TEST REPORT Applicant: Autel Robotics Co., Ltd. Address: 18th Floor, Block C1, Nanshan iPark, No. 1001 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China FCC ID: 2AGNTMDX240958A IC: 20910-MDX240958A **HVIN: MDX** **FVIN: 1.3.24.0** **Product Name: EVO Max** Standard(s): 47 CFR Part 15, Subpart E(15.407) RSS-247 Issue 2, February 2017 RSS-Gen, Issue 5, February 2021 Amendment 2 ANSI C63.10-2013 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 The above equipment has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan) Report Number: CR221151897-00D **Date Of Issue: 2023/3/9** Reviewed By: Sun Zhong Sun 2hong Title: Manager **Test Laboratory:** China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888 #### **Test Facility** The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China. Report No.: CR221151897-00D The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314. The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123. #### **Declarations** China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "\(\Lambda \)". Customer model name, addresses, names, trademarks etc. are not considered data. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "★". # **CONTENTS** | TEST FACILITY | 2 | |--|----| | DECLARATIONS | 2 | | DOCUMENT REVISION HISTORY | 5 | | 1. GENERAL INFORMATION | 6 | | 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | 6 | | 1.2 DESCRIPTION OF TEST CONFIGURATION | | | 1.2.1 EUT Operation Condition: | | | 1.2.2 Support Equipment List and Details | 11 | | 1.2.3 Support Cable List and Details | | | 1.2.4 Block Diagram of Test Setup | 11 | | 2. SUMMARY OF TEST RESULTS | | | 3. REQUIREMENTS AND TEST PROCEDURES | | | 3.1 AC LINE CONDUCTED EMISSIONS | | | | | | 3.1.1 Applicable Standard | 14 | | 3.1.3 EMI Test Receiver Setup | | | 3.1.4 Test Procedure | 16 | | 3.1.5 Corrected Amplitude & Margin Calculation | | | 3.2 RADIATION SPURIOUS EMISSIONS | | | 3.2.1 Applicable Standard | 17 | | 3.2.2 EUT Setup | | | 3.2.4 Test Procedure | | | 3.2.5 Corrected Amplitude & Margin Calculation | 20 | | 3.3 26DB ATTENUATED BELOW THE CHANNEL POWER: | 21 | | 3.3.1 Applicable Standard | | | 3.3.2 EUT Setup | | | 3.3.3 Test Procedure | | | | | | 3.4.1 Applicable Standard | 22 | | 3.4.3 Test Procedure | | | 3.5 MAXIMUM CONDUCTED OUTPUT POWER: | | | 3.5.1 Applicable Standard | | | 3.5.2 EUT Setup | | | 3.5.3 Test Procedure | | | | | | 3.6.1 Applicable Standard | | | 3.6.3 Test Procedure | | | | | | 3.7 DUTY CYCLE: | 28 | |---|--| | 3.7.1 EUT Setup | 28 | | 3.7.2 Test Procedure | | | 3.8 ANTENNA REQUIREMENT | 29 | | 3.8.1 Applicable Standard | 29 | | 3.8.2 Judgment | 29 | | 3.9 ADDITIONAL REQUIREMENT | 30 | | 3.9.1 Applicable Standard | 30 | | 3.9.2 JUDGMENT | 31 | | | | | 4. Test DATA AND RESULTS | 32 | | 4.1 AC LINE CONDUCTED EMISSIONS | 32 | | 4.2 RADIATION SPURIOUS EMISSIONS | 33 | | 4.3 26DB ATTENUATED BELOW THE CHANNEL POWER: | 51 | | | | | 4.4 EMISSION BANDWIDTH: | 52 | | 4.5 MAXIMUM CONDUCTED OUTPUT POWER: | 79 | | 4.6 MAXIMUM POWER SPECTRAL DENSITY: | 82 | | 4.6 DUTY CYCLE: | 100 | | 110 POIL OIDEN 111111111111111111111111111111111111 | ······································ | # **DOCUMENT REVISION HISTORY** | Revision Number | Report Number | Description of Revision | Date of
Revision | |-----------------|-----------------|-------------------------|---------------------| | 1.0 | CR221151897-00D | Original Report | 2023/3/9 | Report No.: CR221151897-00D # 1. GENERAL INFORMATION 1.1 Product Description for Equipment under Test (EUT) | 1.1 1 Toduct Description for Equipment under Test (EO1) | | | |---|--|--| | EVO Max | | | | MDX | | | | 5150-5250 MHz band(For FCC Only):
SRD 1.4MHz:5154-5246 MHz
SRD 10MHz: 5157-5243MHz
SRD 20MHz: 5167-5233MHz
5725-5850 MHz band(For FCC&ISED):
SRD 1.4MHz: 5728-5847 MHz
SRD 10MHz: 5733-5842 MHz
SRD 20MHz: 5738-5839 MHz | | | | 5150-5250 MHz band: 20.01 dBm
5725-5850 MHz band: 24.90 dBm | | | | : 5725-5850 MHz band: 24.90 dBm
: QPSK ,16QAM | | | | : DC 14.88V from Battery | | | | : 1QAT-13 | | | | 2022/11/09 | | | | Good | | | | | | | Report No.: CR221151897-00D Note: 5150-5250 MHz was disabled by software by manufacturer in Canada market, please refer to the attention letter for more detail. # 1.1.2 Operation Frequency Detail: For SRD-5.2GHz band(FCC Only): 1.4MHz Bandwidth Mode: Middle Highest | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---|------------------------------|---------|--------------------| | 1 | 5154 | 48 | 5201 | | 2 | 5155 | 49 | 5202 | | 3 | 5156 | *** | ••• | | | | | | | | | 92 | 5245 | | 46 | 5199 | 93 | 5246 | | 47 | 5200 | / | / | | Per section 15.31(m), the below frequencies were performed the test as below: | | | | | Test | Test Channel Frequency (MHz) | | | | I | owest | 5154 | | 5201 5246 #### 10MHz Bandwidth Mode: | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 1 | 5157 | 45 | 5201 | | 2 | 5158 | 46 | 5202 | | 3 | 5159 | ••• | | | ••• | | | | | ••• | | 86 | 5242 | | 43 | 5199 | 87 | 5243 | | 44 | 5200 | / | / | Report No.: CR221151897-00D Per section 15.31(m), the below frequencies were performed the test as below: | Test Channel | Frequency
(MHz) | |--------------|--------------------| | Lowest | 5157 | | Middle | 5201 | | Highest | 5243 | #### 20MHz Bandwidth Mode: | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 1 | 5167 | 35 | 5201 | | 2 | 5168 | 36 | 5202 | | 3 | 5169 | ••• | | | | | ••• | | | | | 66 | 5232 | | 33 | 5199 | 67 | 5233 | | 34 | 5200 | / | / | Per section 15.31(m), the below frequencies were performed the test as below: | Test Channel | Frequency
(MHz) | |--------------|--------------------| | Lowest | 5167 | | Middle | 5201 | | Highest | 5233 | # For SRD-5.8GHz band(FCC& ISED): 1.4MHz Bandwidth Mode: | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 1 | 5728 | 61 | 5788 | | 2 | 5729 | 62 | 5789 | | 3 | 5730 | | | | | | ••• | | | | | 118 | 5845 | | 59 | 5786 | 119 | 5846 | | 60 | 5787 | 120 | 5847 | Per section 15.31(m)/RSS-Gen, the below frequencies were performed the test as below: | Test Channel | Frequency
(MHz) | |--------------|--------------------| | Lowest | 5728 | | Middle | 5789 | | Highest | 5847 | # For SRD-5.8GHz band 10MHz Bandwidth Mode: | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 1 | 5733 | 56 | 5788 | | 2 | 5734 | 57 | 5789 | | 3 | 5735 | ••• | | | ••• | | | | | | | 108 | 5840 | | 54 | 5786 | 109 | 5841 | | 55 | 5787 | 110 | 5842 | Per section 15.31(m)/RSS-Gen, the below frequencies were performed the test as below: | Test Channel | Frequency
(MHz) | |--------------|--------------------| | Lowest | 5733 | | Middle | 5789 | | Highest | 5842 | #### For SRD-5.8GHz band 20MHz Bandwidth Mode: | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 1 | 5738 | 52 | 5789 | | 2 | 5739 | 53 | 5790 | | 3 | 5740 | | ••• | | ••• | | | ••• | | ••• | | 100 | 5837 | | 50 | 5787 | 101 | 5838 | | 51 | 5788 | 102 | 5839 | Per section 15.31(m)/RSS-Gen, the below frequencies were performed the test as below: | Test Channel | Frequency
(MHz) | |--------------|--------------------| | Lowest | 5738 | | Middle | 5790 | | Highest | 5839 | #### 1.1.3 Antenna Information Detail ▲: | Antenna
Chain | Manufacturer | Antenna
Type | input impedance
(Ohm) | Frequency Range | Antenna
Gain | |------------------|----------------|-----------------|--------------------------|-----------------|-----------------| | | | | | 902-928 MHz | 0.3 dBi | | 0 | | PCB | 50 | 2400-2483.5 MHz | 1.7 dBi | | (Tx&Rx) | | гсь | 30 | 5150-5250 MHz | -1.6 dBi | | | | | | 5725-5850 MHz | 0.8 dBi | | | | | | 902-928 MHz | 1.1 dBi | | 1 | | PCB | 50 | 2400-2483.5 MHz | 1.5 dBi | | (Rx Only) Aute | | РСБ | | 5150-5250 MHz | 4.2 dBi | | | Autel Robotics | | | 5725-5850 MHz | 3.3 dBi | | | Co., Ltd. | Co., Ltd. | 50 | 902-928 MHz | -0.8 dBi | | 2 | | PCB | | 2400-2483.5 MHz | 1.9 dBi | | (Tx&Rx) | | РСВ | | 5150-5250 MHz | 0.7 dBi | | | | | | 5725-5850 MHz | 0.9 dBi | | | | | 50 | 902-928 MHz | 1.8 dBi | | 3 | | PCB | | 2400-2483.5 MHz | 1.2 dBi | | (Rx Only) | | | | 5150-5250
MHz | 3.0 dBi | | | | | | 5725-5850 MHz | 3.9 dBi | Report No.: CR221151897-00D The Method of §15.203 Compliance: | 1/ \ld \tall | ust be permanently attached to the unit. | |--|--| |--|--| Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit. 1.1.4 Accessory Information: | Accessory Description | Manufacturer | Model | |-----------------------|---|---------| | Adapter | Shenzhen Esun Power Technology
