

NFC TEST REPORT

No.24T04Z100816-007

for

Shenzhen Tinno Mobile Technology Corp.

Smart Phone

U655AA, U655AC

FCC ID: XD6U655AA

with

Hardware Version: V1.0

Software Version: U655AAV01.04.10/U655ACV01.02.10

Issued Date: 2024-07-05

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL-Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191. Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504 Email: <u>cttl_terminals@caict.ac.cn</u>, website: <u>www.caict.ac.cn</u>

REPORT HISTORY

Report Number	Revision	Description	Issue Date
24T04Z100816-007	Rev.0	1 st edition	2024-07-05

Note: the latest revision of the test report supersedes all previous version.

CONTENTS

1.	TEST LABORATORY	. 4
	1.1. INTRODUCTION & ACCREDITATION	. 4
	1.2. TESTING LOCATION	. 4
	1.3. TESTING ENVIRONMENT	. 5
	1.4. PROJECT DATA	. 5
	1.5. SIGNATURE	. 5
2.	CLIENT INFORMATION	6
	2.1. APPLICANT INFORMATION	6
	2.2. MANUFACTURER INFORMATION	6
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 7
	3.1. ABOUT EUT	. 7
	3.2. INTERNAL IDENTIFICATION OF EUT	. 7
	3.3. INTERNAL IDENTIFICATION OF AE	. 7
	3.4. EUT SET-UPS	. 7
4.	REFERENCE DOCUMENTS	. 8
	4.1. DOCUMENTS SUPPLIED BY APPLICANT	. 8
	4.2. REFERENCE DOCUMENTS FOR TESTING	. 8
5.	TEST RESULTS	9
	5.1. SUMMARY OF TEST RESULTS	. 9
	5.2. STATEMENTS	. 9
6.	TEST FACILITIES UTILIZED	10
7.	MEASUREMENT UNCERTAINTY	.11
A	NNEX A: EUT PARAMETERS	12
A	NNEX B: DETAILED TEST RESULTS	12
A	NNEX C: PERSONS INVOLVED IN THIS TESTING	26
A	NNEX D: ACCREDITATION CERTIFICATE	27

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under American Association for Laboratory Accreditation (A2LA) with lab code 7049.01, and is also an FCC accredited test laboratory (CN1349), and ISED accredited test laboratory (CAB identifier:CN0066). The detail accreditation scope can be found on A2LA website.

1.2. Testing Location

Location 1: CTTL(huayuan North Road)

Address:	No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191
Location 2: CTTL(Cui Hu)	

Address: CuiHu Cloud Center No.1 Gaolizhang Road, Wenquan Town, Haidian District, Beijing, China

1.3. <u>Testing Environment</u>

Normal Temperature:	15-35°C
Extreme Temperature:	-20/+50°C
Normal Relative Humidity:	20-75%
Normal Air Pressure	86Kpa-106Kpa

1.4. Project data

Testing Start Date:	2024-06-05
Testing End Date:	2024-07-03

1.5. Signature

茵青华

Miao Qinghua (Prepared this test report)

Zhou Bin (Reviewed this test report)

72 1h

Pang Shuai (Approved this test report)

2. <u>Client Information</u>

2.1. Applicant Information

Company Name:	Shenzhen Tinno Mobile Technology Corp.
	27-001, South Side of Tianlong Mobile Headquarters Building,
Address:	Tongfa South Road, Xili Community, Xili Street, Nanshan District, Shenzh
	en ,PRC
Contact:	xiaoping.li
Telephone:	0755-86095550
Email:	xiaoping.li@tinno.com

