Medium parameters used: f = 2300 MHz;  $\sigma = 1.86 \text{ S/m}$ ;  $\varepsilon_r = 52.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7405; ConvF(7.94, 7.94, 7.94) @ 2300 MHz; Calibrated: 29.06.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.11.2020

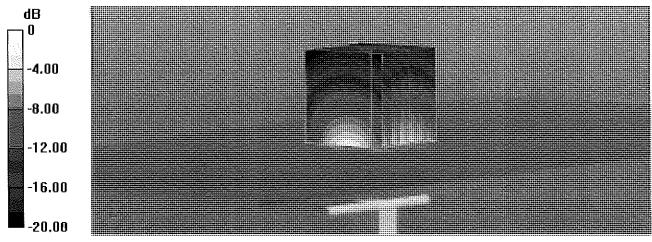
• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

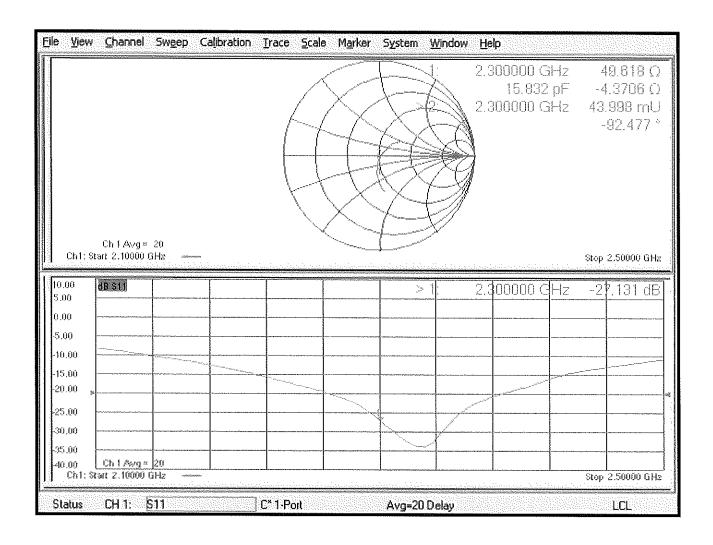
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.7 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 24.4 W/kg

#### SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.88 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 52.2%

Maximum value of SAR (measured) = 19.5 W/kg



0 dB = 19.5 W/kg = 12.90 dBW/kg

# Impedance Measurement Plot for Body TSL





## **PCTEST**

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D2300V2 – SN: 1064

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: November 10, 2021

Description: SAR Validation Dipole at 2300 MHz.

Calibration Equipment used:

| Manufacturer       | Model         | Description                         | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES        | S-Parameter Vector Network Analyzer | 2/2/2021   | Annual       | 2/2/2022   | US39170122    |
| Agilent            | E4438C        | ESG Vector Signal Generator         | 10/17/2021 | Annual       | 10/17/2022 | MY45093852    |
| Amplifier Research | 15S1G6        | Amplifier                           | CBT        | N/A          | CBT        | 343972        |
| Anritsu            | ML2495A       | Power Meter                         | 1/18/2021  | Annual       | 1/18/2022  | 0941001       |
| Anritsu            | MA2411B       | Pulse Power Sensor                  | 2/5/2021   | Annual       | 2/5/2022   | 0846215       |
| Anritsu            | MA2411B       | Pulse Power Sensor                  | 8/10/2021  | Annual       | 8/10/2022  | 1207364       |
| Control Company    | 4040          | Therm./ Clock/ Humidity Monitor     | 2/23/2021  | Annual       | 2/23/2022  | 160574418     |
| Control Company    | 4352          | Ultra Long Stem Thermometer         | 10/25/2021 | Biennial     | 10/25/2022 | 200645916     |
| Agilent            | 85033E        | 3.5mm Standard Calibration Kit      | 7/7/2021   | Annual       | 7/7/2022   | MY53402352    |
| Mini-Circuits      | NLP-2950+     | Low Pass Filter DC to 2700 MHz      | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3        | Attenuator (3dB)                    | CBT        | N/A          | CBT        | 9406          |
| Mini-Circuits      | ZHDC-16-63-S+ | Bidirectional Coupler               | CBT        | N/A          | CBT        | F709401716    |
| Pasternack         | NC-100        | Torque Wrench                       | 8/4/2020   | Biennial     | 8/4/2022   | N/A           |
| SPEAG              | DAK-3.5       | Dielectric Assessment Kit           | 5/12/2021  | Annual       | 5/12/2022  | 1070          |
| SPEAG              | DAE4          | Dasy Data Acquisition Electronics   | 1/13/2021  | Annual       | 1/13/2022  | 793           |
| SPEAG              | DAE4          | Dasy Data Acquisition Electronics   | 7/14/2021  | Annual       | 7/14/2022  | 1402          |
| SPEAG              | EX3DV4        | SAR Probe                           | 1/18/2021  | Annual       | 1/18/2022  | 3837          |
| SPEAG              | EX3DV4        | SAR Probe                           | 7/21/2021  | Annual       | 7/21/2022  | 7546          |

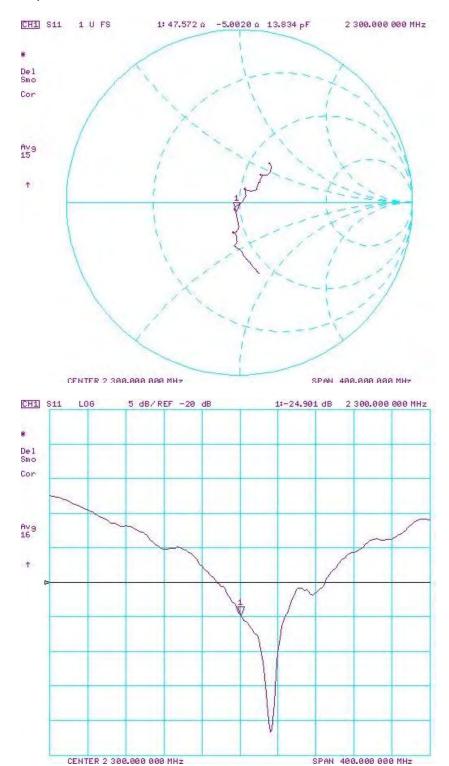
# Measurement Uncertainty = ±23% (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Department Manager | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | 20K          |

| Object:           | Date Issued: | Page 1 of 4           |
|-------------------|--------------|-----------------------|
| DV2300 - SN: 1064 | 11/10/2021   | rage ror <del>4</del> |

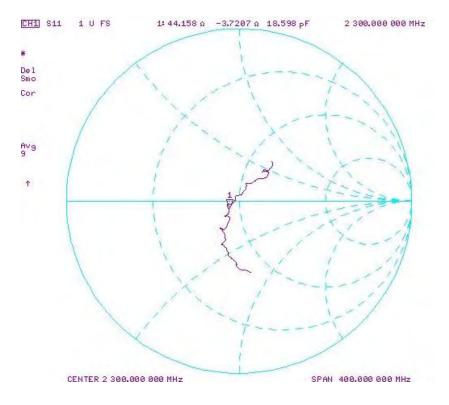
# **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (0/ ) |                                                               | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------|---------------------------------------------------------------|--------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 11/10/2020          | 11/10/2021        | 1.168                                   | 4.89                                                         | 5.1                                             | 4.29% | 2.34                                                          | 2.35         | 0.43%                | 49.2                                           | 47.6                                        | 1.6                      | -3                                                  | -5                                               | 2                                | -30.2                                   | -24.9                                | 17.50%        | PASS      |
|                     |                   |                                         |                                                              |                                                 |       |                                                               |              |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Body (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (0/ ) | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 11/10/2020          | 11/10/2021        | 1.168                                   | 4.84                                                         | 5.09                                            | 5.17% | 2.33                                                          | 2.41         | 3.43%                | 49.6                                           | 44.2                                        | 5.4                      | -4.4                                                | -3.7                                             | 0.7                              | -27.1                                   | -22.6                                | 16.70%        | PASS      |


| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| DV2300 - SN: 1064 | 11/10/2021   | 1 age 2 014 |

# Impedance & Return-Loss Measurement Plot for Head TSL



| Object:           | Date Issued: | Page 3 of 4  |
|-------------------|--------------|--------------|
| DV2300 - SN: 1064 | 11/10/2021   | 1 age 5 of 4 |

# Impedance & Return-Loss Measurement Plot for Body TSL





| Object:           | Date Issued: | Page 4 of 4 |  |
|-------------------|--------------|-------------|--|
| DV2300 - SN: 1064 | 11/10/2021   | raye 4 01 4 |  |

# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D3500V2-1126 Jun21

# Object D3500V2 - SN:1126 KT \ 09/13/2022 QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: June 09, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                                                                               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|------------------------|
| Power meter NRP                 | SN: 104778                                                                        | 09-Apr-21 (No. 217-03291/03292)   | Арг-22                 |
| Power sensor NRP-Z91            | SN: 103244                                                                        | 09-Apr-21 (No. 217-03291)         | Apr-22                 |
| Power sensor NRP-Z91            | SN: 103245                                                                        | 09-Apr-21 (No. 217-03292)         | Apr-22                 |
| Reference 20 dB Attenuator      | SN: BH9394 (20k)                                                                  | 09-Apr-21 (No. 217-03343)         | Apr-22                 |
| Type-N mismatch combination     | SN: 310982 / 06327                                                                | 09-Apr-21 (No. 217-03344)         | Арг-22                 |
| Reference Probe EX3DV4          | SN: 3503                                                                          | 30-Dec-20 (No. EX3-3503_Dec20)    | Dec-21                 |
| DAE4                            | SN: 601                                                                           | 02-Nov-20 (No. DAE4-601_Nov20)    | Nov-21                 |
|                                 |                                                                                   |                                   |                        |
| Secondary Standards             | ID#                                                                               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B              | SN: GB39512475                                                                    | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 |
| Power sensor HP 8481A           | SN: US37292783                                                                    | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 |
| Power sensor HP 8481A           | SN: MY41092317                                                                    | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 |
| RF generator R&S SMT-06         | SN: 100972                                                                        | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 |
| Network Analyzer Agilent E8358A | SN: US41080477                                                                    | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 |
|                                 |                                                                                   |                                   |                        |
|                                 | Name                                                                              | Function                          | Signature              |
| Calibrated by:                  | Michael Weber                                                                     | Laboratory Technician             | 1/1//                  |
|                                 |                                                                                   |                                   | MINER .                |
| - Farmer                        | EANGER Alpheim (paniet) station (station) (man) ameno are more anno are some con- |                                   |                        |
| Approved by:                    | Katja Pokovic                                                                     | Technical Manager                 | 111111                 |
|                                 |                                                                                   |                                   | a set as               |

Issued: June 10, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

**TSL** 

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3500V2-1126\_Jun21

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                        | V52.10.4                         |
|------------------------------|------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation       |                                  |
| Phantom                      | Modular Flat Phantom         |                                  |
| Distance Dipole Center - TSL | 10 mm                        | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4  mm, dz = 1.4  mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 3500 MHz ± 1 MHz             |                                  |

# Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity 2.91 mho/m 2.92 mho/m ± 6 % |  |
|-----------------------------------------|-----------------|--------------|------------------------------------------|--|
| Nominal Head TSL parameters             | 22.0 °C         | 37.9         |                                          |  |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.1 ± 6 %   |                                          |  |
| Head TSL temperature change during test | < 0.5 °C        |              | <b></b>                                  |  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          | 70.0                     |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.73 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 67.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          | ************************************** |
|---------------------------------------------------------|--------------------|----------------------------------------|
| SAR measured                                            | 100 mW input power | 2.51 W/kg                              |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.0 W/kg ± 19.5 % (k=2)               |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity 3.31 mho/m 3.29 mho/m ± 6 % |  |
|-----------------------------------------|-----------------|--------------|------------------------------------------|--|
| Nominal Body TSL parameters             | 22.0 °C         | 51.3         |                                          |  |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.6 ± 6 %   |                                          |  |
| Body TSL temperature change during test | < 0.5 °C        |              |                                          |  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          | N                        |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.34 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 63.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.36 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.6 W/kg ± 19.5 % (k=2) |

Certificate No: D3500V2-1126\_Jun21

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 50.4 Ω - 1.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 35.0 dB       |

# Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 54.2 Ω + 0.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.8 dB       |

# General Antenna Parameters and Design

| Electrical Delay (one direction) | 4.405    |
|----------------------------------|----------|
| Listing College (Sile direction) | 1.135 ns |
| tu                               |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| - 1 | Manufactured by                       | SPEAG |
|-----|---------------------------------------|-------|
|     |                                       | SPEAG |
|     | ····· ··· ··· ··· ··· ··· ··· ··· ··· |       |

# **DASY5 Validation Report for Head TSL**

Date: 09.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1126

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz;  $\sigma = 2.92$  S/m;  $\varepsilon_r = 37.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

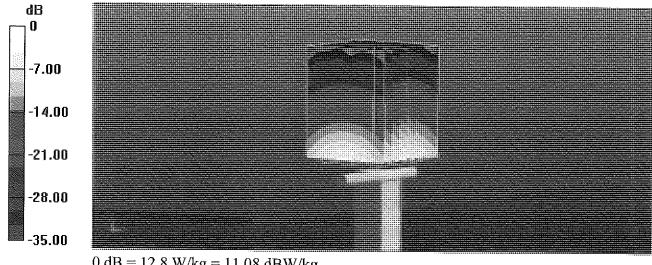
# DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan,

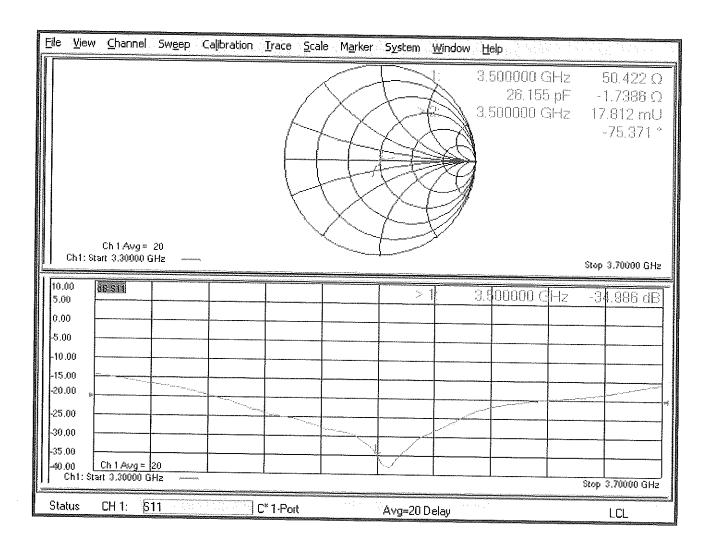
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.49 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 6.73 W/kg; SAR(10 g) = 2.51 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm


Ratio of SAR at M2 to SAR at M1 = 73.8%

Maximum value of SAR (measured) = 12.8 W/kg



0 dB = 12.8 W/kg = 11.08 dBW/kg

# Impedance Measurement Plot for Head TSL



# **DASY5 Validation Report for Body TSL**

Date: 09.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1126

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz;  $\sigma = 3.29$  S/m;  $\epsilon_r = 51.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

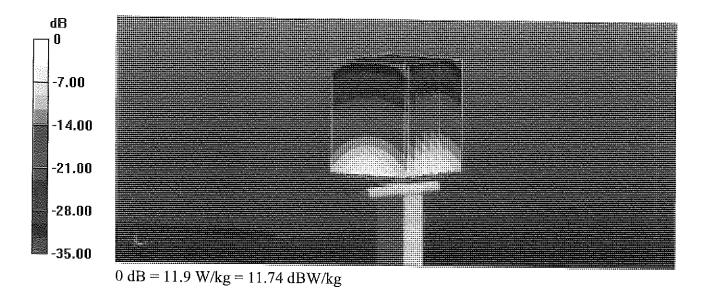
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

# DASY52 Configuration:

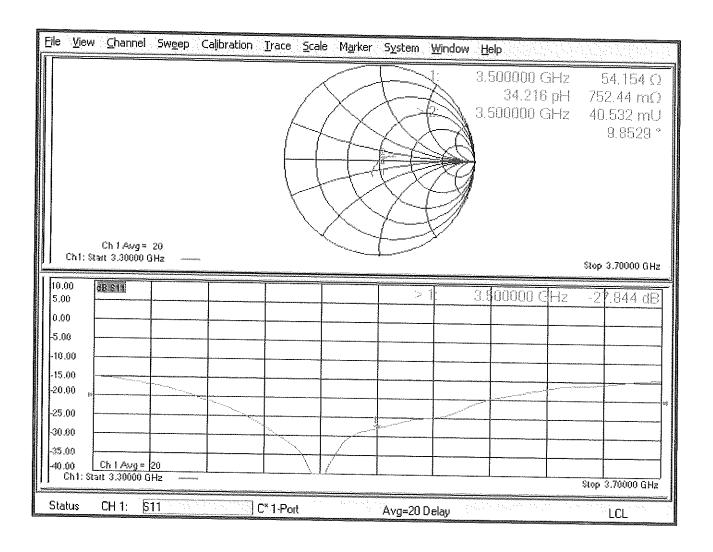
- Probe: EX3DV4 SN3503; ConvF(7.46, 7.46, 7.46) @ 3500 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan , dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.24 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 6.34 W/kg; SAR(10 g) = 2.36 W/kg


Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 75.5%

Maximum value of SAR (measured) = 11.9 W/kg



# Impedance Measurement Plot for Body TSL





## **Element**

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com



# **Certification of Calibration**

Object D3500V2 – SN: 1126

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: June 9, 2022

Description: SAR Validation Dipole at 3500 MHz.

