

FCC SAR Test Report

APPLICANT	: Lenovo (Shanghai) Electronics Technology Co., Ltd.
EQUIPMENT	: Portable Tablet Computer
BRAND NAME	: Lenovo
MODEL NAME	: 601LV, 602LV
FCC ID	: O57TAB3LV
STANDARD	: FCC 47 CFR Part 2 (2.1093)
	ANSI/IEEE C95.1-1992
	IEEE 1528-2013

We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Mark Qu

Prepared by: Mark Qu / Manager

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC. 1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China

Table of Contents

1. Statement of Compliance	4
2. Administration Data	5
3. Guidance Standard	
4. Equipment Under Test (EUT) Information	6
4.1 General Information	6
4.2 General LTE SAR Test and Reporting Considerations	7
5. Proximity Sensor Triggering Test	8
6. RF Exposure Limits	12
6.1 Uncontrolled Environment	12
6.2 Controlled Environment	12
7. Specific Absorption Rate (SAR)	
7.1 Introduction	
7.2 SAR Definition	13
8. System Description and Setup	
8.1 E-Field Probe	
8.2 Data Acquisition Electronics (DAE)	
8.3 Phantom	
8.4 Device Holder	
9. Measurement Procedures	18
9.1 Spatial Peak SAR Evaluation	18
9.2 Power Reference Measurement	19
9.3 Area Scan	19
9.4 Zoom Scan	
9.5 Volume Scan Procedures	20
9.6 Power Drift Monitoring	20
10. Test Equipment List	21
11. System Verification	22
11.1 Tissue Verification	
11.2 System Performance Check Results	
12. RF Exposure Positions	24
12.1 SAR Testing for Tablet	
13. Conducted RF Output Power (Unit: dBm)	25
14. Antenna Location	
15. SAR Test Results	
15.1 Body SAR	
15.2 Repeated SAR Measurement	
16. Simultaneous Transmission Analysis	
16.1 Body Exposure Conditions	46
16.2 SPLSR Evaluation and Analysis	48
17. Uncertainty Assessment	
18. References	53
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	

Appendix D. Test Setup Photos

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA641203	Rev. 01	Initial issue of report	Jul. 20, 2016

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Lenovo (Shanghai) Electronics Technology Co., Ltd., Portable Tablet Computer, 601LV, 602LV are as follows.

			Highest SAR Summary	Llighaat Cimultanaaya		
Equipment Class		juency and	Body	Highest Simultaneous Transmission SAR (W/kg)		
			1g SAR (W/kg)	OATT (WV/Ng)		
	0014		GSM GSM		1.17	
Licensed	GSIM	GSM1900	1.18	1.35		
LTE		Band 41	1.18			
DTS	WLAN	2.4GHz WLAN	0.99	1.30		
DSS	Bluetooth Bluetooth		1.35			
Date of Testing:			Jul. 04, 2016 [,]	~ Jul. 11, 2016		

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

2. Administration Data

Testing Laboratory					
Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.				
Test Site Leastion	1F & 2F,Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China				
Test Site Location	TEL: +86-755-8637-9589				
	FAX: +86-755-8637-9595				
	Applicant				
Company Name	Lenovo (Shanghai) Electronics Technology Co., Ltd.				
Address NO.68 BUILDING, 199 FENJU RD, China (Shanghai) Pilot Free Trade Zone, 200 CHINA					
Manufacturer					
Company Name	Lenovo PC HK Limited				
Address '23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong					

3. Guidance Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05

4. Equipment Under Test (EUT) Information

4.1 General Information

Product Feature & Specification				
Equipment Name	Portable Tablet Computer			
Brand Name	Lenovo			
Model Name	601LV, 602LV			
FCC ID	O57TAB3LV			
IMEI Code	861809030000634			
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz LTE Band 41: 2498.5 MHz ~ 2687.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz			
Mode	 · GPRS/EGPRS · LTE: QPSK, 16QAM · 802.11b/g/n HT20 · Bluetooth v3.0+EDR, Bluetooth v4.0 LE 			
HW Version	LenovoPad 601LV			
SW Version 601LV_160916				
EUT Stage	Identical Prototype			
Remark: 1. This device has no voice 2. 202 110 UT40 is not out				

2. 802.11n-HT40 is not supported in 2.4GHz WLAN.

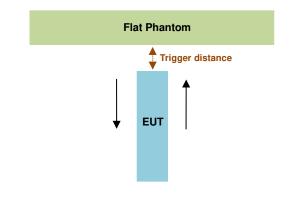
3. This device supports GRPS/EGPRS mode up to multi-slot class12.

4. This device implanted proximity sensor function at Bottom Face and Edge 3. Power reduction will be implemented immediately for GSM850/1900, LTE Band 41.

4.2 General LTE SAR Test and Reporting Considerations

Summarized r	ecessary items	addres	sed in Kl	DB 941	225 D05	v02r05		
FCC ID	O57TAB3LV							
Equipment Name	Portable Tablet	Compute	r					
Operating Frequency Range of each LTE transmission band	LTE Band 41: 24	LTE Band 41: 2498.5 MHz ~ 2687.5 MHz						
Channel Bandwidth	LTE Band 41: 5	MHz, 10N	/Hz, 15N	IHz, 20	MHz			
uplink modulations used	QPSK, and 16C	2AM						
LTE Voice / Data requirements	Data only							
	Table	6.2.3-1: Ma	ximum Po	wer Red	luction (M	PR) for Por	wer Class	3
	Modulation	Modulation Channel bandwidth / Transmission bandwidth (RB)				(RB)	MPR (dB)	
LTE MPR permanently built-in by design		1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
	QPSK	>5	>4	>8	> 12	> 16	> 18	≤1
	16 QAM	≤ 5	≤4	≤8	≤ 12	≤ 16	≤ 18	≤1
	16 QAM	>5	>4	>8	> 12	> 16	> 18	≤2
LTE A-MPR	In the base stati to disable A-MP all TTI frames (N	R during	SAR tes					
Spectrum plots for RB configuration	A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report.							
Power reduction applied to satisfy SAR compliance								
LTE Release	R8, Cat 4							

	Transmission (H, M, L) channel numbers and frequencies in each LTE band								
	LTE Band 41								
	Bandwidth 5 MHz Bandwidth 10 MHz Bandwidth 15 MHz Bandwidth 20 MHz								
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	
L	39675	2498.5	39700	2501	39725	2503.5	39750	2506	
L M	40148	2545.8	40160	2547	40173	2548.3	40185	2549.5	
Μ	40620	2593	40620	2593	40620	2593	40620	2593	
H M	41093	2640.3	41080	2639	41068	2637.8	41055	2636.5	
Н	41565	2687.5	41540	2685	41515	2682.5	41490	2680	



5. Proximity Sensor Triggering Test

<Proximity Sensor Triggering Distance (KDB 616217 D04 section 6.2)>:

Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed. The details are illustrated in the exhibit "P-Sensor operational description", and the shortest triggering distances were reported and used for SAR assessment.

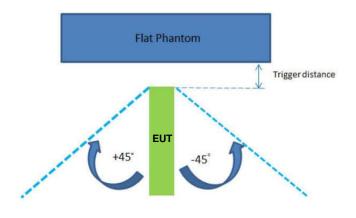
In the preliminary triggering distance testing, the tissue-equivalent medium for different frequency bands were used for verification; no other frequency bands tissue-equivalent medium was found to result in shortest triggering distance than that for 1900MHz, and the tissue-equivalent medium for 1900MHz was used for formal proximity sensor triggering testing.

Proximity Sensor Trigger Distance (mm)						
Position Bottom Face Edge 3						
Minimum	17	13				

<Proximity Sensor Triggering Coverage (KDB 616217 D04 section 6.3)>:

If a sensor is spatially offset from the antenna(s), it is necessary to verify sensor triggering for conditions where the antenna is next to the user but the sensor is laterally further away to ensure sensor coverage is sufficient for reducing the power to maintain compliance. For p-sensor coverage testing, the device is moved and "along the direction of maximum antenna and sensor offset".

Illustrated in the internal photo exhibit, although the senor is spatially offset, there is no trigger condition where the antenna is next to the user but the sensor is laterally further away, therefore proximity sensor coverage testing is not required.


This procedure is not required because antenna and sensor are collocated and the peak SAR location is overlapping with the sensor.

<Tablet Tilt angle influences to proximity sensor triggering (KDB 616217 D04 section 6.4)>:

The influence of table tilt angles to proximity sensor triggering was determined by positioning each tablet edge that contains a transmitting antenna, perpendicular to the flat phantom, at 13 mm separation. Rotating the tablet around the edge next to the phantom in \leq 10° increments until the tablet is ± 45° from the vertical

position at 0°, and the maximum output power remains in the reduced mode.

The Sensor Trigger Distance (mm)					
Position Edge 3					
Minimum	13				

Proximity sensor power reduction

Exposure Position / wireless mode	Bottom Face ⁽¹⁾	Edge 1	Edge 2	Edge 3 ⁽¹⁾	Edge 4
GSM850 GPRS (GMSK 1 Tx slot) - CS1	5.0 dB	0 dB	0 dB	5.0 dB	0 dB
GSM850 GPRS (GMSK 2 Tx slot) - CS1	7.0 dB	0 dB	0 dB	7.0 dB	0 dB
GSM850 GPRS (GMSK 3 Tx slots) - CS1	7.5 dB	0 dB	0 dB	7.5 dB	0 dB
GSM850 GPRS (GMSK 4 Tx slots) - CS1	7.5 dB	0 dB	0 dB	7.5 dB	0 dB
GSM850 EDGE (8PSK 1 Tx slot) - MCS5	5.0 dB	0 dB	0 dB	5.0 dB	0 dB
GSM850 EDGE (8PSK 2 Tx slot) - MCS5	7.0 dB	0 dB	0 dB	7.0 dB	0 dB
GSM850 EDGE (8PSK 3 Tx slot) - MCS5	7.5 dB	0 dB	0 dB	7.5 dB	0 dB
GSM850 EDGE (8PSK 4 Tx slot) - MCS5	7.5 dB	0 dB	0 dB	7.5 dB	0 dB
GSM1900 GPRS (GMSK 1 Tx slot) - CS1	5.5 dB	0 dB	0 dB	5.5 dB	0 dB
GSM1900 GPRS (GMSK 2 Tx slot) - CS1	7.5 dB	0 dB	0 dB	7.5 dB	0 dB
GSM1900 GPRS (GMSK 3 Tx slots) - CS1	7.5 dB	0 dB	0 dB	7.5 dB	0 dB
GSM1900 GPRS (GMSK 4 Tx slots) - CS1	7.5 dB	0 dB	0 dB	7.5 dB	0 dB
GSM1900 EDGE (8PSK 1 Tx slot) - MCS5	5.0 dB	0 dB	0 dB	5.0 dB	0 dB
GSM1900 EDGE (8PSK 2 Tx slot) - MCS5	7.5 dB	0 dB	0 dB	7.5 dB	0 dB
GSM1900 EDGE (8PSK 3 Tx slot) - MCS5	7.5 dB	0 dB	0 dB	7.5 dB	0 dB
GSM1900 EDGE (8PSK 4 Tx slot) - MCS5	7.5 dB	0 dB	0 dB	7.5 dB	0 dB
LTE Band 41	8.0 dB	0 dB	0 dB	8.0 dB	0 dB

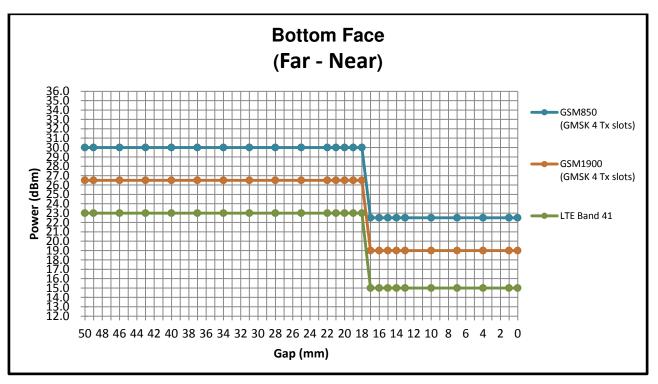
Remark:

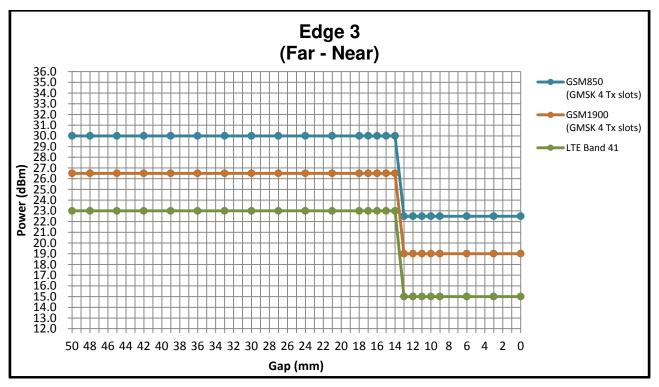
1. ⁽¹⁾: Reduced maximum limit applied by activation of proximity sensor.