2.2. Manufacturer Information

Company Name:	Shenzhen Tinno Mobile Technology Corp.	
	27-001, South Side of Tianlong Mobile Headquarters Building,	
Address:	Tongfa South Road, Xili Community, Xili Street, Nanshan District, Shenzh	
	en ,PRC	
Contact:	xiaoping.li	
Telephone:	0755-86095550	
Email:	xiaoping.li@tinno.com	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	Smart Phone
Model Name	U655AA, U655AC
FCC ID	XD6U655AA
UMTS Frequency bands	FDD I/II/IV/V/VIII
E-UTRA Frequency bands	FDD 2/3/4/5/7/12/14/20/29/30/66
5G NR Frequency bands	NSA n2/n5/n66/n77
Operating temperature	-10/+45°C
Extreme low voltage	3.6V
Normal voltage	3.85V
Extreme high voltage	4.4V

Note: The difference between U655AA and U655AC is that the side key/front frame/battery cover/FP sensor back cover color and logo have difference color, there are different brand silk on the battery cover.

3.2. Internal Identification of EUT

	EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
	UT72a	861709070008739	V1.0	U655AAV01.04.10	2024-05-20
	UT41a	861709070004308	V1.0	U655AAV01.04.10	2024-05-20
_				·	

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Model	Manufacturer	
AE1-1	Battery	486786	Guangdong Fenghua New Energy Co.,Ltd.	
AE2-1	Charger	TN-050200U3	Guangdong Beicom Electronics Co.,Ltd	
AE3-1	USB Cable	T365-011B-1	Shenzhen Yihuaxing Electronics Co. Ltd.	
AE3-2	USB Cable	336275	SUNTOPS (SHENZHEN) ELECTRONICS CO., LTD.	

*AE ID: is used to identify the ancillary equipment in the lab internally.

3.4. EUT Set-ups

EUT set-up No.	Combination of EUT and AE	Remarks
Set.NFC01	UT41a + AE1-1 + AE2-1 + AE3-1/AE3-2+ NFC Card	Charge
Set.NFC02	UT41a + AE1-1+ NFC card	NFC
Set.NFC03	UT72a	

The Transmit State of NFC: the NFC function is on. The EUT will transmit the NFC data and command continuously during the test.

The Transmit state without modulation: The EUT will transmit the CW signal at the operating frequency.

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT parameters, referring to Annex A for detailed information, are supplied by the client or manufacturer, which are the bases of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
CFR 47 Part 2	Part 2 — Frequency Allocations and Radio Treaty Matters;	
	General Rules and Regulations.	
CFR 47 Part 15	Part 15 — Radio Frequency Devices.	2019
	Subpart C — Intentional Radiators.	
	§ 15.35 Measurement detector functions and bandwidths.	
	§ 15.207 Conducted limits.	
	§ 15.209 Radiated emission limits, general requirements.	
	§ 15.215 Additional provisions to the general radiated emission limitations.	
	§ 15.225 Operation within the band 13.110–14.010 MHz.	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	

5. Test Results

5.1. Summary of Test Results

No	Test Cases	Clause in Regulation	Section in This Report	Verdict	
1	Electric Field Strength of	CFR 47 § 15.225(a)		P(Set. NFC02)	
I	Fundamental Emissions	CFR 47 § 15.225(a)	B.1	F(3et. NFC02)	
2	Electric Field Strength of	CFR 47 § 15.225(b)	D. I	D(Sat NEC02)	
2	Outside the Allocated Bands	CFR 47 § 15.225(c)		P(Set. NFC02)	
3	Electric Field Radiated	CFR 47 § 15.209	B.2	P(Set. NFC01)	
3	Emissions	CFR 47 § 15.225(d)	B.3	P(Set. NFC01)	
4	Frequency Tolerance	CFR 47 § 15.225(e)	B.4	P(Set. NFC03)	
5	20dB Bandwidth	CFR 47 § 15.215(c)	B.5	P(Set. NFC03)	
6	Conducted Emissions	CFR 47 § 15.207	B.6	P(Set. NFC01)	
7	Antenna Requirement	CFR 47 § 15.203	B.7	P(Set. NFC03)	
The	measurement is carried out acco	ording to ANSI C63.10. S	ee ANNEX B for	details.	