Calibration Equipment used:

| Manufacturer       | Model         | Description                         | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES        | S-Parameter Vector Network Analyzer | 2/11/2022  | Annual       | 2/11/2023  | MY40003841    |
| Agilent            | N5182A        | MXG Vector Signal Generator         | 5/6/2022   | Annual       | 5/6/2023   | MY51240479    |
| Amplifier Research | 15S1G6        | Amplifier                           | CBT        | N/A          | CBT        | 343972        |
| Anritsu            | MA2411B       | Pulse Power Sensor                  | 3/2/2022   | Annual       | 3/2/2023   | 1126066       |
| Anritsu            | MA2411B       | Pulse Power Sensor                  | 3/28/2022  | Annual       | 3/28/2023  | 1339007       |
| Anritsu            | ML2495A       | Power Meter                         | 3/31/2022  | Annual       | 3/31/2023  | 1138001       |
| Control Company    | 4353          | Long Stem Thermometer               | 10/28/2020 | Biennial     | 10/28/2022 | 200670623     |
| Control Company    | 4040          | Therm./Clock/Humidity Monitor       | 3/12/2021  | Biennial     | 3/12/2023  | 210202100     |
| Agilent            | 85033E        | 3.5mm Standard Calibration Kit      | 44384      | Annual       | 44749      | MY53402352    |
| Mini-Circuits      | VLF-6000+     | Low Pass Filter DC to 6000 MHz      | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3        | Attenuator (3dB)                    | CBT        | N/A          | CBT        | 9406          |
| Mini-Circuits      | ZHDC-16-63-S+ | Coupler                             | CBT        | N/A          | CBT        | F709401716    |
| Seekonk            | NC-100        | Torque Wrench                       | 7/30/2020  | Biennial     | 7/30/2022  | 22217         |
| SPEAG              | DAK-3.5       | Portable Dielectric Assessment Kit  | 10/7/2021  | Annual       | 10/7/2022  | 1045          |
| SPEAG              | EX3DV4        | SAR Probe                           | 11/16/2021 | Annual       | 11/16/2022 | 7639          |
| SPEAG              | EX3DV4        | SAR Probe                           | 4/22/2022  | Annual       | 4/22/2023  | 7532          |
| SPEAG              | DAE4          | Data Acquisition Electronics        | 11/11/2021 | Annual       | 11/11/2022 | 1646          |
| SPEAG              | DAE4          | Data Acquisition Electronics        | 4/13/2022  | Annual       | 4/13/2023  | 501           |

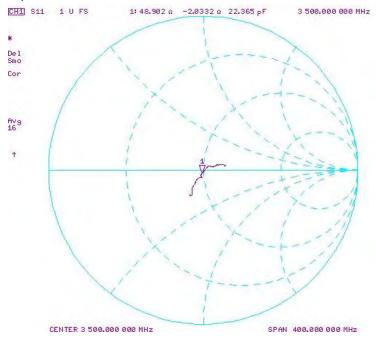
# Measurement Uncertainty = ±23% (k=2)

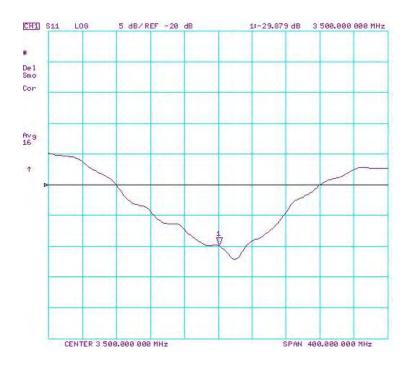
|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Department Manager | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | 20K          |

| Object:            | Date Issued: | Page 1 of 4  |
|--------------------|--------------|--------------|
| D3500V2 – SN: 1126 | 6/9/2022     | 1 age 1 of 4 |

## **DIPOLE CALIBRATION EXTENSION**

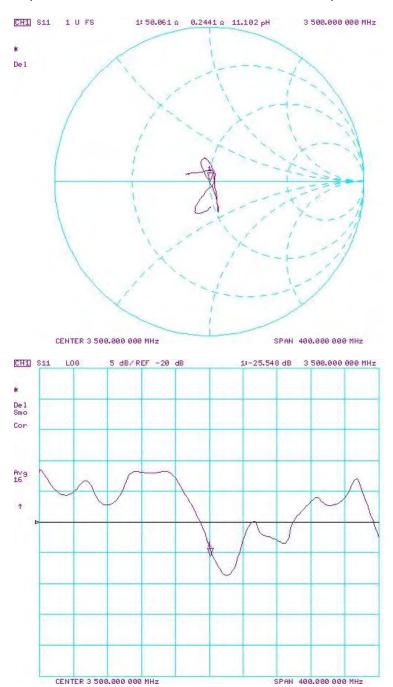
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                                 | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (9/.)  | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | (10a) W/ka @             | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|----------------|-----------------------------------------|---------------------------------|-------------------------------------------------|--------|---------------------------------------------------------------|--------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 6/9/2021            | 6/9/2022       | 1.135                                   | 6.7                             | 6.65                                            | -0.75% | 2.5                                                           | 2.53                     | 1.20%                | 50.4                                           | 48.9                                        | 1.5                      | -1.7                                                | -2                                               | 0.3                              | -35                                     | -29.9                                | 14.60%        | PASS      |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Body (1g)<br>W/kg @ 20.0<br>dBm | asm                                             | (%)    | W/kg @ 20.0<br>dBm                                            | (10g) W/kg @<br>20.0 dBm |                      | Body (Ohm)<br>Real                             | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Body (dB)                            | Deviation (%) |           |
| 6/9/2021            | 6/9/2022       | 1.135                                   | 6.36                            | 6.64                                            | 4.40%  | 2.36                                                          | 2.45                     | 3.81%                | 54.2                                           | 50.1                                        | 4.1                      | 0.8                                                 | 0.2                                              | 0.6                              | -27.8                                   | -25.5                                | 8.10%         | PASS      |

| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D3500V2 – SN: 1126 | 6/9/2022     | raye 2 01 4 |


#### Impedance & Return-Loss Measurement Plot for Head TSL





| Object:            | Date Issued: | Page 3 of 4 |
|--------------------|--------------|-------------|
| D3500V2 – SN: 1126 | 6/9/2022     | rage 5 or 4 |

# Impedance & Return-Loss Measurement Plot for Body TSL



| Object:            | Date Issued: | Page 4 of 4  |
|--------------------|--------------|--------------|
| D3500V2 – SN: 1126 | 6/9/2022     | 1 age 4 of 4 |

# Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura

**Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D3700V2-1002\_Oct19

# **CALIBRATION CERTIFICATE**

D3700V2 - SN:1002 Object

**QA CAL-22.v4** Calibration procedure(s)

Calibration Procedure for SAR Validation Sources between 3-6 GHz

October 17, 2019 Calibration date:

√ KT 01/25/22

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP                 | SN: 104778         | 03-Apr-19 (No. 217-02892/02893)   | Apr-20                 |
| Power sensor NRP-Z91            | SN: 103244         | 03-Apr-19 (No. 217-02892)         | Apr-20                 |
| Power sensor NRP-Z91            | SN: 103245         | 03-Apr-19 (No. 217-02893)         | Apr-20                 |
| Reference 20 dB Attenuator      | SN: 5058 (20k)     | 04-Apr-19 (No. 217-02894)         | Apr-20                 |
| Type-N mismatch combination     | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895)         | Apr-20                 |
| Reference Probe EX3DV4          | SN: 3503           | 25-Mar-19 (No. EX3-3503_Mar19)    | Mar-20                 |
| DAE4                            | SN: 601            | 30-Apr-19 (No. DAE4-601_Apr19)    | Apr-20                 |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B              | SN: GB39512475     | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Michael Weber      | Laboratory Technician             | Miller                 |
| Approved by:                    | Katja Pokovic      | Technical Manager                 | MUL                    |

Issued: October 17, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

## **Measurement Conditions**

DASY system configuration; as far as not given on page 1.

| DASY Version                 | DASY5                        | V52.10.3                         |
|------------------------------|------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation       | Ve.                              |
| Phantom                      | Modular Flat Phantom         |                                  |
| Distance Dipole Center - TSL | 10 mm                        | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4  mm, dz = 1.4  mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 3700 MHz ± 1 MHz             |                                  |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 37.7         | 3.12 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.2 ± 6 %   | 3.06 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 6.87 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 68.8 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.49 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 24.8 W/kg ± 19.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 51.0         | 3.55 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 49.7 ± 6 %   | 3.54 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              | , proprieta (m.  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.50 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 64.7 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.33 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.2 W/kg ± 19.5 % (k=2) |

Certificate No: D3700V2-1002\_Oct19 Page 3 of 8

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.0 Ω - 7.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.9 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 49.0 Ω - 6.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.9 dB       |

# **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.136 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

#### **DASY5 Validation Report for Head TSL**

Date: 17.10,2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1002

Communication System: UID 0 - CW; Frequency: 3700 MHz

Medium parameters used: f = 3700 MHz;  $\sigma = 3.06 \text{ S/m}$ ;  $\varepsilon_r = 37.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN3503; ConvF(7.5, 7.5, 7.5) @ 3700 MHz; Calibrated: 25.03.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2019

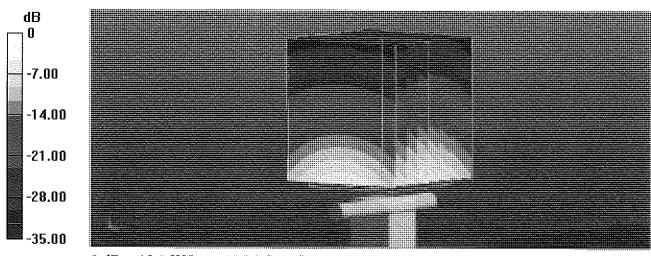
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

# Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm

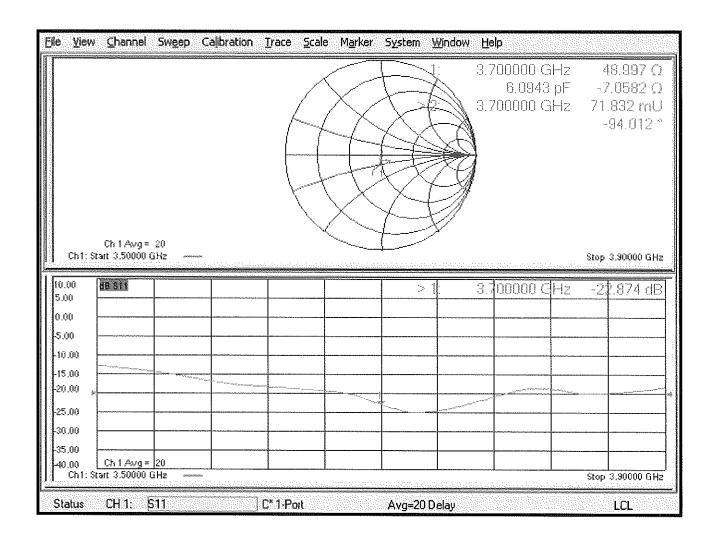
(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.51 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 6.87 W/kg; SAR(10 g) = 2.49 W/kg

Smallest distance from peaks to all points 3 dB below = 8.4 mm


Ratio of SAR at M2 to SAR at M1 = 73.3%

Maximum value of SAR (measured) = 13.3 W/kg



0 dB = 13.3 W/kg = 11.25 dBW/kg

# Impedance Measurement Plot for Head TSL



## **DASY5 Validation Report for Body TSL**

Date: 17.10.2019

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1002

Communication System: UID 0 - CW; Frequency: 3700 MHz

Medium parameters used: f = 3700 MHz;  $\sigma = 3.54 \text{ S/m}$ ;  $\varepsilon_r = 49.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN3503; ConvF(7.1, 7.1, 7.1) @ 3700 MHz; Calibrated: 25.03.2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04,2019

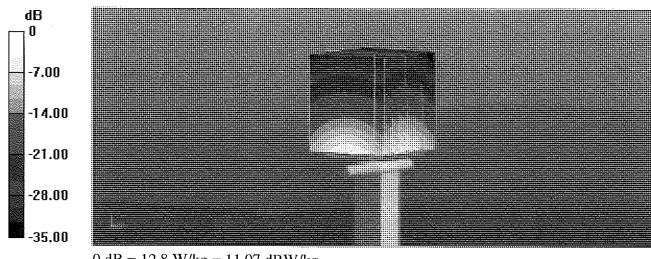
Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

# Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan , dist=1.4mm

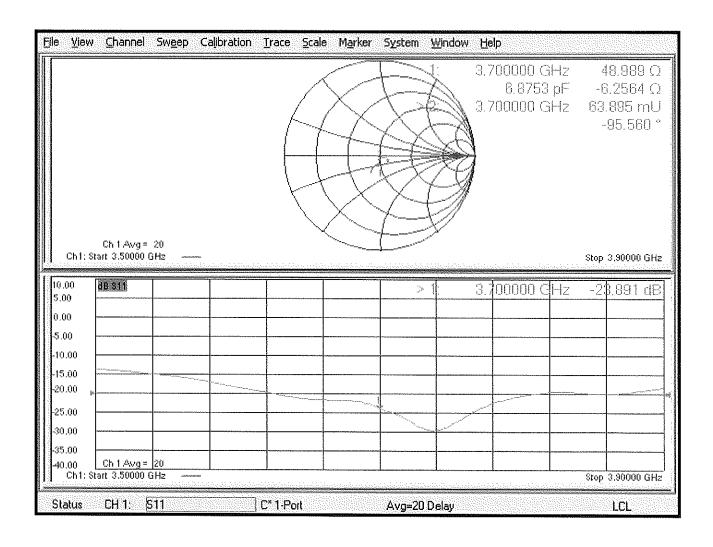
(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.22 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 6.5 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm


Ratio of SAR at M2 to SAR at M1 = 74.6%

Maximum value of SAR (measured) = 12.8 W/kg



0 dB = 12.8 W/kg = 11.07 dBW/kg

# Impedance Measurement Plot for Body TSL





#### **PCTEST**

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D3700V2 – SN:1002

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 17, 2020

Description: SAR Validation Dipole at 3700 MHz.

# Calibration Equipment used:

| Manufacturer       | Model     | Description                                   | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|-----------|-----------------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES    | S-Parameter Network Analyzer                  | 1/16/2020  | Annual       | 1/16/2021  | US39170118    |
| Agilent            | N5182A    | MXG Vector Signal Generator                   | 9/25/2020  | Annual       | 9/25/2021  | US46240505    |
| Amplifier Research | 15S1G6    | Amplifier                                     | CBT        | N/A          | CBT        | 343972        |
| Anritsu            | MA2411B   | Pulse Power Sensor                            | 1/21/2020  | Annual       | 1/21/2021  | 1207470       |
| Anritsu            | MA2411B   | Pulse Power Sensor                            | 1/21/2020  | Annual       | 1/21/2021  | 1339007       |
| Anritsu            | ML2495A   | Power Meter                                   | 1/15/2020  | Annual       | 1/15/2021  | 1328004       |
| Control Company    | 62344-734 | Therm./ Clock/ Humidity Monitor               | 3/18/2019  | Biennial     | 3/18/2021  | 192038436     |
| Control Company    | 4352      | Long Stem Thermometer                         | 6/26/2019  | Biennial     | 6/26/2021  | 192282744     |
| Keysight           | 772D      | Dual Directional Coupler                      | CBT        | N/A          | CBT        | MY52180215    |
| Agilent            | 85033E    | 3.5mm Standard Calibration Kit                | 6/6/2020   | Annual       | 6/6/2021   | MY53402352    |
| MiniCircuits       | VLF-6000+ | Low Pass Filter                               | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits      | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3    | Attenuator (3dB)                              | CBT        | N/A          | CBT        | 9406          |
| Pasternack         | NC-100    | Torque Wrench                                 | 8/4/2020   | Biennial     | 8/4/2022   | N/A           |
| SPEAG              | DAE4      | Data Acquisition Electronics                  | 4/14/2020  | Annual       | 4/14/2021  | 1532          |
| SPEAG              | DAE4      | Dasy Data Acquisition Electronics             | 3/19/2020  | Annual       | 3/19/2021  | 604           |
| SPEAG              | DAK-3.5   | Dielectric Assessment Kit                     | 5/12/2020  | Annual       | 5/12/2021  | 1070          |
| SPEAG              | EX3DV4    | SAR Probe                                     | 12/13/2019 | Annual       | 12/13/2020 | 7490          |
| SPEAG              | EX3DV4    | SAR Probe                                     | 3/20/2020  | Annual       | 3/20/2021  | 7421          |

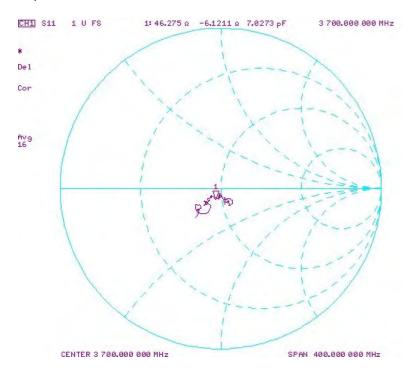
# Measurement Uncertainty = $\pm 23\%$ (k=2)

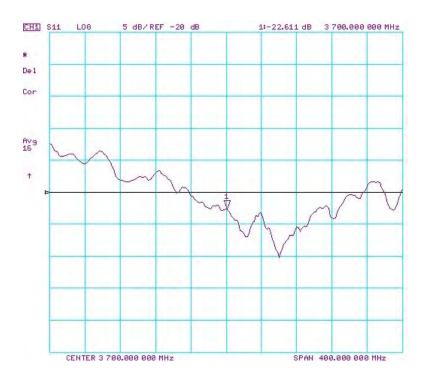
|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | 204          |

| Object:           | Date Issued: | Page 1 of 4 |
|-------------------|--------------|-------------|
| D3700V2 - SN:1002 | 10/17/2020   | rage ror4   |

## **DIPOLE CALIBRATION EXTENSION**

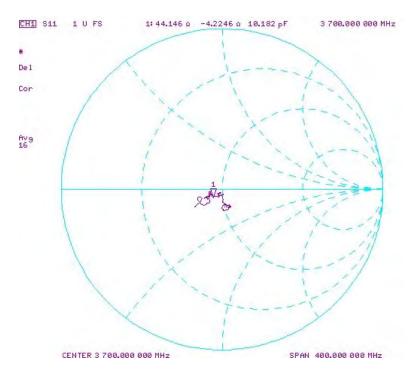
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

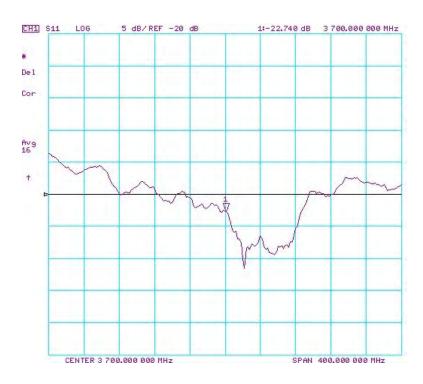

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |       | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (9/.) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|----------------|-----------------------------------------|-------|-------------------------------------------------|-------|---------------------------------------------------------------|--------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 10/17/2019          | 10/17/2020     | 1.136                                   | 6.880 | 6.91                                            | 0.44% | 2.480                                                         | 2.54         | 2.42%                | 49.0                                           | 46.3                                        | 2.7                      | -7.1                                                | -6.1                                             | 1.0                              | -22.9                                   | -22.6                                | 1.30%         | PASS      |
|                     |                |                                         |       |                                                 |       |                                                               |              |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |       | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (9/.) | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 10/17/2019          | 10/17/2020     | 1.136                                   | 6.470 | 6.77                                            | 4.64% | 2.320                                                         | 2.39         | 3.02%                | 49.0                                           | 44.1                                        | 4.9                      | -6.3                                                | -4.2                                             | 2.1                              | -23.9                                   | -22.7                                | 4.90%         | PASS      |

| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| D3700V2 - SN:1002 | 10/17/2020   | rage 2 01 4 |


#### Impedance & Return-Loss Measurement Plot for Head TSL






| Object:           | Date Issued: | Page 3 of 4 |
|-------------------|--------------|-------------|
| D3700V2 - SN:1002 | 10/17/2020   | rage 3 01 4 |

# Impedance & Return-Loss Measurement Plot for Body TSL





| Object:           | Date Issued: | Page 4 of 4 |
|-------------------|--------------|-------------|
| D3700V2 - SN:1002 | 10/17/2020   | raye 4 01 4 |



#### **PCTEST**

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D3700V2 – SN: 1002

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 17, 2021

Description: SAR Validation Dipole at 3700 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                         | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|-------------------------------------|------------|--------------|------------|---------------|
| Agilent               | 8753ES    | S-Parameter Vector Network Analyzer | 2/2/2021   | Annual       | 2/2/2022   | US39170122    |
| Agilent               | E4438C    | ESG Vector Signal Generator         | 10/17/2021 | Annual       | 10/17/2022 | MY45093852    |
| Amplifier Research    | 15S1G6    | Amplifier                           | CBT        | N/A          | CBT        | 343972        |
| Anritsu               | ML2495A   | Power Meter                         | 1/18/2021  | Annual       | 1/18/2022  | 0941001       |
| Anritsu               | MA2411B   | Pulse Power Sensor                  | 2/5/2021   | Annual       | 2/5/2022   | 0846215       |
| Anritsu               | MA2411B   | Pulse Power Sensor                  | 8/10/2021  | Annual       | 8/10/2022  | 1207364       |
| Control Company       | 4040      | Therm./ Clock/ Humidity Monitor     | 2/23/2021  | Annual       | 2/23/2022  | 160574418     |
| Control Company       | 4352      | Long Stem Thermometer               | 10/28/2020 | Biennial     | 10/28/2022 | 200670633     |
| Agilent               | 85033E    | 3.5mm Standard Calibration Kit      | 7/7/2021   | Annual       | 7/7/2022   | MY53402352    |
| Mini-Circuits         | VLF-6000+ | Low Pass Filter DC to 6000 MHz      | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                    | CBT        | N/A          | CBT        | 9406          |
| Keysight Technologies | 772D      | Bidirectional Coupler               | CBT        | N/A          | CBT        | N/A           |
| Pasternack            | NC-100    | Torque Wrench                       | 8/4/2020   | Biennial     | 8/4/2022   | N/A           |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit           | 5/12/2021  | Annual       | 5/12/2022  | 1070          |
| SPEAG                 | EX3DV4    | SAR Probe                           | 7/21/2021  | Annual       | 7/21/2022  | 7546          |
| SPEAG                 | EX3DV4    | SAR Probe                           | 1/18/2021  | Annual       | 1/18/2022  | 3837          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics   | 7/14/2021  | Annual       | 7/14/2022  | 1402          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics   | 1/13/2021  | Annual       | 1/13/2022  | 793           |

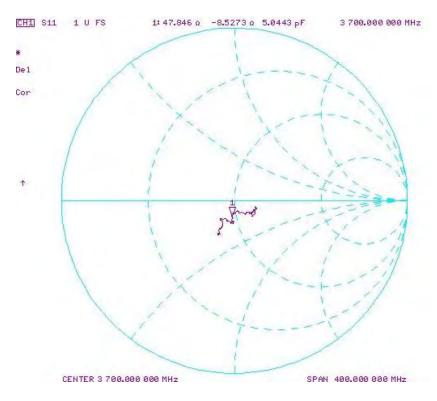
# Measurement Uncertainty = ±23% (k=2)