Co.,Ltd | MDX120W | # **1.2 Description of Test Configuration** # 1.2.1 EUT Operation Condition: | 1.2.1 ECT Operation Condition: | | | |--------------------------------|---|--| | EUT Operation Mode: | The system was configured for testing in Engineering Mode, which was provided by the manufacturer. The device only supports MIMO mode 2Tx4Rx. | | | Equipment Modifications: | No | | | EUT Exercise Software: | RRTL6.0.0_VCOM | | Report No.: CR221151897-00D The software was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer **\(\Lambda \)**: | Test Modes | Test Channels | Test Frequency | Data rate | Power Level Setting | | |------------|---------------|----------------|-----------|---------------------|---------| | | | (MHz) | | Chain 0 | Chain 2 | | | Lowest | 5154 | 6Mbps | 65 | 77 | | 1.4M | Middle | 5201 | 6Mbps | 67 | 80 | | | Highest | 5246 | 6Mbps | 67 | 83 | | 10M | Lowest | 5157 | MCS8 | 45 | 60 | | | Middle | 5201 | MCS8 | 45 | 60 | | | Highest | 5243 | MCS8 | 45 | 60 | | 20M | Lowest | 5167 | MCS8 | 45 | 60 | | | Highest | 5201 | MCS8 | 45 | 62 | | | Middle | 5233 | MCS8 | 45 | 62 | #### 5725-5850 MHz Band: QPSK | C.20 COCO MILLE Bullet QI SI | | | | | | | |------------------------------|---------|---------------|----------------|-----------|---------------------|---------| | Test Modes | | Test Channels | Test Frequency | Data rate | Power Level Setting | | | | | | (MHz) | | Chain 0 | Chain 2 | | | | Lowest | 5728 | 6Mbps | 35 | 40 | | | 1.4M | Middle | 5789 | 6Mbps | 35 | 40 | | | | Highest | 5847 | 6Mbps | 35 | 40 | | | | Lowest | 5733 | MCS8 | 35 | 40 | | | 10M | Middle | 5789 | MCS8 | 35 | 40 | | | Highest | 5842 | MCS8 | 35 | 40 | | | 20M | Lowest | 5738 | MCS8 | 35 | 40 | | | | Highest | 5790 | MCS8 | 35 | 40 | | | | | Middle | 5839 | MCS8 | 35 | 40 | 5150-5250 MHz Band: 16QAM | Test Modes | Test Channels | Test Frequency
(MHz) | Data rate | Power Level Setting | | |------------|---------------|-------------------------|-----------|---------------------|---------| | | | | | Chain 0 | Chain 2 | | | Lowest | 5154 | 6Mbps | 65 | 80 | | 1.4M | Middle | 5201 | 6Mbps | 69 | 83 | | | Highest | 5246 | 6Mbps | 69 | 83 | | 10M | Lowest | 5157 | MCS8 | 45 | 60 | | | Middle | 5201 | MCS8 | 45 | 60 | | | Highest | 5243 | MCS8 | 45 | 60 | | 20M | Lowest | 5167 | MCS8 | 45 | 60 | | | Highest | 5201 | MCS8 | 45 | 62 | | | Middle | 5233 | MCS8 | 45 | 62 | | 5725-5850 MHz Band: 16QAM | | | | | | | |---------------------------|---------------|-------------------------|-----------|----------------------------|---------|--| | Test Modes | Test Channels | Test Frequency
(MHz) | Data rate | Power Level Setting | | | | | | | | Chain 0 | Chain 2 | | | | Lowest | 5728 | 6Mbps | 45 | 50 | | | 1.4M | Middle | 5789 | 6Mbps | 45 | 50 | | | | Highest | 5847 | 6Mbps | 45 | 50 | | | 10M | Lowest | 5733 | MCS8 | 35 | 40 | | | | Middle | 5789 | MCS8 | 35 | 40 | | | | Highest | 5842 | MCS8 | 35 | 40 | | | 20M | Lowest | 5738 | MCS8 | 35 | 40 | | | | Highest | 5790 | MCS8 | 35 | 40 | | | | Middle | 5839 | MCS8 | 35 | 40 | | Report No.: CR221151897-00D 1.2.2 Support Equipment List and Details | Manufacturer | Description | Model | Serial Number | |--------------|-------------|-------|---------------| | / | / | / | / | 1.2.3 Support Cable List and Details | Cable Description | Shielding
Type | Ferrite Core | Length (m) | From Port | То | |-------------------|-------------------|--------------|------------|-----------|----| | / | / | / | / | / | / | # 1.2.4 Block Diagram of Test Setup Spurious Emissions: # 1.3 Measurement Uncertainty Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Report No.: CR221151897-00D | Parameter | Measurement Uncertainty |
--|--| | Occupied Channel Bandwidth | ±5 % | | RF output power, conducted | ±0.61dB | | Power Spectral Density, conducted | ±0.61 dB | | Unwanted Emissions, radiated | 30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB, | | , and the second | 6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB | | Unwanted Emissions, conducted | ±1.26 dB | | Temperature | ±1°C | | Humidity | ±5% | | DC and low frequency voltages | ±0.4% | | Duty Cycle | 1% | | AC Power Lines Conducted Emission | 2.8 dB (150 kHz to 30 MHz) | # 2. SUMMARY OF TEST RESULTS | Standard(s) Section | Test Items | Result | |---|---|----------------| | §15.207(a)
RSS-Gen Clause 8.8 | AC line conducted emissions | Not Applicable | | FCC§15.205& §15.209
&§15.407(b)
RSS-247 Clause 6.2 | Undesirable Emission& Restricted Bands | Compliant | | RSS-247 Clause 6.2.1.2 | 26dB attenuated below the channel power | Not Applicable | | FCC§15.407(a) (e)
RSS-247 Clause 6.2
RSS-Gen Clause 6.7 | Emission Bandwidth | Compliant | | FCC§15.407(a)
RSS-247 Clause 6.2 | Conducted Transmitter Output Power | Compliant | | FCC§15.407 (a)
RSS-247 Clause 6.2 | Power Spectral Density | Compliant | | §15.203
RSS-GEN Clause 6.8 | Antenna Requirement | Compliant | | RSS-247 Clause 6.4 | Additional requirements | Compliant | Report No.: CR221151897-00D # 3. REQUIREMENTS AND TEST PROCEDURES #### 3.1 AC Line Conducted Emissions #### 3.1.1 Applicable Standard FCC§15.207(a). (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu\text{H}/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges. Report No.: CR221151897-00D | | Conducted limit (dBµV) | | | |-----------------------------|------------------------|-----------|--| | Frequency of emission (MHz) | Quasi-peak | Average | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | 0.5-5 | 56 | 46 | | | 5-30 | 60 | 50 | | ^{*}Decreases with the logarithm of the frequency. - (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards: - (1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions. - (2) For all other carrier current systems: 1000 μV within the frequency band 535-1705 kHz, as measured using a 50 $\mu H/50$ ohms LISN. - (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate. - (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits. #### RSS-Gen Clause 8.8 Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μH / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT. For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications. | Frequency | Conducted limit (dBµV) | | | |------------|------------------------|-----------------------|--| | (MHz) | Quasi-peak | Average | | | 0.15 - 0.5 | 66 to 56 ¹ | 56 to 46 ¹ | | | 0.5 - 5 | 56 | 46 | | | 5 – 30 | 60 | 50 | | Table 4 - AC power-line conducted emissions limits Note 1: The level decreases linearly with the logarithm of the frequency. For an EUT with a permanent or detachable antenna operating between 150 kHz and 30 MHz, the AC power-line conducted emissions must be measured using the following configurations: - (a) Perform the AC power-line conducted emissions test with the antenna connected to determine compliance with the limits of table 4 outside the transmitter's fundamental emission band. - (b) Retest with a dummy load instead of the antenna to determine compliance with the limits of table 4 within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network that simulates the antenna in the fundamental frequency band. #### 3.1.2 EUT Setup Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units. The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207,RSS-Gen limits. Report No.: CR221151897-00D The spacing between the peripherals was 10 cm. The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source. #### 3.1.3 EMI Test Receiver Setup The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations: | Frequency Range | IF B/W | |------------------|--------| | 150 kHz – 30 MHz | 9 kHz | #### 3.1.4 Test Procedure The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power
cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors. #### 3.1.5 Corrected Amplitude & Margin Calculation The basic equation is as follows: Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows: Margin = Limit - Result ### 3.2 Radiation Spurious Emissions #### 3.2.1 Applicable Standard FCC §15.407 (b); *Undesirable emission limits.* Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: Report No.: CR221151897-00D - (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of 27 dBm/MHz. - (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of 27 dBm/MHz. - (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of 27 dBm/MHz. - (4) For transmitters operating solely in the 5.725-5.850 GHz band: - (i) All emissions shall be limited to a level of 27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. - (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020. - (8) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz. - (9) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207. - (10) The provisions of § 15.205 apply to intentional radiators operating under this section. - (11) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits. - (c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met. RSS-247 Clause 6.2 Frequency band 5150-5250 MHz #### 6.2.1.2 Unwanted emission limits For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band. ### Frequency band 5725-5850 MHz #### 6.2.4.2 Unwanted emission limits Devices operating in the band 5725-5850 MHz with antenna gain greater than 10 dBi can have unwanted emissions that comply with either the limits in this section or in section 5.5 until six (6) months after the publication date of this standard for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2018. Report No.: CR221151897-00D Devices operating in the band 5725-5850 MHz with antenna gain of 10 dBi or less can have unwanted emissions that comply with either the limits in this section or in section 5.5 until April 1, 2018 for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2020. Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following: - a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges; - b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges; - c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and - d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges. #### **3.2.2 EUT Setup** #### **Below 1GHz:** #### 1-40 GHz: Report No.: CR221151897-00D The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was FCC 15.209, FCC 15.407, RSS-247, RSS-Gen limits. The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm. #### 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup The system was investigated from 30 MHz to 40 GHz. During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations: #### 30-1000MHz: | Detector | RBW | Video B/W | IF B/W | |----------|---------|-----------|--------| | QP | 120 kHz | 300 kHz | 120kHz | #### 1GHz-40GHz: | Measurement | Duty cycle | RBW | Video B/W | |-------------|------------|------|-----------| | PK | Any | 1MHz | 3 MHz | | A 7.7 | >98% | 1MHz | 10 Hz | | AV | <98% | 1MHz | 1/T | Note: T is minimum transmission duration If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement. #### 3.2.4 Test Procedure During the radiated emission test, the adapter was connected to the first AC floor outlet. Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz. According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters. Report No.: CR221151897-00D According to C63.10, the above 1G test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.5m Distance extrapolation Factor =20 log (specific distance [3m]/test distance [1.5m]) dB= 6.02 dB All emissions under the average limit and under the noise floor have not recorded in the report. #### 3.2.5 Corrected Amplitude & Margin Calculation The basic equation is as follows: Factor = Antenna Factor + Cable Loss- Amplifier Gain For 30MHz-1GHz: Result = Reading + Factor For 1GHz-40GHz Result = Reading + Factor- Distance extrapolation Factor The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows: Margin = Limit - Result ### 3.3 26dB attenuated below the channel power: #### 3.3.1 Applicable Standard RSS-247 Clause 6.2.1.2 For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band. Report No.: CR221151897-00D #### 3.3.2 EUT Setup #### 3.3.3 Test Procedure - a) Set RBW = $1\%\sim5\%$ of the emission bandwidth. - b) Set the VBW > RBW. - c) Detector = peak. - d) Trace mode = max hold - e) Measure the emission attenuated below the channel power #### 3.4 Emission Bandwidth: #### 3.4.1 Applicable
Standard FCC §15.407 (a),(h) (h)(2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems. Report No.: CR221151897-00D FCC §15.407 (e) Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz. #### RSS-247 Clause 6.2.1.2 For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band. #### RSS-247 Clause 6.2.4.1 For equipment operating in the band 5725-5850 MHz, the minimum 6 dB bandwidth shall be at least 500 kHz. #### **3.4.2 EUT Setup** #### 3.4.3 Test Procedure #### **26dB Emission Bandwidth:** According to ANSI C63.10-2013 Section 12.4.1 - a) Set RBW = approximately 1% of the emission bandwidth. - b) Set the VBW > RBW. - c) Detector = peak. - d) Trace mode = max hold - e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. #### 99% Occupied Bandwidth: According to ANSI C63.10-2013 Section 12.4.2&6.9.3 The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth: Report No.: CR221151897-00D - a) The instrument center frequency is set to the nominal EÛT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. - b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. - c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. - d) Step a) through step c) might require iteration to adjust within the specified range. - e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. - f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. - g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. - h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). #### 6 dB emission bandwidth: According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 - a) Set RBW = 100 kHz. - b) Set the video bandwidth (VBW) \geq 3 RBW. - c) Detector = Peak. - d) Trace mode = \max hold. - e) Sweep = auto couple. - f) Allow the trace to stabilize. - g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described in this section. For devices that use channel aggregation refer to III.A and III.C for determining emission bandwidth. #### 3.5 Maximum conducted output power: #### 3.5.1 Applicable Standard FCC §15.407(a) (1)(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). Report No.: CR221151897-00D FCC §15.407(a) (3)(i) For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. RSS-247 Clause 6.2.1.1 For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log₁₀B, dBm, whichever is less stringent. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW. For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band. RSS-247 Clause 6.2.4.1 The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint3 systems, omnidirectional applications and multiple collocated transmitters transmitting the same information. #### 3.5.2 EUT Setup Report No.: CR221151897-00D #### 3.5.3 Test Procedure According to ANSI C63.10-2013 Section 12.3.3.2 Method PM-G is measurement using a gated RF average power meter. Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required. ### 3.6 Maximum power spectral density: #### 3.6.1 Applicable Standard FCC §15.407(a) (1)(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). Report No.: CR221151897-00D FCC §15.407(a) (3)(i) For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum
power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. #### RSS-247 Clause 6.2.1.1 For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log₁₀B, dBm, whichever is less stringent. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW. For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band. #### RSS-247 Clause 6.2.4.1 The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint3 systems, omnidirectional applications and multiple collocated transmitters transmitting the same information. #### 3.6.2 EUT Setup Report No.: CR221151897-00D #### 3.6.3 Test Procedure According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 **Method SA-3** (power averaging (rms) detection with max hold): - (i) Set span to encompass the entire EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal. - (ii) Set sweep trigger to "free run." - (iii) Set RBW = 1 MHz. - (iv) Set $VBW \ge 3 \text{ MHz}$ - (v) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This ensures that bin-to-bin spacing is $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.) - (vi) Sweep time \leq (number of points in sweep) \times T, where T is defined in II.B.1.a). Note: If this results in a sweep time less than the auto sweep time of the analyzer, Method SA-3 Alternative shall not be used. (The purpose of this step is to ensure that averaging time in each bin is less than or equal to the minimum time of a transmission.) - (vii) Detector = power averaging (rms). - (viii) Trace mode = max hold. - (ix) Allow max hold to run for at least 60 seconds, or longer as needed to allow the trace to stabilize. For devices operating in the band 5.725–5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. ### 3.7 Duty Cycle: #### **3.7.1 EUT Setup** #### 3.7.2 Test Procedure According to ANSI C63.10-2013 Section 12.2 The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal: Report No.: CR221151897-00D - 1) Set the center frequency of the instrument to the center frequency of the transmission. - 2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. - 3) Set VBW \geq RBW. Set detector = peak or average. - 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to - 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \mu s$.) #### 3.8 Antenna Requirement #### 3.8.1 Applicable Standard FCC §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded. Report No.: CR221151897-00D #### RSS-GEN Clause 6.8 The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below). When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested. For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location: This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type. #### 3.8.2 Judgment **Result: Compliant.