2. Power reduction is not applicable for WLAN and Bluetooth.

Tests were performed in accordance with KDB 616217 D04 section 6.1, 6.2, 6.3, 6.4 and 6.5 and compliant results are shown and described in exhibit "P-Sensor operational description

Bottom Face: <u>10 mm</u>


Edge 3: <u>8 mm</u>


^{4.} For verification of compliance of power reduction scheme, additional SAR testing with EUT transmitting at full RF power at a conservative trigger distance was performed:

FCC SAR Test Report

Band/Mode	Ch #	Measured power	Reduction Levels	
Barru/Moue	011#	w/o power back-off	w/ power back-off	(dB)
GSM850 GPRS (GMSK 4 Tx slot)	128	29.75	21.86	7.89
GSM1900 GPRS (GMSK 4 Tx slot)	512	26.15	18.76	7.39
LTE Band 41 (BW20,RB 1,RB Offset 0)	39750	22.91	14.93	7.98

6. <u>RF Exposure Limits</u>

6.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

0.08 1.6 4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

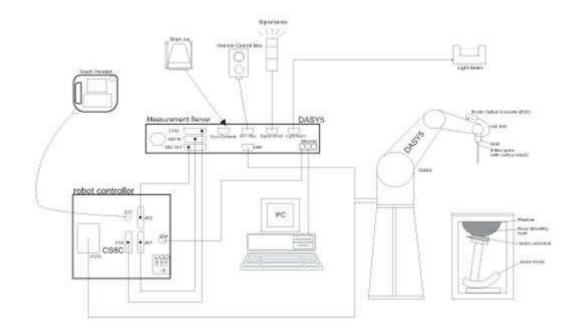
7. Specific Absorption Rate (SAR)

7.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

7.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:


$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

8. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

8.1 <u>E-Field Probe</u>

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	1. A.
Frequency	10 MHz – >6 GHz	
	Linearity: ±0.2 dB (30 MHz – 6 GHz)	
Directivity	±0.3 dB in TSL (rotation around probe axis)	
	± 0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range	10 μW/g – >100 mW/g	13
	Linearity: ±0.2 dB (noise: typically <1 µW/g)	
Dimensions	Overall length: 337 mm (tip: 20 mm)	
	Tip diameter: 2.5 mm (body: 12 mm)	
	Typical distance from probe tip to dipole centers: 1	
	mm	

8.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

8.3 Phantom

F D

M Twin Phantom S

<sam i="" phantom="" win=""></sam>		
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height:	
	adjustable feet	S
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
		the second se

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Page 16 of 53

8.4 <u>Device Holder</u>

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

9. <u>Measurement Procedures</u>

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 <u>Area Scan</u>

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

9.4 <u>Zoom Scan</u>

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

200113001100101000000000000000000000000	Zoom scan parameters extracted	rom FCC KDB 865664 D01v01r04 S	AR measurement 100 MHz to 6 GHz.
---	--------------------------------	--------------------------------	----------------------------------

			\leq 3 GHz	> 3 GHz	
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$ $3 - 4 \text{ GHz:} \le 4 \text{ mm}^*$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$ $3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$	
	uniform	grid: ∆z _{Zoom} (n)	\leq 5 mm	$4-5$ GHz: ≤ 3 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$4-5~\text{GHz}:\leq 2.5~\text{mm}$	
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z		\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

10. <u>Test Equipment List</u>

				Calibration			
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date		
SPEAG	835MHz System Validation Kit	D835V2	4d162	Nov. 24, 2015	Nov. 23, 2016		
SPEAG	1900MHz System Validation Kit	D1900V2	5d182	Nov. 23, 2015	Nov. 22, 2016		
SPEAG	2450MHz System Validation Kit	D2450V2	924	Feb. 24, 2016	Feb. 23, 2017		
SPEAG	2600MHz System Validation Kit	D2600V2	1070	Nov. 25, 2015	Nov. 24, 2016		
SPEAG	Data Acquisition Electronics	DAE4	1338	Nov. 23, 2015	Nov. 22, 2016		
SPEAG	Dosimetric E-Field Probe	EX3DV4	3819	Nov. 27, 2015	Nov. 26, 2016		
SPEAG	ELI4 Phantom	ELI5.0	1225	NCR	NCR		
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR		
Anritsu	Radio communication analyzer	MT8820C	6201300653	Aug. 25, 2015	Aug. 24, 2016		
Agilent	Wireless Communication Test Set	E5515C	MY50267224	Aug. 07, 2015	Aug. 06, 2016		
Agilent	Network Analyzer	E5071C	MY46523671	Dec. 31, 2015	Dec. 30, 2016		
Speag	Dielectric Assessment KIT	DAK-3.5	1071	Nov. 24, 2015	Nov. 23, 2016		
Agilent	Signal Generator	N5181A	MY50145381	Jan. 12, 2016	Jan. 11, 2017		
Anritsu	Power Senor	MA2411B	1306099	Jan. 12, 2016	Jan. 11, 2017		
Anritsu	Power Meter	ML2495A	1349001	Jan. 12, 2016	Jan. 11, 2017		
Anritsu	Power Sensor	MA2411B	1207253	Jan. 12, 2016	Jan. 11, 2017		
Anritsu	Power Meter	ML2495A	1218010	Jan. 12, 2016	Jan. 11, 2017		
R&S	Spectrum Analyzer	FSP7	101634	Aug. 07, 2015	Aug. 06, 2016		
ARRA	Power Divider	A3200-2	N/A	No	te1		
PASTERNACK	Dual Directional Coupler	PE2214-10	N/A	No	te1		
Agilent	Dual Directional Coupler	778D	50422	Note1			
AR	Amplifier	5S1G4	333096	Note1			
mini-circuits	Amplifier	ZVE-3W-83+	162601250	No	te1		
MCL	Attenuation1	BW-S10W5	N/A	No	te1		
Weinschel	Attenuation2	3M-20	N/A	No	te1		
Zhongjilianhe	Attenuation3	MVE2214-03	N/A	No	te1		

General Note:

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

11. System Verification

11.1 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
For Head								
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
				For Body				
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	68.1	0	0	0.1	0	31.8	2.16	52.5

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
835	Body	22.6	0.977	54.466	0.97	55.20	0.72	-1.33	±5	Jul. 07, 2016
1900	Body	22.8	1.584	54.212	1.52	53.30	4.21	1.71	±5	Jul. 08, 2016
2450	Body	22.8	1.991	52.313	1.95	52.70	2.10	-0.73	±5	Jul. 11, 2016
2600	Body	22.5	2.165	53.823	2.16	52.50	0.23	2.52	±5	Jul. 04, 2016
2600	Body	22.6	2.201	52.823	2.16	52.50	1.90	0.62	±5	Jul. 05, 2016

11.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
Jul. 07, 2016	835	Body	250	D835V2- 4d162	EX3DV4 - SN3819	DAE4 Sn1338	2.41	9.51	9.64	1.37
Jul. 08, 2016	1900	Body	250	D1900V2- 5d182	EX3DV4 - SN3819	DAE4 Sn1338	10.00	40.60	40	-1.48
Jul. 11, 2016	2450	Body	250	D2450V2- 924	EX3DV4 - SN3819	DAE4 Sn1338	13.70	51.40	54.8	6.61
Jul. 04, 2016	2600	Body	250	D2600V2- 1070	EX3DV4 - SN3819	DAE4 Sn1338	14.50	54.20	58	7.01
Jul. 05, 2016	2600	Body	250	D2600V2- 1070	EX3DV4 - SN3819	DAE4 Sn1338	14.70	54.20	58.8	8.49

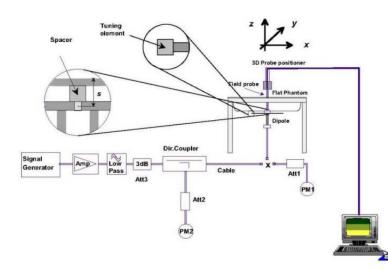


Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

12. <u>RF Exposure Positions</u>

12.1 SAR Testing for Tablet

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

This EUT was tested in five different positions. They are bottom-face of tablet PC, Edge1, Edge2, Edge3 and Edge4. EUT has proximity sensor function, it would be on bottom-face and Edge3 active, the sensor trigger distance is 17mm for bottom-face and 13mm for Edge3, EUT transmitting reduced power was performed. Additional the surface of EUT is touching with phantom 0 cm for Edge2 and Edge 4 with full power.

13. <u>Conducted RF Output Power (Unit: dBm)</u>

<GSM Conducted Power>

- 1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 2. Per KDB 941225 D01v03r01, for SAR test reduction for GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 without power back-off is considered as the primary mode.
- 3. Other configurations of GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode
- 4. Per KDB 941225 D01v03r01, for SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance, for modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested, therefore, the GPRS 4Tx slots modes was selected when EUT operating without power back-off, the GPRS 4Tx slots modes was selected when EUT operating to the highest source-based time-averaged output power.

Maximum Average RF Power (Proximity Sensor Inactive)

GSM850	Burst Av	verage Pow	er (dBm)	Tune-up	Frame-A	verage Pow	<i>v</i> er (dBm)	Tune-up
TX Channel	128	189	251	Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GPRS 1 Tx slot	<mark>32.59</mark>	32.58	32.54	33.00	23.59	23.58	23.54	24.00
GPRS 2 Tx slots	32.18	32.11	32.15	32.50	26.18	26.11	26.15	26.50
GPRS 3 Tx slots	30.85	30.79	30.77	31.00	26.59	26.53	26.51	26.74
GPRS 4 Tx slots	29.75	29.73	29.71	30.00	26.75	26.73	26.71	27.00
EDGE 1 Tx slot	26.98	27.25	27.27	28.00	17.98	18.25	18.27	19.00
EDGE 2 Tx slots	25.99	26.24	26.18	27.00	19.99	20.24	20.18	21.00
EDGE 3 Tx slots	23.96	24.23	24.22	25.50	19.70	19.97	19.96	21.24
EDGE 4 Tx slots	22.91	23.16	23.19	24.00	19.91	20.16	20.19	21.00

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

GSM1900	Burst Ave	erage Pow	ver (dBm)	Tune-up	up Frame-Average Power (dBm)			Tune-up			
TX Channel	512	661	810	Limit	512	661	810	Limit			
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)			
GPRS 1 Tx slot	<mark>30.17</mark>	30.16	30.14	30.50	21.17	21.16	21.14	21.50			
GPRS 2 Tx slots	29.13	29.11	29.06	29.50	23.13	23.11	23.06	23.50			
GPRS 3 Tx slots	27.40	27.33	27.26	27.50	23.14	23.07	23.00	23.24			
GPRS 4 Tx slots	26.15	26.11	26.08	26.50	23.15	23.11	23.08	23.50			
EDGE 1 Tx slot	26.91	26.76	26.78	27.00	17.91	17.76	17.78	18.00			
EDGE 2 Tx slots	25.93	25.74	25.71	26.00	19.93	19.74	19.71	20.00			
EDGE 3 Tx slots	23.92	23.75	23.80	24.50	19.66	19.49	19.54	20.24			
EDGE 4 Tx slots	22.67	22.59	22.60	23.00	19.67	19.59	19.60	20.00			
Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB											

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

Report No. : FA641203

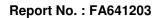
Reduced Average RF Power (Proximity Sensor active)

induded / norage in . ener (i rexit													
GSM850	Burst A	verage Pow	er (dBm)	Tune-up	Frame-A	verage Pow	/er (dBm)	Tune-up					
TX Channel	128	189	251	Limit	128	189	251	Limit					
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)					
GPRS 1 Tx slot	<mark>27.77</mark>	27.75	27.71	28.00	18.77	18.75	18.71	19.00					
GPRS 2 Tx slots	24.92	24.83	24.50	25.50	18.92	18.83	18.50	19.50					
GPRS 3 Tx slots	23.14	23.08	22.98	23.50	18.88	18.82	18.72	19.24					
GPRS 4 Tx slots	21.86	21.78	21.71	22.50	18.86	18.78	18.71	19.50					
EDGE 1 Tx slot	21.63	21.83	21.94	23.00	12.63	12.83	12.94	14.00					
EDGE 2 Tx slots	18.57	19.07	19.09	20.00	12.57	13.07	13.09	14.00					
EDGE 3 Tx slots	17.02	17.24	17.29	18.00	12.76	12.98	13.03	13.74					
EDGE 4 Tx slots	15.66	16.02	16.03	16.50	12.66	13.02	13.03	13.50					

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB


Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

GSM1900	Burst Av	erage Pow	er (dBm)	Tune-up	Frame-A	verage Pov	ver (dBm)	Tune-up
TX Channel	512	661	810	Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GPRS 1 Tx slot	<mark>24.77</mark>	24.70	24.65	25.00	15.77	15.70	15.65	16.00
GPRS 2 Tx slots	21.80	21.73	21.62	22.00	15.80	15.73	15.62	16.00
GPRS 3 Tx slots	19.96	19.92	19.90	20.00	15.70	15.66	15.64	15.74
GPRS 4 Tx slots	18.76	18.68	18.58	19.00	15.76	15.68	15.58	16.00
EDGE 1 Tx slot	21.21	21.18	21.27	22.00	12.21	12.18	12.27	13.00
EDGE 2 Tx slots	18.07	17.95	18.16	18.50	12.07	11.95	12.16	12.50
EDGE 3 Tx slots	16.24	16.19	16.32	17.00	11.98	11.93	12.06	12.74
EDGE 4 Tx slots	14.92	14.89	14.96	15.50	11.92	11.89	11.96	12.50
Remark: The frame-averaged power is linear	v scaled the	maximum	burst averag	ed power ov	ver 8 time slo	ts.	•	

The calculated method are shown as below:

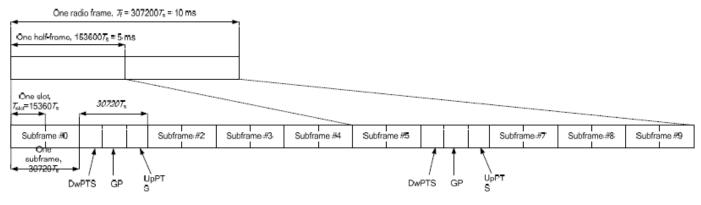
Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

<LTE Conducted Power>

General Note:

- Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.
- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.



<TDD LTE SAR Measurement>

TDD LTE configuration setup for SAR measurement

SAR was tested with a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by 3GPP.

- a. 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations
- "special subframe S" contains both uplink and downlink transmissions, it has been taken into consideration to determine the transmission duty factor according to the worst case uplink and downlink cyclic prefix requirements for UpPTS
- c. Establishing connections with base station simulators ensure a consistent means for testing SAR and recommended for evaluating SAR. The Anritsu MT8820C (firmware: #22.52#004) was used for LTE output power measurements and SAR testing.

Figure 4.2-1: Frame structure type 2 (for 5 ms switch-point periodicity).

Uplink-downlink	Downlink-to-Uplink	Subframe number									
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Special subframe	Norma	I cyclic prefix i	n downlink	Exte	nded cyclic prefix	in downlink
configuration	DwPTS	Up	PTS	DwPTS	Up	PTS
		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink
0	$6592 \cdot T_s$			$7680 \cdot T_s$		
1	19760 · T _s			$20480 \cdot T_s$	2102 T	2560 T
2	$21952 \cdot T_s$	$2192 \cdot T_s$	$2560 \cdot T_s$	$23040 \cdot T_s$	$2192 \cdot T_{s}$	$2560 \cdot T_s$
3	$24144 \cdot T_s$			$25600 \cdot T_s$	_	
4	$26336 \cdot T_s$			$7680 \cdot T_s$		
5	6592 · T _s			$20480 \cdot T_s$	4204 T	5120 T
6	19760 · T _s			23040 · T _s	$4384 \cdot T_{\rm s}$	$5120 \cdot T_s$
7	$21952 \cdot T_s$	$4384 \cdot T_s$	5120 · T _s	12800 · T _s		
8	$24144 \cdot T_s$			-	-	-
9	13168 · T _s			-	-	-

Specia	Special subframe (30720·T _s): Normal cyclic prefix in downlink (UpPTS)											
	Special subframe configuration	Normal cyclic prefix in uplink	Extended cyclic prefix in uplink									
Uplink duty factor in one	0~4	7.13%	8.33%									
special subframe	5~9	14.3%	16.7%									

Special subframe(30720·T _s): Extended cyclic prefix in downlink (UpPTS)									
	Special subframe configuration	Normal cyclic prefix in uplink	Extended cyclic prefix in uplink						
Uplink duty factor in one	0~3	7.13%	8.33%						
special subframe	4~7	14.3%	16.7%						

The highest duty factor is resulted from:

i. Uplink-downlink configuration: 0. In a half-frame consisted of 5 subfames, uplink operation is in 3 uplink subframes and 1 special subframe.

ii. special subframe configuration: 5-9 for normal cyclic prefix in downlink, 4-7 for extended cyclic prefix in downlink

- iii. for special subframe with extended cyclic prefix in uplink, the total uplink duty factor in one half-frame is: (3+0.167)/5 = 63.3%
- iv. for special subframe with normal cyclic prefix in uplink, the total uplink duty factor in one half-frame is: (3+0.143)/5 = 62.9%
- v. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The scaled TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.