Note:

The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

All test results are derived from the DUT with model U655AA.

Test Conditions:

For this report, all the test cases listed above were tested under normal Temperature, Voltage, humidity and Air Pressure except the Frequency Tolerance test case. The specific conditions of Frequency Tolerance test case are listed in section B.4.3

See Table 3 for terms for result verdict:

Р	Pass, The EUT complies with the essential requirements in the standard.			
NP	Not Perform, The test was not performed by CTTL			
NA	Not Applicable, The test was not applicable			
F	Fail, The EUT does not comply with the essential requirements in the standard			

Table 1 Terms for result verdict

5.2. Statements

The test cases listed in Section 5.1 of this report for the EUT specified in Section 3 were performed by CTTL according to the reference documents in Section 4.

The EUT meets all applicable requirements of the regulations and standards in Section 4.2.

6. Test Facilities Utilized

NO.	NAME	TYPE	SERIES NUMBER	PRODUCER	CAL. DUE DATE	CAL. INTERVAL
1.	Spectrum Analyzer	N9030A	MY49432143	Keysight Technologies	2024-12-16	1 Year
2.	Climatic chamber	WK3-340/70	58226117510010	WEISS	2024-08-08	1 Year
3.	Test Receiver	ESW44	103023	R&S	2024-07-08	1 Year
4.	H-field Antenna	HFH2-Z2	829324/007	R&S	2025-01-14	2 Years
5.	EMI Antenna	VULB 9163	01223	SCHWARZBECK	2024-08-18	1 Year
6.	Test Receiver	ESCI	100344	R&S	2025-04-01	1 Year
7.	LISN	ENV216	101200	R&S	2025-05-16	1 year

7. <u>Measurement Uncertainty</u>

Item	Uncertainty
Frequency Tolerance	U =74 Hz, k=2
20dB Bandwidth	<i>U</i> =74 Hz, k=2
Radiated Emissions(9kHz-30MHz)	<i>U</i> =4.92 dB, k=2
Radiated Emissions (30MHz-1GHz)	<i>U</i> =4.72 dB, k=2
Radiated Emissions (>1GHz)	<i>U</i> =4.84 dB, k=2
Conducted emission	<i>U</i> = 3.08 dB, k=2

ANNEX A: EUT parameters

Disclaimer: The antenna gain provided by the client may affect the validity of the measurement results in this report, and the client shall bear the impact and consequences arising therefrom.

ANNEX B: Detailed Test Results

B.1. Electric Field Strength of Fundamental and Outside the Allocated bands

B.1.1. Reference

See Clause 4, Clause 5 of ANSI C63.10-2013 generally.

B.1.2. Measurement Methods

The transmitter carrier output levels (E-Field) from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The E-field is measured with a shielded loop antenna connected to a measurement receiver. Detected E-field was maximized by rotating the EUT through 360° and adjusting the receiving antenna polarizations. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector.

The measurement bandwidth is:

Table B-1: Mea	Measurement bandwidth	
Frequency of Emission (MHz)	RBW/VBW	
12.56-14.56	10/30 kHz	

The E-field measured at 3m is calculated as:

E-field $(dB\mu V/m) = Rx (dB\mu V) + Cable Loss (dB) + AF@3m (dB/m)$

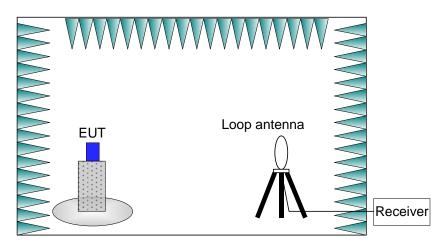


Figure B-1: Measurement Setup

B.1.3. EUT Operating Mode and Test Conditions

The measurement of EUT is carried out under the transmit state of NFC(See 3.4).

The EUT is powered by a travel adapter.

During the measurements, the ambient temperature of the electromagnetic anechoic chamber is in the range of $15 \sim 25$ °C.