** Please refer to the Antenna Information detail in Section 1. #### 3.9 Additional requirement #### 3.9.1 Applicable Standard According to RSS-247 Clause 6.4 Additional requirement The following requirements shall apply: a) The device shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure. A description on how this is done shall accompany the application for equipment certification. Note that this is not intended to prohibit transmission of control or signalling information or the use of repetitive codes where required by the technology. Report No.: CR221151897-00D All LE-LAN devices must contain security features to protect against modification of software by unauthorized parties. Manufacturers must implement security features in any digitally modulated devices capable of operating in any of the frequency ranges within the 5 GHz band, so that third parties are not able to reprogram the device to operate outside the parameters for which the device was certified. The software must prevent the user from operating the transmitter with operating frequencies, output power, modulation types or other radio frequency parameters outside those that were approved for the device. Manufacturers may use various means, including the use of a private network that allows only authenticated users to download software, electronic signatures in software or coding in hardware that is decoded by software to verify that new software can be legally loaded into a device to meet these requirements and must describe the methods in their application for equipment certification. Manufacturers must take steps to ensure that DFS functionality cannot be disabled by the operator of the LE-LAN device. - c) The user manual for LE-LAN devices shall contain instructions related to the restrictions mentioned in the above sections, namely that: - the device for operation in the band 5150-5250 MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile satellite systems;⁴ - for devices with detachable antenna(s), the maximum antenna gain permitted for devices in the bands
5250-5350 MHz and 5470-5725 MHz shall be such that the equipment still complies with the e.i.r.p. limit; - iii. for devices with detachable antenna(s), the maximum antenna gain permitted for devices in the band 5725-5850 MHz shall be such that the equipment still complies with the e.i.r.p. limits as appropriate; and - iv. where applicable, antenna type(s), antenna models(s), and worst-case tilt angle(s) necessary to remain compliant with the e.i.r.p. elevation mask requirement set forth in section 6.2.2.3 shall be clearly indicated. ## 3.9.2 Judgment RSS-247 Clause 6.4 a): The device shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure. Please refer to the declaration Report No.: CR221151897-00D RSS-247 Clause 6.4 b): The devices must contain security features to protect against modification of software by unauthorized parties. Please refer to the declaration RSS-247 Clause 6.4 c): - i). The device not operates on 5150-5250MHz in Canada market. - ii). The device not operates on 5250-5350 MHz/5470-5725 MHz. - iii). The antenna is not detachable, and all the EIPR compliance with RSS-247 requirement. Please refer to the conducted output power test result. - iv). Not Applicable. # 4. Test DATA AND RESULTS # **4.1 AC Line Conducted Emissions** Not Applicable, the device was powered by battery when operating Report No.: CR221151897-00D # 4.2 Radiation Spurious Emissions | Serial Number: | 1QAT-13 | Test Date: | 2023/1/13~2023/2/3 | |----------------|--------------------|--------------|--------------------| | Test Site: | 966-1,966-2 | Test Mode: | Transmitting | | Tester: | Carl Xue,coco Tian | Test Result: | Pass | Report No.: CR221151897-00D | Environmental Conditions: | | | | | | |---------------------------|-----------|------------------------------|-------|---------------------|-------------| | Temperature: (°C) | 22.1~23.9 | Relative
Humidity:
(%) | 63~64 | ATM Pressure: (kPa) | 100.5~101.3 | **Test Equipment List and Details:** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration Due
Date | |--------------------|--------------------------|---------------------------|------------------|---------------------|-------------------------| | Sunol Sciences | Antenna | ЈВ6 | A082520-5 | 2020/10/19 | 2023/10/18 | | R&S | EMI Test
Receiver | ESR3 | 102724 | 2022/07/15 | 2023/07/14 | | TIMES
MICROWAVE | Coaxial Cable | LMR-600-
UltraFlex | C-0470-02 | 2022/07/17 | 2023/07/16 | | TIMES
MICROWAVE | Coaxial Cable | LMR-600-
UltraFlex | C-0780-01 | 2022/07/17 | 2023/07/16 | | Sonoma | Amplifier | 310N | 186165 | 2022/07/17 | 2023/07/16 | | Audix | Test Software | E3 | 201021 (V9) | N/A | N/A | | ETS-Lindgren | Horn Antenna | 3115 | 9912-5985 | 2020/10/13 | 2023/10/12 | | R&S | Spectrum
Analyzer | FSV40 | 101591 | 2022/07/15 | 2023/07/14 | | MICRO-COAX | Coaxial Cable | UFA210A-1-
1200-70U300 | 217423-008 | 2022/08/07 | 2023/08/06 | | MICRO-COAX | Coaxial Cable | UFA210A-1-
2362-300300 | 235780-001 | 2022/08/07 | 2023/08/06 | | Mini | Pre-amplifier | ZVA-183-S+ | 5969001149 | 2022/11/09 | 2023/11/08 | | PASTERNACK | Horn Antenna | PE9852/2F-20 | 112002 | 2021/02/05 | 2024/02/04 | | AH | Preamplifier | PAM-1840VH | 190 | 2022/11/09 | 2023/11/08 | | MICRO-COAX | Coaxial Cable | UFB142A-1-
2362-200200 | 235772-001 | 2022/08/07 | 2023/08/06 | | E-Microwave | Band Rejection
Filter | 5150-5850MHz | OE01902423 | 2022/08/07 | 2023/08/06 | | Mini Circuits | High Pass Filter | VHF-6010+ | 31119 | 2022/08/07 | 2023/08/06 | | PASTERNACK | Horn Antenna | PE9850/2F-20 | 072001 | 2021/02/05 | 2024/02/04 | ^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI). #### **Test Data:** Please refer to the below table and plots. # 1) 30MHz-1GHz(1.4MHz QPSK Middle channel was the worst) | 1 133.151 42.30 -11.52 30.78 43.50 12.72 Peak 2 167.824 50.74 -12.73 38.01 43.50 5.49 QP 3 216.024 53.14 -12.65 40.49 46.00 5.51 QP 4 239.987 53.26 -13.02 40.24 46.00 5.76 QP 5 263.819 46.69 -12.31 34.38 46.00 11.62 Peak 6 535.707 40.30 -6.01 34.29 46.00 11.71 Peak | No. | Frequency
(MHz) | Reading
(dBμV) | Factor
(dB/m) | Result
(dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | Detector | | |---|-----|--------------------|-------------------|------------------|--------------------|-------------------|----------------|----------|--| | 2 167.824 50.74 -12.73 38.01 43.50 5.49 QP
3 216.024 53.14 -12.65 40.49 46.00 5.51 QP
4 239.987 53.26 -13.02 40.24 46.00 5.76 QP
5 263.819 46.69 -12.31 34.38 46.00 11.62 Peak | | | | | | | | | | | 3 216.024 53.14 -12.65 40.49 46.00 5.51 QP
4 239.987 53.26 -13.02 40.24 46.00 5.76 QP
5 263.819 46.69 -12.31 34.38 46.00 11.62 Peak | 1 | 133.151 | 42.30 | -11.52 | 30.78 | 43.50 | 12.72 | Peak | | | 4 239.987 53.26 -13.02 40.24 46.00 5.76 QP
5 263.819 46.69 -12.31 34.38 46.00 11.62 Peak | 2 | 167.824 | 50.74 | -12.73 | 38.01 | 43.50 | 5.49 | QP | | | 5 263.819 46.69 -12.31 34.38 46.00 11.62 Peak | 3 | 216.024 | 53.14 | -12.65 | 40.49 | 46.00 | 5.51 | QP | | | | 4 | 239.987 | 53.26 | -13.02 | 40.24 | 46.00 | 5.76 | QP | | | 6 535.707 40.30 -6.01 34.29 46.00 11.71 Peak | 5 | 263.819 | 46.69 | -12.31 | 34.38 | 46.00 | 11.62 | Peak | | | | 6 | 535.707 | 40.30 | -6.01 | 34.29 | 46.00 | 11.71 | Peak | | ### 2) 1GHz-40GHz: 5150-5250MHz 1.4M, QPSK: | 1.4WI, QI SK | Receiver | | ъ. | | | | | | | | | | | |--------------------------|----------------|----------|----------------|---------------|--------------------|-------------------|----------------|--|--|--|--|--|--| | Frequency
(MHz) | Reading (dBµV) | Detector | Polar
(H/V) | Factor (dB/m) | Result
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | | | | | | | Low Channel: 5154MHz | | | | | | | | | | | | | | | 5154.000 | 85.12 | PK | Н | 38.64 | 117.74 | N/A | N/A | | | | | | | | 5154.000 | 80.05 | AV | Н | 38.64 | 112.67 | N/A | N/A | | | | | | | | 5154.000 | 78.58 | PK | V | 38.64 | 111.20 | N/A | N/A | | | | | | | | 5154.000 | 73.16 | AV | V | 38.64 | 105.78 | N/A | N/A | | | | | | | | 5150.000 | 30.97 | PK | Н | 38.64 | 63.59 | 74.00 | 10.41 | | | | | | | | 5150.000 | 18.14 | AV | Н | 38.64 | 50.76 | 54.00 | 3.24 | | | | | | | | 10308.000 | 33.64 | PK | Н | 19.20 | 46.82 | 68.20 | 21.38 | | | | | | | | 15462.000 | 34.26 | PK | Н | 22.57 | 50.81 | 74.00 | 23.19 | | | | | | | | 15462.000 | 21.34 | AV | Н | 22.57 | 37.89 | 54.00 | 16.11 | | | | | | | | Middle Channel: 5201 MHz | | | | | | | | | | | | | | | 5201.000 | 86.82 | PK | Н | 38.70 | 119.50 | N/A | N/A | | | | | | | | 5201.000 | 81.08 | AV | Н | 38.70 | 113.76 | N/A | N/A | | | | | | | | 5201.000 | 79.67 | PK | V | 38.70 | 112.35 | N/A | N/A | | | | | | | | 5201.000 | 74.34 | AV | V | 38.70 | 107.02 | N/A | N/A | | | | | | | | 10402.000 | 33.66 | PK | Н | 19.15 | 46.79 | 68.20 | 21.41 | | | | | | | | 15603.000 | 33.79 | PK | Н | 22.41 | 50.18 | 74.00 | 23.82 | | | | | | | | 15603.000 | 20.64 | AV | Н | 22.41 | 37.03 | 54.00 | 16.97 | | | | | | | | | | | High Cha | nnel: 5246 MH | | | | | | | | | | | 5246.000 | 88.25 | PK | Н | 38.87 | 121.10 | N/A | N/A | | | | | | | | 5246.000 | 82.90 | AV | Н | 38.87 | 115.75 | N/A | N/A | | | | | | | | 5246.000 | 81.46 | PK | V | 38.87 | 114.31 | N/A | N/A | | | | | | | | 5246.000 | 76.25 | AV | V | 38.87 | 109.10 | N/A | N/A | | | | | | | | 5350.000 | 29.71 | PK | Н | 39.03 | 62.72 | 74.00 | 11.28 | | | | | | | | 5350.000 | 16.59 | AV | Н | 39.03 | 49.60 | 54.00 | 4.40 | | | | | | | | 10492.000 | 34.46 | PK | Н | 18.82 | 47.26 | 68.20 | 20.94 | | | | | | | | 15738.000 | 33.16 | PK | Н | 22.27 | 49.41 | 74.00 | 24.59 | | | | | | | | 15738.000 | 20.33 | AV | Н | 22.27 | 36.58 | 54.00 | 17.42 | | | | | | | Report No.: CR221151897-00D # 1<u>6QAM</u>: | E | Reco | eiver | Polar | Easton | Dagaslé | T ::4 | Manain | |--------------------|----------------|----------|-----------|----------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | (H/V) | Factor (dB/m) | Result