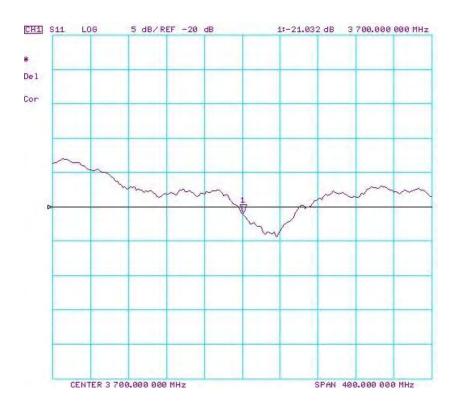
|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Department Manager | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | 20K          |

| Object:            | Date Issued: | Page 1 of 4  |
|--------------------|--------------|--------------|
| D3700V2 – SN: 1002 | 10/17/2021   | 1 age 1 of 4 |

# **DIPOLE CALIBRATION EXTENSION**

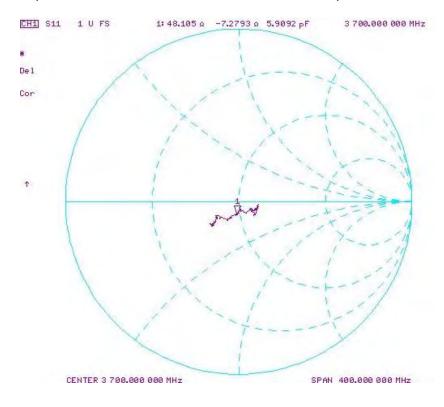
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

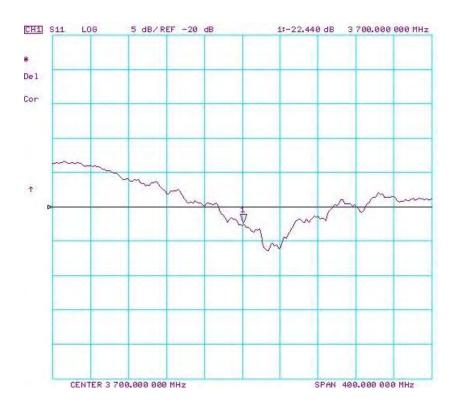

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |      | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | /0/ \ | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|------|-------------------------------------------------|-------|---------------------------------------------------------------|--------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 10/17/2019          | 10/17/2021        | 1.136                                   | 6.88 | 7.14                                            | 3.78% | 2.48                                                          | 2.65         | 6.85%                | 49.0                                           | 47.8                                        | 1.2                      | -7.1                                                | -8.5                                             | 1.4                              | -22.9                                   | -21.0                                | 12.00%        | PASS      |
|                     |                   |                                         |      |                                                 |       |                                                               |              |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |      | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | /0/ \ | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 10/17/2019          | 10/17/2021        | 1.136                                   | 6.47 | 6.78                                            | 4.79% | 2.32                                                          | 2.49         | 7.33%                | 49.0                                           | 48.1                                        | 0.9                      | -6.3                                                | -7.3                                             | 1.0                              | -23.9                                   | -22.4                                | 6.10%         | PASS      |

| Object:            | Date Issued: | Page 2 of 4 |  |
|--------------------|--------------|-------------|--|
| D3700V2 – SN: 1002 | 10/17/2021   | raye 2 014  |  |


# Impedance & Return-Loss Measurement Plot for Head TSL






| Object:            | Date Issued: | Page 3 of 4 |  |
|--------------------|--------------|-------------|--|
| D3700V2 – SN: 1002 | 10/17/2021   | rage 5 of 4 |  |

## Impedance & Return-Loss Measurement Plot for Body TSL





| Object:            | Date Issued: | Page 4 of 4 |  |
|--------------------|--------------|-------------|--|
| D3700V2 – SN: 1002 | 10/17/2021   | raye 4 01 4 |  |

## Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Certificate No: EX3-7427 Feb22

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Object

Element

CALIBRATION CERTIFICATE

EX3DV4 - SN:7427

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

February 22, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 09-Apr-21 (No. 217-03291/03292)   | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103244       | 09-Apr-21 (No. 217-03291)         | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103245       | 09-Apr-21 (No. 217-03292)         | Apr-22                 |
| Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343)         | Apr-22                 |
| DAE4                       | SN: 660          | 13-Oct-21 (No. DAE4-660_Oct21)    | Oct-22                 |
| Reference Probe ES3DV2     | SN: 3013         | 27-Dec-21 (No. ES3-3013_Dec21)    | Dec-22                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-20) | In house check; Jun-22 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-20) | In house check; Oct-22 |

Calibrated by:

Name Jeffrey Katzman **Function** 

Laboratory Technician

Approved by:

Niels Kuster

**Qualty Manager** 

Issued: February 24, 2022

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization  $\varphi$   $\varphi$  rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e.,  $\vartheta = 0$  is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7427\_Feb22 Page 2 of 23

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7427

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.55     | 0.41     | 0.59     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 99.4     | 98.3     | 97.0     |           |

Calibration Results for Modulation Response

| UID    | Communication System Name   |   | A<br>dB | B<br>dBõV | С     | D<br>dB | VR<br>mV | Max<br>dev. | Max<br>Unc <sup>E</sup><br>(k≕2) |
|--------|-----------------------------|---|---------|-----------|-------|---------|----------|-------------|----------------------------------|
| 0      | CW                          | Х | 0.00    | 0.00      | 1.00  | 0.00    | 145.7    | ± 3.5 %     | ± 4.7 %                          |
|        |                             | Y | 0.00    | 0.00      | 1.00  |         | 139.9    |             |                                  |
|        | ***                         | Z | 0.00    | 0.00      | 1.00  |         | 145.8    |             |                                  |
| 10352- | Pulse Waveform (200Hz, 10%) | Х | 20.00   | 90.42     | 19.79 | 10.00   | 60.0     | ± 2.9 %     | ± 9.6 %                          |
| AAA    |                             | Y | 2.01    | 63.56     | 8.55  |         | 60.0     |             |                                  |
|        |                             | Z | 20.00   | 90.65     | 19.94 |         | 60.0     |             |                                  |
| 10353- | Pulse Waveform (200Hz, 20%) | X | 20,00   | 93.13     | 19.91 | 6.99    | 80.0     | ± 2.2 %     | ± 9.6 %                          |
| AAA    |                             | Υ | 0.82    | 60.26     | 6.03  |         | 80.0     |             |                                  |
|        |                             | Z | 20.00   | 93.67     | 20.20 |         | 80.0     |             |                                  |
| 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00   | 98.17     | 20,84 | 3.98    | 95.0     | ±1.3%       | ± 9.6 %                          |
| AAA    |                             | Y | 0.41    | 60,00     | 4.99  |         | 95.0     |             |                                  |
|        |                             | Z | 20.00   | 98.66     | 21.04 |         | 95.0     |             |                                  |
| 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00   | 101.88    | 21.13 | 2.22    | 120.0    | ± 1.0 %     | ± 9.6 %                          |
| AAA    | · ·                         | Y | 0.24    | 60.00     | 4.42  |         | 120.0    |             |                                  |
|        |                             | Z | 20.00   | 100.46    | 20.38 |         | 120.0    |             |                                  |
| 10387- | QPSK Waveform, 1 MHz        | X | 1.57    | 65.18     | 14.28 | 1.00    | 150.0    | ± 2.6 %     | ± 9.6 %                          |
| AAA    |                             | Y | 1.50    | 66.17     | 14.51 |         | 150.0    |             |                                  |
|        |                             | Z | 1,57    | 64.95     | 14.19 |         | 150.0    |             |                                  |
| 10388- | QPSK Waveform, 10 MHz       | Х | 2.09    | 66.89     | 15.07 | 0.00    | 150.0    | ± 0.8 %     | ± 9.6 %                          |
| AAA    |                             | Y | 1.99    | 66.82     | 15.20 |         | 150.0    |             |                                  |
|        |                             | Z | 2.09    | 66.85     | 14,99 |         | 150.0    |             |                                  |
| 10396- | 64-QAM Waveform, 100 kHz    | X | 2.84    | 69.58     | 18.29 | 3.01    | 150.0    | ± 1.2 %     | ± 9.6 %                          |
| AAA    |                             | Y | 1.92    | 64.71     | 16.12 |         | 150.0    |             |                                  |
|        |                             | Z | 2.92    | 70.29     | 18.66 |         | 150.0    |             |                                  |
| 10399- | 64-QAM Waveform, 40 MHz     | Х | 3.44    | 66.64     | 15.49 | 0.00    | 150.0    | ± 1.7 %     | ± 9.6 %                          |
| AAA    |                             | Υ | 3.35    | 66.55     | 15.50 |         | 150.0    |             |                                  |
|        |                             | Z | 3.43    | 66.59     | 15.43 |         | 150.0    |             |                                  |
| 10414- | WLAN CCDF, 64-QAM, 40MHz    | Х | 4.82    | 65.43     | 15.42 | 0.00    | 150.0    | ± 3.3 %     | ± 9.6 %                          |
| AAA    |                             | Y | 4.64    | 65.37     | 15.40 |         | 150.0    |             |                                  |
|        |                             | Z | 4.84    | 65.41     | 15.40 |         | 150.0    |             |                                  |

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

<sup>&</sup>lt;sup>B</sup> Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7427

**Sensor Model Parameters** 

|   | C1<br>fF | C2<br>fF | α<br>V <sup>-1</sup> | T1<br>ms.V <sup>-2</sup> | T2<br>ms.V <sup>-1</sup> | T3<br>ms | T4<br>V <sup>-2</sup> | T5<br>V <sup>-1</sup> | Т6   |
|---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------|
| X | 44.2     | 335.62   | 36.48                | 8.80                     | 0.00                     | 5.08     | 0.97                  | 0.32                  | 1.01 |
| Y | 33.6     | 252.06   | 35.73                | 4.69                     | 0.00                     | 4.96     | 0.00                  | 0.19                  | 1.00 |
| Z | 47.0     | 356.87   | 36.54                | 8.61                     | 0.00                     | 5.09     | 1.16                  | 0.28                  | 1.01 |

## Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 145.5      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7427

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 30                   | 55.0                                  | 0.75                               | 14.81   | 14.81   | 14.81   | 0.00               | 1.00                       | ± 13.3 %     |
| 64                   | 54.2                                  | 0.75                               | 13.07   | 13.07   | 13.07   | 0.00               | 1.00                       | ± 13.3 %     |
| 750                  | 41.9                                  | 0.89                               | 9.84    | 9.84    | 9.84    | 0.52               | 0.80                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                               | 9.67    | 9.67    | 9.67    | 0.50               | 0.80                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                               | 8.45    | 8.45    | 8.45    | 0.40               | 0.86                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                               | 8.12    | 8.12    | 8.12    | 0.29               | 0.86                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                               | 7.38    | 7.38    | 7.38    | 0.34               | 0.90                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                               | 7.28    | 7.28    | 7.28    | 0.33               | 0.90                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                               | 6.83    | 6.83    | 6.83    | 0.41               | 0.90                       | ± 12.0 %     |
| 3500                 | 37.9                                  | 2.91                               | 6.42    | 6.42    | 6.42    | 0.35               | 1.30                       | ± 14.0 %     |
| 3700                 | 37.7                                  | 3,12                               | 6.38    | 6.38    | 6.38    | 0.35               | 1.30                       | ± 14.0 %     |
| 3900                 | 37.5                                  | 3.32                               | 6.18    | 6.18    | 6.18    | 0.40               | 1.60                       | ± 14.0 %     |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 100 MHz.

F At frequencies up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

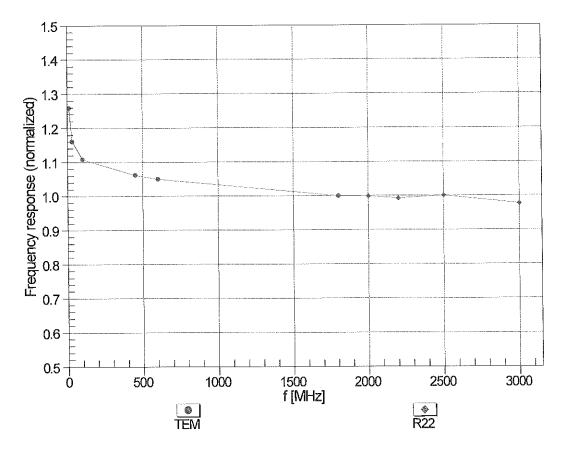
measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7427

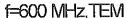
## Calibration Parameter Determined in Body Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity (S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|---------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 750                  | 55.5                                  | 0.96                            | 10.35   | 10.35   | 10.35   | 0.46               | 0.80                       | ± 12.0 %     |
| 835                  | 55.2                                  | 0.97                            | 9.99    | 9.99    | 9.99    | 0.34               | 0.99                       | ± 12.0 %     |
| 1750                 | 53.4                                  | 1.49                            | 8.07    | 8.07    | 8.07    | 0.38               | 0.86                       | ± 12.0 %     |
| 1900                 | 53,3                                  | 1.52                            | 7.73    | 7.73    | 7.73    | 0.40               | 0.86                       | ± 12.0 %     |
| 2300                 | 52.9                                  | 1.81                            | 7.28    | 7.28    | 7.28    | 0.44               | 0.90                       | ± 12.0 %     |
| 2450                 | 52.7                                  | 1.95                            | 7.24    | 7.24    | 7.24    | 0.36               | 0.90                       | ± 12.0 %     |
| 2600                 | 52.5                                  | 2.16                            | 6.93    | 6.93    | 6.93    | 0.34               | 0.90                       | ± 12.0 %     |
| 3500                 | 51.3                                  | 3.31                            | 5.87    | 5.87    | 5.87    | 0.40               | 1.40                       | ± 14.0 %     |
| 3700                 | 51.0                                  | 3.55                            | 5.83    | 5.83    | 5.83    | 0.40               | 1.40                       | ± 14.0 %     |
| 3900                 | 50.8                                  | 3.78                            | 5.61    | 5.61    | 5.61    | 0.40               | 1.70                       | ± 14.0 %     |


c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The requency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and nigner (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

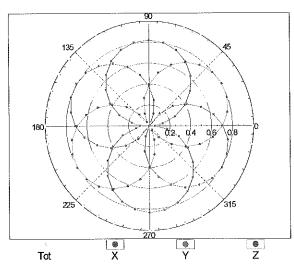
F At frequencies up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

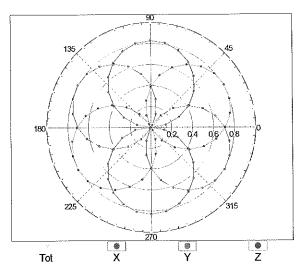
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is the part of the property of t

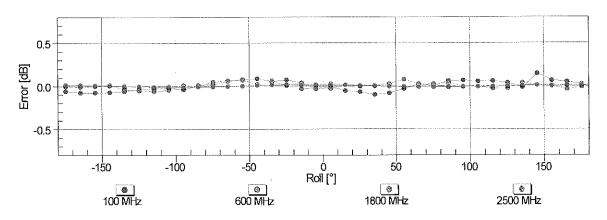

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



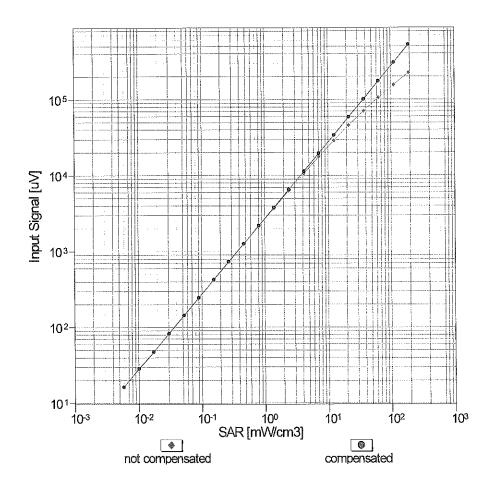

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

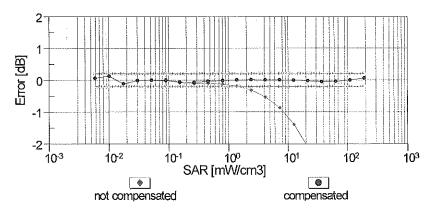

# Receiving Pattern ( $\phi$ ), $9 = 0^{\circ}$




f=600 MHz,TEM

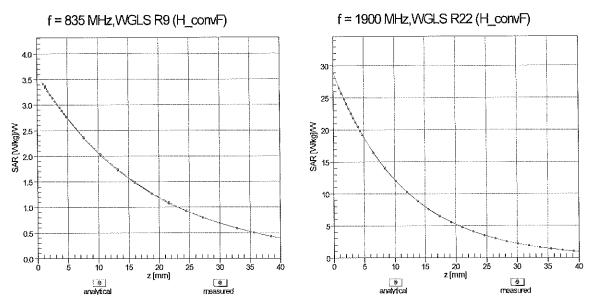
f=1800 MHz,R22



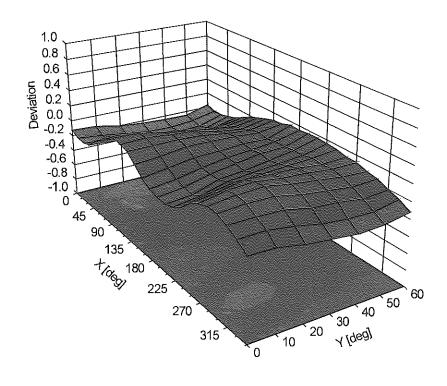






Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)