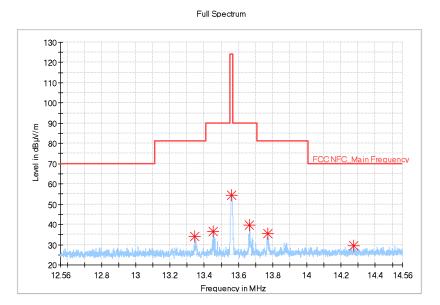

B.1.4. Limits

Table B-2: Limits					
Frequency Range (MHz)	E-field Strength Limit @ 30 m	E-field Strength Limit @ 3 m			
Trequency Range (MTZ)	(µ V/m)	(dBµV/m)			
13.560 ± 0.007	+15,848	124			
13.410 to 13.553	+334	90			
13.567 to 13.710	+534				
13.110 to 13.410	+106	04			
13.710 to 14.010	+100	81			
Note: Where the limits have been defined at one distance, and a signal level measured at					
another, the limits have been extrapolated using the following formula:					
Extrapolat ion(dB) = $40\log_{10}$	$_{\rm D}$ (Measuremen t Distance/Specific	ation Distance)			

Table B-2: Limits

B.1.5. Measurement Results

Measurement results of normal conditions see Figure B-2 for different set-ups of EUT. The results displayed take into account applicable antenna factors and cable losses. **Conclusions:** Set.NFC02, **PASS**.

Figure B-2: Measurement results for Electric Field Strength of Fundamental and Outside the Allocated bands

Frequency(MHz)	MaxPeak(dBµV/m)	Limit(dBµV/m)	Margin(dB)	Pol	Azimuth(deg)	Corr.(dB/m)
13.345250	33.96	81.00	47.04	v	174.0	18.0
13.451500	36.46	90.00	53.54	v	159.0	18.0
13.559500	54.48	124.00	69.52	v	2.0	18.0
13.665500	39.52	90.00	50.48	v	348.0	18.0
13.771500	35.60	81.00	45.40	v	190.0	18.0
14.272000	29.54	70.00	40.46	v	276.0	18.0

B.2. Electric Field Radiated Emissions (< 30MHz)

B.2.1. Reference

See Clause 6.4 of ANSI C63.10-2013 specifically. See Clause 4 and Clause 5 of ANSI C63.10-2013 generally.

B.2.2. Measurement Methods

The transmitter carrier output levels (E-Field) from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The E-field is measured with a shielded loop antenna connected to a measurement receiver. Detected E-field was maximized by rotating the EUT through 360° and adjusting the receiving antenna polarizations. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector.

The measurement bandwidth is:

Frequency of Emission (MHz)	RBW/VBW
0.009-0.15	100/300 Hz
0.15-30	10/30 kHz

The E-field measured at 3m is calculated as: E-field $(dB\mu V/m) = Rx (dB\mu V) + Cable Loss (dB) + AF@3m (dB/m)$

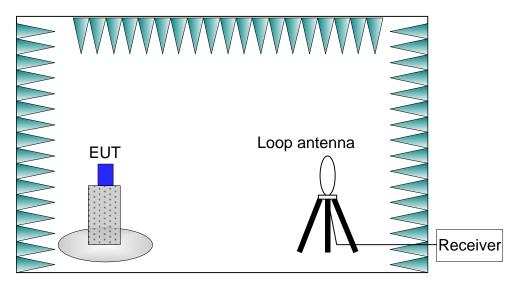
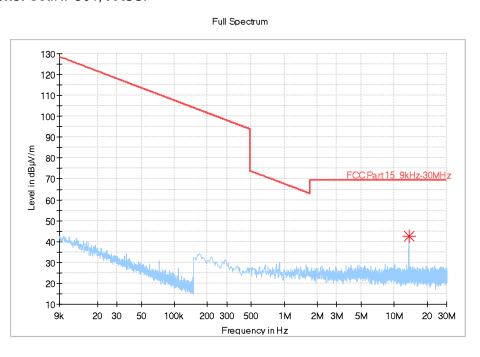


Figure B-3: Measurement Setup

B.2.3. EUT Operating Mode and Test Conditions

The measurement of EUT is carried out under the transmit state of NFC(See 3.4). The EUT is powered by a travel adapter.