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | | | | Low C | hannel: 5154M | Hz | | | | 5154.000 | 85.24 | PK | Н | 38.64 | 117.86 | N/A | N/A | | 5154.000 | 79.31 | AV | Н | 38.64 | 111.93 | N/A | N/A | | 5154.000 | 79.47 | PK | V | 38.64 | 112.09 | N/A | N/A | | 5154.000 | 73.01 | AV | V | 38.64 | 105.63 | N/A | N/A | | 5150.000 | 31.26 | PK | Н | 38.64 | 63.88 | 74.00 | 10.12 | | 5150.000 | 18.14 | AV | Н | 38.64 | 50.76 | 54.00 | 3.24 | | 10308.000 | 34.56 | PK | Н | 19.20 | 47.74 | 68.20 | 20.46 | | 15462.000 | 33.49 | PK | Н | 22.57 | 50.04 | 74.00 | 23.96 | | 15462.000 | 20.76 | AV | Н | 22.57 | 37.31 | 54.00 | 16.69 | | | | N | Middle Ch | annel: 5201 MI | Hz | | | | 5201.000 | 86.84 | PK | Н | 38.70 | 119.52 | N/A | N/A | | 5201.000 | 80.67 | AV | Н | 38.70 | 113.35 | N/A | N/A | | 5201.000 | 80.77 | PK | V | 38.70 | 113.45 | N/A | N/A | | 5201.000 | 74.34 | AV | V | 38.70 | 107.02 | N/A | N/A | | 10402.000 | 34.31 | PK | Н | 19.15 | 47.44 | 68.20 | 20.76 | | 15603.000 | 33.80 | PK | Н | 22.41 | 50.19 | 74.00 | 23.81 | | 15603.000 | 20.96 | AV | Н | 22.41 | 37.35 | 54.00 | 16.65 | | | | | High Cha | nnel: 5246 MH | | | _ | | 5246.000 | 87.21 | PK | Н | 38.87 | 120.06 | N/A | N/A | | 5246.000 | 80.86 | AV | Н | 38.87 | 113.71 | N/A | N/A | | 5246.000 | 81.64 | PK | V | 38.87 | 114.49 | N/A | N/A | | 5246.000 | 75.34 | AV | V | 38.87 | 108.19 | N/A | N/A | | 5350.000 | 29.56 | PK | Н | 39.03 | 62.57 | 74.00 | 11.43 | | 5350.000 | 16.58 | AV | Н | 39.03 | 49.59 | 54.00 | 4.41 | |
10492.000 | 34.59 | PK | Н | 18.82 | 47.39 | 68.20 | 20.81 | | 15738.000 | 33.76 | PK | Н | 22.27 | 50.01 | 74.00 | 23.99 | | 15738.000 | 20.58 | AV | Н | 22.27 | 36.83 | 54.00 | 17.17 | # 10M,QPSK: | E | Reco | eiver | Polar | Easton | Dagult | I ::4 | Mayain | |--------------------|----------------|----------|-----------|----------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | (H/V) | Factor (dB/m) | Result
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | | | | Low Cha | nnel: 5157MHz | Z | | | | 5157.000 | 77.34 | PK | V | 38.65 | 109.97 | N/A | N/A | | 5157.000 | 67.64 | AV | V | 38.65 | 100.27 | N/A | N/A | | 5157.000 | 80.00 | PK | Н | 38.65 | 112.63 | N/A | N/A | | 5157.000 | 69.83 | AV | Н | 38.65 | 102.46 | N/A | N/A | | 5150.000 | 34.17 | PK | Н | 38.64 | 66.79 | 74.00 | 7.21 | | 5150.000 | 20.77 | AV | Н | 38.64 | 53.39 | 54.00 | 0.61 | | 10314.000 | 34.26 | PK | Н | 19.19 | 47.43 | 68.20 | 20.77 | | 15471.000 | 35.26 | PK | Н | 22.54 | 51.78 | 74.00 | 22.22 | | 15471.000 | 22.34 | AV | Н | 22.54 | 38.86 | 54.00 | 15.14 | | | |] | Middle Ch | annel: 5201 MI | Hz | | | | 5201.000 | 78.61 | PK | V | 38.70 | 111.29 | N/A | N/A | | 5201.000 | 68.94 | AV | V | 38.70 | 101.62 | N/A | N/A | | 5201.000 | 81.79 | PK | Н | 38.70 | 114.47 | N/A | N/A | | 5201.000 | 71.38 | AV | Н | 38.70 | 104.06 | N/A | N/A | | 10402.000 | 34.76 | PK | Н | 19.15 | 47.89 | 68.20 | 20.31 | | 15603.000 | 35.26 | PK | Н | 22.41 | 51.65 | 74.00 | 22.35 | | 15603.000 | 22.31 | AV | Н | 22.41 | 38.70 | 54.00 | 15.30 | | | | | High Cha | nnel: 5243 MH | Z | | | | 5243.000 | 80.89 | PK | V | 38.86 | 113.73 | N/A | N/A | | 5243.000 | 71.02 | AV | V | 38.86 | 103.86 | N/A | N/A | | 5243.000 | 87.85 | PK | Н | 38.86 | 120.69 | N/A | N/A | | 5243.000 | 77.21 | AV | Н | 38.86 | 110.05 | N/A | N/A | | 5350.000 | 29.47 | PK | Н | 39.03 | 62.48 | 74.00 | 11.52 | | 5350.000 | 16.58 | AV | Н | 39.03 | 49.59 | 54.00 | 4.41 | | 10486.000 | 34.26 | PK | Н | 18.84 | 47.08 | 68.20 | 21.12 | | 15729.000 | 34.58 | PK | Н | 22.27 | 50.83 | 74.00 | 23.17 | | 15729.000 | 21.64 | AV | Н | 22.27 | 37.89 | 54.00 | 16.11 | | E | Reco | eiver | Polar | Easton | Dagult | I :::::4 | Maugin | |--------------------|----------------|----------|-----------|----------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | (H/V) | Factor (dB/m) | Result
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | | | | Low Cha | nnel: 5157MHz | Z | | | | 5157.000 | 77.64 | PK | Н | 38.65 | 110.27 | N/A | N/A | | 5157.000 | 67.49 | AV | Н | 38.65 | 100.12 | N/A | N/A | | 5157.000 | 80.35 | PK | V | 38.65 | 112.98 | N/A | N/A | | 5157.000 | 70.29 | AV | V | 38.65 | 102.92 | N/A | N/A | | 5150.000 | 32.56 | PK | V | 38.64 | 65.18 | 74.00 | 8.82 | | 5150.000 | 19.40 | AV | V | 38.64 | 52.02 | 54.00 | 1.98 | | 10314.000 | 34.56 | PK | V | 19.19 | 47.73 | 68.20 | 20.47 | | 15471.000 | 33.47 | PK | V | 22.54 | 49.99 | 74.00 | 24.01 | | 15471.000 | 20.31 | AV | V | 22.54 | 36.83 | 54.00 | 17.17 | | | |] | Middle Ch | annel: 5201 MI | Hz | | | | 5201.000 | 78.42 | PK | Н | 38.70 | 111.10 | N/A | N/A | | 5201.000 | 68.34 | AV | Н | 38.70 | 101.02 | N/A | N/A | | 5201.000 | 81.45 | PK | V | 38.70 | 114.13 | N/A | N/A | | 5201.000 | 71.31 | AV | V | 38.70 | 103.99 | N/A | N/A | | 10402.000 | 34.64 | PK | V | 19.15 | 47.77 | 68.20 | 20.43 | | 15603.000 | 34.57 | PK | V | 22.41 | 50.96 | 74.00 | 23.04 | | 15603.000 | 21.64 | AV | V | 22.41 | 38.03 | 54.00 | 15.97 | | | | | High Cha | nnel: 5243 MH | Z | | | | 5243.000 | 79.13 | PK | Н | 38.86 | 111.97 | N/A | N/A | | 5243.000 | 69.32 | AV | Н | 38.86 | 102.16 | N/A | N/A | | 5243.000 | 82.82 | PK | V | 38.86 | 115.66 | N/A | N/A | | 5243.000 | 72.95 | AV | V | 38.86 | 105.79 | N/A | N/A | | 5350.000 | 29.23 | PK | V | 39.03 | 62.24 | 74.00 | 11.76 | | 5350.000 | 16.59 | AV | V | 39.03 | 49.60 | 54.00 | 4.40 | | 10486.000 | 34.67 | PK | V | 18.84 | 47.49 | 68.20 | 20.71 | | 15729.000 | 34.76 | PK | V | 22.27 | 51.01 | 74.00 | 22.99 | | 15729.000 | 21.64 | AV | V | 22.27 | 37.89 | 54.00 | 16.11 | # 20M,QPSK: | T. | Rece | eiver | D.1 | E4 | D14 | T | N/ | |--------------------|----------------|----------|----------------|----------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | Polar
(H/V) | Factor (dB/m) | Result
(dBμV/m) | Limit
(dBµV/m) | Margin
(dB) | | | | | Low Cl | nannel: 5167 M | Hz | | | | 5167.000 | 75.40 | PK | V | 38.66 | 108.04 | N/A | N/A | | 5167.000 | 65.57 | AV | V | 38.66 | 98.21 | N/A | N/A | | 5167.000 | 80.88 | PK | Н | 38.66 | 113.52 | N/A | N/A | | 5167.000 | 70.69 | AV | Н | 38.66 | 103.33 | N/A | N/A | | 5150.000 | 30.80 | PK | Н | 38.64 | 63.42 | 74.00 | 10.58 | | 5150.000 | 17.30 | AV | Н | 38.64 | 49.92 | 54.00 | 4.08 | | 10334.000 | 34.56 | PK | Н | 19.19 | 47.73 | 68.20 | 20.47 | | 15501.000 | 33.64 | PK | Н | 22.46 | 50.08 | 74.00 | 23.92 | | 15501.000 | 20.37 | AV | Н | 22.46 | 36.81 | 54.00 | 17.19 | | | | 1 | Middle Ch | annel: 5201 MI | Hz | | | | 5201.000 | 76.75 | PK | V | 38.70 | 109.43 | N/A | N/A | | 5201.000 | 66.84 | AV | V | 38.70 | 99.52 | N/A | N/A | | 5201.000 | 82.81 | PK | Н | 38.70 | 115.49 | N/A | N/A | | 5201.000 | 72.25 | AV | Н | 38.70 | 104.93 | N/A | N/A | | 10402.000 | 35.26 | PK | Н | 19.15 | 48.39 | 68.20 | 19.81 | | 15603.000 | 34.26 | PK | Н | 22.41 | 50.65 | 74.00 | 23.35 | | 15603.000 | 21.45 | AV | Н | 22.41 | 37.84 | 54.00 | 16.16 | | | | | High Cha | nnel: 5233 MH | Z | | | | 5233.000 | 76.39 | PK | V | 38.83 | 109.20 | N/A | N/A | | 5233.000 | 65.71 | AV | V | 38.83 | 98.52 | N/A | N/A | | 5233.000 | 82.62 | PK | Н | 38.83 | 115.43 | N/A | N/A | | 5233.000 | 72.56 | AV | Н | 38.83 | 105.37 | N/A | N/A | | 5350.000 | 30.52 | PK | Н | 39.03 | 63.53 | 74.00 | 10.47 | | 5350.000 | 16.55 | AV | Н | 39.03 | 49.56 | 54.00 | 4.44 | | 10466.000 | 34.76 | PK | Н | 18.92 | 47.66 | 68.20 | 20.54 | | 15699.000 | 33.64 | PK | Н | 22.28 | 49.90 | 74.00 | 24.10 | | 15699.000 | 20.37 | AV | Н | 22.28 | 36.63 | 54.00 | 17.37 | | E | Reco | eiver | Dalan | Easton | D a sml4 | T :!4 | Mausin | |--------------------|----------------|----------|----------------|----------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | Polar
(H/V) | Factor (dB/m) | Result
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | | | | Low Cl | nannel: 5167 M | Hz | | | | 5167.000 | 75.34 | PK | V | 38.66 | 107.98 | N/A | N/A | | 5167.000 | 65.46 | AV | V | 38.66 | 98.10 | N/A | N/A | | 5167.000 | 80.03 | PK | Н | 38.66 | 112.67 | N/A | N/A | | 5167.000 | 69.89 | AV | Н | 38.66 | 102.53 | N/A | N/A | | 5150.000 | 30.26 | PK | Н | 38.64 | 62.88 | 74.00 | 11.12 | | 5150.000 | 16.92 | AV | Н | 38.64 | 49.54 | 54.00 | 4.46 | | 10334.000 | 33.16 | PK | Н | 19.19 | 46.33 | 68.20 | 21.87 | | 15501.000 | 24.02 | PK | Н | 22.46 | 40.46 | 74.00 | 33.54 | | 15501.000 | 21.26 | AV | Н | 22.46 | 37.70 | 54.00 | 16.30 | | | | ľ | Middle Ch | annel: 5201 MI | Ηz | | _ | | 5201.000 | 76.61 | PK | V | 38.70 | 109.29 | N/A | N/A | | 5201.000 | 66.64 | AV | V | 38.70 | 99.32 | N/A | N/A | | 5201.000 | 81.89 | PK | Н | 38.70 | 114.57 | N/A | N/A | | 5201.000 | 74.57 | AV | Н | 38.70 | 107.25 | N/A | N/A | | 10402.000 | 32.64 | PK | Н | 19.15 | 45.77 | 68.20 | 22.43 | | 15603.000 | 33.47 | PK | Н | 22.41 | 49.86 | 74.00 | 24.14 | | 15603.000 | 20.34 | AV | Н | 22.41 | 36.73 | 54.00 | 17.27 | | | | | High Cha | nnel: 5233 MH | Z | | | | 5233.000 | 76.05 | PK | V | 38.83 | 108.86 | N/A | N/A | | 5233.000 | 64.33 | AV | V | 38.83 | 97.14 | N/A | N/A | | 5233.000 | 80.64 | PK | Н | 38.83 | 113.45 | N/A | N/A | | 5233.000 | 70.38 | AV | Н | 38.83 | 103.19 | N/A | N/A | | 5350.000 | 30.28 | PK | Н | 39.03 | 63.29 | 74.00 | 10.71 | | 5350.000 | 16.34 | AV | Н | 39.03 | 49.35 | 54.00 | 4.65 | | 10466.000 | 33.13 | PK | Н | 18.92 | 46.03 | 68.20 | 22.17 | | 15699.000 | 34.26 | PK | Н | 22.28 | 50.52 | 74.00 | 23.48 | | 15699.000 | 21.30 | AV | Н | 22.28 | 37.56 | 54.00 | 16.44 | ## 5725-5850MHz: QPSK 1.4M: | E | Reco | eiver | D 1 | . | D 1/ | T, | 3.5 | |--------------------|----------------|----------|----------------|-----------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | Polar