## **Conversion Factor Assessment**



Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz



Appendix: Modulation Calibration Parameters

| UID   | Rev         | odulation Calibration Parameters  Communication System Name | Group      | PAR          | Unc <sup>E</sup> |
|-------|-------------|-------------------------------------------------------------|------------|--------------|------------------|
|       |             | CW                                                          | cw         | (dB)<br>0.00 | (k=2)<br>± 4.7 % |
| 0     | -           | SAR Validation (Square, 100ms, 10ms)                        | Test       | 10.00        | ± 9.6 %          |
| 10010 | CAA         |                                                             | WCDMA      | 2.91         | ± 9.6 %          |
| 10011 | CAB         | UMTS-FDD (WCDMA)                                            | WLAN       | 1.87         | ± 9.6 %          |
| 10012 | CAB         | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps)                    | WLAN       | 9.46         | ± 9.6 %          |
| 10013 | CAB         | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)               | GSM        | 9.39         | ± 9.6 %          |
| 10021 | DAC         | GSM-FDD (TDMA, GMSK)                                        | GSM        | 9.57         | ± 9.6 %          |
| 10023 | DAC         | GPRS-FDD (TDMA, GMSK, TN 0)                                 |            | 6.56         | ± 9.6 %          |
| 10024 | DAC         | GPRS-FDD (TDMA, GMSK, TN 0-1)                               | GSM<br>GSM | 12.62        | ± 9.6 %          |
| 10025 | DAC         | EDGE-FDD (TDMA, 8PSK, TN 0)                                 |            | 9.55         | ± 9.6 %          |
| 10026 | DAC         | EDGE-FDD (TDMA, 8PSK, TN 0-1)                               | GSM        | 4.80         | ± 9.6 %          |
| 10027 | DAC         | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                             | GSM        |              |                  |
| 10028 | DAC         | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                           | GSM        | 3.55         | ± 9.6 %          |
| 10029 | DAC         | EDGE-FDD (TDMA, 8PSK, TN 0-1-2)                             | GSM        | 7.78         |                  |
| 10030 | CAA         | IEEE 802.15.1 Bluetooth (GFSK, DH1)                         | Bluetooth  | 5.30         | ± 9.6 %          |
| 10031 | CAA         | IEEE 802.15.1 Bluetooth (GFSK, DH3)                         | Bluetooth  | 1.87         | ± 9.6 %          |
| 10032 | CAA         | IEEE 802.15.1 Bluetooth (GFSK, DH5)                         | Bluetooth  | 1.16         | ± 9.6 %          |
| 10033 | CAA         | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)                   | Bluetooth  | 7.74         | ± 9.6 %          |
| 10034 | CAA         | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)                   | Bluetooth  | 4.53         | ± 9.6 %          |
| 10035 | CAA         | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)                   | Bluetooth  | 3.83         | ± 9.6 %          |
| 10036 | CAA         | IEEE 802.15.1 Bluetooth (8-DPSK, DH1)                       | Bluetooth  | 8.01         | ± 9.6 %          |
| 10037 | CAA         | IEEE 802.15.1 Bluetooth (8-DPSK, DH3)                       | Bluetooth  | 4.77         | ± 9.6 %          |
| 10038 | CAA         | IEEE 802.15.1 Bluetooth (8-DPSK, DH5)                       | Bluetooth  | 4.10         | ±96%             |
| 10039 | CAB         | CDMA2000 (1xRTT, RC1)                                       | CDMA2000   | 4.57         | ± 9.6 %          |
| 10042 | CAB         | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)         | AMPS       | 7.78         | ± 9.6 %          |
| 10044 | CAA         | IS-91/EIA/TIA-553 FDD (FDMA, FM)                            | AMPS       | 0.00         | ± 9.6 %          |
| 10048 | CAA         | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)                   | DECT       | 13.80        | ± 9.6 %          |
| 10049 | CAA         | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)                 | DECT       | 10.79        | ± 9.6 %          |
| 10056 | CAA         | UMTS-TDD (TD-SCDMA, 1.28 Mcps)                              | TD-SCDMA   | 11.01        | ± 9.6 %          |
| 10058 | DAC         | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)                           | GSM        | 6.52         | ± 9.6 %          |
| 10059 | CAB         | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)                    | WLAN       | 2.12         | ± 9.6 %          |
| 10060 | CAB         | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)                  | WLAN       | 2.83         | ± 9.6 %          |
| 10061 | CAB         | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)                   | WLAN       | 3.60         | ± 9.6 %          |
| 10062 | CAD         | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)                    | WLAN       | 8.68         | ± 9.6 %          |
| 10063 | CAD         | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)                    | WLAN       | 8.63         | ± 9.6 %          |
| 10064 | CAD         | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)                   | WLAN       | 9.09         | ± 9.6 %          |
| 10065 | CAD         | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)                   | WLAN       | 9.00         | ± 9.6 %          |
| 10066 | CAD         | IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps)                   | WLAN       | 9.38         | ± 9.6 %          |
| 10067 | CAD         | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)                   | WLAN       | 10,12        | ± 9.6 %          |
| 10068 | CAD         | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)                   | WLAN       | 10.24        | ± 9.6 %          |
| 10069 | CAD         | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)                   | WLAN       | 10.56        | ± 9.6 %          |
| 10071 | CAB         | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)               | WLAN       | 9,83         | ± 9.6 %          |
| 10072 | CAB         | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)              | WLAN       | 9.62         | ± 9.6 %          |
| 10073 | CAB         | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)              | WLAN       | 9.94         | ± 9.6 %          |
| 10074 |             | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)              | WLAN       | 10.30        | ± 9.6 %          |
| 10075 | +           | IEEE 802,11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)              | WLAN       | 10.77        | ± 9.6 %          |
| 10076 |             | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)              | WLAN       | 10.94        | ± 9.6 %          |
| 10073 | CAB         | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)              | WLAN       | 11.00        | ± 9.6 %          |
| 10077 | CAB         | CDMA2000 (1xRTT, RC3)                                       | CDMA2000   | 3.97         | ± 9.6 %          |
| 10081 |             | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)         | AMPS       | 4.77         | ± 9.6 %          |
| 10090 |             | GPRS-FDD (TDMA, GMSK, TN 0-4)                               | GSM        | 6.56         | ± 9,6 %          |
| 10090 | <del></del> | UMTS-FDD (HSDPA)                                            | WCDMA      | 3.98         | ± 9.6 %          |
| 10097 |             | UMTS-FDD (HSUPA, Subtest 2)                                 | WCDMA      | 3.98         | ± 9.6 %          |
| 10098 |             | EDGE-FDD (TDMA, 8PSK, TN 0-4)                               | GSM        | 9.55         | ± 9.6 %          |

|       |             | TE EDD (OG EDMA 1000) DD 00 MIL ODON           | LTC EDD | 5.67   | ± 9.6 %    |
|-------|-------------|------------------------------------------------|---------|--------|------------|
| 10100 | CAE         | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)       | LTE-FDD | 6.42   | ± 9.6 %    |
| 10101 | CAE         | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)     | LTE-FDD | 6.60   | ± 9.6 %    |
| 10102 | CAE         | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)     | LTE-FDD | 9.29   | ± 9.6 %    |
| 10103 | CAG         | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)       | LTE-TDD |        | ± 9.6 %    |
| 10104 | CAG         | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)     | LTE-TDD | 9.97   | ± 9.6 %    |
| 10105 | CAG         | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)     | LTE-TDD | 10.01  |            |
| 10108 | CAG         | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)       | LTE-FDD | 5.80   | ± 9.6 %    |
| 10109 | CAG         | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)     | LTE-FDD | 6.43   | ± 9.6 %    |
| 10110 | CAG         | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)        | LTE-FDD | 5.75   | ± 9.6 %    |
| 10111 | CAG         | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)      | LTE-FDD | 6.44   | ± 9.6 %    |
| 10112 | CAG         | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)     | LTE-FDD | 6.59   | ± 9.6 %    |
| 10113 | CAG         | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)      | LTE-FDD | 6.62   | ± 9.6 %    |
| 10114 | CAD         | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)  | WLAN    | 8.10   | ± 9.6 %    |
| 10115 | CAD         | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)  | WLAN    | 8,46   | ±9.6%      |
| 10116 | CAD         | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN    | 8.15   | ± 9.6 %    |
| 10117 | CAD         | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)       | WLAN    | 8.07   | ± 9,6 %    |
| 10118 | CAD         | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)       | WLAN    | 8.59   | ± 9.6 %    |
| 10119 | CAD         | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)      | WLAN    | 8.13   | ± 9.6 %    |
| 10140 | CAE         | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)     | LTE-FDD | 6.49   | ± 9.6 %    |
| 10141 | CAE         | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)     | LTE-FDD | 6.53   | ± 9.6 %    |
| 10142 | CAE         | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)        | LTE-FDD | 5.73   | ± 9.6 %    |
| 10143 | CAE         | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)      | LTE-FDD | 6.35   | ± 9.6 %    |
| 10144 | CAE         | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)      | LTE-FDD | 6,65   | ± 9.6 %    |
| 10145 | CAF         | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)      | LTE-FDD | 5.76   | ± 9.6 %    |
| 10146 | CAF         | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)    | LTE-FDD | 6.41   | ± 9.6 %    |
| 10147 | CAF         | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)    | LTE-FDD | 6.72   | ± 9.6 %    |
| 10149 | CAE         | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)      | LTE-FDD | 6.42   | ± 9.6 %    |
| 10150 | CAE         | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)      | LTE-FDD | 6.60   | ± 9.6 %    |
| 10151 | CAG         | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)        | LTE-TDD | 9,28   | ± 9.6 %    |
| 10152 | CAG         | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)      | LTE-TDD | 9.92   | ± 9.6 %    |
| 10153 | CAG         | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)      | LTE-TDD | 10.05  | ± 9.6 %    |
| 10154 | CAG         | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)        | LTE-FDD | 5.75   | ± 9.6 %    |
| 10155 | CAG         | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)      | LTE-FDD | 6.43   | ± 9.6 %    |
| 10156 | CAG         | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)         | LTE-FDD | 5.79   | ± 9.6 %    |
| 10157 | CAG         | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)       | LTE-FDD | 6.49   | ± 9.6 %    |
| 10158 | CAG         | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)      | LTE-FDD | 6.62   | ± 9.6 %    |
| 10159 | CAG         | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)       | LTE-FDD | 6.56   | ± 9.6 %    |
| 10160 | CAE         | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)        | LTE-FDD | 5.82   | ± 9.6 %    |
| 10161 | CAE         | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)      | LTE-FDD | 6.43   | ± 9.6 %    |
| 10162 | CAE         | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)      | LTE-FDD | 6.58   | ± 9.6 %    |
| 10166 | CAF         | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)       | LTE-FDD | 5.46   | ± 9.6 %    |
| 10167 | CAF         | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)     | LTE-FDD | 6.21   | ± 9.6 %    |
| 10168 | CAF         | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)     | LTE-FDD | 6.79   | ± 9.6 %    |
| 10169 | CAE         | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)          | LTE-FDD | 5.73   | ± 9.6 %    |
| 10170 | CAE         | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)        | LTE-FDD | 6.52   | ± 9.6 %    |
| 10171 | AAE         | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)        | LTE-FDD | 6.49   | ± 9.6 %    |
| 10172 | CAG         | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)          | LTE-TDD | 9.21   | ± 9.6 %    |
| 10173 | CAG         | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)        | LTE-TDD | 9.48   | ± 9.6 %    |
| 10174 | CAG         | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)        | LTE-TDD | 10.25  | ± 9.6 %    |
| 10175 | CAG         | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)          | LTE-FDD | 5.72   | ± 9.6 %    |
| 10176 | CAG         | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)        | LTE-FDD | 6.52   | ± 9.6 %    |
| 10177 | CAI         | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)           | LTE-FDD | 5.73   | ± 9.6 %    |
| 10178 | CAG         | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)         | LTE-FDD | 6.52   | ± 9.6 %    |
| 10178 | CAG         | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)        | LTE-FDD | 6.50   | ± 9.6 %    |
| 10179 | <del></del> | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)         | LTE-FDD | 6.50   | ± 9.6 %    |
| 10180 | CAE         | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)          | LTE-FDD | 5.73   | ± 9.6 %    |
| 10101 | UME         | ETEN DO (OON DINING FIND, TO MINE, OF ON)      | LLILADO | 1 0.10 | 1 = 0.0 70 |

|       |        |                                               |           | 0.50   |         |
|-------|--------|-----------------------------------------------|-----------|--------|---------|
| 10182 | CAE    | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)       | LTE-FDD   | 6.52   | ± 9.6 % |
| 10183 | AAD    | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)       | LTE-FDD   | 6.50   | ± 9.6 % |
| 10184 | CAE    | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)          | LTE-FDD   | 5.73   | ± 9.6 % |
| 10185 | CAE    | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)        | LTE-FDD   | 6.51   | ± 9.6 % |
| 10186 | AAE    | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)        | LTE-FDD   | 6.50   | ± 9.6 % |
| 10187 | CAF    | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)        | LTE-FDD   | 5.73   | ± 9.6 % |
| 10188 | CAF    | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)      | LTE-FDD   | 6.52   | ± 9.6 % |
| 10189 | AAF    | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)      | LTE-FDD   | 6.50   | ± 9.6 % |
| 10193 | CAD    | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)  | WLAN      | 8.09   | ± 9.6 % |
| 10194 | CAD    | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN      | 8.12   | ± 9.6 % |
| 10195 | CAD    | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN      | 8.21   | ± 9.6 % |
| 10196 | CAD    | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)       | WLAN      | 8.10   | ± 9.6 % |
| 10197 | CAD    | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)      | WLAN      | 8.13   | ± 9.6 % |
| 10198 | CAD    | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)      | WLAN      | 8.27   | ± 9.6 % |
| 10219 | CAD    | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)       | WLAN      | 8.03   | ± 9.6 % |
| 10220 | CAD    | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)    | WLAN      | 8.13   | ± 9.6 % |
| 10221 | CAD    | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)    | WLAN      | 8.27   | ± 9.6 % |
| 10222 | CAD    | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)        | WLAN      | 8.06   | ± 9.6 % |
| 10223 | CAD    | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)      | WLAN      | 8.48   | ± 9.6 % |
| 10224 | CAD    | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)     | WLAN      | 8.08   | ± 9.6 % |
| 10225 | CAB    | UMTS-FDD (HSPA+)                              | WCDMA     | 5.97   | ± 9.6 % |
| 10226 | CAB    | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)      | LTE-TDD   | 9.49   | ± 9.6 % |
| 10227 | CAB    | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)      | LTE-TDD   | 10.26  | ± 9.6 % |
| 10228 | CAB    | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)        | LTE-TDD   | 9.22   | ± 9.6 % |
| 10229 | CAD    | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)        | LTE-TDD   | 9.48   | ± 9.6 % |
| 10230 | CAD    | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)        | LTE-TDD   | 10.25  | ± 9.6 % |
| 10231 | CAD    | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)          | LTE-TDD   | 9.19   | ± 9.6 % |
| 10232 | CAG    | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)        | LTE-TDD   | 9.48   | ± 9.6 % |
| 10233 | CAG    | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)        | LTE-TDD   | 10.25  | ± 9.6 % |
| 10234 | CAG    | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)          | LTE-TDD   | 9.21   | ± 9,6 % |
| 10235 | CAG    | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)       | LTE-TDD   | 9.48   | ± 9.6 % |
| 10236 | CAG    | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)       | LTE-TDD   | 10.25  | ± 9.6 % |
| 10237 | CAG    | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)         | LTE-TDD   | 9.21   | ± 9.6 % |
| 10238 | CAF    | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)       | LTE-TDD   | 9.48   | ± 9.6 % |
| 10239 | CAF    | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)       | LTE-TDD   | 10.25  | ± 9.6 % |
| 10240 | CAF    | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)         | LTE-TDD   | 9.21   | ± 9.6 % |
| 10241 | CAB    | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)    | LTE-TDD   | 9.82   | ± 9.6 % |
| 10242 | CAB    | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)    | LTE-TDD   | 9.86   | ± 9.6 % |
| 10243 | CAB    | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)      | LTE-TDD   | 9.46   | ± 9.6 % |
| 10244 | CAD    | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)      | LTE-TDD   | 10.06  | ± 9.6 % |
| 10245 | CAD    | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)      | LTE-TDD   | 10.06  | ± 9.6 % |
| 10246 | CAD    | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)        | LTE-TDD   | 9.30   | ± 9.6 % |
| 10247 | CAG    | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)      | LTE-TDD   | 9.91   | ± 9.6 % |
| 10248 | CAG    | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)      | LTE-TDD   | 10.09  | ± 9.6 % |
| 10249 | CAG    | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)        | LTE-TDD   | 9.29   | ± 9.6 % |
| 10250 | CAG    | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)     | LTE-TDD   | 9.81   | ± 9.6 % |
| 10251 | CAG    | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)     | LTE-TDD   | 10.17  | ± 9.6 % |
| 10252 | CAG    | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)       | LTE-TDD   | 9.24   | ± 9.6 % |
| 10253 | CAF    | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)     | LTE-TDD   | 9.90   | ± 9.6 % |
| 10254 | CAF    | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)     | LTE-TDD   | 10,14  | ± 9.6 % |
| 10255 | CAF    | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)       | LTE-TDD   | 9.20   | ± 9.6 % |
| 10256 | CAB    | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)   | LTE-TDD   | 9.96   | ± 9.6 % |
| 10257 | CAB    | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)   | LTE-TDD   | 10.08  | ± 9.6 % |
| 10258 | CAB    | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)     | LTE-TDD   | 9.34   | ± 9.6 % |
| 10259 |        | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)     | LTE-TDD   | 9.98   | ± 9.6 % |
| 10260 | CAD    | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)     | LTE-TDD   | 9.97   | ± 9.6 % |
| 10200 | 1 3/10 | i = \( \tau \) i = \( \tau \) i = \( \tau \)  | 1 515 100 | 1 0.01 |         |

| 40004    | 0.45 | LTE TOD (CO FOMA 4000/ DD 2 MH- ODSY)                     | LTE TOD  | 9.24  | ± 9.6 %     |
|----------|------|-----------------------------------------------------------|----------|-------|-------------|
| 10261    | CAD  | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)                   | LTE-TDD  | 9.24  | ±9.6 %      |
| 10262    | CAG  | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)                 | LTE-TDD  |       | ± 9.6 %     |
| 10263    | CAG  | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)                 | LTE-TDD  | 10.16 | ±9.6%       |
| 10264    | CAG  | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)                   | LTE-TDD  | 9.23  |             |
| 10265    | CAG  | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)                | LTE-TDD  | 9.92  | ± 9.6 %     |
| 10266    | CAG  | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)                | LTE-TDD  | 10.07 | ± 9.6 %     |
| 10267    | CAG  | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)                  | LTE-TDD  | 9.30  | ±9.6 %      |
| 10268    | CAF  | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)                | LTE-TDD  | 10.06 | ± 9.6 %     |
| 10269    | CAF  | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)                | LTE-TDD  | 10.13 | ± 9.6 %     |
| 10270    | CAF  | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)                  | LTE-TDD  | 9.58  | ± 9.6 %     |
| 10274    | CAB  | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)                 | WCDMA    | 4.87  | ± 9.6 %     |
| 10275    | CAB  | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)                  | WCDMA    | 3.96  | ±9.6%       |
| 10277    | CAA  | PHS (QPSK)                                                | PHS      | 11.81 | ±9.6%       |
| 10278    | CAA  | PHS (QPSK, BW 884MHz, Rolloff 0.5)                        | PHS      | 11.81 | ±9.6 %      |
| 10279    | CAA  | PHS (QPSK, BW 884MHz, Rolloff 0.38)                       | PHS      | 12.18 | ± 9,6 %     |
| 10290    | AAB  | CDMA2000, RC1, SO55, Full Rate                            | CDMA2000 | 3,91  | ± 9.6 %     |
| 10291    | AAB  | CDMA2000, RC3, SO55, Full Rate                            | CDMA2000 | 3.46  | ± 9.6 %     |
| 10292    | AAB  | CDMA2000, RC3, SO32, Full Rate                            | CDMA2000 | 3.39  | ± 9.6 %     |
| 10293    | AAB  | CDMA2000, RC3, SO3, Full Rate                             | CDMA2000 | 3.50  | ± 9.6 %     |
| 10295    | AAB  | CDMA2000, RC1, SO3, 1/8th Rate 25 fr.                     | CDMA2000 | 12.49 | ± 9.6 %     |
| 10293    | AAD  | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)                   | LTE-FDD  | 5.81  | ± 9.6 %     |
| 10297    | AAD  | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)                    | LTE-FDD  | 5.72  | ± 9.6 %     |
| 10290    | AAD  | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)                  | LTE-FDD  | 6.39  | ± 9.6 %     |
|          |      | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)                  | LTE-FDD  | 6.60  | ± 9.6 %     |
| 10300    | AAD  |                                                           |          |       | ± 9.6 %     |
| 10301    | AAA  | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)        | WiMAX    | 12.03 | <del></del> |
| 10302    | AAA  | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WiMAX    | 12.57 | ±9.6 %      |
| 10303    | AAA  | IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)       | WiMAX    | 12.52 | ± 9.6 %     |
| 10304    | AAA  | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)       | WiMAX    | 11.86 | ±9.6%       |
| 10305    | AAA  | IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)      | WiMAX    | 15.24 | ± 9.6 %     |
| 10306    | AAA  | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)      | WiMAX    | 14.67 | ± 9.6 %     |
| 10307    | AAA  | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)       | WiMAX    | 14.49 | ± 9.6 %     |
| 10308    | AAA  | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)      | WiMAX    | 14.46 | ± 9.6 %     |
| 10309    | AAA  | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)    | WiMAX    | 14.58 | ± 9.6 %     |
| 10310    | AAA  | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3     | WiMAX    | 14.57 | ± 9,6 %     |
| 10311    | AAD  | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)                  | LTE-FDD  | 6.06  | ± 9.6 %     |
| 10313    | AAA  | iDEN 1:3                                                  | IDEN     | 10.51 | ± 9.6 %     |
| 10314    | AAA  | iDEN 1:6                                                  | iDEN     | 13.48 | ± 9.6 %     |
| 10315    | AAB  | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)         | WLAN     | 1.71  | ± 9.6 %     |
| 10316    | AAB  | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)     | WLAN     | 8.36  | ± 9.6 %     |
| 10317    | AAD  | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)           | WLAN     | 8.36  | ± 9.6 %     |
| 10352    | AAA  | Pulse Waveform (200Hz, 10%)                               | Generic  | 10.00 | ± 9.6 %     |
| 10353    | AAA  | Pulse Waveform (200Hz, 20%)                               | Generic  | 6.99  | ± 9.6 %     |
| 10354    | AAA  | Pulse Waveform (200Hz, 40%)                               | Generic  | 3.98  | ± 9.6 %     |
| 10355    | AAA  | Pulse Waveform (200Hz, 60%)                               | Generic  | 2.22  | ± 9.6 %     |
| 10356    | AAA  | Pulse Waveform (200Hz, 80%)                               | Generic  | 0.97  | ± 9.6 %     |
| 10387    | AAA  | QPSK Waveform, 1 MHz                                      | Generic  | 5.10  | ± 9.6 %     |
| 10388    | AAA  | QPSK Waveform, 10 MHz                                     | Generic  | 5.22  | ± 9.6 %     |
| 10386    | AAA  | 64-QAM Waveform, 100 kHz                                  | Generic  | 6.27  | ± 9.6 %     |
| 10398    | AAA  | 64-QAM Waveform, 40 MHz                                   | Generic  | 6.27  | ± 9.6 %     |
| <b>—</b> |      |                                                           |          |       | ± 9.6 %     |
| 10400    | AAE  | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)               | WLAN     | 8.37  |             |
| 10401    | AAE  | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)               | WLAN     | 8.60  | ± 9.6 %     |
| 10402    | AAE  | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)               | WLAN     | 8.53  | ± 9.6 %     |
| 10403    | AAB  | CDMA2000 (1xEV-DO, Rev. 0)                                | CDMA2000 | 3.76  | ± 9.6 %     |
| 10404    | AAB  | CDMA2000 (1xEV-DO, Rev. A)                                | CDMA2000 | 3.77  | ± 9.6 %     |
| 10406    | AAB  | CDMA2000, RC3, SO32, SCH0, Full Rate                      | CDMA2000 | 5,22  | ± 9.6 %     |
| 10410    | AAG  | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TDD  | 7.82  | ± 9.6 %     |