Maximum Average RF Power (Proximity Sensor Inactive)

<u>LTE Band 41></u>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Low Middle Ch. / Freq.	Power Middle Ch. / Freq.	Power High Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit (dBm)	MPR (dB)
	Char	nnel		39750	40185	40620	41055	41490	(ubiii)	
	Frequenc	y (MHz)		2506	2549.5	2593	2636.5	2680		
20	QPSK	1	0	22.91	22.78	22.70	22.61	22.91		
20	QPSK	1	49	22.68	22.67	22.59	22.51	22.73	23.00	0
20	QPSK	1	99	22.69	22.74	22.60	22.58	22.72		
20	QPSK	50	0	21.86	21.84	21.74	21.70	21.94		
20	QPSK	50	24	21.86	21.85	21.73	21.71	21.93	22.00	1
20	QPSK	50	50	21.97	21.89	21.82	21.73	21.96	22.00	1
20	QPSK	100	0	21.91	21.88	21.76	21.70	21.95		
20	16QAM	1	0	21.90	21.96	21.97	21.89	21.95		
20	16QAM	1	49	21.91	21.95	21.86	21.80	21.98	22.00	1
20	16QAM	1	99	21.92	21.94	21.85	21.81	21.96		
20	16QAM	50	0	20.96	20.94	20.87	20.80	20.94		
20	16QAM	50	24	20.90	20.87	20.80	20.76	20.99	21.00	2
20	16QAM	50	50	20.89	20.87	20.79	20.76	20.96	21.00	2
20	16QAM	100	0	20.94	20.86	20.80	20.74	20.99		
	Char	nnel		39725	40173	40620	41068	41515	Tune-up limit	MPR
	Frequenc	y (MHz)		2503.5	2548.3	2593	2637.8	2682.5	(dBm)	(dB)
15	QPSK	1	0	22.83	22.80	22.75	22.63	22.87		
15	QPSK	1	37	22.77	22.77	22.69	22.61	22.83	23.00	0
15	QPSK	1	74	22.74	22.76	22.65	22.63	22.78		
15	QPSK	36	0	21.95	21.87	21.81	21.73	21.95		
15	QPSK	36	20	21.92	21.87	21.78	21.73	21.98	22.00	1
15	QPSK	36	39	21.91	21.87	21.76	21.72	21.94	22.00	1
15	QPSK	75	0	21.89	21.84	21.75	21.69	21.94		
15	16QAM	1	0	21.98	21.98	21.93	21.83	21.95		
15	16QAM	1	37	21.93	21.96	21.87	21.80	21.94	22.00	1
15	16QAM	1	74	21.90	21.96	21.86	21.81	21.98		
15	16QAM	36	0	20.91	20.91	20.80	20.71	21.00		
15	16QAM	36	20	20.88	20.83	20.78	20.71	20.97	21.00	2
15	16QAM	36	39	20.87	20.82	20.75	20.71	20.92	21.00	2
15	16QAM	75	0	20.90	20.86	20.80	20.73	20.98		

Report No. : FA641203

	Char	nel		39700	40160	40620	41080	41540	Tune-up	MPR
	Frequenc	y (MHz)		2501	2547	2593	2639	2685	limit (dBm)	(dB)
10	QPSK	1	0	22.72	22.68	22.62	22.59	22.77		
10	QPSK	1	25	22.68	22.64	22.56	22.52	22.75	23.00	0
10	QPSK	1	49	22.65	22.66	22.57	22.52	22.70		
10	QPSK	25	0	21.88	21.81	21.75	21.70	21.96		
10	QPSK	25	12	21.85	21.81	21.74	21.70	21.94	00.00	4
10	QPSK	25	25	21.86	21.81	21.71	21.68	21.92	22.00	1
10	QPSK	50	0	21.90	21.82	21.74	21.70	21.94		
10	16QAM	1	0	21.93	21.95	21.89	21.85	21.96		
10	16QAM	1	25	21.89	21.91	21.83	21.79	21.99	22.00	1
10	16QAM	1	49	21.88	21.92	21.84	21.78	21.95		
10	16QAM	25	0	20.91	20.90	20.80	20.74	21.00		
10	16QAM	25	12	20.91	20.84	20.80	20.76	20.98	01.00	0
10	16QAM	25	25	20.91	20.83	20.78	20.75	20.97	21.00	2
10	16QAM	50	0	20.91	20.84	20.80	20.74	20.97		
	Char	nnel		39675	40148	40620	41093	41565	Tune-up limit	MPR
	Frequenc	y (MHz)		2498.5	2545.8	2593	2640.30	2687.5	(dBm)	(dB)
5	QPSK	1	0	22.71	22.67	22.59	22.55	22.76		
5	QPSK	1	12	22.71	22.70	22.59	22.55	22.75	23.00	0
5	QPSK	1	24	22.62	22.59	22.53	22.47	22.67		
5	QPSK	12	0	21.91	21.81	21.75	21.70	21.94		
5	QPSK	12	7	21.89	21.82	21.74	21.70	21.95	22.00	1
5	QPSK	12	13	21.89	21.80	21.74	21.69	21.92	22.00	1
5	QPSK	25	0	21.83	21.79	21.72	21.64	21.91		
5	16QAM	1	0	21.91	21.90	21.85	21.77	21.98		
5	16QAM	1	12	21.92	21.91	21.85	21.80	21.99	22.00	1
5	16QAM	1	24	21.86	21.87	21.80	21.74	21.91		
5	16QAM	12	0	20.92	20.82	20.80	20.77	20.99		
5	16QAM	12	7	20.90	20.84	20.78	20.75	21.00	21.00	2
5	16QAM	12	13	20.91	20.84	20.79	20.75	20.96	21.00	2
5	16QAM	25	0	20.91	20.84	20.79	20.73	20.95	1	

Note: According to FCC KDB 447498 D01 v06, chose five channels to do power measurement for LTE Band 41.

Reduced Average RF Power (Proximity Sensor active)

<LTE Band 41>

				Power	Power Low	Power	Power High	Power		
BW [MHz]	Modulation	RB Size	RB Offset	Low Ch. / Freq.	Middle Ch. / Freq.	Middle Ch. / Freq.	Middle Ch. / Freq.	High Ch. / Freq.	Tune-up limit (dBm)	MPR (dB)
	Char	nnel		39750	40185	40620	41055	41490	(abiii)	
	Frequenc	y (MHz)		2506	2549.5	2593	2636.5	2680		
20	QPSK	1	0	14.93	14.70	14.47	14.56	14.86		
20	QPSK	1	49	14.60	14.62	14.39	14.52	14.80	15.00	0
20	QPSK	1	99	14.68	14.69	14.46	14.55	14.86		
20	QPSK	50	0	14.75	14.72	14.52	14.61	14.80		
20	QPSK	50	24	14.70	14.69	14.49	14.61	14.80	15.00	0
20	QPSK	50	50	14.86	14.72	14.56	14.65	14.85	15.00	0
20	QPSK	100	0	14.71	14.71	14.47	14.59	14.81		
20	16QAM	1	0	14.91	14.98	14.79	14.83	14.98		
20	16QAM	1	49	14.92	14.91	14.68	14.81	14.91	15.00	0
20	16QAM	1	99	14.97	14.90	14.75	14.84	14.92		
20	16QAM	50	0	14.79	14.77	14.56	14.65	14.99		
20	16QAM	50	24	14.76	14.74	14.53	14.65	14.95	15.00	0
20	16QAM	50	50	14.81	14.77	14.58	14.69	14.98	15.00	0
20	16QAM	100	0	14.76	14.74	14.50	14.61	14.94		
	Char	nnel		39725	40173	40620	41068	41515	Tune-up	MPR
	Frequenc	y (MHz)		2503.5	2548.3	2593	2637.8	2682.5	limit (dBm)	(dB)
15	QPSK	1	0	14.68	14.73	14.50	14.55	14.92		
15	QPSK	1	37	14.71	14.75	14.47	14.65	14.91	15.00	0
15	QPSK	1	74	14.66	14.73	14.54	14.61	14.91		
15	QPSK	36	0	14.69	14.73	14.50	14.61	14.91		
15	QPSK	36	20	14.71	14.72	14.50	14.63	14.91	45.00	
15	QPSK	36	39	14.69	14.74	14.53	14.64	14.91	15.00	0
15	QPSK	75	0	14.73	14.74	14.49	14.57	14.92		
15	16QAM	1	0	14.88	14.92	14.73	14.74	14.92		
15	16QAM	1	37	14.94	14.95	14.67	14.81	14.91	15.00	0
15	16QAM	1	74	14.87	14.94	14.78	14.80	14.89		
15	16QAM	36	0	14.70	14.72	14.48	14.58	14.92		
15	16QAM	36	20	14.68	14.70	14.48	14.62	14.90		
15	16QAM	36	39	14.68	14.73	14.50	14.61	14.91	15.00	0
15	16QAM	75	0	14.76	14.76	14.54	14.61	14.93		

Report No. : FA641203

Channel				39700	40160	40620	41080	41540	Tune-up	MPR
	Frequency (MHz)			2501	2547	2593	2639	2685	limit (dBm)	(dB)
10	QPSK	1	0	14.52	14.58	14.39	14.48	14.81	15.00	0
10	QPSK	1	25	14.53	14.60	14.45	14.47	14.76		
10	QPSK	1	49	14.54	14.62	14.38	14.48	14.78		
10	QPSK	25	0	14.62	14.66	14.47	14.58	14.90	- 15.00	0
10	QPSK	25	12	14.63	14.70	14.48	14.59	14.89		
10	QPSK	25	25	14.62	14.69	14.52	14.58	14.85		
10	QPSK	50	0	14.61	14.70	14.51	14.60	14.91		
10	16QAM	1	0	14.83	14.92	14.70	14.85	14.88		
10	16QAM	1	25	14.85	14.89	14.73	14.76	14.89	15.00	0
10	16QAM	1	49	14.82	14.92	14.69	14.79	14.87		
10	16QAM	25	0	14.68	14.71	14.52	14.62	14.94	- 15.00	0
10	16QAM	25	12	14.67	14.70	14.52	14.63	14.93		
10	16QAM	25	25	14.69	14.71	14.55	14.61	14.89		
10	16QAM	50	0	14.66	14.74	14.54	14.61	14.93		
	Channel				40148	40620	41093	41565	Tune-up limit	MPR
	Frequency (MHz)			2498.5	2545.8	2593	2640.30	2687.5	(dBm)	(dB)
5	QPSK	1	0	14.55	14.59	14.39	14.48	14.74		
5	QPSK	1	12	14.54	14.61	14.05	14.50	14.78	15.00	•
5			12	14.54	14.01	14.35	14.50	14.70	15.00	0
	QPSK	1	24	14.45	14.61	14.35	14.30	14.68	15.00	0
5	QPSK QPSK								15.00	0
5 5		1	24	14.45	14.52	14.35	14.41	14.68	-	
	QPSK	1 12	24 0	14.45 14.66	14.52 14.69	14.35 14.48	14.41 14.58	14.68 14.88	15.00	0
5	QPSK QPSK	1 12 12	24 0 7	14.45 14.66 14.63	14.52 14.69 14.69	14.35 14.48 14.46	14.41 14.58 14.59	14.68 14.88 14.88	-	
5	QPSK QPSK QPSK	1 12 12 12	24 0 7 13	14.45 14.66 14.63 14.63	14.52 14.69 14.69 14.69	14.35 14.48 14.46 14.51	14.41 14.58 14.59 14.56	14.68 14.88 14.88 14.88	-	
5 5 5	QPSK QPSK QPSK QPSK	1 12 12 12 25	24 0 7 13 0	14.45 14.66 14.63 14.63 14.58	14.52 14.69 14.69 14.69 14.64	14.35 14.48 14.46 14.51 14.48	14.41 14.58 14.59 14.56 14.54	14.68 14.88 14.88 14.88 14.88 14.88	-	
5 5 5 5	QPSK QPSK QPSK QPSK 16QAM	1 12 12 12 25 1	24 0 7 13 0 0	14.45 14.66 14.63 14.63 14.58 14.82	14.52 14.69 14.69 14.69 14.64 14.87	14.35 14.48 14.46 14.51 14.48 14.67	14.41 14.58 14.59 14.56 14.54 14.75	14.68 14.88 14.88 14.88 14.84 14.92	15.00	0
5 5 5 5 5 5	QPSK QPSK QPSK QPSK 16QAM 16QAM	1 12 12 12 25 1 1	24 0 7 13 0 0 12	14.45 14.66 14.63 14.63 14.58 14.82 14.87	14.52 14.69 14.69 14.69 14.69 14.69 14.87 14.89	14.35 14.48 14.46 14.51 14.48 14.71	14.41 14.58 14.59 14.56 14.54 14.75 14.77	14.68 14.88 14.88 14.88 14.84 14.92 14.77	15.00	0
5 5 5 5 5 5 5 5	QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 12 12 12 25 1 1 1 1	24 0 7 13 0 0 12 24	14.45 14.66 14.63 14.63 14.58 14.82 14.87 14.78	14.52 14.69 14.69 14.69 14.64 14.87 14.89 14.82	14.35 14.48 14.46 14.51 14.48 14.67 14.67 14.67	14.41 14.58 14.59 14.56 14.54 14.75 14.77 14.69	14.68 14.88 14.88 14.84 14.92 14.77 14.95	15.00	0
5 5 5 5 5 5 5 5 5	QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	1 12 12 12 25 1 1 1 1 12	24 0 7 13 0 0 12 24 0	14.45 14.66 14.63 14.63 14.58 14.82 14.87 14.78 14.71	14.52 14.69 14.69 14.69 14.69 14.69 14.87 14.87 14.82 14.72	14.35 14.48 14.46 14.51 14.67 14.71 14.67 14.51	14.41 14.58 14.59 14.56 14.54 14.75 14.77 14.69 14.62	14.68 14.88 14.88 14.88 14.84 14.92 14.77 14.95 14.78	15.00	0

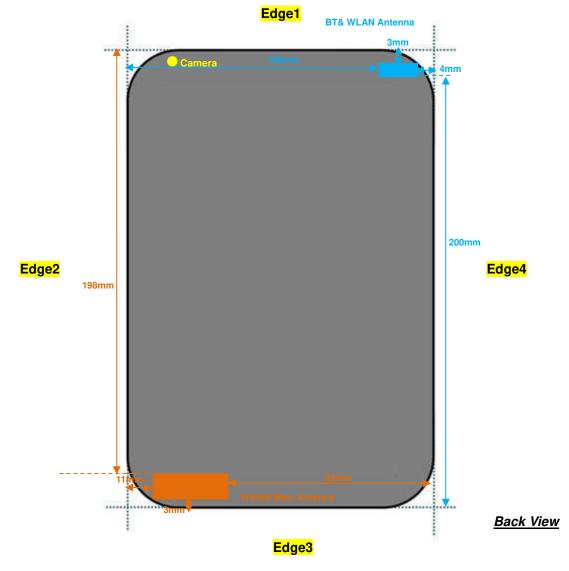
Note: According to FCC KDB 447498 D01 v06, chose five channels to do power measurement for LTE Band 41.