(H/V) | Factor (dB/m) | Result
(dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | | | | | Low Cl | hannel: 5728M | Hz | _ | | | 5728.000 | 88.56 | PK | Н | 39.48 | 122.02 | N/A | N/A | | 5728.000 | 81.34 | AV | Н | 39.48 | 114.80 | N/A | N/A | | 5728.000 | 86.25 | PK | V | 39.48 | 119.71 | N/A | N/A | | 5728.000 | 79.31 | AV | V | 39.48 | 112.77 | N/A | N/A | | 5725.000 | 40.23 | PK | Н | 39.48 | 73.69 | 122.20 | 48.51 | | 5720.000 | 30.75 | PK | Н | 39.49 | 64.22 | 110.80 | 46.58 | | 5700.000 | 27.96 | PK | Н | 39.51 | 61.45 | 105.20 | 43.75 | | 5650.000 | 29.86 | PK | Н | 39.49 | 63.33 | 68.20 | 4.87 | | 11456.000 | 33.76 | PK | Н | 20.77 | 48.51 | 74.00 | 25.49 | | 11456.000 | 20.94 | AV | Н | 20.77 | 35.69 | 54.00 | 18.31 | | 17184.000 | 33.67 | PK | Н | 26.50 | 54.15 | 68.20 | 14.05 | | | | | Middle (| Channel: 5789 1 | MHz | • | | | 5789.000 | 86.57 | PK | Н | 39.43 | 119.98 | N/A | N/A | | 5789.000 | 80.79 | AV | Н | 39.43 | 114.20 | N/A | N/A | | 5789.000 | 84.08 | PK | V | 39.43 | 117.49 | N/A | N/A | | 5789.000 | 78.46 | AV | V | 39.43 | 111.87 | N/A | N/A | | 11578.000 | 33.49 | PK | Н | 20.85 | 48.32 | 74.00 | 25.68 | | 11578.000 | 20.34 | AV | Н | 20.85 | 35.17 | 54.00 | 18.83 | | 17367.000 | 33.67 | PK | Н | 27.87 | 55.52 | 68.20 | 12.68 | | | | | High Cl | hannel: 5847 M | ИНz | • | | | 5847.000 | 90.72 | PK | Н | 39.49 | 124.19 | N/A | N/A | | 5847.000 | 84.71 | AV | Н | 39.49 | 118.18 | N/A | N/A | | 5847.000 | 87.94 | PK | V | 39.49 | 121.41 | N/A | N/A | | 5847.000 | 81.83 | AV | V |
39.49 | 115.30 | N/A | N/A | | 5850.000 | 48.53 | PK | Н | 39.49 | 82.00 | 122.20 | 40.20 | | 5855.000 | 32.34 | PK | Н | 39.51 | 65.83 | 110.80 | 44.97 | | 5875.000 | 31.87 | PK | Н | 39.60 | 65.45 | 105.20 | 39.75 | | 5925.000 | 31.54 | PK | Н | 39.68 | 65.20 | 68.20 | 3.00 | | 11694.000 | 33.58 | PK | Н | 21.20 | 48.76 | 74.00 | 25.24 | | 11694.000 | 20.69 | AV | Н | 21.20 | 35.87 | 54.00 | 18.13 | | 17541.000 | 33.86 | PK | Н | 29.07 | 56.91 | 68.20 | 11.29 | | E CONTROL | Reco | eiver | ъ 1 | T | D 1/ | T, | 3.6 | |--------------------|----------------|----------|----------------|----------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | Polar
(H/V) | Factor (dB/m) | Result
(dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | | | | | Low Cl | hannel: 5728M | Hz | | | | 5728.000 | 89.37 | PK | Н | 39.48 | 122.83 | N/A | N/A | | 5728.000 | 83.68 | AV | Н | 39.48 | 117.14 | N/A | N/A | | 5728.000 | 85.70 | PK | V | 39.48 | 119.16 | N/A | N/A | | 5728.000 | 79.52 | AV | V | 39.48 | 112.98 | N/A | N/A | | 5725.000 | 47.99 | PK | Н | 39.48 | 81.45 | 122.20 | 40.75 | | 5720.000 | 32.44 | PK | Н | 39.49 | 65.91 | 110.80 | 44.89 | | 5700.000 | 29.09 | PK | Н | 39.51 | 62.58 | 105.20 | 42.62 | | 5650.000 | 29.44 | PK | Н | 39.49 | 62.91 | 68.20 | 5.29 | | 11456.000 | 33.64 | PK | Н | 20.77 | 48.39 | 74.00 | 25.61 | | 11456.000 | 20.53 | AV | Н | 20.77 | 35.28 | 54.00 | 18.72 | | 17184.000 | 34.12 | PK | Н | 26.50 | 54.60 | 68.20 | 13.60 | | | | | Middle (| Channel: 5789 | MHz | | | | 5789.000 | 86.49 | PK | Н | 39.43 | 119.90 | N/A | N/A | | 5789.000 | 80.94 | AV | Н | 39.43 | 114.35 | N/A | N/A | | 5789.000 | 84.36 | PK | V | 39.43 | 117.77 | N/A | N/A | | 5789.000 | 78.73 | AV | V | 39.43 | 112.14 | N/A | N/A | | 11578.000 | 33.76 | PK | Н | 20.85 | 48.59 | 74.00 | 25.41 | | 11578.000 | 20.68 | AV | Н | 20.85 | 35.51 | 54.00 | 18.49 | | 17367.000 | 33.47 | PK | Н | 27.87 | 55.32 | 68.20 | 12.88 | | | | | High Cl | hannel: 5847 M | | | | | 5847.000 | 84.88 | PK | H | 39.49 | 118.35 | N/A | N/A | | 5847.000 | 77.42 | AV | Н | 39.49 | 110.89 | N/A | N/A | | 5847.000 | 82.72 | PK | V | 39.49 | 116.19 | N/A | N/A | | 5847.000 | 75.90 | AV | V | 39.49 | 109.37 | N/A | N/A | | 5850.000 | 45.82 | PK | Н | 39.49 | 79.29 | 122.20 | 42.91 | | 5855.000 | 30.96 | PK | Н | 39.51 | 64.45 | 110.80 | 46.35 | | 5875.000 | 29.31 | PK | Н | 39.60 | 62.89 | 105.20 | 42.31 | | 5925.000 | 29.56 | PK | Н | 39.68 | 63.22 | 68.20 | 4.98 | | 11694.000 | 34.67 | PK | Н | 21.20 | 49.85 | 74.00 | 24.15 | | 11694.000 | 21.81 | AV | Н | 21.20 | 36.99 | 54.00 | 17.01 | | 17541.000 | 33.96 | PK | Н | 29.07 | 57.01 | 68.20 | 11.19 | ## 10M, QPSK: | T. | Reco | eiver | D. 1 | E4 | D14 | T | N/ | |--------------------|----------------|----------|----------------|---------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | Polar
(H/V) | Factor (dB/m) | Result
(dBμV/m) | Limit
(dBµV/m) | Margin
(dB) | | | | | Low C | hannel: 5733M | Hz | | | | 5733.000 | 80.60 | PK | V | 39.47 | 114.05 | N/A | N/A | | 5733.000 | 70.69 | AV | V | 39.47 | 104.14 | N/A | N/A | | 5733.000 | 86.37 | PK | Н | 39.47 | 119.82 | N/A | N/A | | 5733.000 | 76.51 | AV | Н | 39.47 | 109.96 | N/A | N/A | | 5725.000 | 53.64 | PK | Н | 39.48 | 87.10 | 122.20 | 35.10 | | 5720.000 | 47.69 | PK | Н | 39.49 | 81.16 | 110.80 | 29.64 | | 5700.000 | 31.26 | PK | Н | 39.51 | 64.75 | 105.20 | 40.45 | | 5650.000 | 30.75 | PK | Н | 39.49 | 64.22 | 68.20 | 3.98 | | 11466.000 | 34.26 | PK | Н | 20.74 | 48.98 | 74.00 | 25.02 | | 11466.000 | 21.24 | AV | Н | 20.74 | 35.96 | 54.00 | 18.04 | | 17199.000 | 34.14 | PK | Н | 26.56 | 54.68 | 68.20 | 13.52 | | | |] | Middle Ch | annel: 5789 M | Hz | • | | | 5789.000 | 79.95 | PK | V | 39.43 | 113.36 | N/A | N/A | | 5789.000 | 70.03 | AV | V | 39.43 | 103.44 | N/A | N/A | | 5789.000 | 86.42 | PK | Н | 39.43 | 119.83 | N/A | N/A | | 5789.000 | 76.65 | AV | Н | 39.43 | 110.06 | N/A | N/A | | 11578.000 | 34.27 | PK | Н | 20.85 | 49.10 | 74.00 | 24.90 | | 11578.000 | 21.47 | AV | Н | 20.85 | 36.30 | 54.00 | 17.70 | | 17367.000 | 33.14 | PK | Н | 27.87 | 54.99 | 68.20 | 13.21 | | | | | High Char | nnel: 5842 M | | Į. | | | 5842.000 | 78.80 | PK | V | 39.48 | 112.26 | N/A | N/A | | 5842.000 | 68.79 | AV | V | 39.48 | 102.25 | N/A | N/A | | 5842.000 | 85.78 | PK | Н | 39.48 | 119.24 | N/A | N/A | | 5842.000 | 76.64 | AV | Н | 39.48 | 110.10 | N/A | N/A | | 5850.000 | 48.72 | PK | Н | 39.49 | 82.19 | 122.20 | 40.01 | | 5855.000 | 46.38 | PK | Н | 39.51 | 79.87 | 110.80 | 30.93 | | 5875.000 | 32.02 | PK | Н | 39.60 | 65.60 | 105.20 | 39.60 | | 5925.000 | 31.75 | PK | Н | 39.68 | 65.41 | 68.20 | 2.79 | | 11684.000 | 34.33 | PK | Н | 21.17 | 49.48 | 74.00 | 24.52 | | 11684.000 | 21.37 | AV | Н | 21.17 | 36.52 | 54.00 | 17.48 | | 17526.000 | 33.27 | PK | Н | 28.95 | 56.20 | 68.20 | 12.00 | | T. | Reco | eiver | ъ . | E 4 | D 1/ | T • •, | 34 . | |--------------------|----------------|----------|----------------|---------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | Polar
(H/V) | Factor (dB/m) | Result
(dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | | | | | Low Cl | hannel: 5733M | Hz | | | | 5733.000 | 80.56 | PK | Н | 39.47 | 114.01 | N/A | N/A | | 5733.000 | 70.95 | AV | Н | 39.47 | 104.40 | N/A | N/A | | 5733.000 | 86.41 | PK | V | 39.47 | 119.86 | N/A | N/A | | 5733.000 | 74.17 | AV | V | 39.47 | 107.62 | N/A | N/A | | 5725.000 | 51.00 | PK | Н | 39.48 | 84.46 | 122.20 | 37.74 | | 5720.000 | 47.41 | PK | Н | 39.49 | 80.88 | 110.80 | 29.92 | | 5700.000 | 31.35 | PK | Н | 39.51 | 64.84 | 105.20 | 40.36 | | 5650.000 | 30.28 | PK | Н | 39.49 | 63.75 | 68.20 | 4.45 | | 11466.000 | 34.61 | PK | Н | 20.74 | 49.33 | 74.00 | 24.67 | | 11466.000 | 21.58 | AV | Н | 20.74 | 36.30 | 54.00 | 17.70 | | 17199.000 | 20.94 | PK | Н | 26.56 | 41.48 | 68.20 | 26.72 | | | | l | Middle Cha | annel: 5789 M | Hz | | | | 5789.000 | 79.83 | PK | Н | 39.43 | 113.24 | N/A | N/A | | 5789.000 | 69.59 | AV | Н | 39.43 | 103.00 | N/A | N/A | | 5789.000 | 86.57 | PK | V | 39.43 | 119.98 | N/A | N/A | | 5789.000 | 76.72 | AV | V | 39.43 | 110.13 | N/A | N/A | | 11578.000 | 34.26 | PK | Н | 20.85 | 49.09 | 74.00 | 24.91 | | 11578.000 | 21.53 | AV | Н | 20.85 | 36.36 | 54.00 | 17.64 | | 17367.000 | 34.11 | PK | Н | 27.87 | 55.96 | 68.20 | 12.24 | | | • | H | High Char | nnel: 5842 M | Hz | | | | 5842.000 | 74.78 | PK | Н | 39.48 | 108.24 | N/A | N/A | | 5842.000 | 65.30 | AV | Н | 39.48 | 98.76 | N/A | N/A | | 5842.000 | 85.97 | PK | V | 39.48 | 119.43 | N/A | N/A | | 5842.000 | 76.21 | AV | V | 39.48 | 109.67 | N/A | N/A | | 5850.000 | 45.14 | PK | Н | 39.49 | 78.61 | 122.20 | 43.59 | | 5855.000 | 46.19 | PK | Н | 39.51 | 79.68 | 110.80 | 31.12 | | 5875.000 | 21.74 | PK | Н | 39.60 | 55.32 | 105.20 | 49.88 | | 5925.000 | 31.55 | PK | Н | 39.68 | 65.21 | 68.20 | 2.99 | | 11684.000 | 34.27 | PK | Н | 21.17 | 49.42 | 74.00 | 24.58 | | 11684.000 | 21.52 | AV | Н | 21.17 | 36.67 | 54.00 | 17.33 | | 17526.000 | 33.69 | PK | Н | 28.95 | 56.62 | 68.20 | 11.58 | ## 20M: | - | Reco | eiver | D 1 | . | D 1 | T, | 3.5 | |--------------------|----------------|----------|----------------|---------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | Polar