| 10414          | AAA | WLAN CCDF, 64-QAM, 40MHz                                                                        | Generic       | 8.54   | ± 9.6 %    |
|----------------|-----|-------------------------------------------------------------------------------------------------|---------------|--------|------------|
| 10415          | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)                                               | WLAN          | 1.54   | ± 9.6 %    |
| 10416          | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)                                           | WLAN          | 8.23   | ± 9.6 %    |
| 10417          | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)                                               | WLAN          | 8.23   | ± 9.6 %    |
| 10418          | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)                                       | WLAN          | 8.14   | ± 9.6 %    |
| 10419          | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)                                      | WLAN          | 8.19   | ± 9.6 %    |
| 10422          | AAC | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)                                                    | WLAN          | 8.32   | ± 9.6 %    |
| 10423          | AAC | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)                                                 | WLAN          | 8.47   | ± 9.6 %    |
| 10424          | AAC | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)                                                 | WLAN          | 8.40   | ± 9.6 %    |
| 10425          | AAC | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)                                                     | WLAN          | 8.41   | ± 9.6 %    |
| 10426          | AAC | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)                                                   | WLAN          | 8.45   | ± 9.6 %    |
| 10427          | AAC | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)                                                  | WLAN          | 8.41   | ± 9.6 %    |
| 10430          | AAD | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)                                                                | LTE-FDD       | 8.28   | ± 9.6 %    |
| 10431          | AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)                                                               | LTE-FDD       | 8.38   | ± 9.6 %    |
| 10432          | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)                                                               | LTE-FDD       | 8.34   | ± 9.6 %    |
| 10433          | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)                                                               | LTE-FDD       | 8,34   | ± 9.6 %    |
| 10434          | AAA | W-CDMA (BS Test Model 1, 64 DPCH)                                                               | WCDMA         | 8.60   | ± 9.6 %    |
| 10435          | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)                                                   | LTE-TDD       | 7.82   | ± 9.6 %    |
| 10447          | AAD | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)                                                  | LTE-FDD       | 7.56   | ± 9.6 %    |
| 10448          | AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)                                                  | LTE-FDD       | 7.53   | ± 9.6 %    |
| 10449          | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)                                                  | LTE-FDD       | 7.51   | ± 9.6 %    |
| 10450          | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)                                                 | LTE-FDD       | 7.48   | ± 9.6 %    |
| 10451          | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)                                                 | WCDMA         | 7.59   | ± 9.6 %    |
| 10453          | AAD | Validation (Square, 10ms, 1ms)                                                                  | Test          | 10.00  | ± 9.6 %    |
| 10456          | AAC | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc)                                                    | WLAN          | 8.63   | ± 9.6 %    |
| 10457          | AAA | UMTS-FDD (DC-HSDPA)                                                                             | WCDMA         | 6.62   | ± 9.6 %    |
| 10458          | AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers)                                                          | CDMA2000      | 6.55   | ± 9.6 %    |
| 10459          | AAA | CDMA2000 (1xEV-DO, Rev. B, 3 carriers)                                                          | CDMA2000      | 8.25   | ± 9.6 %    |
| 10460          | AAA | UMTS-FDD (WCDMA, AMR)                                                                           | WCDMA         | 2.39   | ± 9.6 %    |
| 10461          | AAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)                                                  | LTE-TDD       | 7.82   | ± 9.6 %    |
| 10462          | AAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)                                                | LTE-TDD       | 8.30   | ± 9.6 %    |
| 10463          | AAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)                                                | LTE-TDD       | 8.56   | ± 9.6 %    |
| 10464          | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)                                                    | LTE-TDD       | 7.82   | ± 9.6 %    |
| 10465          | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)                                                  | LTE-TDD       | 8.32   | ± 9.6 %    |
| 10466          | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)                                                  | LTE-TDD       | 8.57   | ± 9.6 %    |
| 10467          | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)                                                    | LTE-TDD       | 7.82   | ± 9.6 %    |
| 10468          | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)                                                  | LTE-TDD       | 8.32   | ± 9.6 %    |
| 10469          | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)                                                  | LTE-TDD       | 8.56   | ± 9.6 %    |
| 10470          | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)                                                   | LTE-TDD       | 7.82   | ± 9.6 %    |
| 10471          | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)                                                 | LTE-TDD       | 8.32   | ± 9.6 %    |
| 10472          | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)                                                 | LTE-TDD       | 8.57   | ± 9.6 %    |
| 10473          | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)                                                   | LTE-TDD       | 7.82   | ± 9.6 %    |
| 10474<br>10475 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)                                                 | LTE-TDD       | 8.32   | ± 9.6 %    |
| 10475          | AAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD       | 8.57   | ± 9.6 %    |
| 10477          | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)                                                 | LTE-TDD       | 8,32   | ±9.6%      |
| 10478          | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)                                                | LTE-TDD       | 8.57   | ±9.6 %     |
| 10479          | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, 0L Sub)                                                | LTE TOD       | 7.74   | ± 9.6 %    |
| 10481          | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)                                              | LTE-TDD       | 8.18   | ± 9.6 %    |
| 10482          | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)                                                  | LTE-TDD       | 7.71   | ± 9.6 %    |
| 10483          | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)                                                   | LTE-TDD       | 8.39   | ± 9.6 %    |
| 10484          | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)                                                | LTE-TDD       | 8.47   | ± 9.6 %    |
| 10485          | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)                                                  | LTE-TDD       | 7.59   | ± 9.6 %    |
| 10486          | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)                                                | LTE-TDD       | 8.38   | ± 9.6 %    |
| 10487          | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)                                                | LTE-TDD       | 8.60   | ± 9.6 %    |
| 10488          | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)                                                 | LTE-TDD       | 7.70   | ± 9.6 %    |
| 10100          |     | 1 (20 Coup)                                                                                     | L 1 L - 1 D D | [ r./U | 1 7 2.0 /0 |