<WLAN Conducted Power>

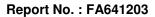
General Note:

- 1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.
- 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configurations procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
 - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
 - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

<2.4GHz WLAN>

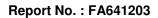

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %
	802.11b	CH 1	2412	1Mbps	12.18	12.50	100.00
		CH 6	2437		<mark>12.92</mark>	13.50	
2.4GHz		CH 11	2462		12.58	13.00	
WLAN	802.11g	CH 1	2412	6Mbps	12.19	12.50	97.46
		CH 6	2437		12.91	13.00	
		CH 11	2462		12.52	13.00	
	802.11n-HT20	CH 1	2412	MCS0	10.49	11.00	96.85
		CH 6	2437		11.03	11.50	
		CH 11	2462		10.59	11.00	

<Bluetooth>


Bluetooth	Mode	Tune-Up Limit (dBm)	
	BT 3.0+EDR	5.5	
	BT 4.0 LE	-2.0	

14. Antenna Location

Diagonal Dimension: 242mm



General Note:

- 1. The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW"
- 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold.
- 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:
 - [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR
 - f(GHz) is the RF channel transmit frequency in GHz
 - Power and distance are rounded to the nearest mW and mm before calculation
 - The result is rounded to one decimal place for comparison
- 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and ≤ 6 GHz

Exposure	Wireless Interface	GPRS 850 Class 12	GPRS 1900 Class 12	LTE Band 41	ВТ	2.4GHz WLAN
Position	Calculated Frequency	848MHz	1909MHz	2688MHz	2480MHz	2462MHz
	Maximum power (dBm)	27	23.5	23	5.5	13.5
	Maximum rated power(mW)	501.0	224.0	200.0	4.0	22.0
	Separation distance(mm)		5.0		5.0	5.0
Bottom Face	exclusion threshold	92.3	61.9	65.6	1.3	6.9
	Testing required?	Yes	Yes	Yes	No	Yes
	Separation distance(mm)		198.0		3.0	3.0
Edge 1	exclusion threshold	1000.0	1589.0	1571.0	1.3	6.9
	Testing required?	No	No	No	No	Yes
	Separation distance(mm)		11.0		106.0	106.0
Edge 2	exclusion threshold	41.9	28.1	29.8	655.0	656.0
	Testing required?	Yes	Yes	Yes	No	No
	Separation distance(mm)		3.0		200.0	200.0
Edge 3	exclusion threshold	92.3	61.9	65.6	1595.0	1596.0
	Testing required?	Yes	Yes	Yes	No	No
	Separation distance(mm)		82.0		4.0	4.0
Edge 4	exclusion threshold	344.0	429.0	411.0	1.3	6.9
	Testing required?	Yes	No	No	No	Yes

15. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
 - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
 - d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
 - e. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

Tablet Note:

- 1. For the exposure positions that proximity sensor power reduction is applied for SAR compliance, additional SAR testing with EUT transmitting full power in normal mode was performed; 10mm for bottom face and 8mm for edge 3.
- 2. Considering the curvature transition from bottom face to the edge, SAR testing at the curvature was performed. The SAR test setup is included in test setup photo exhibit, and the details of the curvature are included in operation description exhibit.
- 3. For SAR testing of the curved region of the device, the device was placed directly against the phantom at the point where the distance between the antenna and device exterior is a minimum.

GSM Note:

- Per KDB 941225 D01v03r01, for SAR test reduction for GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 without power back-off is considered as the primary mode.
- Other configurations of GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode.
- 3. Per source-based time-averaged output power including tune-up tolerance, for modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested, therefore, the GPRS (4Tx slots) for GSM850/GSM1900 was selected when EUT operating with power back-off, according to the highest source-based time-averaged output power.

LTE Note:

- 1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.

WLAN Note:

- 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 4. During SAR testing the WLAN transmission was verified using a spectrum analyzer.
- 5. WLAN 10mm SAR tested for co-located with WWAN analysis.

15.1 <u>Body SAR</u> <<u>GSM SAR></u>

Plot No.	Band	Mode	Test Position	Gap (mm)	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS(4 Tx slots)	Bottom Face	0	on	128	824.2	21.86	22.5	1.159	0.09	0.779	0.903
	GSM850	GPRS(4 Tx slots)	Edge 3	0	on	128	824.2	21.86	22.5	1.159	0.16	0.586	0.679
	GSM850	GPRS(4 Tx slots)	Curved Surface of Edge 3	0	on	128	824.2	21.86	22.5	1.159	0.07	0.504	0.584
	GSM850	GPRS(4 Tx slots)	Bottom Face	10	off	128	824.2	29.75	30	1.059	0.01	0.944	1.000
	GSM850	GPRS(4 Tx slots)	Edge 2	0	off	128	824.2	29.75	30	1.059	-0.05	0.514	0.544
	GSM850	GPRS(4 Tx slots)	Edge 3	8	off	128	824.2	29.75	30	1.059	0.06	0.591	0.626
	GSM850	GPRS(4 Tx slots)	Edge 4	0	off	128	824.2	29.75	30	1.059	0.07	0.117	0.124
	GSM850	GPRS(4 Tx slots)	Bottom Face	0	on	189	836.4	21.78	22.5	1.180	0.03	0.800	0.944
	GSM850	GPRS(4 Tx slots)	Bottom Face	0	on	251	848.8	21.71	22.5	1.199	0.03	0.753	0.903
01	GSM850	GPRS(4 Tx slots)	Bottom Face	10	off	189	836.4	29.73	30	1.064	0.08	1.100	<mark>1.171</mark>
	GSM850	GPRS(4 Tx slots)	Bottom Face	10	off	251	848.8	29.71	30	1.069	0.01	1.050	1.123

Plot No.	Band	Mode	Test Position	Gap (mm)	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM1900	GPRS(4 Tx slots)	Bottom Face	0	on	512	1850.2	18.76	19	1.057	0.08	1.030	1.089
	GSM1900	GPRS(4 Tx slots)	Edge 3	0	on	512	1850.2	18.76	19	1.057	0.03	0.574	0.607
	GSM1900	GPRS(4 Tx slots)	Curved Surface of Edge 3	0	on	512	1850.2	18.76	19	1.057	0.09	0.743	0.785
	GSM1900	GPRS(4 Tx slots)	Bottom Face	10	off	512	1850.2	26.15	26.5	1.084	0.02	0.965	1.046
	GSM1900	GPRS(4 Tx slots)	Edge 2	0	off	512	1850.2	26.15	26.5	1.084	-0.01	0.741	0.803
	GSM1900	GPRS(4 Tx slots)	Edge 3	8	off	512	1850.2	26.15	26.5	1.084	0.09	0.607	0.658
	GSM1900	GPRS(4 Tx slots)	Edge 4	0	off	512	1850.2	26.15	26.5	1.084	0.07	0.094	0.102
	GSM1900	GPRS(4 Tx slots)	Bottom Face	0	on	661	1880	18.68	19	1.076	0.06	1.050	1.130
02	GSM1900	GPRS(4 Tx slots)	Bottom Face	0	on	810	1909.8	18.58	19	1.102	0.08	1.070	<mark>1.179</mark>
	GSM1900	GPRS(4 Tx slots)	Bottom Face	10	off	661	1880	26.11	26.5	1.094	0.02	1.020	1.116
	GSM1900	GPRS(4 Tx slots)	Bottom Face	10	off	810	1909.8	26.08	26.5	1.102	0.02	1.020	1.124
	GSM1900	GPRS(4 Tx slots)	Edge 2	0	off	661	1880	26.11	26.5	1.094	-0.03	0.840	0.919
	GSM1900	GPRS(4 Tx slots)	Edge 2	0	off	810	1909.8	26.08	26.5	1.102	-0.01	0.778	0.857

<TDD LTE SAR>

Plot No.	Band	BW (MHz)	Mode	RB Size	RB Offset	Test Position	Gap (cm)	Power Back- off	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 41	20M	QPSK	1RB	0Offset	Bottom Face	0	on	39750	2506	14.93	15	1.016	62.9	1.006	0.05	0.923	0.944
	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 3	0	on	39750	2506	14.93	15	1.016	62.9	1.006	0.07	0.702	0.718
	LTE Band 41	20M	QPSK	1RB	0Offset	Curved Surface of Edge 3	0	on	39750	2506	14.93	15	1.016	62.9	1.006	0.01	0.751	0.768
	LTE Band 41	20M	QPSK	50RB	50Offset	Bottom Face	0	on	39750	2506	14.86	15	1.033	62.9	1.006	-0.05	0.968	1.006
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	0	on	39750	2506	14.86	15	1.033	62.9	1.006	0.05	0.721	0.749
	LTE Band 41	20M	QPSK	50RB	50Offset	Curved Surface of Edge 3	0	on	39750	2506	14.86	15	1.033	62.9	1.006	0.01	0.766	0.796
	LTE Band 41	20M	QPSK	1RB	0Offset	Bottom Face	0	on	40185	2549.5	14.7	15	1.072	62.9	1.006	0.03	1.060	1.143
	LTE Band 41	20M	QPSK	1RB	0Offset	Bottom Face	0	on	40620	2593	14.47	15	1.130	62.9	1.006	0.03	1.030	1.171
	LTE Band 41	20M	QPSK	1RB	0Offset	Bottom Face	0	on	41055	2636.5	14.56	15	1.107	62.9	1.006	0.01	0.961	1.070
	LTE Band 41	20M	QPSK	1RB	0Offset	Bottom Face	0	on	41490	2680	14.86	15	1.033	62.9	1.006	0.07	0.959	0.996
	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 3	0	on	40185	2549.5	14.7	15	1.072	62.9	1.006	0.09	0.733	0.790
	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 3	0	on	40620	2593	14.47	15	1.130	62.9	1.006	-0.13	0.826	0.939
	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 3	0	on	41055	2636.5	14.56	15	1.107	62.9	1.006	0.07	0.889	0.990
	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 3	0	on	41490	2680	14.86	15	1.033	62.9	1.006	0.05	1.060	1.101
	LTE Band 41	20M	QPSK	1RB	0Offset	Curved Surface of Edge 3	0	on	40185	2549.5	14.7	15	1.072	62.9	1.006	0.03	0.843	0.909
	LTE Band 41	20M	QPSK	1RB	0Offset	Curved Surface of Edge 3	0	on	40620	2593	14.47	15	1.130	62.9	1.006	0.09	1.030	1.171
	LTE Band 41	20M	QPSK	1RB	0Offset	Curved Surface of Edge 3	0	on	41055	2636.5	14.56	15	1.107	62.9	1.006	0.05	0.833	0.927
	LTE Band 41	20M	QPSK	1RB	0Offset	Curved Surface of Edge 3	0	on	41490	2680	14.86	15	1.033	62.9	1.006	0.01	0.922	0.958
	LTE Band 41	20M	QPSK	50RB	50Offset	Bottom Face	0	on	40185	2549.5	14.72	15	1.067	62.9	1.006	0.03	1.070	1.148
	LTE Band 41	20M	QPSK	50RB	50Offset	Bottom Face	0	on	40620	2593	14.56	15	1.107	62.9	1.006	0.07	1.020	1.136
	LTE Band 41	20M	QPSK	50RB	50Offset	Bottom Face	0	on	41055	2636.5	14.65	15	1.084	62.9	1.006	0.06	0.974	1.062
	LTE Band 41	20M	QPSK	50RB	50Offset	Bottom Face	0	on	41490	2680	14.85	15	1.035	62.9	1.006	-0.03	0.963	1.003
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	0	on	40185	2549.5	14.72	15	1.067	62.9	1.006	0.01	0.766	0.822
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	0	on	40620	2593	14.56	15	1.107	62.9	1.006	-0.02	0.861	0.959
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	0	on	41055	2636.5	14.65	15	1.084	62.9	1.006	-0.02	0.936	1.021
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	0	on	41490	2680	14.85	15	1.035	62.9	1.006	-0.02	1.120	1.166
	LTE Band 41	20M	QPSK	50RB	50Offset	Curved Surface of Edge 3	0	on	40185	2549.5	14.72	15	1.067	62.9	1.006	0.04	0.956	1.026
	LTE Band 41	20M	QPSK	50RB	50Offset	Curved Surface of Edge 3	0	on	40620	2593	14.56	15	1.107	62.9	1.006	0.02	1.040	1.158
	LTE Band 41	20M	QPSK	50RB	50Offset	Curved Surface of Edge 3	0	on	41055	2636.5	14.65	15	1.084	62.9	1.006	0.04	0.864	0.942
	LTE Band 41	20M	QPSK	50RB	50Offset	Curved Surface of Edge 3	0	on	41490	2680	14.85	15	1.035	62.9	1.006	0.01	0.950	0.989
	LTE Band 41	20M	QPSK	100RB	0Offset	Bottom Face	0	on	39750	2506	14.71	15	1.069	62.9	1.006	0.05	0.965	1.038
	LTE Band 41	20M	QPSK	100RB	0Offset	Edge 3	0	on	39750	2506	14.71	15	1.069	62.9	1.006	0.03	0.627	0.674
	LTE Band 41	20M	QPSK	100RB	0Offset	Curved Surface of Edge 3	0	on	39750	2506	14.71	15	1.069	62.9	1.006	0.04	0.801	0.861