(H/V) | Factor (dB/m) | Result
(dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | | | | | Low Char | nnel: 5738 MH | | | | | 5738.000 | 80.14 | PK | V | 39.46 | 113.58 | N/A | N/A | | 5738.000 | 68.76 | AV | V | 39.46 | 102.20 | N/A | N/A | | 5738.000 | 83.20 | PK | Н | 39.46 | 116.64 | N/A | N/A | | 5738.000 | 72.40 | AV | Н | 39.46 | 105.84 | N/A | N/A | | 5725.000 | 49.97 | PK | Н | 39.48 | 83.43 | 122.20 | 38.77 | | 5720.000 | 48.96 | PK | Н | 39.49 | 82.43 | 110.80 | 28.37 | | 5700.000 | 32.77 | PK | Н | 39.51 | 66.26 | 105.20 | 38.94 | | 5650.000 | 29.98 | PK | Н | 39.49 | 63.45 | 68.20 | 4.75 | | 11476.000 | 35.28 | PK | Н | 20.71 | 49.97 | 74.00 | 24.03 | | 11476.000 | 22.31 | AV | Н | 20.71 | 37.00 | 54.00 | 17.00 | | 17214.000 | 33.64 | PK | Н | 26.64 | 54.26 | 68.20 | 13.94 | | | • | ı | Middle Ch | annel: 5790 M | Hz | • | | | 5790.000 | 77.84 | PK | V | 39.43 | 111.25 | N/A | N/A | | 5790.000 | 66.76 | AV | V | 39.43 | 100.17 | N/A | N/A | | 5790.000 | 83.25 | PK | Н | 39.43 | 116.66 | N/A | N/A | | 5790.000 | 72.31 | AV | Н | 39.43 | 105.72 | N/A | N/A | | 11580.000 | 34.26 | PK | Н | 20.86 | 49.10 | 74.00 | 24.90 | | 11580.000 | 21.70 | AV | Н | 20.86 | 36.54 | 54.00 | 17.46 | | 17370.000 | 33.58 | PK | Н | 27.90 | 55.46 | 68.20 | 12.74 | | | • | | High Cha | nnel: 5839 MH | Z | • | | | 5839.000 | 76.99 | PK | V | 39.48 | 110.45 | N/A | N/A | | 5839.000 | 66.62 | AV | V | 39.48 | 100.08 | N/A | N/A | | 5839.000 | 83.21 | PK | Н | 39.48 | 116.67 | N/A | N/A | | 5839.000 | 72.22 | AV | Н | 39.48 | 105.68 | N/A | N/A | | 5850.000 | 51.96 | PK | Н | 39.49 | 85.43 | 122.20 | 36.77 | | 5855.000 | 49.70 | PK | Н | 39.51 | 83.19 | 110.80 | 27.61 | | 5875.000 | 34.74 | PK | Н | 39.60 | 68.32 | 105.20 | 36.88 | | 5925.000 | 31.50 | PK | Н | 39.68 | 65.16 | 68.20 | 3.04 | | 11678.000 | 34.33 | PK | Н | 21.15 | 49.46 | 74.00 | 24.54 | | 11678.000 | 21.41 | AV | Н | 21.15 | 36.54 | 54.00 | 17.46 | | 17517.000 | 34.56 | PK | Н | 28.88 | 57.42 | 68.20 | 10.78 | | E | Reco | eiver | Polar | Factor | Dogult | Limit | Monein | |--------------------|----------------|----------|-----------|---------------|--------------------|----------|----------------| | Frequency
(MHz) | Reading (dBµV) | Detector | (H/V) | Factor (dB/m) | Result
(dBμV/m) | (dBµV/m) | Margin
(dB) | | | | | Low Char | nnel: 5738 MH | Z | | | | 5738.000 | 80.31 | PK | V | 39.46 | 113.75 | N/A | N/A | | 5738.000 | 69.15 | AV | V | 39.46 | 102.59 | N/A | N/A | | 5738.000 | 84.33 | PK | Н |
39.46 | 117.77 | N/A | N/A | | 5738.000 | 72.07 | AV | Н | 39.46 | 105.51 | N/A | N/A | | 5725.000 | 51.46 | PK | Н | 39.48 | 84.92 | 122.20 | 37.28 | | 5720.000 | 47.35 | PK | Н | 39.49 | 80.82 | 110.80 | 29.98 | | 5700.000 | 33.72 | PK | Н | 39.51 | 67.21 | 105.20 | 37.99 | | 5650.000 | 30.23 | PK | Н | 39.49 | 63.70 | 68.20 | 4.50 | | 11476.000 | 32.16 | PK | Н | 20.71 | 46.85 | 74.00 | 27.15 | | 11476.000 | 19.37 | AV | Н | 20.71 | 34.06 | 54.00 | 19.94 | | 17214.000 | 33.56 | PK | Н | 26.64 | 54.18 | 68.20 | 14.02 | | | | 1 | Middle Ch | annel: 5790 M | Hz | | | | 5790.000 | 78.06 | PK | V | 39.43 | 111.47 | N/A | N/A | | 5790.000 | 66.86 | AV | V | 39.43 | 100.27 | N/A | N/A | | 5790.000 | 84.61 | PK | Н | 39.43 | 118.02 | N/A | N/A | | 5790.000 | 72.43 | AV | Н | 39.43 | 105.84 | N/A | N/A | | 11580.000 | 34.76 | PK | Н | 20.86 | 49.60 | 74.00 | 24.40 | | 11580.000 | 19.84 | AV | Н | 20.86 | 34.68 | 54.00 | 19.32 | | 17370.000 | 33.46 | PK | Н | 27.90 | 55.34 | 68.20 | 12.86 | | | | | High Cha | nnel: 5839 MH | z | | | | 5839.000 | 76.91 | PK | V | 39.48 | 110.37 | N/A | N/A | | 5839.000 | 66.55 | AV | V | 39.48 | 100.01 | N/A | N/A | | 5839.000 | 84.11 | PK | Н | 39.48 | 117.57 | N/A | N/A | | 5839.000 | 72.36 | AV | Н | 39.48 | 105.82 | N/A | N/A | | 5850.000 | 50.85 | PK | Н | 39.49 | 84.32 | 122.20 | 37.88 | | 5855.000 | 47.10 | PK | Н | 39.51 | 80.59 | 110.80 | 30.21 | | 5875.000 | 35.69 | PK | Н | 39.60 | 69.27 | 105.20 | 35.93 | | 5925.000 | 31.46 | PK | Н | 39.68 | 65.12 | 68.20 | 3.08 | | 11678.000 | 32.64 | PK | Н | 21.15 | 47.77 | 74.00 | 26.23 | | 11678.000 | 19.68 | AV | Н | 21.15 | 34.81 | 54.00 | 19.19 | | 17517.000 | 33.56 | PK | Н | 28.88 | 56.42 | 68.20 | 11.78 | Report No.: CR221151897-00D Note: $Result = Reading + Factor-Distance\ extrapolation\ Factor$ For 1-40GHz: Distance extrapolation Factor = $20 \log (\text{specific distance } [3m]/\text{test distance } [1.5m]) dB = 6.02 dB$ Worst Test plots(20M QPSK 5839 MHz was the worst) Page 48 of 111 Page 49 of 111 | China Certification ICT Co., Ltd (Dongguan) | Report No.: CR221151897-00E | |--|-----------------------------| | 4.3 26dB attenuated below the channel power: | | | Not Applicable, 5150-5250 MHz was disabled in Canada M | [arket. | | Tr | ## 4.4 Emission Bandwidth: | Serial Number: | 1QAT-13 | Test Date: | 2023/2/8-2023/2/9 | |----------------|-----------|--------------|-------------------| | Test Site: | RF | Test Mode: | Transmitting | | Tester: | Julie Tan | Test Result: | Pass | Report No.: CR221151897-00D | Environmental Conditions: | | | | | | |---------------------------|-----------|------------------------------|-------|---------------------|-------------| | Temperature: (°C) | 20.7-23.5 | Relative
Humidity:
(%) | 57-66 | ATM Pressure: (kPa) | 101.1-101.6 | **Test Equipment List and Details:** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration Due Date | |---------------|-----------------------|-------------------|------------------|---------------------|----------------------| | R&S | Spectrum
Analyzer | FSV40 | 101943 | 2022/07/25 | 2023/07/24 | | Mini-Circuits | DC Block | BLK-18-S+ | 1554404 | Each time | N/A | | zhuoxiang | Coaxial Cable | SMA-178 | 211003 | Each time | N/A | | eastsheep | Coaxial
Attenuator | 2W-SMA-JK-
18G | 21060302 | Each time | N/A | ^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI). #### **Test Data:** #### 5150-5250 MHz: | Test Modes | Modulation | Test Frequency (MHz) | 26 dB
Bandwidth
(MHz) | 99% Occupied
Bandwidth
(MHz) | |------------|------------|----------------------|-----------------------------|------------------------------------| | | QPSK | 5154 | 1.258 | 1.090 | | | | 5201 | 1.293 | 1.090 | | 1 4114 | | 5246 | 1.311 | 1.096 | | 1.4M | 16QAM | 5154 | 1.234 | 1.09 | | | | 5201 | 1.264 | 1.09 | | | | 5246 | 1.305 | 1.09 | | | QPSK | 5157 | 9.581 | 8.982 | | | | 5201 | 9.581 | 8.982 | | 10M | | 5243 | 9.581 | 8.982 | | TOIVI | 16QAM | 5157 | 9.581 | 8.982 | | | | 5201 | 9.581 | 8.982 | | | | 5243 | 9.581 | 8.982 | | 20M | QPSK | 5167 | 19.242 | 17.884 | | | | 5201 | 19.162 | 17.964 | | | | 5233 | 19.242 | 17.964 | | | 16QAM | 5167 | 19.242 | 17.964 | | | | 5201 | 19.242 | 17.964 | | | | 5233 | 19.242 | 17.964 | Report No.: CR221151897-00D Note: Test only was performed at Chain 0.The 99% Occupied Bandwidth have not fall into the band 5250-5350MHz, please refer to the test plots of 99% Occupied Bandwidth. ## 5725-5850 MHz: | Test Modes | Modulation | Test Frequency (MHz) | 6 dB
Bandwidth
(MHz) | 99% Occupied
Bandwidth
(MHz) | |------------|------------|----------------------|----------------------------|------------------------------------| | 1.4M | QPSK | 5728 | 1.15 | 1.102 | | | | 5789 | 1.15 | 1.102 | | | | 5847 | 1.15 | 1.108 | | | 16QAM | 5728 | 1.15 | 1.102 | | | | 5789 | 1.144 | 1.096 | | | | 5847 | 1.15 | 1.096 | | | QPSK | 5733 | 9.022 | 8.982 | | 10M | | 5789 | 9.022 | 8.982 | | | | 5842 | 9.022 | 8.982 | | | 16QAM | 5733 | 9.022 | 8.982 | | | | 5789 | 9.022 | 8.982 | | | | 5842 | 9.022 | 8.982 | | 20M | QPSK | 5738 | 18.044 | 17.964 | | | | 5790 | 18.044 | 17.964 | | | | 5839 | 18.044 | 17.964 | | | 16QAM | 5738 | 18.044 | 17.964 | | | | 5790 | 18.044 | 17.964 | | | | 5839 | 18.044 | 17.964 | Report No.: CR221151897-00D Note: 6dB Emission Bandwidth Limit: ≥0.5 MHz Test only was performed at Chain 0. The 99% Occupied Bandwidth have not fall into the band 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth. Page 56 of 111 Page 57 of 111 Page 58 of 111 Page 59 of 111 Page 60 of 111 Page 61 of 111 Page 62 of 111 Page 63 of 111 Page 64 of 111 Page 65 of 111 Page 66 of 111 #### Report No.: CR221151897-00D #### 5725-5850MHz: Page 68 of 111 Page 69 of 111 Page 70 of 111 Page 71 of 111 Page 72 of 111 Page 73 of 111 Page 74 of 111 Page 75 of 111 Page 76 of 111 Page 77 of 111 Page 78 of 111 4.5 Maximum Conducted Output Power: | Serial Number: | 1QAT-13 | Test Date: | 2023/2/8-2023/2/9 | |----------------|-----------|--------------|-------------------| | Test Site: | RF | Test Mode: | Transmitting | | Tester: | Julie Tan | Test Result: | Pass | Report No.: CR221151897-00D | Environmental Conditions: | | | | | | | | |-------------------------------------|-----------|------------------------------|-------|---------------------|-------------|--|--| | Temperature: $(^{\circ}\mathbb{C})$ | 20.7-23.5 | Relative