| 10499   AAF   LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 6-QAM, UL Sub)   LTE-TDD   0.3.1   ± 9.6 %   10491   AAE   LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 6-QAM, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10491   AAE   LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 6-QAM, UL Sub)   LTE-TDD   0.3.41   ± 9.6 %   10492   AAE   LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 6-QAM, UL Sub)   LTE-TDD   0.3.41   ± 9.6 %   10493   AAE   LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 6-QAM, UL Sub)   LTE-TDD   0.3.71   ± 9.6 %   10494   AAF   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 6-QAM, UL Sub)   LTE-TDD   0.3.77   ± 9.6 %   10496   AAF   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 6-QAM, UL Sub)   LTE-TDD   0.3.71   ± 9.6 %   10496   AAF   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 6-QAM, UL Sub)   LTE-TDD   0.3.71   ± 9.6 %   10496   AAF   LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 6-QAM, UL Sub)   LTE-TDD   0.3.41   ± 9.6 %   10496   AAB   LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)   LTE-TDD   0.3.62   ± 9.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)   LTE-TDD   0.3.62   ± 9.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)   LTE-TDD   0.3.62   ± 9.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)   LTE-TDD   0.3.62   ± 9.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)   LTE-TDD   0.3.42   ± 9.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)   LTE-TDD   0.3.42   ± 9.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)   LTE-TDD   0.3.42   ± 9.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)   LTE-TDD   0.3.42   ± 9.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)   LTE-TDD   0.3.42   ± 9.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)   LTE-TDD   0.3.42   ± 9.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)   LTE-TDD   0.3.42   ± 9.6 %   10590   AAE   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)   LTE-TDD   0.3.54   ± 9.6 %   10590   AAE   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM |                                         | <b>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</b> |                                                     |                     |              |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|-----------------------------------------------------|---------------------|--------------|---------------------------------------|
| 10491   AAE   LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 6-QAM, UL Sub)   LTE-TDD   R.41   19.6 %   10493   AAE   LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)   LTE-TDD   R.41   19.6 %   10494   AAF   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 6-QAM, UL Sub)   LTE-TDD   R.41   19.6 %   10494   AAF   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 6-QAM, UL Sub)   LTE-TDD   R.47   19.6 %   10496   AAF   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 6-QAM, UL Sub)   LTE-TDD   R.47   19.6 %   10496   AAF   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 6-QAM, UL Sub)   LTE-TDD   R.47   19.6 %   10496   AAF   LTE-TDD (SC-FDMA, 100% RB, 14 MHz, 20FSK, UL Sub)   LTE-TDD   R.50   10496   AAF   LTE-TDD (SC-FDMA, 100% RB, 14 MHz, 16-QAM, UL Sub)   LTE-TDD   R.50   19.6 %   10499   AAB   LTE-TDD (SC-FDMA, 100% RB, 14 MHz, 16-QAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 10PAM, UL Sub)   LTE-TDD   R.50   19.6 %   10590   AAC   LTE-TDD (SC-FDMA, 100% RB, 5 MH | 10489                                   | AAF                                          | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)   | LTE-TDD             | 8.31         | ± 9.6 %                               |
| 10492   AAE   LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)   LTE-TDD   8,55   9,6 %   10494   AAF   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)   LTE-TDD   7,74   1,9,6 %   10495   AAF   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)   LTE-TDD   8,37   3,9,6 %   10497   AAB   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)   LTE-TDD   8,37   4,9,6 %   10497   AAB   LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)   LTE-TDD   5,44   4,9,6 %   10497   AAB   LTE-TDD (SC-FDMA, 100% RB, 1,4 MHz, 20-SK, UL Sub)   LTE-TDD   7,67   2,9,6 %   10499   AAB   LTE-TDD (SC-FDMA, 100% RB, 1,4 MHz, 20-SK, UL Sub)   LTE-TDD   8,30   4,9,6 %   10499   AAB   LTE-TDD (SC-FDMA, 100% RB, 1,4 MHz, 20-SK, UL Sub)   LTE-TDD   8,68   2,9,6 %   10499   AAB   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)   LTE-TDD   8,68   2,9,6 %   10500   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)   LTE-TDD   8,68   2,9,6 %   10500   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)   LTE-TDD   8,44   4,9,6 %   10500   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)   LTE-TDD   8,52   2,9,6 %   10500   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)   LTE-TDD   8,52   2,9,6 %   10500   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)   LTE-TDD   8,52   2,9,6 %   10500   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)   LTE-TDD   8,54   2,9,6 %   10500   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)   LTE-TDD   8,44   2,9,6 %   10500   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)   LTE-TDD   8,44   2,9,6 %   10500   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)   LTE-TDD   8,44   2,9,6 %   10500   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)   LTE-TDD   8,45   2,9,6 %   10500   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)   LTE-TDD   8,45   2,9,6 %   10500   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)   LTE-TDD   8,45   2,9,6 %   10500   AAE   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)   LTE-TDD   8,45   2,9,6 %   10500   AAE   LT | 10490                                   | AAF                                          | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)   | LTE-TDD             | 8.54         | ± 9.6 %                               |
| 10493   AAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10491                                   | AAE                                          | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)     | LTE-TDD             | 7.74         | ± 9.6 %                               |
| 10494   AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10492                                   | AAE                                          | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)   | LTE-TDD             | 8.41         | ± 9.6 %                               |
| 10495   AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10493                                   | AAE                                          | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)   | LTE-TDD             | 8.55         | ± 9.6 %                               |
| 10495   AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10494                                   | AAF                                          | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)     | LTE-TDD             | 7.74         | ± 9.6 %                               |
| 10497   AAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10495                                   | AAF                                          | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)   | LTE-TDD             | 8.37         |                                       |
| 10498   AAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10496                                   | AAF                                          | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)   | LTE-TDD             | 8,54         | ± 9.6 %                               |
| 10499   AAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10497                                   | AAB                                          | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)   | LTE-TDD             | 7.67         | ± 9.6 %                               |
| 10500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10498                                   | AAB                                          | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD             | 8.40         | ± 9.6 %                               |
| 10501   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 46-QAM, UL Sub)   LTE-TDD   8.44   ± 9.6 %   10502   AAC   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QFSK, UL Sub)   LTE-TDD   8.52   ± 9.6 %   10503   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QFSK, UL Sub)   LTE-TDD   8.31   ± 9.6 %   10504   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QFSK, UL Sub)   LTE-TDD   8.31   ± 9.6 %   10505   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QFSK, UL Sub)   LTE-TDD   8.31   ± 9.6 %   10505   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10505   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QFSK, UL Sub)   LTE-TDD   8.56   ± 9.6 %   10507   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QFSK, UL Sub)   LTE-TDD   8.56   ± 9.6 %   10509   AAF   LTE-TDD (SC-FDMA, 100% RB, 16 MHz, QFSK, UL Sub)   LTE-TDD   8.55   ± 9.6 %   10509   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QFSK, UL Sub)   LTE-TDD   7.79   ± 9.6 %   10510   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QFSK, UL Sub)   LTE-TDD   8.51   ± 9.6 %   10511   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QFSK, UL Sub)   LTE-TDD   8.51   ± 9.6 %   10512   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   8.51   ± 9.6 %   10513   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10514   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10515   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10514   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10515   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10516   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10518   AAC   LTE-TDD   LTE-TDD   1.74   ± 9 | 10499                                   | AAB                                          | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD             | 8.68         | ±9.6%                                 |
| 10501   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 46-QAM, UL Sub)   LTE-TDD   8.44   ± 9.6 %   10502   AAC   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QFSK, UL Sub)   LTE-TDD   8.52   ± 9.6 %   10503   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QFSK, UL Sub)   LTE-TDD   8.31   ± 9.6 %   10504   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QFSK, UL Sub)   LTE-TDD   8.31   ± 9.6 %   10505   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QFSK, UL Sub)   LTE-TDD   8.31   ± 9.6 %   10505   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10505   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QFSK, UL Sub)   LTE-TDD   8.56   ± 9.6 %   10507   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QFSK, UL Sub)   LTE-TDD   8.56   ± 9.6 %   10509   AAF   LTE-TDD (SC-FDMA, 100% RB, 16 MHz, QFSK, UL Sub)   LTE-TDD   8.55   ± 9.6 %   10509   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QFSK, UL Sub)   LTE-TDD   7.79   ± 9.6 %   10510   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QFSK, UL Sub)   LTE-TDD   8.51   ± 9.6 %   10511   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QFSK, UL Sub)   LTE-TDD   8.51   ± 9.6 %   10512   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   8.51   ± 9.6 %   10513   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10514   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10515   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10514   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10515   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10516   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10518   AAC   LTE-TDD   LTE-TDD   1.74   ± 9 | 10500                                   | AAC                                          | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)     | LTE-TDD             | 7.67         | ± 9.6 %                               |
| 10502   AAC   LTE-TDD (SC-FDMA, 100% RB, 3 MHz, G4-QAM, UL Sub)   LTE-TDD   8.52   ± 9.6 %   10503   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, GFSK, UL Sub)   LTE-TDD   7.72   ± 9.6 %   10505   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, G4-QAM, UL Sub)   LTE-TDD   8.51   ± 9.6 %   10505   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, G4-QAM, UL Sub)   LTE-TDD   8.54   ± 9.6 %   10506   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, G4-QAM, UL Sub)   LTE-TDD   8.54   ± 9.6 %   10506   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, G4-QAM, UL Sub)   LTE-TDD   8.56   ± 9.6 %   10508   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, G4-QAM, UL Sub)   LTE-TDD   8.55   ± 9.6 %   10508   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, G4-QAM, UL Sub)   LTE-TDD   8.55   ± 9.6 %   10508   AAF   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, G4-QAM, UL Sub)   LTE-TDD   8.55   ± 9.6 %   10510   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, G4-QAM, UL Sub)   LTE-TDD   8.49   ± 9.6 %   10511   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, G4-QAM, UL Sub)   LTE-TDD   8.49   ± 9.6 %   10513   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, G4-QAM, UL Sub)   LTE-TDD   8.51   ± 9.6 %   10513   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, G4-QAM, UL Sub)   LTE-TDD   8.41   ± 9.6 %   10513   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, G4-QAM, UL Sub)   LTE-TDD   8.42   ± 9.6 %   10513   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, G4-QAM, UL Sub)   LTE-TDD   8.42   ± 9.6 %   10514   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, G4-QAM, UL Sub)   LTE-TDD   8.45   ± 9.6 %   10516   AAA   IEEE 802.11b WiFl 24 GHz (DSS) 2 Mbps, 99pc dc)   WLAN   1.58   ± 9.6 %   10516   AAA   IEEE 802.11b WiFl 24 GHz (DSS) 2 Mbps, 99pc dc)   WLAN   1.57   ± 9.6 %   10517   AAA   IEEE 802.11b WiFl 24 GHz (DSS) 2 Mbps, 99pc dc)   WLAN   1.57   ± 9.6 %   10519   AAC   IEEE 802.11ah WiFl 5 GHz (OFDM, 10 Mbps, 99pc dc)   WLAN   1.57   ± 9.6 %   10520   AAC   IEEE 802.11ah WiFl 5 GHz (OFDM, 10 Mbps, 99pc dc)   WLAN   8.21   ± 9.6 %   10524   AAC   IEEE 802.11ah WiFl 5 GHz (OFDM, 10 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10524   AAC  | 10501                                   | AAC                                          |                                                     | LTE-TDD             |              | ± 9.6 %                               |
| 10503   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, GPSK, LI Sub)   LTE-TDD   7.72   ± 9.6 %   10504   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, GPSK, LI Sub)   LTE-TDD   8.31   ± 9.6 %   10505   AAF   LTE-TDD (SC-FDMA, 100% RB, 5 MHz, GPSK, LI Sub)   LTE-TDD   7.74   ± 9.6 %   10506   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, GPSK, LI Sub)   LTE-TDD   7.74   ± 9.6 %   10507   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, GPSK, LI Sub)   LTE-TDD   7.74   ± 9.6 %   10508   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, GPSK, LI Sub)   LTE-TDD   8.55   ± 9.6 %   10508   AAF   LTE-TDD (SC-FDMA, 100% RB, 10 MHz, GPSK, LI Sub)   LTE-TDD   7.99   ± 9.6 %   10509   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, GPSK, LI Sub)   LTE-TDD   7.99   ± 9.6 %   10511   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, GPSK, LI Sub)   LTE-TDD   7.99   ± 9.6 %   10511   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, GPSK, LI Sub)   LTE-TDD   8.49   ± 9.6 %   10511   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, GPSK, LI Sub)   LTE-TDD   8.51   ± 9.6 %   10512   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, GPSK, LI Sub)   LTE-TDD   7.74   ± 9.6 %   10513   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, GPSK, LI Sub)   LTE-TDD   7.74   ± 9.6 %   10514   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, GPSK, LI Sub)   LTE-TDD   7.74   ± 9.6 %   10514   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, GPSK, LI Sub)   LTE-TDD   7.74   ± 9.6 %   10516   AAA   LEEE S02.11b WIFI 2.4 GHz (DSSS, 5.6 Mbps, 99pc dc)   WLAN   1.58   ± 9.6 %   10516   AAA   LEEE S02.11b WIFI 2.4 GHz (DSSS, 5.6 Mbps, 99pc dc)   WLAN   1.58   ± 9.6 %   10516   AAA   LEEE S02.11b WIFI 2.4 GHz (DSSS, 5.6 Mbps, 99pc dc)   WLAN   1.58   ± 9.6 %   10510   AAC   LEEE S02.11b WIFI 2.4 GHz (DSSS, 5.6 Mbps, 99pc dc)   WLAN   1.59   ± 9.6 %   10510   AAC   LEEE S02.11b WIFI 2.4 GHz (DSSS, 5.6 Mbps, 99pc dc)   WLAN   1.59   ± 9.6 %   10510   AAC   LEEE S02.11b WIFI 2.4 GHz (DSSS, 10 Mbps, 99pc dc)   WLAN   1.59   5%   10510   AAC   LEEE S02.11b WIFI 2.4 GHz (DSSS, 10 Mbps, 99pc dc)   WLAN   8.32   ± 9.6 %   10520   AAC   LEEE S02.11b WIF | 10502                                   | AAC                                          | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)   |                     | <u> </u>     |                                       |
| 10504   AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10503                                   | AAF                                          | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)     |                     | -            | <del></del>                           |
| 10505   AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10504                                   | AAF                                          | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)   |                     |              |                                       |
| 10508   AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10505                                   | AAF                                          |                                                     |                     | +            | <del></del>                           |
| 10507   AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10506                                   | AAF                                          |                                                     | <u> </u>            | <del></del>  | ļ                                     |
| 10508 AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *************************************** |                                              |                                                     |                     |              |                                       |
| 10509   AAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                              |                                                     |                     | <del></del>  |                                       |
| 10510   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)   LTE-TDD   8.49   ± 9.6 %   10511   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)   LTE-TDD   8.51   ± 9.6 %   10512   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QFSK, UL Sub)   LTE-TDD   8.42   ± 9.6 %   10513   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)   LTE-TDD   8.42   ± 9.6 %   10514   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)   LTE-TDD   8.45   ± 9.6 %   10515   AAA   IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)   WLAN   1.58   ± 9.6 %   10516   AAA   IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)   WLAN   1.57   ± 9.6 %   10517   AAA   IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)   WLAN   1.58   ± 9.6 %   10518   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)   WLAN   1.58   ± 9.6 %   10519   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)   WLAN   8.33   ± 9.6 %   10520   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)   WLAN   8.33   ± 9.6 %   10521   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)   WLAN   8.12   ± 9.6 %   10521   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)   WLAN   8.12   ± 9.6 %   10524   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10524   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10524   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10525   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10526   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10526   AAC   IEEE 802.11ah WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10526   AAC   IEEE 802.11ah WiFi (AMHz, MCS0, 99pc dc)   WLAN   8.45   ± 9.6 %   10526   AAC   IEEE 802.11ac WiFi (AMHz, MCS0, 99pc dc)   WLAN   8.45   ± 9.6 %   10528   AAC   IEEE 802.11ac WiFi (AMHz, MCS0, 99pc dc)   WLAN   8.45   ± 9.6 %   10536   AAC   IEEE 802.11ac WiFi (AMHz, MCS0, 99pc dc)   WLAN   8.45  |                                         |                                              |                                                     | 1                   | <del></del>  |                                       |
| 10511   AAE   LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)   LTE-TDD   8.51   ± 9.6 %   10512   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)   LTE-TDD   7.74   ± 9.6 %   10513   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)   LTE-TDD   8.42   ± 9.6 %   10514   AAF   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)   LTE-TDD   8.45   ± 9.6 %   10515   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)   LTE-TDD   8.45   ± 9.6 %   10515   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)   LTE-TDD   8.45   ± 9.6 %   10515   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)   LTE-TDD   8.45   ± 9.6 %   10516   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)   LTE-TDD   8.45   ± 9.6 %   10516   AAA   LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 100% RD, 20 MLAN   1.58   ± 9.6 %   10517   AAA   LTE-TDD WIF1 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)   WILAN   1.58   ± 9.6 %   10518   AAC   LTE-TDD WIF1 2.4 GHz (OFDM, 9 Mbps, 99pc dc)   WILAN   8.23   ± 9.6 %   10519   AAC   LTE-TDD WIF1 5 GHz (OFDM, 18 Mbps, 99pc dc)   WILAN   8.39   ± 9.6 %   10520   AAC   LTE-TDD WIF1 5 GHz (OFDM, 18 Mbps, 99pc dc)   WILAN   8.12   ± 9.6 %   10521   AAC   LTE-TDD WIF1 5 GHz (OFDM, 36 Mbps, 99pc dc)   WILAN   8.45   ± 9.6 %   10522   AAC   LTE-TDD WIF1 5 GHz (OFDM, 36 Mbps, 99pc dc)   WILAN   8.45   ± 9.6 %   10523   AAC   LTE-TDD WIF1 5 GHz (OFDM, 36 Mbps, 99pc dc)   WILAN   8.45   ± 9.6 %   10524   AAC   LTE-TDD WIF1 5 GHz (OFDM, 48 Mbps, 99pc dc)   WILAN   8.27   ± 9.6 %   10525   AAC   LTE-TDD WIF1 5 GHz (OFDM, 48 Mbps, 99pc dc)   WILAN   8.27   ± 9.6 %   10526   AAC   LTE-TDD WIF1 5 GHz (OFDM, 48 Mbps, 99pc dc)   WILAN   8.27   ± 9.6 %   10526   AAC   LTE-TDD WIF1 5 GHz (OFDM, 48 Mbps, 99pc dc)   WILAN   8.21   ± 9.6 %   10526   AAC   LTE-TDD WIF1 5 GHz (OFDM, 48 Mbps, 99pc dc)   WILAN   8.21   ± 9.6 %   10526   AAC   LTE-TDD WIF1 5 GHz (OFDM, 48 Mbps, 99pc dc)   WILAN   8.26   ± 9.6 %   10526   AAC   LTE-TDD WIF1 (20MHz, MCS0, 99pc dc)   WILAN   8.26   ± 9.6 %   10526   AAC   LTE-TDD   |                                         |                                              |                                                     | T                   | <del></del>  | ļ                                     |
| 10512   AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                              |                                                     |                     | <del> </del> |                                       |
| 10513   AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                              | <u> </u>                                            |                     |              | · · · · · · · · · · · · · · · · · · · |
| 10514   AAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                              |                                                     |                     | +            | <del>- </del>                         |
| 10515   AAA   IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)   WLAN   1.58   ± 9.6 %   10516   AAA   IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)   WLAN   1.57   ± 9.6 %   10517   AAA   IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)   WLAN   1.58   ± 9.6 %   10518   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)   WLAN   8.23   ± 9.6 %   10520   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)   WLAN   8.39   ± 9.6 %   10520   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)   WLAN   8.12   ± 9.6 %   10521   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)   WLAN   8.12   ± 9.6 %   10521   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)   WLAN   7.97   ± 9.6 %   10522   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10523   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10524   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)   WLAN   8.27   ± 9.6 %   10525   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)   WLAN   8.27   ± 9.6 %   10526   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)   WLAN   8.27   ± 9.6 %   10526   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)   WLAN   8.27   ± 9.6 %   10525   AAC   IEEE 802.11a/h WiFi (20MHz, MCS0, 99pc dc)   WLAN   8.36   ± 9.6 %   10526   AAC   IEEE 802.11a/h WiFi (20MHz, MCS0, 99pc dc)   WLAN   8.36   ± 9.6 %   10527   AAC   IEEE 802.11a/h WiFi (20MHz, MCS2, 99pc dc)   WLAN   8.36   ± 9.6 %   10531   AAC   IEEE 802.11a/h WiFi (20MHz, MCS3, 99pc dc)   WLAN   8.36   ± 9.6 %   10532   AAC   IEEE 802.11a/h WiFi (20MHz, MCS3, 99pc dc)   WLAN   8.36   ± 9.6 %   10533   AAC   IEEE 802.11a/h WiFi (20MHz, MCS3, 99pc dc)   WLAN   8.36   ± 9.6 %   10533   AAC   IEEE 802.11a/h WiFi (20MHz, MCS3, 99pc dc)   WLAN   8.38   ± 9.6 %   10533   AAC   IEEE 802.11a/h WiFi (20MHz, MCS3, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11a/h WiFi (40MHz, MCS3, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802. |                                         |                                              | <u> </u>                                            |                     | <del>-</del> |                                       |
| 10516   AAA   IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)   WLAN   1.57   ± 9.6 %   10517   AAA   IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)   WLAN   1.58   ± 9.6 %   10518   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)   WLAN   8.23   ± 9.6 %   10519   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)   WLAN   8.39   ± 9.6 %   10520   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)   WLAN   8.12   ± 9.6 %   10521   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)   WLAN   7.97   ± 9.6 %   10522   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10523   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10523   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.08   ± 9.6 %   10524   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.27   ± 9.6 %   10525   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.26   ± 9.6 %   10526   AAC   IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)   WLAN   8.36   ± 9.6 %   10526   AAC   IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)   WLAN   8.42   ± 9.6 %   10527   AAC   IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)   WLAN   8.21   ± 9.6 %   10529   AAC   IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)   WLAN   8.36   ± 9.6 %   10531   AAC   IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)   WLAN   8.36   ± 9.6 %   10531   AAC   IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)   WLAN   8.38   ± 9.6 %   10533   AAC   IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)   WLAN   8.43   ± 9.6 %   10533   AAC   IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)   WLAN   8.43   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)   W |                                         |                                              | <del> </del>                                        |                     |              |                                       |
| 10517   AAA   IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mpps, 99pc dc)   WLAN   1.58   ± 9.6 %   10518   AAC   IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)   WLAN   8.23   ± 9.6 %   10519   AAC   IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)   WLAN   8.39   ± 9.6 %   10520   AAC   IEEE 802.11a/n WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)   WLAN   8.12   ± 9.6 %   10521   AAC   IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)   WLAN   7.97   ± 9.6 %   10522   AAC   IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)   WLAN   7.97   ± 9.6 %   10523   AAC   IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10524   AAC   IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)   WLAN   8.27   ± 9.6 %   10524   AAC   IEEE 802.11a/n WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)   WLAN   8.27   ± 9.6 %   10525   AAC   IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)   WLAN   8.26   ± 9.6 %   10526   AAC   IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)   WLAN   8.21   ± 9.6 %   10526   AAC   IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)   WLAN   8.21   ± 9.6 %   10528   AAC   IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)   WLAN   8.36   ± 9.6 %   10529   AAC   IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)   WLAN   8.36   ± 9.6 %   10531   AAC   IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)   WLAN   8.36   ± 9.6 %   10533   AAC   IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)   WLAN   8.43   ± 9.6 %   10533   AAC   IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)   WLAN   8.43   ± 9.6 %   10533   AAC   IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)   WLAN   8.45   ± 9.6 %   10534   AAC   IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)   WLAN   8.45   ± 9.6  |                                         |                                              |                                                     |                     |              | ··                                    |
| 10518   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)   WLAN   8.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                              |                                                     |                     | <del></del>  |                                       |
| 10519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                              |                                                     |                     | +            |                                       |
| 10520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                              |                                                     | <u> </u>            |              | <del> </del>                          |
| 10521   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)   WLAN   7.97   ± 9.6 %   10522   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)   WLAN   8.45   ± 9.6 %   10523   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)   WLAN   8.08   ± 9.6 %   10524   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)   WLAN   8.27   ± 9.6 %   10525   AAC   IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)   WLAN   8.36   ± 9.6 %   10526   AAC   IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)   WLAN   8.36   ± 9.6 %   10526   AAC   IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)   WLAN   8.21   ± 9.6 %   10528   AAC   IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)   WLAN   8.36   ± 9.6 %   10529   AAC   IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)   WLAN   8.36   ± 9.6 %   10531   AAC   IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)   WLAN   8.36   ± 9.6 %   10532   AAC   IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)   WLAN   8.36   ± 9.6 %   10533   AAC   IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)   WLAN   8.29   ± 9.6 %   10533   AAC   IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)   WLAN   8.38   ± 9.6 %   10535   AAC   IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)   WLAN   8.45   ± 9.6 %   10536   AAC   IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)   WLAN   8.45   ± 9.6 %   10536   AAC   IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)   WLAN   8.45   ± 9.6 %   10537   AAC   IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)   WLAN   8.45   ± 9.6 %   10537   AAC   IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)   WLAN   8.45   ± 9.6 %   10538   AAC   IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)   WLAN   8.44   ± 9.6 %   10538   AAC   IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)   WLAN   8.45   ± 9.6 %   10540   AAC   IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)   WLAN   8.45   ± 9.6 %   10540   AAC   IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)   WLAN   8.46   ± 9.6 %   10543   AAC   IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)   WLAN   8.46   ± 9.6 %   10544   AAC   IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)   WLAN   8.65   ± 9.6 %   10545   AAC   IEEE 802.11ac WiF |                                         |                                              |                                                     | · <del> </del> ···· |              | <del></del>                           |
| 10522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                              |                                                     |                     |              |                                       |
| 10523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                              |                                                     |                     |              | <del></del>                           |
| 10524 AAC IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) WLAN 8.27 ± 9.6 % 10525 AAC IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc) WLAN 8.36 ± 9.6 % 10526 AAC IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) WLAN 8.42 ± 9.6 % 10527 AAC IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc) WLAN 8.21 ± 9.6 % 10528 AAC IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc) WLAN 8.36 ± 9.6 % 10529 AAC IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc) WLAN 8.36 ± 9.6 % 10531 AAC IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) WLAN 8.43 ± 9.6 % 10532 AAC IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) WLAN 8.29 ± 9.6 % 10533 AAC IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.38 ± 9.6 % 10534 AAC IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) WLAN 8.35 ± 9.6 % 10535 AAC IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) WLAN 8.45 ± 9.6 % 10536 AAC IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) WLAN 8.45 ± 9.6 % 10537 AAC IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) WLAN 8.45 ± 9.6 % 10538 AAC IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) WLAN 8.45 ± 9.6 % 10537 AAC IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) WLAN 8.45 ± 9.6 % 10538 AAC IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) WLAN 8.44 ± 9.6 % 10538 AAC IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) WLAN 8.44 ± 9.6 % 10540 AAC IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 % 10541 AAC IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 % 10542 AAC IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) WLAN 8.65 ± 9.6 % 10543 AAC IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) WLAN 8.65 ± 9.6 % 10544 AAC IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) WLAN 8.65 ± 9.6 % 10545 AAC IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) WLAN 8.65 ± 9.6 % 10544 AAC IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) WLAN 8.65 ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                              |                                                     |                     |              | <del> </del>                          |
| 10525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                              |                                                     |                     |              |                                       |
| 10526       AAC       IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)       WLAN       8.42       ± 9.6 %         10527       AAC       IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)       WLAN       8.21       ± 9.6 %         10528       AAC       IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)       WLAN       8.36       ± 9.6 %         10529       AAC       IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)       WLAN       8.43       ± 9.6 %         10531       AAC       IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)       WLAN       8.29       ± 9.6 %         10532       AAC       IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)       WLAN       8.38       ± 9.6 %         10533       AAC       IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)       WLAN       8.45       ± 9.6 %         10534       AAC       IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)       WLAN       8.45       ± 9.6 %         10535       AAC       IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)       WLAN       8.45       ± 9.6 %         10536       AAC       IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)       WLAN       8.32       ± 9.6 %         10537       AAC       IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)       WLAN       8.54       ± 9.6 %         10540       AAC       IEEE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                              |                                                     |                     |              |                                       |
| 10527   AAC   IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)   WLAN   8.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                              |                                                     |                     |              |                                       |
| 10528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | ·                                            |                                                     |                     |              |                                       |
| 10529       AAC       IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)       WLAN       8.36       ± 9.6 %         10531       AAC       IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)       WLAN       8.43       ± 9.6 %         10532       AAC       IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)       WLAN       8.29       ± 9.6 %         10533       AAC       IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)       WLAN       8.38       ± 9.6 %         10534       AAC       IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)       WLAN       8.45       ± 9.6 %         10535       AAC       IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)       WLAN       8.45       ± 9.6 %         10536       AAC       IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)       WLAN       8.32       ± 9.6 %         10537       AAC       IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)       WLAN       8.44       ± 9.6 %         10538       AAC       IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)       WLAN       8.54       ± 9.6 %         10540       AAC       IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)       WLAN       8.39       ± 9.6 %         10541       AAC       IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                              |                                                     |                     |              | <del></del>                           |
| 10531       AAC       IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)       WLAN       8.43       ± 9.6 %         10532       AAC       IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)       WLAN       8.29       ± 9.6 %         10533       AAC       IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)       WLAN       8.38       ± 9.6 %         10534       AAC       IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)       WLAN       8.45       ± 9.6 %         10535       AAC       IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)       WLAN       8.32       ± 9.6 %         10536       AAC       IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)       WLAN       8.44       ± 9.6 %         10537       AAC       IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)       WLAN       8.54       ± 9.6 %         10538       AAC       IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)       WLAN       8.54       ± 9.6 %         10540       AAC       IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)       WLAN       8.46       ± 9.6 %         10541       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10545       AAC       IEEE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                              |                                                     |                     |              |                                       |
| 10532       AAC       IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)       WLAN       8.29       ± 9.6 %         10533       AAC       IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)       WLAN       8.38       ± 9.6 %         10534       AAC       IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)       WLAN       8.45       ± 9.6 %         10535       AAC       IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)       WLAN       8.45       ± 9.6 %         10536       AAC       IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)       WLAN       8.32       ± 9.6 %         10537       AAC       IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)       WLAN       8.54       ± 9.6 %         10538       AAC       IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)       WLAN       8.54       ± 9.6 %         10540       AAC       IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)       WLAN       8.39       ± 9.6 %         10541       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.47       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                              |                                                     |                     |              |                                       |
| 10533 AAC IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)  10534 AAC IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)  10535 AAC IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)  10536 AAC IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)  10537 AAC IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)  10538 AAC IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)  10538 AAC IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)  10540 AAC IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)  10541 AAC IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)  10542 AAC IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)  10543 AAC IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)  10544 AAC IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)  10545 AAC IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)  10546 AAC IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)  10547 AAC IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)  10548 AAC IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)  10549 AAC IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)  10540 AAC IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)  10541 AAC IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)  10543 AAC IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)  10544 AAC IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)  10545 AAC IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)  10546 WLAN 8.55 ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                              |                                                     |                     |              |                                       |
| 10534       AAC       IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)       WLAN       8.45       ± 9.6 %         10535       AAC       IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)       WLAN       8.45       ± 9.6 %         10536       AAC       IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)       WLAN       8.32       ± 9.6 %         10537       AAC       IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)       WLAN       8.44       ± 9.6 %         10538       AAC       IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)       WLAN       8.54       ± 9.6 %         10540       AAC       IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)       WLAN       8.39       ± 9.6 %         10541       AAC       IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)       WLAN       8.46       ± 9.6 %         10542       AAC       IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10544       AAC       IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)       WLAN       8.47       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.55       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                              |                                                     |                     |              |                                       |
| 10535       AAC       IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)       WLAN       8.45       ± 9.6 %         10536       AAC       IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)       WLAN       8.32       ± 9.6 %         10537       AAC       IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)       WLAN       8.44       ± 9.6 %         10538       AAC       IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)       WLAN       8.54       ± 9.6 %         10540       AAC       IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)       WLAN       8.39       ± 9.6 %         10541       AAC       IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)       WLAN       8.46       ± 9.6 %         10542       AAC       IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10544       AAC       IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)       WLAN       8.47       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.55       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                              |                                                     |                     |              |                                       |
| 10536       AAC       IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)       WLAN       8.32       ± 9.6 %         10537       AAC       IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)       WLAN       8.44       ± 9.6 %         10538       AAC       IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)       WLAN       8.54       ± 9.6 %         10540       AAC       IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)       WLAN       8.39       ± 9.6 %         10541       AAC       IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)       WLAN       8.46       ± 9.6 %         10542       AAC       IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10544       AAC       IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)       WLAN       8.47       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.55       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                              |                                                     |                     |              |                                       |
| 10537       AAC       IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)       WLAN       8.44       ± 9.6 %         10538       AAC       IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)       WLAN       8.54       ± 9.6 %         10540       AAC       IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)       WLAN       8.39       ± 9.6 %         10541       AAC       IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)       WLAN       8.46       ± 9.6 %         10542       AAC       IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10544       AAC       IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)       WLAN       8.47       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.55       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                       |                                              |                                                     |                     |              |                                       |
| 10538       AAC       IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)       WLAN       8.54       ± 9.6 %         10540       AAC       IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)       WLAN       8.39       ± 9.6 %         10541       AAC       IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)       WLAN       8.46       ± 9.6 %         10542       AAC       IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10544       AAC       IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)       WLAN       8.47       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.55       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b> </b>                                |                                              |                                                     | <del></del>         |              |                                       |
| 10540       AAC       IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)       WLAN       8.39       ± 9.6 %         10541       AAC       IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)       WLAN       8.46       ± 9.6 %         10542       AAC       IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10544       AAC       IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)       WLAN       8.47       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.55       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                              |                                                     |                     |              | · <del> </del>                        |
| 10541       AAC       IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)       WLAN       8.46       ± 9.6 %         10542       AAC       IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10544       AAC       IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)       WLAN       8.47       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.55       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                              |                                                     |                     |              | 3                                     |
| 10542       AAC       IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)       WLAN       8.65       ± 9.6 %         10543       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10544       AAC       IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)       WLAN       8.47       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.55       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                |                                              |                                                     |                     |              | <u> </u>                              |
| 10543       AAC       IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)       WLAN       8.65       ± 9.6 %         10544       AAC       IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)       WLAN       8.47       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.55       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                              |                                                     |                     |              | ·-                                    |
| 10544       AAC       IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)       WLAN       8.47       ± 9.6 %         10545       AAC       IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)       WLAN       8.55       ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                              |                                                     |                     |              |                                       |
| 10545 AAC IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) WLAN 8.55 ± 9.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                              |                                                     |                     |              | ~ <del></del>                         |
| 105.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                |                                              | <del>}</del>                                        |                     |              |                                       |
| 10040   MAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                              | <del>}</del>                                        |                     |              |                                       |
| 1 1 1 7 1 7 1 1 7 1 1 7 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10046                                   | AAC                                          | THELE OUZ. I FAC VVIET (OUWINZ, IVICSZ, 99PC CC)    | VVLAN               | 8.35         | ± 9.6 %                               |