Plot No.	Band	BW (MHz)	Mode	RB Size	RB Offset	Test Position	Gap (cm)	Power Back- off	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 41	20M	QPSK	1RB	0Offset	Bottom Face	10	off	39750	2506	22.91	23	1.021	62.9	1.006	0.01	0.683	0.701
	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 2	0	off	39750	2506	22.91	23	1.021	62.9	1.006	-0.04	0.511	0.525
	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 3	8	off	39750	2506	22.91	23	1.021	62.9	1.006	0.04	0.861	0.884
	LTE Band 41	20M	QPSK	1RB	0Offset	Bottom Face	10	off	40185	2549.5	22.78	23	1.052	62.9	1.006	0.06	0.674	0.713
	LTE Band 41	20M	QPSK	1RB	0Offset	Bottom Face	10	off	40620	2593	22.7	23	1.072	62.9	1.006	0.07	0.765	0.825
	LTE Band 41	20M	QPSK	1RB	0Offset	Bottom Face	10	off	41055	2636.5	22.61	23	1.094	62.9	1.006	0.02	0.768	0.845
	LTE Band 41	20M	QPSK	1RB	0Offset	Bottom Face	10	off	41490	2680	22.91	23	1.021	62.9	1.006	0.03	0.473	0.486
	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 3	8	off	40185	2549.5	22.78	23	1.052	62.9	1.006	0.02	0.824	0.872
	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 3	8	off	40620	2593	22.7	23	1.072	62.9	1.006	0.02	0.996	1.074
03	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 3	8	off	41055	2636.5	22.61	23	1.094	62.9	1.006	0.05	1.070	<mark>1.178</mark>
	LTE Band 41	20M	QPSK	1RB	0Offset	Edge 3	8	off	41490	2680	22.91	23	1.021	62.9	1.006	0.02	0.467	0.480
	LTE Band 41	20M	QPSK	50RB	50Offset	Bottom Face	10	off	39750	2506	21.97	22	1.007	62.9	1.006	0.15	0.512	0.519
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 2	0	off	39750	2506	21.97	22	1.007	62.9	1.006	-0.01	0.368	0.373
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	8	off	39750	2506	21.97	22	1.007	62.9	1.006	0.02	0.648	0.656
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	8	off	40185	2549.5	21.89	22	1.026	62.9	1.006	0.06	0.776	0.801
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	8	off	40620	2593	21.82	22	1.042	62.9	1.006	0.08	0.883	0.926
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	8	off	41055	2636.5	21.73	22	1.064	62.9	1.006	0.03	0.843	0.902
	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	8	off	41490	2680	21.96	22	1.009	62.9	1.006	0.02	0.392	0.398
	LTE Band 41	20M	QPSK	100RB	0Offset	Bottom Face	10	off	39750	2506	21.91	22	1.021	62.9	1.006	0.02	0.550	0.565
	LTE Band 41	20M	QPSK	100RB	0Offset	Edge 3	8	off	39750	2506	21.91	22	1.021	62.9	1.006	0.02	0.670	0.688

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
04	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0	6	2437	12.92	13.5	1.143	100	1.000	-0.07	0.868	<mark>0.992</mark>
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	10	6	2437	12.92	13.5	1.143	100	1.000	0.01	0.111	0.127
	WLAN2.4GHz	802.11b 1Mbps	Edge 1	0	6	2437	12.92	13.5	1.143	100	1.000	-0.02	0.425	0.486
	WLAN2.4GHz	802.11b 1Mbps	Edge 4	0	6	2437	12.92	13.5	1.143	100	1.000	0.03	0.201	0.230
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0	1	2412	12.18	12.5	1.076	100	1.000	0.07	0.685	0.737
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0	11	2462	12.58	13	1.102	100	1.000	0.08	0.828	0.912

15.2 Repeated SAR Measurement

Plot No.	Band	BW (MHz)	Mode	RB Size	RB Offset	Test Position	Gap (cm)	Power Back- off	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	GSM850	-	GPRS (4 Tx slots)	-	-	Bottom Face	10	Off	189	836.4	29.73	30	1.064	100	1.000	0.08	1.100	1	1.171
2nd	GSM850	-	GPRS (4 Tx slots)	-	-	Bottom Face	10	Off	189	836.4	29.73	30	1.064	100	1.000	0.09	1.090	1.009	1.160
1st	GSM1900	-	GPRS (4 Tx slots)	-	-	Bottom Face	0	On	810	1909.8	18.58	19	1.102	100	1.000	0.08	1.070	1	1.179
2nd	GSM1900	-	GPRS (4 Tx slots)	-	-	Bottom Face	0	On	810	1909.8	18.58	19	1.102	100	1.000	0.01	1.030	1.039	1.135
1st	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	0	On	41490	2680	14.85	15	1.035	62.9	1.006	-0.02	1.120	1	1.166
2nd	LTE Band 41	20M	QPSK	50RB	50Offset	Edge 3	0	On	41490	2680	14.85	15	1.035	62.9	1.006	0.01	1.040	1.077	1.083
1st	WLAN 2.4GHz	-	802.11b 1Mbps	-	-	Bottom Face	0	Off	6	2437	12.92	13.5	1.143	100	1.000	-0.07	0.868	1	0.992
2nd	WLAN 2.4GHz	-	802.11b 1Mbps	-	-	Bottom Face	0	Off	6	2437	12.92	13.5	1.143	100	1.000	0.03	0.851	1.020	0.973

General Note:

1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.

3. The ratio is the difference in percentage between original and repeated measured SAR.

4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

16. Simultaneous Transmission Analysis

NO.	Cimultonoous Tronomission Configurations	Tablet	Note
NO.	Simultaneous Transmission Configurations	Body	Note
1.	GPRS/EDGE + WLAN2.4GHz	Yes	WLAN 2.4GHz Hotspot
2.	LTE + WLAN2.4GHz	Yes	WLAN 2.4GHz Hotspot
3.	GPRS/EDGE + Bluetooth	Yes	Bluetooth Tethering
4.	LTE + Bluetooth	Yes	Bluetooth Tethering

General Note:

- 1. EUT will choose each GSM and LTE according to the network signal condition; therefore, they will not operate simultaneously at any moment.
- 2. The Scaled SAR summation is calculated based on the same configuration and test position.
- 3. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.
 - v) The SPLSR calculated results please refer to section 16.2.
- 4. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v06 based on the formula below.
 - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
 - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.
 - iv) Bluetooth estimated SAR is conservatively determined by 5mm separation, for all applicable exposure positions.

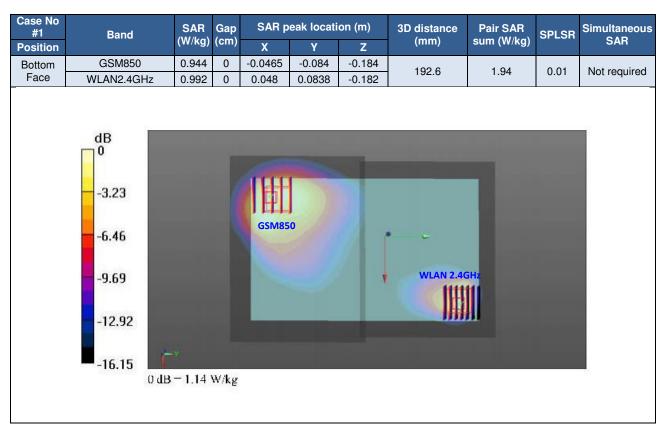
Bluetooth Max Power	Exposure Position	All Positions
5.5 dBm	Estimated SAR (W/kg)	0.168 W/kg

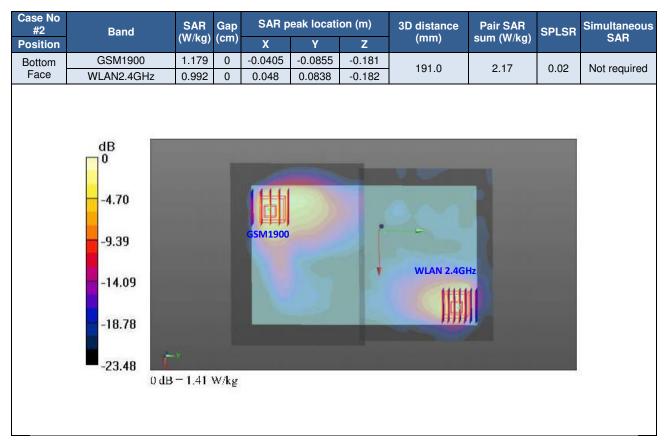
16.1 Body Exposure Conditions

<WWAN + WLAN>

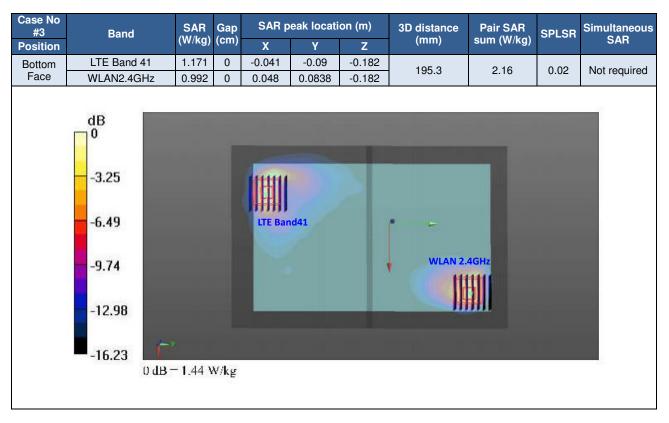
			1	2	1+2		
WWA	N Band	Exposure Position	WWAN	2.4GHz WLAN	Summed 1g SAR	SPLSR	Case No
			1g SAR (W/kg)	1g SAR (W/kg)	(Ŵ/kg)		
		Bottom Face at 10mm	1.171	0.127	<mark>1.30</mark>		
		Edge 3 at 8mm	0.626		0.63		
		Bottom Face at 0mm	0.944	0.992	1.94	0.01	01
	0014050	Edge 1 at 0mm		0.486	0.49		
	GSM850	Edge 2 at 0mm	0.544		0.54		
		Edge 3 at 0mm	0.679		0.68		
		Edge 4 at 0mm	0.124	0.230	0.35		
GSM		Curved Surface of Edge 3 at 0mm	0.584		0.58		
GOW		Bottom Face at 10mm	1.124	0.127	1.25		
		Edge 3 at 8mm	0.658		0.66		
		Bottom Face at 0mm	1.179	0.992	2.17	0.02	02
	0.014.000	Edge 1 at 0mm		0.486	0.49		
	GSM1900	Edge 2 at 0mm	0.919		0.92		
		Edge 3 at 0mm	0.607		0.61		
		Edge 4 at 0mm	0.102	0.230	0.33		
		Curved Surface of Edge 3 at 0mm	0.785		0.79		
		Bottom Face at 10mm	0.845	0.127	0.97		
		Edge 3 at 8mm	1.178		1.18		
		Bottom Face at 0mm	1.171	0.992	2.16	0.02	03
175	Daniel 44	Edge 1 at 0mm		0.486	0.49		
LTE	Band 41	Edge 2 at 0mm	0.525		0.53		
		Edge 3 at 0mm	1.166		1.17		
		Edge 4 at 0mm		0.230	0.23		
		Curved Surface of Edge 3 at 0mm	1.171		1.17		

<WWAN PCB + Bluetooth DSS>


	CB + Bluell		1	3			
١٨/١٨/ ۵	N Band	Exposure Position	WWAN	Bluetooth	1+3 Summed	SPLSR	Case No
			1g SAR (W/kg)	Estimated 1g SAR (W/kg)	1g SAR (W/kg)		
		Bottom Face at 10mm	1.171	0.168	1.34		
		Edge 3 at 8mm	0.626	0.168	0.79		
		Bottom Face at 0mm	0.944	0.168	1.11		
	0.014050	Edge 1 at 0mm		0.168	0.17		
	GSM850	Edge 2 at 0mm	0.544	0.168	0.71		
		Edge 3 at 0mm	0.679	0.168	0.85		
		Edge 4 at 0mm	0.124	0.168	0.29		
GSM		Curved Surface of Edge 3 at 0mm	0.584	0.168	0.75		
GOW		Bottom Face at 10mm	1.124	0.168	1.29		
		Edge 3 at 8mm	0.658	0.168	0.83		
		Bottom Face at 0mm	1.179	0.168	<mark>1.35</mark>		
	00144000	Edge 1 at 0mm		0.168	0.17		
	GSM1900	Edge 2 at 0mm	0.919	0.168	1.09		
		Edge 3 at 0mm	0.607	0.168	0.78		
		Edge 4 at 0mm	0.102	0.168	0.27		
		Curved Surface of Edge 3 at 0mm	0.785	0.168	0.95		
		Bottom Face at 10mm	0.845	0.168	1.01		
		Edge 3 at 8mm	1.178	0.168	1.35		
		Bottom Face at 0mm	1.171	0.168	1.34		
175	Daniel 44	Edge 1 at 0mm		0.168	0.17		
LTE	Band 41	Edge 2 at 0mm	0.525	0.168	0.69		
		Edge 3 at 0mm	1.166	0.168	1.33		
		Edge 4 at 0mm		0.168	0.17		
		Curved Surface of Edge 3 at 0mm	1.171	0.168	1.34		


16.2 SPLSR Evaluation and Analysis

General Note:


SPLSR = (SAR₁ + SAR₂)^{1.5} / (*min. separation distance, mm*). If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary

Test Engineer : Luke Lu

17. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 17.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)
Measurement System							
Probe Calibration	6.0	N	1	1	1	6.0	6.0
Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9
Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9
Boundary Effects	1.0	R	1.732	1	1	0.6	0.6
Linearity	4.7	R	1.732	1	1	2.7	2.7
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6
Modulation Response	3.2	R	1.732	1	1	1.8	1.8
Readout Electronics	0.3	N	1	1	1	0.3	0.3
Response Time	0.0	R	1.732	1	1	0.0	0.0
Integration Time	2.6	R	1.732	1	1	1.5	1.5
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7
Probe Positioner	0.4	R	1.732	1	1	0.2	0.2
Probe Positioning	2.9	R	1.732	1	1	1.7	1.7
Max. SAR Eval.	2.0	R	1.732	1	1	1.2	1.2
Test Sample Related							
Device Positioning	3.0	N	1	1	1	3.0	3.0
Device Holder	3.6	N	1	1	1	3.6	3.6
Power Drift	5.0	R	1.732	1	1	2.9	2.9
Power Scaling	0.0	R	1.732	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty	6.1	R	1.732	1	1	3.5	3.5
SAR correction	0.0	R	1.732	1	0.84	0.0	0.0
Liquid Conductivity Repeatability	0.2	N	1	0.78	0.71	0.1	0.1
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0
Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4
Liquid Permittivity Repeatability	0.15	N	1	0.23	0.26	0.0	0.0
Liquid Permittivity (target)	5.0	R	1.732	0.23	0.26	0.7	0.8
Liquid Permittivity (mea.)	2.5	R	1.732	0.23	0.26	0.3	0.4
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1
Cor	Combined Std. Uncertainty					11.4%	11.4%
Coverage Factor for 95 %				K=2	K=2		
Expanded STD Uncertainty					22.9%	22.7%	

Table 17.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

SPORTON LAB. FCC SAR Test Report

18. <u>References</u>

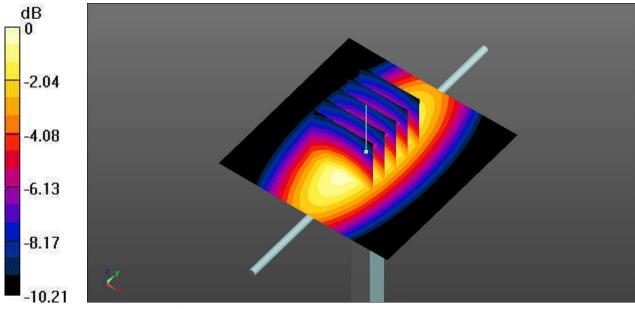
- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [8] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [9] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015
- [10] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [11] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

Appendix A. Plots of System Performance Check

The plots are shown as follows.