Humidity:
(%) | 57-66 | ATM Pressure: (kPa) | 101.1-101.6 | | | # **Test Equipment List and Details:** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration
Due Date | |--------------|------------------------------|---------------|------------------|---------------------|-------------------------| | zhuoxiang | Coaxial Cable | SMA-178 | 211003 | Each time | N/A | | eastsheep | Coaxial
Attenuator | 2W-SMA-JK-18G | 21060302 | Each time | N/A | | Agilent | USB Wideband
Power Sensor | U2021XA | MY54080015 | 2022/07/15 | 2023/07/14 | ^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI). ## **Test Data:** ## 5150-5250 MHz(Only for FCC): | Modulation | Test Modes | Test
Frequency | Max. Conducted Average Output Power (dBm) | | | | |------------|------------|-------------------|---|---------|-------|-------| | | | (MHz) | Chain 0 | Chain 2 | Total | Limit | | | | 5154 | 14.65 | 14.74 | 17.71 | 30 | | | 1.4M | 5201 | 14.73 | 14.85 | 17.80 | 30 | | | | 5246 | 15.22 | 14.98 | 18.11 | 30 | | | | 5157 | 16.41 | 16.3 | 19.37 | 30 | | QPSK | 10M | 5201 | 16.65 | 16.72 | 19.70 | 30 | | | | 5243 | 16.79 | 16.93 | 19.87 | 30 | | | | 5167 | 16.39 | 16.88 | 19.65 | 30 | | | 20M | 5201 | 16.73 | 16.96 | 19.86 | 30 | | | | 5233 | 16.82 | 17.06 | 19.95 | 30 | | | | 5154 | 14.78 | 14.62 | 17.71 | 30 | | | 1.4M | 5201 | 14.39 | 14.32 | 17.37 | 30 | | | | 5246 | 14.23 | 14.15 | 17.20 | 30 | | | | 5157 | 16.45 | 17.07 | 19.78 | 30 | | 16QAM | 10M | 5201 | 16.64 | 17.11 | 19.89 | 30 | | | | 5243 | 16.73 | 17.25 | 20.01 | 30 | | | | 5167 | 16.48 | 16.36 | 19.43 | 30 | | | 20M | 5201 | 16.61 | 16.76 | 19.70 | 30 | | | | 5233 | 16.72 | 17.08 | 19.91 | 30 | Report No.: CR221151897-00D #### Note: The device is a master device when this modes operating. The duty cycle factor has been calculated into the test data. The Maximum antenna gain is 0.7dBi The Maximum EIRP=20.71 dBm, meet the requirement of The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). # 5725-5850 MHz(For FCC&ISEDC): | Modulation | Test
Modes | Test Frequency (MHz) | Max. Conducted Average Output Power (dBm) | | | | |------------|---------------|----------------------|---|---------|-------|-------| | | Modes | (WILLE) | Chain 0 | Chain 2 | Total | Limit | | | | 5728 | 21.55 | 21.48 | 24.53 | 30 | | | 1.4M | 5789 | 21.43 | 21.36 | 24.41 | 30 | | | | 5847 | 21.06 | 20.97 | 24.03 | 30 | | | | 5733 | 21.71 | 21.64 | 24.69 | 30 | | QPSK | 10M | 5789 | 21.58 | 21.47 | 24.54 | 30 | | | | 5842 | 21.3 | 21.18 | 24.25 | 30 | | | 20M | 5738 | 21.92 | 21.85 | 24.90 | 30 | | | | 5790 | 21.66 | 21.53 | 24.61 | 30 | | | | 5839 | 21.12 | 21.07 | 24.11 | 30 | | | | 5728 | 21.65 | 21.54 | 24.61 | 30 | | | 1.4M | 5789 | 21.37 | 21.25 | 24.32 | 30 | | | | 5847 | 21.02 | 20.86 | 23.95 | 30 | | | | 5733 | 21.67 | 21.56 | 24.63 | 30 | | 16QAM | 10M
| 5789 | 21.52 | 21.49 | 24.52 | 30 | | | | 5842 | 21.43 | 21.28 | 24.37 | 30 | | | | 5738 | 21.76 | 21.68 | 24.73 | 30 | | | 20M | 5790 | 21.57 | 21.44 | 24.52 | 30 | | | | 5839 | 21.04 | 20.96 | 24.01 | 30 | The duty cycle factor has been calculated into the test data. The Maximum antenna gain is 0.9dBi 4.6 Maximum power spectral density: | Serial Number: | 1QAT-13 | Test Date: | 2023/2/8-2023/3/9 | |----------------|-----------|--------------|-------------------| | Test Site: | RF | Test Mode: | Transmitting | | Tester: | Julie Tan | Test Result: | Pass | Report No.: CR221151897-00D | Environmental Conditions: | | | | | | | | |---------------------------|-----------|------------------------------|-------|---------------------|-------------|--|--| | Temperature: | 20.7-23.5 | Relative
Humidity:
(%) | 57-66 | ATM Pressure: (kPa) | 101.1-101.8 | | | ## **Test Equipment List and Details:** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration
Due Date | |---------------|-----------------------|-------------------|------------------|---------------------|-------------------------| | R&S | Spectrum
Analyzer | FSV40 | 101943 | 2022/07/25 | 2023/07/24 | | Mini-Circuits | DC Block | BLK-18-S+ | 1554404 | Each time | N/A | | zhuoxiang | Coaxial Cable | SMA-178 | 211003 | Each time | N/A | | eastsheep | Coaxial
Attenuator | 2W-SMA-JK-
18G | 21060302 | Each time | N/A | ^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI). **Test Data:** 5150-5250 MHz(Only for FCC): | Modulation | Test Modes | Test Frequency
(MHz) | Maximum Power Spectral Density (dBm/MHz) | | | | |------------|------------|-------------------------|--|---------|-------|-------| | | | (IVIIIZ) | Chain 0 | Chain 2 | Total | Limit | | | | 5154 | 13.39 | 13.54 | 16.48 | 17 | | | 1.4M | 5201 | 13.44 | 13.58 | 16.52 | 17 | | | | 5246 | 13.84 | 13.52 | 16.69 | 17 | | | | 5157 | 6.11 | 6.36 | 9.25 | 17 | | QPSK | 10M | 5201 | 6.34 | 6.79 | 9.58 | 17 | | | | 5243 | 6.56 | 7.00 | 9.80 | 17 | | | 20M | 5167 | 2.82 | 3.41 | 6.14 | 17 | | | | 5201 | 2.98 | 3.61 | 6.32 | 17 | | | | 5233 | 3.17 | 3.91 | 6.57 | 17 | | | | 5154 | 13.58 | 13.35 | 16.48 | 17 | | | 1.4M | 5201 | 13.17 | 13.44 | 16.32 | 17 | | | | 5246 | 13.32 | 13.31 | 16.33 | 17 | | | | 5157 | 5.96 | 6.34 | 9.16 | 17 | | 16QAM | 10M | 5201 | 6.1 | 6.71 | 9.43 | 17 | | | | 5243 | 6.29 | 7.11 | 9.73 | 17 | | | | 5167 | 2.80 | 3.31 | 6.07 | 17 | | | 20M | 5201 | 2.82 | 3.68 | 6.28 | 17 | | | | 5233 | 3.21 | 3.84 | 6.55 | 17 | Report No.: CR221151897-00D Note: The Maximum antenna gain is 0.7dBi The device is a master device when this modes operating. Method SA-3 in KDB 789033 D02 General UNII Test Procedures New Rules v02r01was used for PSD test. # 5725-5850 MHz(For FCC&ISEDC): | Modulation | Test Modes Test Frequency | Test Frequency
(MHz) | Maximum Power Spectral Density (dBm/500kHz) | | | | |------------|---------------------------|-------------------------|---|---------|-------|-------| | | | (WIIIZ) | Chain 0 | Chain 2 | Total | Limit | | | | 5728 | 18.46 | 18.83 | 21.66 | 30 | | | 1.4M | 5789 | 18.11 | 18.51 | 21.32 | 30 | | | | 5847 | 17.96 | 18.29 | 21.14 | 30 | | | | 5733 | 9.82 | 9.52 | 12.68 | 30 | | QPSK | 10M | 5789 | 9.48 | 9.2 | 12.35 | 30 | | | | 5842 | 9.34 | 9.04 | 12.20 | 30 | | | 20M | 5738 | 6.5 | 6.65 | 9.59 | 30 | | | | 5790 | 6.13 | 6.36 | 9.26 | 30 | | | | 5839 | 5.9 | 6 | 8.96 | 30 | | | | 5728 | 16.34 | 16.61 | 19.49 | 30 | | | 1.4M | 5789 | 16.21 | 16.27 | 19.25 | 30 | | | | 5847 | 16.16 | 16.13 | 19.16 | 30 | | | | 5733 | 9.47 | 9.6 | 12.55 | 30 | | 16QAM | 10M | 5789 | 9.22 | 9.21 | 12.23 | 30 | | | | 5842 | 8.93 | 8.98 | 11.97 | 30 | | | | 5738 | 6.4 | 6.59 | 9.51 | 30 | | | 20M | 5790 | 6.19 | 6.28 | 9.25 | 30 | | | | 5839 | 6.07 | 6.06 | 9.08 | 30 | Report No.: CR221151897-00D Note: The Maximum antenna gain is 0.9dBi Method SA-3 in KDB 789033 D02 General UNII Test Procedures New Rules v02r01was used for PSD test. # 5150-5250MHz: Chain 0 Page 86 of 111 Page 87 of 111 Page 89 of 111 Page 90 of 111 Chain 2 Page 92 of 111 Page 93 of 111 Page 95 of 111 Page 96 of 111 ## 5725-5850MHz: ### Chain 0 Page 98 of 111 Page 99 of 111 Page 100 of 111 ### Chain 2 Page 105 of 111 Page 106 of 111 ## 4.6 Duty Cycle: | Serial Number: | 1QAT-13 | Test Date: | 2023/2/8-2023/2/9 | |----------------|-----------|--------------|-------------------| | Test Site: | RF | Test Mode: | Transmitting | | Tester: | Julie Tan | Test Result: | N/A | Report No.: CR221151897-00D | Environmental Conditions: | | | | | | | | |-------------------------------------|-----------|------------------------------|-------|---------------------|-------------|--|--| | Temperature: $(^{\circ}\mathbb{C})$ | 20.7-23.5 | Relative
Humidity:
(%) | 57-66 | ATM Pressure: (kPa) | 101.1-101.6 | | | ## **Test Equipment List and Details:** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration Due Date | |---------------|-----------------------|-------------------|------------------|---------------------|----------------------| | R&S | Spectrum
Analyzer | FSV40 | 101943 | 2022/07/25 | 2023/07/24 | | Mini-Circuits | DC Block | BLK-18-S+ | 1554404 | Each time | N/A | | zhuoxiang | Coaxial Cable | SMA-178 | 211003 | Each time | N/A | | eastsheep | Coaxial
Attenuator | 2W-SMA-JK-
18G | 21060302 | Each time | N/A | ^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI). ## **Test Data:** Test only was performed at chain 0. | Modulation | Test Modes | Ton
(ms) | Ton+off
(ms) | Duty cycle (%) | |------------|------------|-------------|-----------------|----------------| | QPSK | 1.4M | 100 | 100 | 100.00 | | | 10M | 100 | 100 | 100.00 | | | 20M | 100 | 100 | 100.00 | | 16QAM | 1.4M | 100 | 100 | 100.00 | | | 10M | 100 | 100 | 100.00 | | | 20M | 100 | 100 | 100.00 | Page 110 of 111 Page 111 of 111 **===== END OF REPORT =====**