During the measurements, the ambient temperature of the electromagnetic anechoic chamber is in the range of $15 \sim 25$ °C.

B.2.4. Limits

E-field Strength Limit @ 30m	E-field Strength Limit @ 3m				
(mV/m)	(dBµV/m)				
2400/F(kHz)	129-94				
24000/F(kHz)	74-63				
30	70				
Note: Where the limits have been defined at one distance, and a signal level measured at					
another, the limits have been extrapolated using the following formula:					
(Measuremen t Distance/Specific	ation Distance)				
	(mV/m) 2400/F(kHz) 24000/F(kHz) 30 been defined at one distance, and a n extrapolated using the following for				

B.2.5. Measurement Results

Measurement results of normal conditions see Figure B-4 for different set-ups of EUT. The results displayed take into account applicable antenna factors and cable losses. **Conclusions:** Set.NFC01, **PASS**.

Frequency	MaxPeak	Limit	Margin	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(deg)	(dB/m)
13.560113	42.51	69.50	26.99	v	90.0	18.0

B.3. Electric Field Radiated Emissions (≥30MHz)

B.3.1. Reference

See Clause 6.5 of ANSI C63.10-2013 specifically. See Clause 4 and Clause 5 of ANSI C63.10-2013 generally.

B.3.2. Measurement Methods

The electric field radiated emissions from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 10m from the receiving antenna. The receiving antennas connected to a measurement receiver. In order to search for maximum field strength emitted from the EUT, the receiving antenna can be moved between the height of 1.0 m to 4.0 m. Detected E-field was maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna positions for both vertical and horizontal antenna polarizations. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector.

The measurement bandwidth is:

Frequency of Emission (MHz)	RBW/VBW	
30-1000	120kHz	

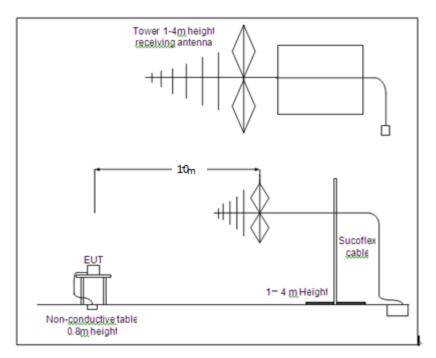


Figure B-5: Measurement Setup

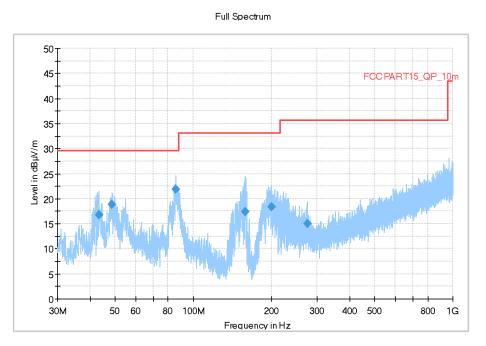
B.3.3. EUT Operating Mode and Test Conditions

The measurement of EUT is carried out under the transmit state of NFC(See 3.4).

The EUT had been connected to a travel adapter.

During the measurements, the ambient temperature of the electromagnetic anechoic chamber is

in the range of $15 \sim 25$ °C.


B.3.4. Limits

Frequency Range (MHz)	E-field Strength Limit @ 3m (mV/m)	E-field Strength Limit @ 3m (dBµV/m)	E-field Strength Limit @ 10m (dBµV/m)
30-88	100	40	30
88-216	150	43.5	33.5
216-960	200	46	36
960-1000	500	54	44

B.3.5. Measurement Results

Measurement results of normal conditions see Figure B-6 for different set-ups of EUT. The results displayed take into account applicable antenna factors and cable losses.