System Check_Body_835MHz_160707

DUT: D835V2-SN:4d162


Communication System: UID 0, CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: MSL_835_160707 Medium parameters used: f = 835 MHz; $\sigma = 0.977$ S/m; $\varepsilon_r = 54.466$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.47, 9.47, 9.47); Calibrated: 2015.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2015.11.23
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

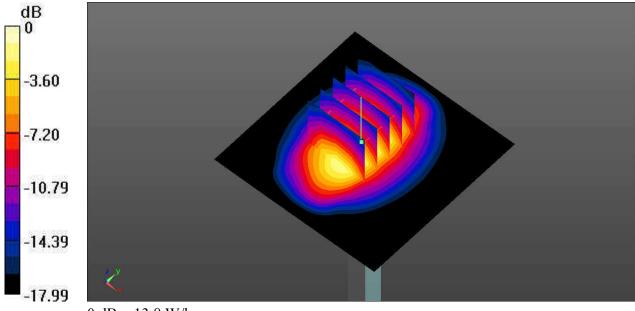
Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.04 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.61 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 3.48 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.02 W/kg

0 dB = 3.04 W/kg

System Check_Body_1900MHz_160708

DUT: D1900V2-SN:5d182


Communication System: UID 0, CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL_1900_160708 Medium parameters used: f = 1900 MHz; $\sigma = 1.584$ S/m; $\epsilon_r = 54.212$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.6 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.39, 7.39, 7.39); Calibrated: 2015.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2015.11.23
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.8 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 77.94 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.27 W/kg Maximum value of SAR (measured) = 13.9 W/kg

 $^{0 \}text{ dB} = 13.8 \text{ W/kg}$

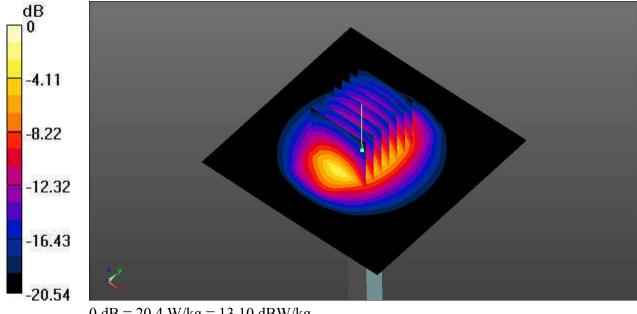
Date: 2016.07.11

System Check_Body_2450MHz_160711

DUT: D2450V2-SN:924

Communication System: UID 0, CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: MSL_2450_160711 Medium parameters used: f = 2450 MHz; $\sigma = 1.991$ S/m; $\epsilon_r = 52.313$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3819; ConvF(7.08, 7.08, 7.08); Calibrated: 2015.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2015.11.23
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm,

dy=1.200 mm Maximum value of SAR (interpolated) = 20.4 W/kg

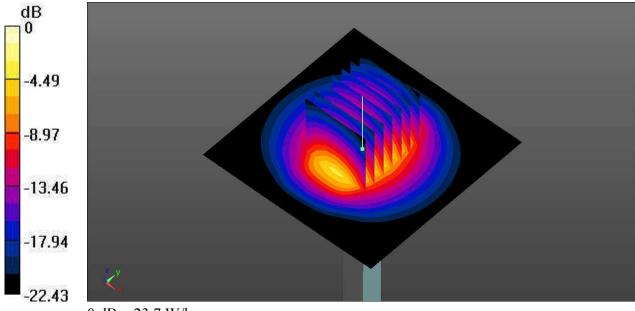
Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 88.04 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.50 W/kg Maximum value of SAR (measured) = 20.6 W/kg

0 dB = 20.4 W/kg = 13.10 dBW/kg

System Check_Body_2600MHz_160704

DUT: D2600V2-SN:1070


Communication System: UID 0, CW; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium: MSL_2600_160704 Medium parameters used: f = 2600 MHz; $\sigma = 2.165$ S/m; $\epsilon_r = 53.823$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.3 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(6.79, 6.79, 6.79); Calibrated: 2015.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2015.11.23
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

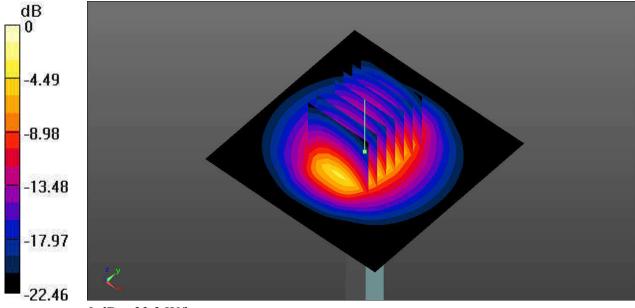
Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 23.7 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.6 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 30.3 W/kg **SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.51 W/kg** Maximum value of SAR (measured) = 22.4 W/kg

 $^{0 \}text{ dB} = 23.7 \text{ W/kg}$

System Check_Body_2600MHz_160705

DUT: D2600V2-SN:1070


Communication System: UID 0, CW; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium: MSL_2600_160705 Medium parameters used: f = 2600 MHz; $\sigma = 2.201$ S/m; $\epsilon_r = 52.823$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(6.79, 6.79, 6.79); Calibrated: 2015.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2015.11.23
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 23.3 W/kg

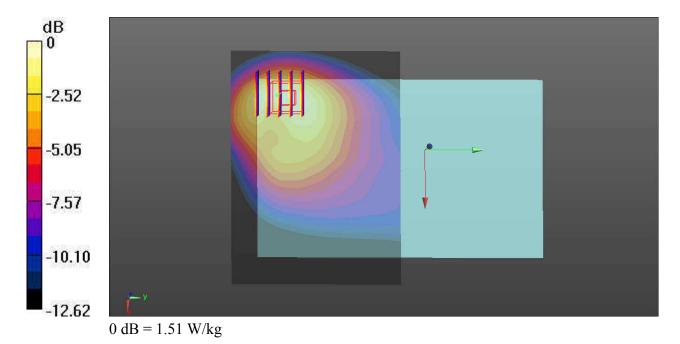
Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.7 W/kg **SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.53 W/kg** Maximum value of SAR (measured) = 22.7 W/kg

 $^{0 \}text{ dB} = 23.3 \text{ W/kg}$

Appendix B. Plots of High SAR Measurement

The plots are shown as follows.

01_GSM850_GPRS(4 Tx slots)_Bottom Face_10mm_Ch189_Sensor Off


Communication System: UID 0, GPRS/EDGE12 (0); Frequency: 836.4 MHz;Duty Cycle: 1:2.08 Medium: MSL_835_160707 Medium parameters used: f = 836.4 MHz; $\sigma = 0.979$ S/m; $\varepsilon_r = 54.452$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

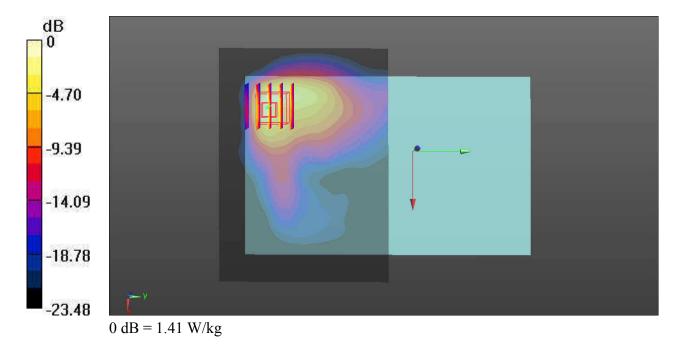
- Probe: EX3DV4 SN3819; ConvF(9.47, 9.47, 9.47); Calibrated: 2015.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2015.11.23
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch189/Area Scan (111x81x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.51 W/kg

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 4.231 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1.82 W/kg SAR(1 g) = 1.10 W/kg; SAR(10 g) = 0.737 W/kg Maximum value of SAR (measured) = 1.50 W/kg

02_GSM1900_GPRS(4 Tx slots)_Bottom Face_0mm_Ch810_Sensor On

Communication System: UID 0, GPRS/EDGE12 (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08 Medium: MSL_1900_160708 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.596$ S/m; $\epsilon_r = 54.18$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.6 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.39, 7.39, 7.39); Calibrated: 2015.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2015.11.23
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch810/Area Scan (111x81x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.41 W/kg

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 1.266 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 2.27 W/kg SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.481 W/kg Maximum value of SAR (measured) = 1.85 W/kg

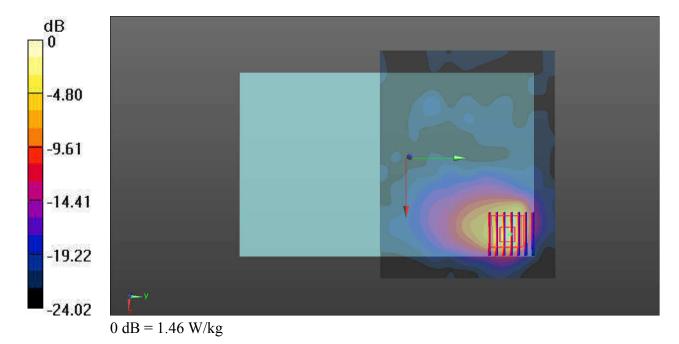
Date: 2016.07.04

03_LTE Band 41_20M_QPSK_1RB_0Offset_Edge 3_8mm_Ch41055_Sensor Off

Communication System: UID 0, LTE (0); Frequency: 2636.5 MHz; Duty Cycle: 1:1.

Date: 2016.07.11

04_WLAN2.4GHz_802.11b 1Mbps_Bottom Face_0mm_Ch6


Communication System: UID 0, WIFI (0); Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450_160711 Medium parameters used: f = 2437 MHz; $\sigma = 1.973$ S/m; $\epsilon_r = 52.399$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.08, 7.08, 7.08); Calibrated: 2015.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2015.11.23
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch6/Area Scan (131x101x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.46 W/kg

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.445 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 2.17 W/kg SAR(1 g) = 0.868 W/kg; SAR(10 g) = 0.332 W/kg Maximum value of SAR (measured) = 1.42 W/kg

Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage C

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton-SZ (Auden)