| 10547 | ۸۸۵  | IEEE 902 44 no MEE (90MHz MCC2, 90no do)                | I MAIL A NI  | T a 40 | 1.08%   |
|-------|------|---------------------------------------------------------|--------------|--------|---------|
| 10547 | AAC  | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc)               | WLAN         | 8.49   | ± 9.6 % |
| 10548 | AAC  | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc)               | WLAN         | 8.37   | ± 9.6 % |
| 10550 | AAC  | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)               | WLAN         | 8.39   | ± 9.6 % |
| 10551 | AAC  | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)               | WLAN         | 8.50   | ± 9.6 % |
| 10552 | AAC  | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc)               | WLAN         | 8.42   | ± 9.6 % |
| 10553 | AAC  | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)               | WLAN         | 8.45   | ±9.6%   |
| 10554 | AAD  | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc)              | WLAN         | 8.48   | ±9.6%   |
| 10555 | AAD  | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc)              | WLAN         | 8.47   | ± 9.6 % |
| 10556 | AAD  | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc)              | WLAN         | 8.50   | ± 9.6 % |
| 10557 | AAD  | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc)              | WLAN         | 8.52   | ± 9.6 % |
| 10558 | AAD  | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc)              | WLAN         | 8.61   | ± 9.6 % |
| 10560 | AAD  | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc)              | WLAN         | 8.73   | ± 9.6 % |
| 10561 | AAD  | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc)              | WLAN         | 8.56   | ± 9.6 % |
| 10562 | AAD  | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc)              | WLAN         | 8.69   | ± 9.6 % |
| 10563 | AAD  | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc)              | WLAN         | 8.77   | ± 9.6 % |
| 10564 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)  | WLAN         | 8.25   | ± 9.6 % |
| 10565 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN         | 8.45   | ± 9.6 % |
| 10566 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN         | 8.13   | ± 9.6 % |
| 10567 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN         | 8.00   | ± 9.6 % |
| 10568 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN         | 8.37   | ± 9.6 % |
| 10569 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN         | 8.10   | ± 9.6 % |
| 10570 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN         | 8.30   | ± 9.6 % |
| 10571 | AAA  | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)       | WLAN         | 1.99   | ± 9.6 % |
| 10572 | AAA  | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)       | WLAN         | 1.99   | ± 9.6 % |
| 10573 | AAA. | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)     | WLAN         | 1.98   | ± 9.6 % |
| 10574 | AAA  | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)      | WLAN         | 1.98   | ± 9.6 % |
| 10575 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)  | WLAN         | 8.59   | ± 9.6 % |
| 10576 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)  | WLAN         | 8.60   | ± 9.6 % |
| 10577 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN         | 8.70   | ± 9.6 % |
| 10578 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | WLAN         | 8.49   | ± 9.6 % |
| 10579 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN         | 8.36   | ± 9.6 % |
| 10580 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN         | 8.76   | ± 9.6 % |
| 10581 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN         | 8.35   | ± 9.6 % |
| 10582 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN         | 8.67   | ± 9.6 % |
| 10583 | AAC  | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)       | WLAN         | 8.59   | ± 9.6 % |
| 10584 | AAC  | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)       | WLAN         | 8.60   | ± 9.6 % |
| 10585 | AAC  | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)      | WLAN         | 8.70   | ± 9.6 % |
| 10586 | AAC  | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)      | WLAN         | 8.49   | ± 9.6 % |
| 10587 | AAC  | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)      | WLAN         | 8.36   | ± 9.6 % |
| 10588 | AAC  | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)      | WLAN         | 8.76   | ± 9.6 % |
| 10589 | AAC  | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)      | WLAN         | 8.35   | ± 9.6 % |
| 10590 | AAC  | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)      | WLAN         | 8.67   | ± 9.6 % |
| 10591 | AAC  | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)           | WLAN         | 8.63   | ± 9.6 % |
| 10592 | AAC  | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc)           | WLAN         | 8.79   | ± 9.6 % |
| 10593 | AAC  | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc)           | WLAN         | 8.64   | ± 9.6 % |
| 10594 | AAC  | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc)           | WLAN         | 8.74   | ± 9.6 % |
| 10595 | AAC  | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc)           | WLAN         | 8.74   | ± 9.6 % |
| 10596 | AAC  | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc)           | WLAN         | 8.71   | ± 9.6 % |
| 10597 | AAC  | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)           | WLAN         | 8.72   | ± 9.6 % |
| 10598 | AAC  | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)           | WLAN         | 8.50   | ± 9.6 % |
| 10599 | AAC  | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)           | WLAN         | 8.79   | ± 9.6 % |
| 10600 | AAC  | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)           | WLAN         | 8.88   | ± 9.6 % |
| 10601 | AAC  | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)           | WLAN         | 8.82   | ± 9.6 % |
| 10602 | AAC  | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc)           | WLAN         | 8.94   | ± 9.6 % |
| 10603 | AAC  | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)           | WLAN         | 9.03   | ± 9.6 % |
| 10603 | AAC  | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)           | WLAN         | 8.76   |         |
|       | 1,40 | ( 302. 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1           | V V II. V IV | 10.10  | ± 9.6 % |

| 40005 | ^^~        | JEEE 000 445 (HT Missed, 40MHz, MOCC, 0055 de)                                         | 100.001     | 1 0 07 | 1.06%              |
|-------|------------|----------------------------------------------------------------------------------------|-------------|--------|--------------------|
| 10605 | AAC        | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)                                          | WLAN        | 8.97   | ± 9.6 %            |
| 10606 | AAC        | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)                                          | WLAN        | 8.82   | ± 9.6 %            |
| 10607 | AAC        | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)                                              | WLAN        | 8.64   | ± 9.6 %            |
| 10608 | AAC        | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc)                                              | WLAN        | 8.77   | ± 9,6 %            |
| 10609 | AAC        | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc)                                              | WLAN        | 8.57   | ± 9.6 %            |
| 10610 | AAC        | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)                                              | WLAN        | 8.78   | ± 9.6 %            |
| 10611 | AAC        | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)                                              | WLAN        | 8.70   | ± 9.6 %            |
| 10612 | AAC        | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)                                              | WLAN        | 8.77   | ± 9.6 %            |
| 10613 | AAC        | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc)                                              | WLAN        | 8.94   | ± 9.6 %            |
| 10614 | AAC        | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc)                                              | WLAN        | 8,59   | ± 9.6 %            |
| 10615 | AAC        | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)                                              | WLAN        | 8,82   | ± 9.6 %            |
| 10616 | AAC        | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)                                              | WLAN        | 8.82   | ± 9.6 %            |
| 10617 | AAC        | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc)                                              | WLAN        | 8.81   | ± 9.6 %            |
| 10618 | AAC        | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc)                                              | WLAN        | 8,58   | ± 9.6 %            |
| 10619 | AAC        | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)                                              | WLAN        | 8,86   | ± 9.6 %            |
| 10620 | AAC        | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)                                              | WLAN        | 8.87   | ± 9.6 %            |
| 10621 | AAC        | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc)                                              | WLAN        | 8.77   | ± 9.6 %            |
| 10622 | AAC        | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)                                              | WLAN        | 8.68   | ± 9.6 %            |
| 10623 | AAC        | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc)                                              | WLAN        | 8.82   | ± 9.6 %            |
| 10624 | AAC        | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc)                                              | WLAN        | 8.96   | ± 9.6 %            |
| 10625 | AAC        | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)                                              | WLAN        | 8,96   | ± 9.6 %            |
| 10626 | AAC        | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)                                              | WLAN        | 8.83   | ±9.6 %             |
| 10627 | AAC        | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)                                              | WLAN        | 8,88   | ± 9.6 %            |
| 10628 | AAC        | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)                                              | WLAN        | 8.71   | ± 9.6 %            |
| 10629 | AAC        | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)                                              | WLAN        | 8.85   | ± 9.6 %            |
| 10630 | AAC        | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)                                              | WLAN        | 8.72   | ± 9.6 %            |
| 10631 | AAC        | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc)                                              | WLAN        | 8,81   | ± 9.6 %            |
| 10632 | AAC        | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)                                              | WLAN        | 8.74   | ± 9.6 %            |
| 10633 | AAC        | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)                                              | WLAN        | 8.83   | ± 9.6 %            |
| 10634 | AAC        | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)                                              | WLAN        | 8.80   | ± 9.6 %            |
| 10635 | AAC        | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)                                              | WLAN        | 8.81   | ± 9.6 %            |
| 10636 | AAD        | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)                                             | WLAN        | 8.83   | ± 9.6 %            |
| 10637 | AAD        | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)                                             | WLAN        | 8.79   | ± 9.6 %            |
| 10638 | AAD        | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)                                             | WLAN        | 8.86   | ± 9.6 %            |
| 10639 | AAD        | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)                                             | WLAN        | 8.85   | ± 9.6 %            |
| 10640 | AAD        | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc)                                             | WLAN        |        |                    |
| 10641 | AAD        | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)                                             | WLAN        | 8.98   | ± 9.6 %            |
| 10642 |            | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc)                                             | WLAN        | 9.06   | ± 9.6 %<br>± 9.6 % |
| 10643 | AAD        | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc)                                             | <del></del> |        |                    |
| 10644 |            |                                                                                        | WLAN        | 8.89   | ± 9.6 %            |
| 10644 | AAD<br>AAD | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc)  IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc) | WLAN        | 9.05   | ±9.6 %             |
| 10645 | AAG        |                                                                                        | WLAN        | 9.11   | ± 9.6 %            |
|       |            | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)                                       | LTE-TDD     | 11,96  | ± 9.6 %            |
| 10647 | AAF        | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)                                      | LTE-TDD     | 11,96  | ± 9.6 %            |
| 10648 | AAA        | CDMA2000 (1x Advanced)                                                                 | CDMA2000    | 3.45   | ± 9.6 %            |
| 10652 | AAE        | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)                                         | LTE-TDD     | 6.91   | ± 9.6 %            |
| 10653 | AAE        | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)                                        | LTE-TDD     | 7.42   | ± 9.6 %            |
| 10654 | AAD        | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)                                        | LTE-TDD     | 6.96   | ± 9.6 %            |
| 10655 | AAE        | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)                                        | LTE-TDD     | 7.21   | ± 9.6 %            |
| 10658 | AAA        | Pulse Waveform (200Hz, 10%)                                                            | Test        | 10.00  | ± 9.6 %            |
| 10659 | AAA        | Pulse Waveform (200Hz, 20%)                                                            | Test        | 6.99   | ± 9.6 %            |
| 10660 | AAA        | Pulse Waveform (200Hz, 40%)                                                            | Test        | 3.98   | ± 9.6 %            |
| 10661 | AAA        | Pulse Waveform (200Hz, 60%)                                                            | Test        | 2.22   | ± 9.6 %            |
| 10662 | AAA        | Pulse Waveform (200Hz, 80%)                                                            | Test        | 0.97   | ± 9.6 %            |
| 10670 | AAA        | Bluetooth Low Energy                                                                   | Bluetooth   | 2.19   | ± 9.6 %            |
| 10671 | AAC        | IEEE 802.11ax (20MHz, MCS0, 90pc dc)                                                   | WLAN        | 9.09   | ± 9.6 %            |
| 10672 | AAC        | IEEE 802.11ax (20MHz, MCS1, 90pc dc)                                                   | WLAN        | 8.57   | ± 9.6 %            |

|       |     |                                       |      | 1070 | .000               |
|-------|-----|---------------------------------------|------|------|--------------------|
| 10673 | AAC | IEEE 802.11ax (20MHz, MCS2, 90pc dc)  | WLAN | 8.78 | ± 9.6 %            |
| 10674 | AAC | IEEE 802.11ax (20MHz, MCS3, 90pc dc)  | WLAN | 8.74 | ± 9.6 %            |
| 10675 | AAC | IEEE 802.11ax (20MHz, MCS4, 90pc dc)  | WLAN | 8.90 | ± 9.6 %            |
| 10676 | AAC | IEEE 802.11ax (20MHz, MCS5, 90pc dc)  | WLAN | 8.77 | ± 9.6 %            |
| 10677 | AAC | IEEE 802.11ax (20MHz, MCS6, 90pc dc)  | WLAN | 8.73 | ± 9.6 %            |
| 10678 | AAC | IEEE 802.11ax (20MHz, MCS7, 90pc dc)  | WLAN | 8.78 | ± 9.6 %            |
| 10679 | AAC | IEEE 802.11ax (20MHz, MCS8, 90pc dc)  | WLAN | 8.89 | ± 9.6 %            |
| 10680 | AAC | IEEE 802.11ax (20MHz, MCS9, 90pc dc)  | WLAN | 8.80 | ± 9.6 %            |
| 10681 | AAC | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 %<br>± 9.6 % |
| 10682 | AAC | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 %            |
| 10683 | AAC | IEEE 802.11ax (20MHz, MCS0, 99pc dc)  | WLAN | 8.42 | ± 9.6 %            |
| 10684 | AAC | IEEE 802.11ax (20MHz, MCS1, 99pc dc)  | WLAN | 8.26 | ±9.6 %             |
| 10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc)  | WLAN | 8.33 |                    |
| 10686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc)  | WLAN | 8.28 | ± 9.6 %<br>± 9.6 % |
| 10687 | AAC | IEEE 802.11ax (20MHz, MCS4, 99pc dc)  | WLAN | 8.45 |                    |
| 10688 | AAC | IEEE 802.11ax (20MHz, MCS5, 99pc dc)  | WLAN | 8.29 | ± 9.6 %<br>± 9.6 % |
| 10689 | AAC | IEEE 802.11ax (20MHz, MCS6, 99pc dc)  | WLAN | 8.55 | ļ                  |
| 10690 | AAC | IEEE 802.11ax (20MHz, MCS7, 99pc dc)  | WLAN | 8.29 | ± 9.6 %            |
| 10691 | AAC | IEEE 802.11ax (20MHz, MCS8, 99pc dc)  | WLAN | 8.25 | ± 9.6 %            |
| 10692 | AAC | IEEE 802.11ax (20MHz, MCS9, 99pc dc)  | WLAN | 8.29 | ± 9.6 %            |
| 10693 | AAC | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ± 9.6 %            |
| 10694 | AAC | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8,57 | ± 9.6 %            |
| 10695 | AAC | IEEE 802.11ax (40MHz, MCS0, 90pc dc)  | WLAN | 8.78 | ± 9.6 %            |
| 10696 | AAC | IEEE 802.11ax (40MHz, MCS1, 90pc dc)  | WLAN | 8.91 | ± 9.6 %            |
| 10697 | AAC | IEEE 802.11ax (40MHz, MCS2, 90pc dc)  | WLAN | 8,61 | ± 9.6 %            |
| 10698 | AAC | IEEE 802.11ax (40MHz, MCS3, 90pc dc)  | WLAN | 8.89 | ± 9.6 %            |
| 10699 | AAC | IEEE 802.11ax (40MHz, MCS4, 90pc dc)  | WLAN | 8.82 | ±9.6 %             |
| 10700 | AAC | IEEE 802.11ax (40MHz, MCS5, 90pc dc)  | WLAN | 8.73 | ± 9.6 %            |
| 10701 | AAC | IEEE 802.11ax (40MHz, MCS6, 90pc dc)  | WLAN | 8.86 | ± 9.6 %            |
| 10702 | AAC | IEEE 802.11ax (40MHz, MCS7, 90pc dc)  | WLAN | 8.70 | ± 9.6 %            |
| 10703 | AAC | IEEE 802.11ax (40MHz, MCS8, 90pc dc)  | WLAN | 8.82 | ± 9.6 %            |
| 10704 | AAC | IEEE 802.11ax (40MHz, MCS9, 90pc dc)  | WLAN | 8.56 | ± 9.6 %            |
| 10705 | AAC | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ± 9.6 %            |
| 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8,66 | ± 9.6 %            |
| 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc)  | WLAN | 8.32 | ± 9,6 %            |
| 10708 | AAC | IEEE 802,11ax (40MHz, MCS1, 99pc dc)  | WLAN | 8.55 | ± 9.6 %            |
| 10709 | AAC | IEEE 802.11ax (40MHz, MCS2, 99pc dc)  | WLAN | 8.33 | ± 9.6 %            |
| 10710 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc)  | WLAN | 8.29 | ± 9.6 %            |
| 10711 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc)  | WLAN | 8.39 | ± 9.6 %            |
| 10712 | AAC | IEEE 802,11ax (40MHz, MCS5, 99pc dc)  | WLAN | 8.67 | ± 9.6 %            |
| 10713 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc)  | WLAN | 8.33 | ± 9.6 %            |
| 10714 | AAC | IEEE 802.11ax (40MHz, MCS7, 99pc dc)  | WLAN | 8.26 | ± 9.6 %            |
| 10715 | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc)  | WLAN | 8,45 | ± 9.6 %            |
| 10716 | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc)  | WLAN | 8.30 | ± 9.6 %            |
| 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 %            |
| 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 %            |
| 10719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc)  | WLAN | 8.81 | ± 9.6 %            |
| 10720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc)  | WLAN | 8.87 | ± 9.6 %            |
| 10721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc)  | WLAN | 8.76 | ± 9.6 %            |
| 10722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc)  | WLAN | 8.55 | ± 9.6 %            |
| 10723 | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc)  | WLAN | 8.70 | ± 9.6 %            |
| 10724 | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc)  | WLAN | 8.90 | ± 9.6 %            |
| 10725 | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc)  | WLAN | 8.74 | ± 9.6 %            |
| 10726 | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc)  | WLAN | 8.72 | ± 9.6 %            |
| 10727 | AAC | IEEE 802.11ax (80MHz, MCS8, 90pc dc)  | WLAN | 8.66 | ± 9.6 %            |
| 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc)  | WLAN | 8.65 | ± 9.6 %            |