Conclusions: Set.NFC01, PASS.

Frequency	QuasiPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB/m)
43.240500	16.82	29.54	12.72	120.000	304.0	v	69.0	-11.2
48.721000	18.90	29.54	10.64	120.000	199.0	v	225.0	-10.6
85.629500	21.95	29.54	7.59	120.000	190.0	v	315.0	-16.1
158.525000	17.41	33.06	15.65	120.000	104.0	v	17.0	-15.0
200.235000	18.40	33.06	14.66	120.000	101.0	v	159.0	-11.8
274.537000	15.06	35.56	20.50	120.000	100.0	v	135.0	-9.7

B.4. Frequency Tolerance

B.4.1. Reference

See Clause 6.8 of ANSI C63.10-2013 specifically. See Clause 4 and Clause 5 of ANSI C63.10-2013 generally.

B.4.2. Measurement Methods

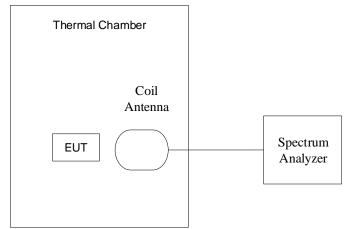


Figure B-7: Measurement Setup

The transmitter output signal was picked up by coil antenna connected to the spectrum analyzer. The center frequency was measured with 30Hz RBW and 1kHz span.

During the test, the EUT was placed in a thermal chamber until thermal balance and lasting appropriate time.

B.4.3. EUT Operating Mode and Test Conditions

The measurement of EUT was carried out under the transmit state of without modulation(See 3.4). EUT had not been connected to a travel adapter. The frequency stability was measured with the different voltage and temperature combinations:

- a) The nominal voltage 3.85V(See 3.1)was used and the temperature was varied from -20 $^{\circ}$ C to +50 $^{\circ}$ C in 10 $^{\circ}$ C increments using an environmental chamber.
- b) The 20°C was used and the voltages were 3.6V, 3.85V and 4.4V (The extreme low voltage ,the normal voltage and the extreme high voltage).

The details were as following:

Table D-5. Combinations of voltage and remperature							
Test items	Voltage	Temperature					
Frequency stability with respect to ambient temperature		-20 ℃					
	3.85V	-10 ℃					
		0 °C					
		10 ℃					
		20 ℃					
		30 ℃					
		40 ℃					

 Table B-3:
 Combinations of Voltage and Temperature

		50 ℃
Frequency stability	3.6V	
when varying supply	3.85V	20 ℃
voltage	4.4V	

B.4.4. Test Layouts

See B.4.2.

B.4.5. Limits

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency.

B.4.6. Measurement Results

Measurement results see Table B-4 for different test conditions.

Conclusions: Set.NFC03, PASS.

Table B-4:	Measurement results for Frequency Tolerance
------------	---

Tomporatura	Voltaga	Frequency (MHz)						
Temperature	Voltage	Startup	2 Min Later	5 Min Later	10 Min Later			
-20 ℃	3.85V	13.560072000	13.560063000	13.560063000	13.560060000			
-10 ℃	3.85V	13.560063000	13.560063000	13.560072000	13.560072000			
0 °C	3.85V	13.560045000	13.560054000	13.560063000	13.560063000			
10 ℃	3.85V	13.560018000	13.560027000	13.560036000	13.560036000			
20 ℃	3.85V	13.559991000	13.560000900	13.560001000	13.560011000			
30 ℃	3.85V	13.560018000	13.560009000	13.560009000	13.559991000			
40 ℃	3.85V	13.559973000	13.559964000	13.559955000	13.559955000			
50 ℃	3.85V	13.559955000	13.559946000	13.559937000	13.559937000			
20 ℃	3.6V	13.559955000	13.559973000	13.559982000	13.559991000			
20 ℃	4.4V	13.559991000	13.559991000	13.560001100	13.560011000			