Certificate No: D835V2-4d162_Nov15

CALIBRATION CERTIFICATE

This calibration certificate documents the traceability to national standards, which realize the physical unit The measurements and the uncertainties with confidence probability are given on the following pages and All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 07-Oct-15 (No. 217-02222) Power sensor HP 8481A US37292783 07-Oct-15 (No. 217-02222) Power sensor HP 8481A US37292783 07-Oct-15 (No. 217-02223) Power sensor HP 8481A US37292783 07-Oct-15 (No. 217-02131) Ype-N mismatch combination SN: 5058 (20k) 01-Apr-15 (No. 217-02131) SN: 5058 (20k) 01-Apr-15 (No. 217-02134) SN: 5047.2 / 06327 AE4 SN: 601 17-Aug-15 (No. DAE4-601_Aug15) AE4 SN: 601 17-Aug-15 (No. DAE4-601_Aug15) Secondary Standards ID # Check Date (in house) IF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) Letwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Name Function <t< th=""><th></th></t<>	
Calibration procedure for dipole validation kits above the construction of	
This calibration certificate documents the traceability to national standards, which realize the physical units The measurements and the uncertainties with confidence probability are given on the following pages and All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 07-Oct-15 (No. 217-02222) Power sensor HP 8481A US37292783 07-Oct-15 (No. 217-02222) Power sensor HP 8481A WY41092317 07-Oct-15 (No. 217-02223) Power sensor HP 8481A SN: 5058 (20k) 01-Apr-15 (No. 217-02134) SN: 5058 (20k) 01-Apr-15 (No. 217-02134) SN: 5058 (20k) SN: 5058 (20k) 01-Apr-15 (No. 217-02134) SN: 5058 (20k) SN: 5058 (20k) 01-Apr-15 (No. DAE4-601_Aug15) SN: 5058 (20k) AE4 SN: 5058 (20k) 10-Apr-15 (No. DAE4-601_Aug15) SN: 601 17-Aug-15 (No. DAE4-601_Aug15) SN: 5058 (20k) AE4 SN: 5058 (20k) 18-Oct-01 (in house) Recondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100972 15-Jun-15 (in h	ove 700 MHz
The measurements and the uncertainties with confidence probability are given on the following pages and All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 07-Oct-15 (No. 217-02222) Power sensor HP 8481A US37292783 07-Oct-15 (No. 217-02223) Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-02223) Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-02131) Power sensor HP 8481A SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Power sensor HP 8481A SN: 5058 (20k) 01-Apr-15 (No. 217-02134) Reference Probe EX3DV4 SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) SN: 601 17-Aug-15 (No. DAE4-601_Aug15) SN: 601 Secondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) Vertiorik Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Sallbrated by: Name Function Laboratory Technician	
The measurements and the uncertainties with confidence probability are given on the following pages and All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 07-Oct-15 (No. 217-02222) Power sensor HP 8481A US37292783 07-Oct-15 (No. 217-02223) Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-02223) Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-02131) Power sensor HP 8481A SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Power sensor HP 8481A SN: 5058 (20k) 01-Apr-15 (No. 217-02134) Reference Probe EX3DV4 SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) SN: 601 17-Aug-15 (No. DAE4-601_Aug15) SN: 601 Secondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) Vertiorik Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Sallbrated by: Name Function Laboratory Technician	
The measurements and the uncertainties with confidence probability are given on the following pages and All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 07-Oct-15 (No. 217-02222) Power sensor HP 8481A US37292783 07-Oct-15 (No. 217-02222) Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-02223) Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Fype-N mismatch combination SN: 5058 (20k) 01-Apr-15 (No. 217-02134) Reference Probe EX3DV4 SN: 7349 30-Dec-14 (No. EX3-7349_Dec14) OAE4 SN: 601 17-Aug-15 (No. DAE4-601_Aug15) Secondary Standards ID # Check Date (in house) Regenerator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) Vetwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Calibrated by: Name Function Calibrated by: Name Function	its of measurements (SI)
Calibration Equipment used (M&TE critical for calibration)Primary StandardsID #Cal Date (Certificate No.)Power meter EPM-442AGB3748070407-Oct-15 (No. 217-02222)Power sensor HP 8481AUS3729278307-Oct-15 (No. 217-02222)Power sensor HP 8481AMY4109231707-Oct-15 (No. 217-02223)Power sensor HP 8481AMY4109231707-Oct-15 (No. 217-02131)Power sensor HP 8481AMY4109231701-Apr-15 (No. 217-02131)Power sensor HP 8481AMY4109231701-Apr-15 (No. 217-02134)Reference 20 dB AttenuatorSN: 5058 (20k)01-Apr-15 (No. 217-02134)SN: 734930-Dec-14 (No. EX3-7349_Dec14)SN: 60117-Aug-15 (No. DAE4-601_Aug15)MareID #Check Date (in house)RF generator R&S SMT-0610097215-Jun-15 (in house check Jun-15)NameIB-Oct-01 (in house check Oct-15)NameFunctioncallbrated by:NameFunction	d are part of the certificate.
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 07-Oct-15 (No. 217-02222) Power sensor HP 8481A US37292783 07-Oct-15 (No. 217-02222) Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-02223) Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-02223) Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-0223) Power sensor HP 8481A MY41092317 07-Oct-15 (No. 217-0223) Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02134) Super-N mismatch combination SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) SN: 601 17-Aug-15 (No. DAE4-601_Aug15) SN: 5047.2 / 06327 OAE4 SN: 601 17-Aug-15 (No. DAE4-601_Aug15) Secondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) Vetwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Name Function Laboratory Technician Callbrated by: Name Laboratory Technician <td></td>	
Primary StandardsID #Cal Date (Certificate No.)Power meter EPM-442AGB3748070407-Oct-15 (No. 217-02222)Power sensor HP 8481AUS3729278307-Oct-15 (No. 217-02223)Power sensor HP 8481AMY4109231707-Oct-15 (No. 217-02223)Power sensor HP 8481AMY4109231707-Oct-15 (No. 217-02131)Pope-N mismatch combinationSN: 5058 (20k)01-Apr-15 (No. 217-02131)Reference Probe EX3DV4SN: 734930-Dec-14 (No. EX3-7349_Dec14)DAE4SN: 60117-Aug-15 (No. DAE4-601_Aug15)Secondary StandardsID #Check Date (in house)RF generator R&S SMT-0610097215-Jun-15 (in house check Jun-15)Vetwork Analyzer HP 8753EUS37390585 S420618-Oct-01 (in house check Oct-15)NameFunctionCallbrated by:NameFunction	2 and humidity < 70%.
Power meter EPM-442AGB37480704O7-Oct-15 (No. 217-02222)Power sensor HP 8481AUS37292783O7-Oct-15 (No. 217-02222)Power sensor HP 8481AMY41092317O7-Oct-15 (No. 217-02223)Power sensor HP 8481AMY41092317O7-Oct-15 (No. 217-02223)Power sensor HP 8481AMY41092317O7-Oct-15 (No. 217-02223)Power sensor HP 8481AMY41092317O7-Oct-15 (No. 217-0223)Power sensor HP 8481AMY41092317O7-Oct-15 (No. 217-0223)Power sensor HP 8481AMY41092317O7-Oct-15 (No. 217-02131)Sype-N mismatch combinationSN: 5047.2 / 06327O1-Apr-15 (No. 217-02134)Reference Probe EX3DV4SN: 5047.2 / 06327O1-Apr-15 (No. 217-02134)SN: 601SN: 734930-Dec-14 (No. EX3-7349_Dec14)DAE4SN: 60117-Aug-15 (No. DAE4-601_Aug15)Secondary StandardsID #Check Date (in house)RF generator R&S SMT-0610097215-Juri-15 (in house check Jun-15)Ietwork Analyzer HP 8753EUS37390585 S420618-Oct-01 (in house check Oct-15)Pailbrated by:NameFunctionLaboratory TechnicianLaboratory Technician	
Power sensor HP 8481AUS3729278307-Oct-15 (No. 217-02222)Power sensor HP 8481AMY4109231707-Oct-15 (No. 217-02223)Reference 20 dB AttenuatorSN: 5058 (20k)01-Apr-15 (No. 217-02131)Type-N mismatch combinationSN: 5047.2 / 0632701-Apr-15 (No. 217-02134)Reference Probe EX3DV4SN: 734930-Dec-14 (No. EX3-7349_Dec14)DAE4SN: 60117-Aug-15 (No. DAE4-601_Aug15)Secondary StandardsID #Check Date (in house)RF generator R&S SMT-0610097215-Jun-15 (in house check Jun-15)US37390585 S420618-Oct-01 (in house check Oct-15)NameFunctionCallbrated by:NameFunction	Scheduled Calibration
Power sensor HP 8481A Reference 20 dB Attenuator type-N mismatch combination Reference Probe EX3DV4 DAE4MY41092317 SN: 5058 (20k)01-Apr-15 (No. 217-02223) SN: 5058 (20k)01-Apr-15 (No. 217-02131) SN: 5047.2 / 06327 SN: 7349 SO-Dec-14 (No. EX3-7349_Dec14) SN: 601SN: 5047.2 / 06327 SN: 7349_Dec14) SN: 60101-Apr-15 (No. 217-02134) SN: 217-02134) SN: 217-02134) SN: 7349_Dec14) SN: 601SN: 5047.2 / 06327 SN: 7349_Dec14 (No. EX3-7349_Dec14) SN: 60101-Apr-15 (No. DAE4-601_Aug15)Recondary StandardsID # Check Date (in house)Check Date (in house) US37390585 S420615-Jun-15 (in house check Jun-15) US37390585 S4206Retwork Analyzer HP 8753EVS37390585 S420618-Oct-01 (in house check Oct-15)NameFunction Laboratory Technician	Oct-16
leference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) ype-N mismatch combination SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) N: 5047.2 / 06327 01-Apr-15 (No. 217-02134) SN: 5041 17-Aug-15 (No. DAE4-601_Aug15) econdary Standards ID # F generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) letwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Name Function allbrated by: Name Function	Oct-16
ype-N mismatch combination SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) Naeference Probe EX3DV4 SN: 7349 30-Dec-14 (No. EX3-7349_Dec14) NAE4 SN: 601 17-Aug-15 (No. DAE4-601_Aug15) recondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) letwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Name Function calibrated by: Name Function value Claudio Leubler Laboratory Technician	Oct-16
Reference Probe EX3DV4 SN: 7349 30-Dec-14 (No. EX3-7349_Dec14) NAE4 SN: 601 17-Aug-15 (No. DAE4-601_Aug15) Recondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Name Function claudio Leubler Laboratory Technician	Mar-16
AE4 SN: 601 17-Aug-15 (No. DAE4-601_Aug15) iecondary Standards ID # Check Date (in house) IEF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) Ietwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Name Function Ialibrated by: Claudio Leubler Laboratory Technician	Mar-16
Secondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) Jetwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Dalibrated by: Name Function Claudio Leubler Laboratory Technician	Dec-15
RF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) Jetwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Name Function Callbrated by: Claudio Leubler Laboratory Technician	Aug-16
RF generator R&S SMT-06 100972 15-Jun-15 (in house check Jun-15) Jetwork Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-15) Name Function Callbrated by: Claudio Leubler Laboratory Technician	Scheduled Check
Name Function Calibrated by: Claudio Leubler	In house check: Jun-18
Calibrated by: Claudio Leubler Laboratory Technician	In house check: Oct-16
Calibrated by: Claudio Leubler Laboratory Technician	Signature
Approved by: Kalja Pokovic Technical Manager	
Approved by: Katja Pokovic Technical Manager	Yor
	dette
	//
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.	Issued: November 24, 201

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage C
- Servizio svizzero di taratura s

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna. connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.6 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.14 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.94 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.51 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.25 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω - 5.5 jΩ	· · · .
Return Loss	- 24.9 dB	· · ·

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 7.4 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.440 ns
1.15		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

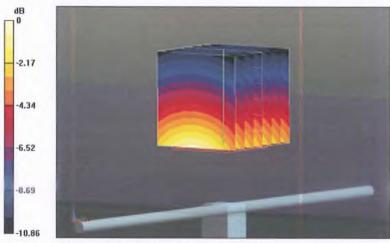
Manufactured by	SPEAG
Manufactured on	December 28, 2012

DASY5 Validation Report for Head TSL

Date: 24.11.2015

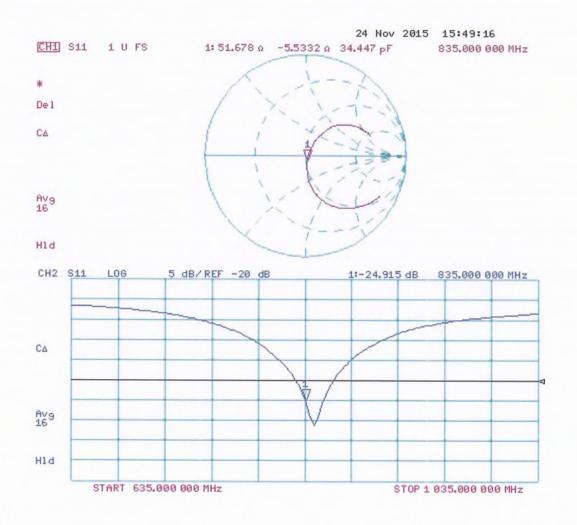
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 42.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.77, 9.77, 9.77); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.52 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.5 W/kg Maximum value of SAR (measured) = 3.03 W/kg

0 dB = 3.03 W/kg = 4.81 dBW/kg

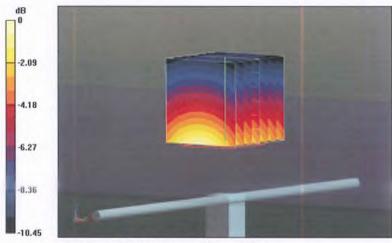
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 24.11.2015

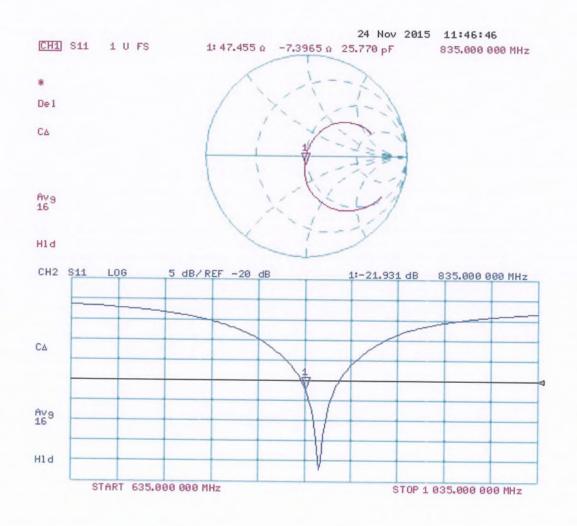
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.66 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.56 W/kg **SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.58 W/kg** Maximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg = 5.01 dBW/kg

Impedance Measurement Plot for Body TSL

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton-SZ (Auden) Client

Certificate No: D1900V2-5d182_Nov15

Object	D1900V2 - SN: 5	d182	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	November 23, 20	15	
	ertainties with confidence p	onal standards, which realize the physical un robability are given on the following pages ar	nd are part of the certificate.
		ry facility: environment temperature (22 ± 3)°(C and humidity < 70%.
Calibration Equipment used (M&		ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M& Primary Standards	TE critical for calibration)		
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Scheduled Calibration Oct-16 Oct-16 Oct-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16
All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID #	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18 In house check: Oct-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18 In house check: Oct-16

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	1900 MHz ± 1 MHz		

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)
SAP overlaged over 10 cm^3 (10 g) of Head TSI	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	250 mW input power	5.17 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.38 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.9 Ω + 6.4 jΩ
Return Loss	- 22.8 dB
	- 22.0 UD

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.0 Ω + 6.2 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

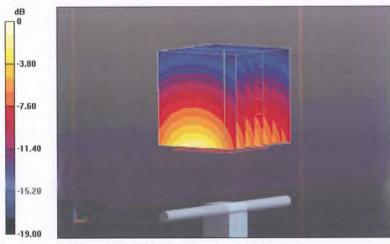
Manufactured by	SPEAG
Manufactured on	August 23, 2013

DASY5 Validation Report for Head TSL

Date: 23.11.2015

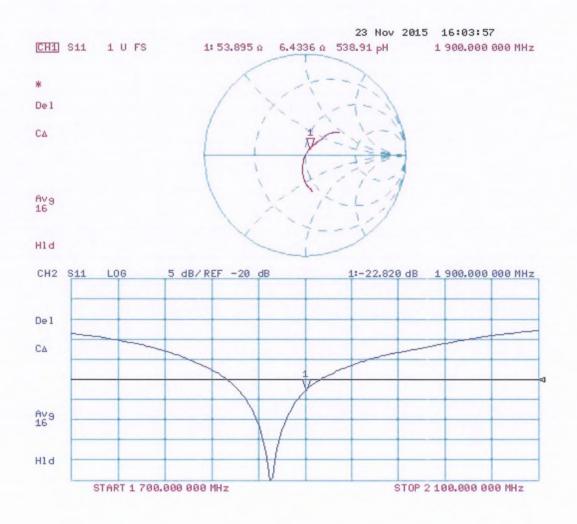
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.39 S/m; ϵ_r = 39.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.14, 8.14, 8.14); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.3 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 9.88 W/kg; SAR(10 g) = 5.17 W/kg Maximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.85 dBW/kg

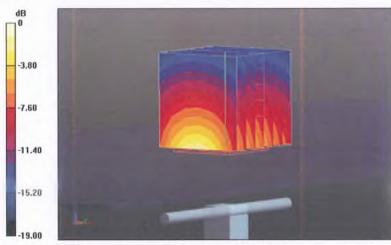
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.11.2015

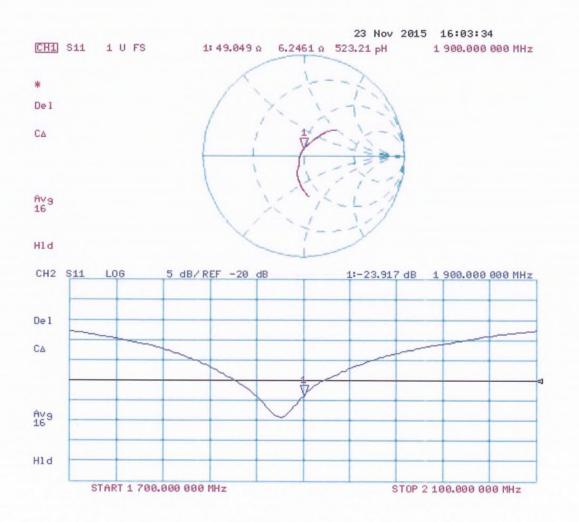
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.52 S/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.9, 7.9, 7.9); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.3 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.38 W/kg Maximum value of SAR (measured) = 15.5 W/kg