| r      |      |                                                                                              |                                         |      |         |
|--------|------|----------------------------------------------------------------------------------------------|-----------------------------------------|------|---------|
| 10729  | AAC  | IEEE 802.11ax (80MHz, MCS10, 90pc dc)                                                        | WLAN                                    | 8.64 | ± 9.6 % |
| 10730  | AAC  | IEEE 802.11ax (80MHz, MCS11, 90pc dc)                                                        | WLAN                                    | 8.67 | ± 9.6 % |
| 10731  | AAC  | IEEE 802.11ax (80MHz, MCS0, 99pc dc)                                                         | WLAN                                    | 8.42 | ± 9.6 % |
| 10732  | AAC  | IEEE 802.11ax (80MHz, MCS1, 99pc dc)                                                         | WLAN                                    | 8.46 | ± 9.6 % |
| 10733  | AAC  | IEEE 802.11ax (80MHz, MCS2, 99pc dc)                                                         | WLAN                                    | 8.40 | ± 9.6 % |
| 10734  | AAC  | IEEE 802.11ax (80MHz, MCS3, 99pc dc)                                                         | WLAN                                    | 8.25 | ± 9.6 % |
| 10735  | AAC  | IEEE 802.11ax (80MHz, MCS4, 99pc dc)                                                         | WLAN                                    | 8.33 | ± 9.6 % |
| 10736  | AAC  | IEEE 802.11ax (80MHz, MCS5, 99pc dc)                                                         | WLAN                                    | 8.27 | ± 9.6 % |
| 10737  | AAC  | IEEE 802.11ax (80MHz, MCS6, 99pc dc)                                                         | WLAN                                    | 8.36 | ± 9.6 % |
| 10738  | AAC  | IEEE 802.11ax (80MHz, MCS7, 99pc dc)                                                         | WLAN                                    | 8.42 | ± 9.6 % |
| 10739  | AAC  | IEEE 802.11ax (80MHz, MCS8, 99pc dc)                                                         | WLAN                                    | 8.29 | ± 9.6 % |
| 10740  | AAC  | IEEE 802.11ax (80MHz, MCS9, 99pc dc)                                                         | WLAN                                    | 8.48 | ± 9.6 % |
| 10741  | AAC  | IEEE 802.11ax (80MHz, MCS10, 99pc dc)                                                        | WLAN                                    | 8.40 | ± 9.6 % |
| 10742  | AAC  | IEEE 802.11ax (80MHz, MCS11, 99pc dc)                                                        | WLAN                                    | 8.43 | ± 9.6 % |
| 10743  | AAC  | IEEE 802.11ax (160MHz, MCS0, 90pc dc)                                                        | WLAN                                    | 8.94 | ± 9.6 % |
| 10744  | AAC  | IEEE 802.11ax (160MHz, MCS1, 90pc dc)                                                        | WLAN                                    | 9.16 | ± 9.6 % |
| 10745  | AAC  | IEEE 802.11ax (160MHz, MCS2, 90pc dc)                                                        | WLAN                                    | 8.93 | ± 9.6 % |
| 10746  | AAC  | IEEE 802.11ax (160MHz, MCS3, 90pc dc)                                                        | WLAN                                    | 9.11 | ± 9.6 % |
| 10747  | AAC  | IEEE 802.11ax (160MHz, MCS4, 90pc dc)                                                        | WLAN                                    | 9.04 | ± 9.6 % |
| 10748  | AAC  | IEEE 802.11ax (160MHz, MCS5, 90pc dc)                                                        | WLAN                                    | 8.93 | ± 9.6 % |
| 10749  | AAC  | IEEE 802.11ax (160MHz, MCS6, 90pc dc)                                                        | WLAN                                    | 8.90 | ± 9.6 % |
| 10750  | AAC  | IEEE 802.11ax (160MHz, MCS7, 90pc dc)                                                        | WLAN                                    | 8.79 | ± 9.6 % |
| 10751  | AAC  | IEEE 802.11ax (160MHz, MCS8, 90pc dc)                                                        | WLAN                                    | 8.82 | ± 9.6 % |
| 10752  | AAC  | IEEE 802.11ax (160MHz, MCS9, 90pc dc)                                                        | WLAN                                    | 8.81 | ± 9.6 % |
| 10753  | AAC  | IEEE 802.11ax (160MHz, MCS10, 90pc dc)                                                       | WLAN                                    | 9.00 |         |
| 10754  | AAC  | IEEE 802.11ax (160MHz, MCS11, 90pc dc)                                                       | WLAN                                    | 8,94 | ± 9.6 % |
| 10755  | AAC  | IEEE 802.11ax (160MHz, MCS0, 99pc dc)                                                        | WLAN                                    | 8.64 | ± 9.6 % |
| 10756  | AAC  | IEEE 802.11ax (160MHz, MCS1, 99pc dc)                                                        | WLAN                                    | 8.77 | ± 9.6 % |
| 10757  | AAC  | IEEE 802.11ax (160MHz, MCS2, 99pc dc)                                                        | WLAN                                    | 8.77 | ± 9.6 % |
| 10758  | AAC  | IEEE 802.11ax (160MHz, MCS3, 99pc dc)                                                        | WLAN                                    |      | ± 9.6 % |
| 10759  | AAC  | IEEE 802.11ax (160MHz, MCS4, 99pc dc)                                                        | WLAN                                    | 8.69 | ± 9.6 % |
| 10760  | AAC  | IEEE 802.11ax (160MHz, MCS5, 99pc dc)                                                        | WLAN                                    | 8.58 | ± 9.6 % |
| 10761  | AAC  | IEEE 802.11ax (160MHz, MCS6, 99pc dc)                                                        | WLAN                                    | 8.49 | ± 9.6 % |
| 10762  | AAC  | IEEE 802.11ax (160MHz, MCS7, 99pc dc)                                                        | WLAN                                    | 8.58 | ± 9.6 % |
| 10763  | AAC  | IEEE 802.11ax (160MHz, MCS8, 99pc dc)                                                        | WLAN                                    | 8.49 | ± 9.6 % |
| 10764  | AAC  | IEEE 802.11ax (160MHz, MCS9, 99pc dc)                                                        |                                         | 8.53 | ± 9.6 % |
| 10765  | AAC  | IEEE 802.11ax (160MHz, MCS10, 99pc dc)                                                       | WLAN<br>WLAN                            | 8.54 | ± 9.6 % |
| 10766  | AAC  | IEEE 802.11ax (160MHz, MCS11, 99pc dc)                                                       | WLAN                                    | 8,54 | ± 9.6 % |
| 10767  | AAE  | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)                                                   | *************************************** | 8.51 | ± 9.6 % |
| 10768  | AAD  | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD                           | 7.99 | ± 9.6 % |
| 10769  | AAD  | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD                           | 8.01 | ± 9.6 % |
| 10770  | AAD  | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD                           | 8.01 | ± 9.6 % |
| 10771  | AAD  | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD                           | 8.02 | ± 9.6 % |
| 10772  | AAD  | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD                           | 8.02 | ± 9.6 % |
| 10773  | AAD  | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD                           | 8.23 | ± 9.6 % |
| 10774  | AAD  | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD                           | 8.03 | ± 9.6 % |
| 10775  | AAD  | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)                                                 | 5G NR FR1 TDD                           | 8.02 | ± 9.6 % |
| 10776  | AAD  | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)                                                | 5G NR FR1 TDD                           | 8.31 | ± 9.6 % |
| 10777  | AAC  | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 KHz) 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 KHz)  | 5G NR FR1 TDD                           | 8.30 | ± 9.6 % |
| 10778  | AAD  | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)                                                | 5G NR FR1 TDD                           | 8.30 | ± 9.6 % |
| 10778  | AAC  |                                                                                              | 5G NR FR1 TDD                           | 8.34 | ± 9.6 % |
| 107780 | AAD  | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)  | 5G NR FR1 TDD                           | 8.42 | ± 9.6 % |
| 10781  | AAD  |                                                                                              | 5G NR FR1 TDD                           | 8.38 | ± 9.6 % |
| 10781  | AAD  | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)                                                | 5G NR FR1 TDD                           | 8.38 | ± 9.6 % |
| 10783  | AAE  | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)                                                | 5G NR FR1 TDD                           | 8.43 | ± 9.6 % |
| 10784  | AAD  | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD                           | 8.31 | ± 9.6 % |
| 10104  | 7070 | 00 1117 (01 -01 DIM, 100 / RD, 10 WITZ, QPSK, 15 KHZ)                                        | 5G NR FR1 TDD                           | 8.29 | ± 9.6 % |
|        |      |                                                                                              |                                         |      |         |

|       | 7   |                                                 |               |              |         |
|-------|-----|-------------------------------------------------|---------------|--------------|---------|
| 10785 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)  | 5G NR FR1 TDD | 8.40         | ± 9.6 % |
| 10786 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)  | 5G NR FR1 TDD | 8.35         | ± 9.6 % |
| 10787 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)  | 5G NR FR1 TDD | 8.44         | ± 9.6 % |
| 10788 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)  | 5G NR FR1 TDD | 8.39         | ± 9.6 % |
| 10789 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)  | 5G NR FR1 TDD | 8.37         | ± 9.6 % |
| 10790 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)  | 5G NR FR1 TDD | 8.39         | ± 9.6 % |
| 10791 | AAE | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 7.83         | ± 9.6 % |
| 10792 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 7.92         | ± 9.6 % |
| 10793 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 7.95         | ± 9.6 % |
| 10794 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 7.82         | ± 9.6 % |
| 10795 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 7.84         | ± 9.6 % |
| 10796 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 7.82         | ± 9.6 % |
| 10797 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 8.01         | ± 9.6 % |
| 10798 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 7.89         | ± 9.6 % |
| 10799 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 7.93         | ± 9.6 % |
| 10801 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 7.89         | ± 9.6 % |
| 10802 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 7.87         | ± 9.6 % |
| 10803 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 7.93         | ± 9.6 % |
| 10805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 8.34         | ± 9.6 % |
| 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 8.37         | ± 9.6 % |
| 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 8.34         | ± 9.6 % |
| 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 8.34         | ± 9.6 % |
| 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 8.35         | ± 9.6 % |
| 10817 | AAE | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 8.35         | ±9.6 %  |
| 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD | 8.34         | ± 9.6 % |
| 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD | 8.33         | ± 9.6 % |
| 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD | 8.30         | ± 9.6 % |
| 10821 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD | 8.41         | ± 9.6 % |
| 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD | 8.41         | ± 9.6 % |
| 10823 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD | 8.36         | ± 9.6 % |
| 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD | 8.39         | ± 9.6 % |
| 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD | 8.41         | ± 9.6 % |
| 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD | 8.42         | ± 9.6 % |
| 10828 | AAD | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD | 8.43         | ± 9.6 % |
| 10829 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40         | ± 9.6 % |
| 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD | 7.63         | ± 9.6 % |
| 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD | 7.73         | ± 9.6 % |
| 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD | 7.74         | ± 9.6 % |
| 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD | 7.70         | ± 9.6 % |
| 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD | 7.75         | ± 9.6 % |
| 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD | 7.70         | ± 9.6 % |
| 10836 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD | 7.66         | ± 9.6 % |
| 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD | 7.68         | ± 9.6 % |
| 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD | 7.70         | ± 9.6 % |
| 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD | 7.67         | ± 9.6 % |
| 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)    | 5G NR FR1 TDD | 7.71         | ± 9.6 % |
| 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)   | 5G NR FR1 TDD | 8.49         | ± 9.6 % |
| 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)   | 5G NR FR1 TDD | 8.34         | ± 9.6 % |
| 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)   | 5G NR FR1 TDD | 8.41         | ± 9.6 % |
| 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)  | 5G NR FR1 TDD | 8.34         | ± 9.6 % |
| 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)  | 5G NR FR1 TDD | 8.36         | ± 9.6 % |
| 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)  | 5G NR FR1 TDD | 8.37         | ± 9.6 % |
| 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)  | 5G NR FR1 TDD | 8.35         | ± 9.6 % |
| 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)  | 5G NR FR1 TDD | 8.36         | ± 9.6 % |
| 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)  | 5G NR FR1 TDD | 8.34         | ± 9.6 % |
| 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)  | 5G NR FR1 TDD | 8.41         | ± 9.6 % |
|       |     |                                                 |               | <i>3.</i> 11 |         |

|       | ·   |                                                      |               |      |         |
|-------|-----|------------------------------------------------------|---------------|------|---------|
| 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.40 | ± 9.6 % |
| 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.41 | ± 9.6 % |
| 10864 | AAD | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)       | 5G NR FR1 TDD | 8.37 | ± 9.6 % |
| 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)      | 5G NR FR1 TDD | 8.41 | ± 9.6 % |
| 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.68 | ± 9.6 % |
| 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.89 | ± 9.6 % |
| 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)     | 5G NR FR2 TDD | 5.75 | ± 9.6 % |
| 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)  | 5G NR FR2 TDD | 5.86 | ± 9.6 % |
| 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)    | 5G NR FR2 TDD | 5.75 | ± 9.6 % |
| 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % |
| 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)    | 5G NR FR2 TDD | 6.61 | ± 9.6 % |
| 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % |
| 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)        | 5G NR FR2 TDD | 7.78 | ± 9.6 % |
| 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)     | 5G NR FR2 TDD | 8.39 | ± 9.6 % |
| 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)       | 5G NR FR2 TDD | 7.95 | ± 9.6 % |
| 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)    | 5G NR FR2 TDD | 8.41 | ± 9.6 % |
| 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)       | 5G NR FR2 TDD | 8.12 | ± 9.6 % |
| 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)    | 5G NR FR2 TDD | 8.38 | ± 9.6 % |
| 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)      | 5G NR FR2 TDD | 5.75 | ± 9.6 % |
| 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)   | 5G NR FR2 TDD | 5.96 | ± 9.6 % |
| 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)     | 5G NR FR2 TDD | 6.57 | ± 9.6 % |
| 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)  | 5G NR FR2 TDD | 6.53 |         |
| 10885 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)     | 5G NR FR2 TDD |      | ± 9.6 % |
| 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)  |               | 6.61 | ±9.6 %  |
| 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)         | 5G NR FR2 TDD | 6.65 | ± 9.6 % |
| 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)      | 5G NR FR2 TDD | 7.78 | ± 9.6 % |
| 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)        | 5G NR FR2 TDD | 8.35 | ± 9.6 % |
| 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)     | 5G NR FR2 TDD | 8.02 | ± 9.6 % |
| 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)        | 5G NR FR2 TDD | 8.40 | ± 9.6 % |
| 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)     | 5G NR FR2 TDD | 8.13 | ± 9.6 % |
| 10897 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)        | 5G NR FR2 TDD | 8.41 | ± 9.6 % |
| 10898 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 5.66 | ± 9.6 % |
| 10899 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 5.67 | ± 9.6 % |
| 10900 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 5.67 | ± 9.6 % |
| 10901 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 5.68 | ±9.6%   |
| 10902 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 5.68 | ± 9.6 % |
| 10902 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 5.68 | ± 9.6 % |
| 10903 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 5.68 | ± 9.6 % |
| 10904 | AAB |                                                      | 5G NR FR1 TDD | 5.68 | ± 9.6 % |
| 10905 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 5.68 | ± 9.6 % |
| 10907 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)       | 5G NR FR1 TDD | 5.68 | ± 9.6 % |
| 10907 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)      | 5G NR FR1 TDD | 5.78 | ± 9.6 % |
|       |     | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5.93 | ± 9.6 % |
| 10909 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5.96 | ± 9.6 % |
| 10910 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5.83 | ± 9.6 % |
| 10911 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5.93 | ± 9.6 % |
| 10912 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5,84 | ± 9.6 % |
| 10913 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5.84 | ± 9.6 % |
| 10914 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5.85 | ± 9.6 % |
| 10915 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5.83 | ± 9.6 % |
| 10916 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5.87 | ± 9.6 % |
| 10917 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.94 | ± 9.6 % |
| 10918 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 5.86 | ± 9.6 % |
| 10919 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.86 | ± 9.6 % |
| 10920 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.87 | ± 9.6 % |
| 10921 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.84 | ± 9.6 % |
| 10922 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD | 5.82 | ± 9.6 % |
|       |     |                                                      |               |      |         |

EX3DV4-- SN:7427

| 40000 | T A A D | CONDUCTE OF THE LOCK OF COLUMN COLOR               |                                | η            |         |
|-------|---------|----------------------------------------------------|--------------------------------|--------------|---------|
| 10923 | AAB     | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD                  | 5.84         | ± 9.6 % |
| 10924 | AAB     | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD                  | 5.84         | ± 9.6 % |
| 10925 | AAB     | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD                  | 5.95         | ± 9.6 % |
| 10926 | AAB     | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD                  | 5.84         | ± 9.6 % |
| 10927 | AAB     | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)  | 5G NR FR1 TDD                  | 5.94         | ± 9.6 % |
| 10928 | AAC     | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD                  | 5.52         | ± 9.6 % |
| 10929 | AAC     | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)     | 5G NR FR1 FDD                  | 5.52         | ± 9.6 % |
| 10930 | AAC     | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)     | 5G NR FR1 FDD                  | 5.52         | ± 9.6 % |
| 10931 | AAC     | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)     | 5G NR FR1 FDD                  | 5.51         | ± 9.6 % |
| 10932 | AAC     | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)     | 5G NR FR1 FDD                  | 5.51         | ± 9.6 % |
| 10933 | AAC     | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)     | 5G NR FR1 FDD                  | 5.51         | ± 9.6 % |
| 10934 | AAC     | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)     | 5G NR FR1 FDD                  | 5.51         | ± 9.6 % |
| 10935 | AAD     | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)     | 5G NR FR1 FDD                  | 5.51         | ± 9.6 % |
| 10936 | AAC     | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD                  | 5.90         | ± 9.6 % |
| 10937 | AAC     | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD                  | 5.77         | ± 9.6 % |
| 10938 | AAC     | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD                  | 5.90         | ± 9.6 % |
| 10939 | AAC     | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD                  | 5.82         | ± 9.6 % |
| 10940 | AAC     | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD                  | 5.89         | ± 9.6 % |
| 10941 | AAC     | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD                  | 5.83         | ± 9.6 % |
| 10942 | AAC     | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD                  | 5.85         | ± 9.6 % |
| 10943 | AAD     | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD                  | 5.95         | ± 9.6 % |
| 10944 | AAC     | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD                  | 5.81         | ± 9.6 % |
| 10945 | AAC     | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)  | 5G NR FR1 FDD                  | 5.85         | ± 9.6 % |
| 10946 | AAC     | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)  | 5G NR FR1 FDD                  | 5.83         | ± 9.6 % |
| 10947 | AAC     | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)  | 5G NR FR1 FDD                  | 5.87         | ± 9.6 % |
| 10948 | AAC     | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)  | 5G NR FR1 FDD                  | 5.94         | ± 9.6 % |
| 10949 | AAC     | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)  | 5G NR FR1 FDD                  | 5.87         | ± 9.6 % |
| 10950 | AAC     | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)  | 5G NR FR1 FDD                  | 5,94         | ± 9.6 % |
| 10951 | AAD     | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)  | 5G NR FR1 FDD                  | 5.92         | ± 9.6 % |
| 10952 | AAA     | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 FDD                  | 8.25         | ± 9.6 % |
| 10953 | AAA     | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD                  | 8.15         | ± 9.6 % |
| 10954 | AAA     | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD                  | 8.23         | ± 9.6 % |
| 10955 | AAA     | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD                  | 8.42         | ± 9.6 % |
| 10956 | AAA     | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 FDD                  | 8.14         | ± 9.6 % |
| 10957 | AAA     | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD                  | 8.31         | ± 9.6 % |
| 10958 | AAA     | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD                  | 8.61         | ± 9.6 % |
| 10959 | AAA     | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD                  | 8.33         |         |
| 10960 |         | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)  |                                | ···          | ± 9.6 % |
| 10961 | AAB     | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD<br>5G NR FR1 TDD | 9.32<br>9.36 | ± 9.6 % |
| 10962 | AAB     | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD                  |              | ± 9.6 % |
| 10963 | AAB     | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) |                                | 9.40         | ± 9.6 % |
| 10964 | AAC     | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 TDD                  | 9.55         | ± 9.6 % |
| 10965 | AAB     | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD                  | 9.29         | ± 9.6 % |
| 10966 | AAB     | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD                  | 9.37         | ± 9.6 % |
| 10967 | AAB     | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD                  | 9.55         | ± 9.6 % |
| 10968 | AAB     | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD                  | 9.42         | ± 9.6 % |
| 10972 | AAB     | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)        | 5G NR FR1 TDD                  | 9.49         | ± 9.6 % |
| 10972 | AAB     |                                                    | 5G NR FR1 TDD                  | 11.59        | ± 9.6 % |
| 10973 | AAB     | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)    | 5G NR FR1 TDD                  | 9.06         | ± 9.6 % |
| 10974 | AAA     | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD                  | 10.28        | ± 9.6 % |
| 10978 |         | ULLA BDR                                           | ULLA                           | 2.23         | ± 9.6 % |
| 10979 | AAA     | ULLA HDR4                                          | ULLA                           | 7.02         | ± 9.6 % |
|       | AAA     | ULLA HDR8                                          | ULLA                           | 8.82         | ± 9.6 % |
| 10981 | AAA     | ULLA HDRp4                                         | ULLA                           | 1.50         | ± 9.6 % |
| 10982 | AAA     | ULLA HDRp8                                         | ULLA                           | 1.44         | ± 9.6 % |

<sup>&</sup>lt;sup>E</sup> Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.