Tomporatura	Voltaga	Frequency Error (%)						
Temperature	Voltage	Startup	2 Min Later	5 Min Later	10 Min Later			
-20 ℃	3.85V	0.001	0.000	0.000	0.000			
-10 ℃	3.85V	0.000	0.000	0.001	0.001			
0 °C	3.85V	0.000	0.000	0.000	0.000			
10 ℃	3.85V	0.000	0.000	0.000	0.000			
20 ℃	3.85V	0.000	0.000	0.000	0.000			
30 ℃	3.85V	0.000	0.000	0.000	0.000			
40 ℃	3.85V	0.000	0.000	0.000	0.000			
50 ℃	3.85V	0.000	0.000	0.000	0.000			
20 ℃	3.6V	0.000	0.000	0.000	0.000			
20 ℃	4.4V	0.000	0.000	0.000	0.000			

B.4.7. Measurement Uncertainty

Measurement uncertainty: U = 74 Hz, k=2

B.5. 20dB Bandwidth

B.5.1. Reference

See Clause 6.9 of ANSI C63.10-2013 specifically. See Clause 4 and Clause 5 of ANSI C63.10-2013 generally.

B.5.2. Measurement Methods

The transmitter output signal was picked up by coil antenna connected to the spectrum analyzer. The bandwidth of the center frequency was measured with 300Hz RBW, 1kHz VBW and 10kHz span.

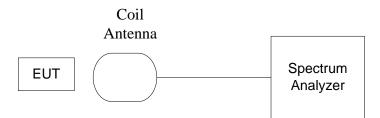


Figure B-8: Measurement Setup

B.5.3. EUT Operating Mode and Test Conditions

The measurement of EUT was carried out under the transmit state of NFC (See 3.4). EUT had not been connected to a travel adapter.

During the measurements, the ambient temperature was in the range of $15 \sim 25$ °C.

B.5.4. Test Layouts

See B.5.2.

B.5.5. Limits

The 20dB bandwidth shall be less than 80% of the permitted frequency band. For 13.56 MHz NFC, the permitted frequency band is 14kHz, so the limit is 11.2 kHz.

B.5.6. Measurement Results

Measurement results see Figure B-9. **Conclusions:** Set.NFC03, **PASS**.

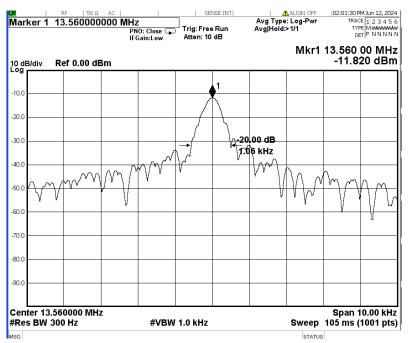


Figure B-9: Measurement results for 20dB Bandwidth

B.5.7. Measurement Uncertainty

Measurement uncertainty: U =74 Hz, k=2

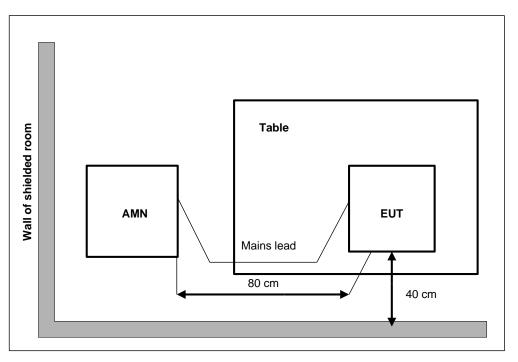
B.6. Conducted emission

B.6.1. Reference

See Clause 6.2 of ANSI C63.10-2013 specifically.

See Clause 4 and Clause 5 of ANSI C63.10-2013 generally.

B.6.2. Measurement Methods


The conducted emissions from the AC port of the EUT are measured in a shielding room. The EUT is connected to a Line Impedance Stabilization Network (LISN). An overview sweep with peak detection was performed. The measurements were performed with a quasi-peak detector and if required, an average detector.

The conducted emission measurements were made with the following detector of the test receiver: Quasi-Peak / Average Detector.

The measurement bandwidth is:

Table B-5:	Measurement Bandwidth
------------	-----------------------

Frequency of Emission (MHz)	RBW/VBW
0.15-30	9kHz

Figure B-10: Measurement Setup

B.6.3. EUT Operating Mode and Test Conditions

The measurement of EUT is carried out under the transmit state of NFC(See 3.4). The EUT is powered by a travel adapter.

During the measurements, the ambient temperature is in the range of $15 \sim 25$ °C.

B.6.4. Limits

Frequency range (MHz)	Quasi-peak Limit (dBµV)	Average Limit (dBμV)
0.15 to 0.5	66 to 56	56 to 46
0.5 to 5	56	46
5 to 30	60	50

B.6.5. Measurement Results

Measurement results see Figure B-11. **Conclusions:** Set.NFC01, **PASS**.

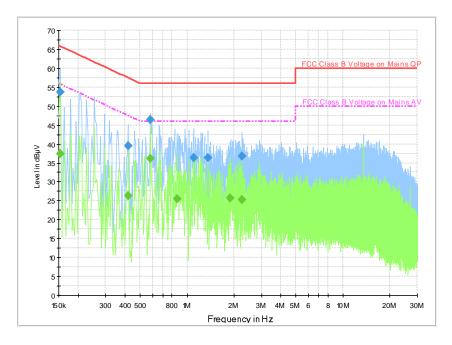


Figure B-11: Measurement results for Conducted Emission

F	inal Result	1							
	Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
	(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
			(ms)						
	0.154000	53.6	2000.0	9.000	On	L1	20.1	12.1	65.8
	0.418000	39.4	2000.0	9.000	On	L1	20.0	18.1	57.5
	0.582000	46.4	2000.0	9.000	On	L1	20.0	9.6	56.0
	1.098000	36.4	2000.0	9.000	On	L1	19.9	19.6	56.0
	1.362000	36.4	2000.0	9.000	On	L1	19.9	19.6	56.0
	2.258000	36.7	2000.0	9.000	On	L1	19.8	19.3	56.0

Final Result 2

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.154000	37.4	2000.0	9.000	On	L1	20.1	18.4	55.8
0.418000	26.4	2000.0	9.000	On	L1	20.0	21.1	47.5
0.582000	36.1	2000.0	9.000	On	L1	20.0	9.9	46.0
0.862000	25.4	2000.0	9.000	On	L1	19.9	20.6	46.0
1.886000	25.7	2000.0	9.000	On	L1	19.8	20.3	46.0
2.258000	25.4	2000.0	9.000	On	L1	19.8	20.6	46.0

B.7. Antenna Requirement

B.7.1 Reference

See CFR 47 Part 15 § 15.203

B.7.2. Excerpt from §15.203 of the FCC Rules/Regulations

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna of the device is permanently attached.

There are no provisions for connection to an external antenna.

B.7.3. Results

The unit complies with the requirement of FCC Part 15.203. **Conclusions:** Set.NFC03, **PASS.**

ANNEX C: Persons involved in this testing

Test Item	Tester
20dB Bandwidth	Miao Qinghua
Frequency Tolerance	Miao Qinghua
Electric Field Strength of Fundamental and Outside the Allocated bands	Ding Zai
Electric Field Radiated Emissions (< 30MHz)	Ding Zai
Electric Field Radiated Emissions (≥30MHz)	Ding Zai
Conducted Emissions	Li Pengfei
Antenna Requirement	Miao Qinghua

ANNEX D: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 26th day of June 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049.01 Valid to July 31, 2024

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

END OF REPORT