0 dB = 15.5 W/kg = 11.90 dBW/kg

Impedance Measurement Plot for Body TSL

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton-SZ (Auden)

Certificate No: D2450V2-924_Feb16

CALIBRATION CERTIFICATE

Calibration procedure(s)		024	
	QA CAL-05.v9 Calibration proce	edure for dipole validation kits abo	ove 700 MHz
Calibration date:	February 24, 201	6	
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature (22 \pm 3)°(nd are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
think j standarda			a arreadice o constantin
	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power meter EPM-442A	GB37480704 US37292783	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Oct-16 Oct-16
Power meter EPM-442A Power sensor HP 8481A			
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	US37292783 MY41092317	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Oct-16 Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	US37292783 MY41092317 SN: 5058 (20k)	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131)	Oct-16 Oct-16 Mar-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Oct-16 Oct-16 Mar-16 Mar-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15)	Oct-16 Oct-16 Mar-16 Mar-16 Dec-16 Dec-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house)	Oct-16 Oct-16 Mar-16 Mar-16 Dec-16 Dec-16 Scheduled Check
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15)	Oct-16 Oct-16 Mar-16 Mar-16 Dec-16 Dec-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 15-Jun-15 (in house check Jun-15)	Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206 Name	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Oct-16 Oct-16 Mar-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 In house check: Oct-16

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'etalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7 Ω + 4.0 jΩ
Return Loss	- 26.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω + 6.1 jΩ
Return Loss	- 24.0 dB

General Antenna Parameters and Design

	Electrical Dalay (and direction)	1 1 55 mg	
	Electrical Delay (one direction)	1.155 ns	
1			

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2013

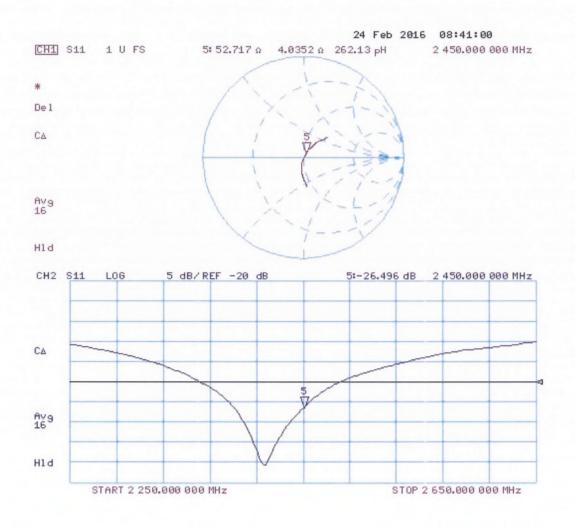
DASY5 Validation Report for Head TSL

Date: 24.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.19 W/kg Maximum value of SAR (measured) = 21.9 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

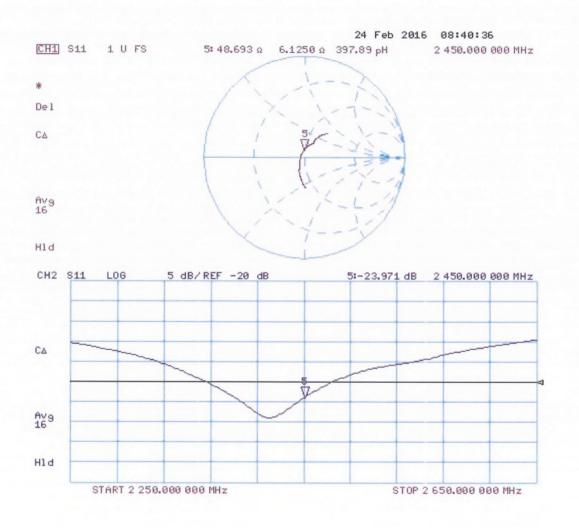
Date: 24.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2$ S/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.5 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.0 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.07 W/kg Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton-SZ (Auden) Client

Certificate No: D2600V2-1070_Nov15

Dbject	D2600V2 - SN: 1	070	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	November 25, 20	15	
		onal standards, which realize the physical un robability are given on the following pages an	
		y facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
Calibration Equipment used (M&			C and humidity < 70%. Scheduled Calibration
alibration Equipment used (M&	TE critical for calibration)	y facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222)	
alibration Equipment used (M& rimary Standards ower meter EPM-442A	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A	TE critical for calibration)	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222)	Scheduled Calibration Oct-16
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Scheduled Calibration Oct-16 Oct-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Mar-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Mar-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Becondary Standards RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID #	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 601 ID # 100972 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18 In house check: Oct-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18
All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 601 ID # 100972 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18 In house check: Oct-16

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv: (

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	2.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	58.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.56 W/kg
SAB for nominal Head TSL parameters	normalized to 1W	25.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

SAR for nominal Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	2.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6 Ω - 6.8 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.0 Ω - 3.4 jΩ	
Return Loss	- 25.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.146 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

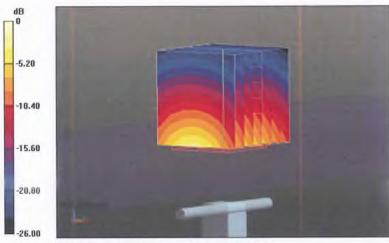
Manufactured by	SPEAG
Manufactured on	July 17, 2013

DASY5 Validation Report for Head TSL

Date: 25.11.2015

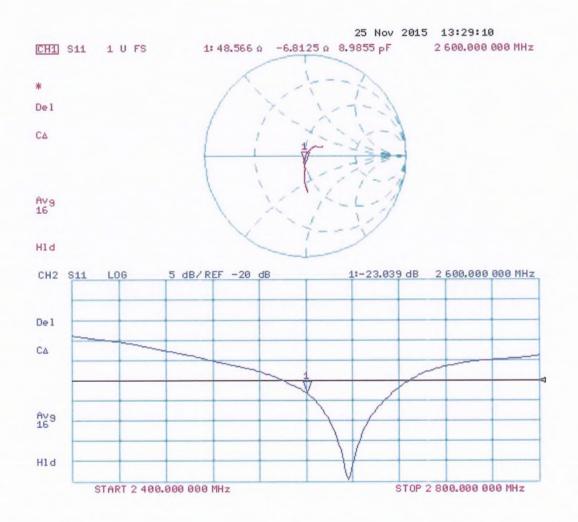
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.4, 7.4, 7.4); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 117.0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.56 W/kg Maximum value of SAR (measured) = 25.4 W/kg

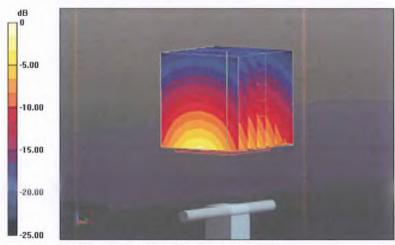
0 dB = 25.4 W/kg = 14.05 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

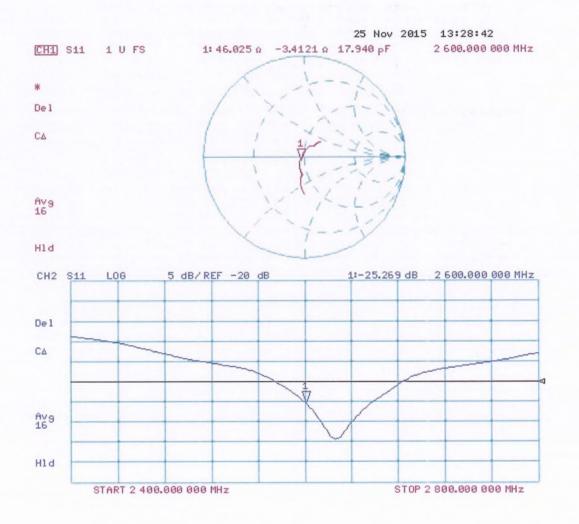
Date: 25.11.2015

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.21 S/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.52, 7.52, 7.52); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.1 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.09 W/kg Maximum value of SAR (measured) = 23.1 W/kg

0 dB = 23.1 W/kg = 13.64 dBW/kg

Impedance Measurement Plot for Body TSL

Schmid & Partner Engineering AG

s е а

Zoughwusstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Pas. +41 44 245 9779 infollispeag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out

Shipping of the DAE Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be mathunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton-SZ (Auden)

Certificate No: DAE4-1338_Nov15

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BM - SN: 1338				
Calibration procedure(s)	QA CAL-06.v29 Calibration procee	lure for the data acquisition electro	onics (DAE)	
Calibration date:	November 23, 201	15		
The measurements and the unce	rtainties with confidence pro	nal standards, which realize the physical units obability are given on the following pages and a r facility: environment temperature (22 ± 3)°C a	are part of the certificate.	
	ID #	Cal Date (Certificate No.)	Scheduled Calibration	
rimary Standards	10 #	our pare (cernicate No.)	Scheduled Galibration	
	SN: 0810278	09-Sep-15 (No:17153)	Sep-16	
Keithley Multimeter Type 2001		09-Sep-15 (No:17153)		
Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	SN: 0810278	09-Sep-15 (No:17153) Check Date (in house) 06-Jan-15 (in house check)	Sep-16	
Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	SN: 0810278	09-Sep-15 (No:17153) Check Date (in house) 06-Jan-15 (in house check)	Sep-16 Scheduled Check	
Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	SN: 0810278 ID # SE UWS 053 AA 1001	09-Sep-15 (No:17153) Check Date (in house) 06-Jan-15 (in house check)	Sep-16 Scheduled Check In house check: Jan-16	
Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	SN: 0810278	09-Sep-15 (No:17153) Check Date (in house) 06-Jan-15 (in house check) 06-Jan-15 (in house check)	Sep-16 Scheduled Check In house check: Jan-16 In house check: Jan-16	
Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	SN: 0810278	09-Sep-15 (No:17153) Check Date (in house) 06-Jan-15 (in house check) 06-Jan-15 (in house check) Function	Sep-16 Scheduled Check In house check: Jan-16 In house check: Jan-16 Signature	
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 Calibrated by:	SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	09-Sep-15 (No:17153) Check Date (in house) 06-Jan-15 (in house check) 06-Jan-15 (in house check) Function Technician	Sep-16 Scheduled Check In house check: Jan-16 In house check: Jan-16 Signature	

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by • comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle ŏ. mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - ÷ DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on . the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter ٠ corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of . zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, ٠ during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery • alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Res	olution nominal			
High Range:	1LSB =	6.1μV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DASY measurement	t parameters: Auto	o Zero Time: 3	sec; Measuring t	time: 3 sec

Calibration Factors	X	Y	Z
High Range	403.662 ± 0.02% (k=2)	404.235 ± 0.02% (k=2)	404.194 ± 0.02% (k=2)
Low Range	3.97130 ± 1.50% (k=2)	3.97825 ± 1.50% (k=2)	3.97412 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DA	SY system	62.0 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199994.84	-1.56	-0.00
Channel X	+ Input	20001.54	-0.10	-0.00
Channel X	- Input	-19998.47	2.04	-0.01
Channel Y	+ Input	199993.67	-2.48	-0.00
Channel Y	+ Input	19999.70	-1.90	-0.01
Channel Y	- Input	-20002.82	-2.26	0.01
Channel Z	+ Input	199995.95	-0.55	-0.00
Channel Z	+ Input	20000.88	-0.58	-0.00
Channel Z	- Input	-20002.95	-2.33	0.01

Low Range Channel X + Input		Reading (µV)	Difference (µV)	Error (%) -0.01
		2001.37	-0.14	
Channel X	+ Input	201.69	-0.16	-0.08
Channel X	- Input	-197.50	0.60	-0.30
Channel Y	+ Input	2001.29	-0.22	-0.01
Channel Y	+ Input	200.52	-1.30	-0.64
Channel Y	- Input	-199.22	-1.12	0.57
Channel Z	+ Input	2001.23	-0.22	-0.01
Channel Z	+ Input	201.13	-0.51	-0.25
Channel Z	- Input	-198.97	-0.75	0.38

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	7.57	6.22
	- 200	-5.91	-6.92
Channel Y	200	-21.79	-21.83
	- 200	19.87	19.54
Channel Z	200	-1.99	-2.50
	- 200	1.07	0.74

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Υ (μV)	Channel Z (μV)
Channel X	200	-	3.36	-3.29
Channel Y	200	8.54	-	5.39
Channel Z	200	9.72	5.56	-

Certificate No: DAE4-1338_Nov15

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16209	15622
Channel Y	16284	15842
Channel Z	16115	15938

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.14	-1.38	1.34	0.57
Channel Y	-0.88	-1.78	0.19	0.43
Channel Z	-0.31	-1.48	1.02	0.43

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton-SZ (Auden)

Certificate No: EX3-3819_Nov15

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3819
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	November 27, 2015
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been con	ducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	Va
Approved by:	Katja Pokovic	Technical Manager	lax 14
This calibration contilication	schall not be reproduced event in full	without written approval of the laboratory	Issued: November 27, 2015
This calibration certificate	e snail not be reproduced except in full	without written approval of the laboratory	

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	& rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(I)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3819

Manufactured: Calibrated: September 2, 2011 November 27, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.47	0.41	0.47	± 10.1 %
DCP (mV) ^B	102.2	99.5	104.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	Β dB√μV	C	D dB	VR mV	Unc [⊨] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	175.0	±3.3 %
		Y	0.0	0.0	1.0		171.6	
		Z	0.0	0.0	1.0		156.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

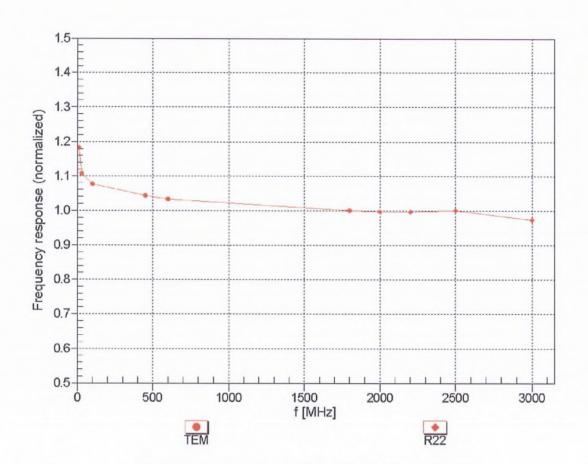
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.91	9.91	9.91	0.44	0.87	± 12.0 %
835	41.5	0.90	9.41	9.41	9.41	0.18	1.77	± 12.0 %
900	41.5	0.97	9.23	9.23	9.23	0.23	1.46	± 12.0 %
1750	40.1	1.37	8.12	8.12	8.12	0.36	0.84	± 12.0 %
1900	40.0	1.40	7.79	7.79	7.79	0.44	0.80	± 12.0 %
2000	40.0	1.40	7.75	7.75	7.75	0.34	0.80	± 12.0 %
2450	39.2	1.80	6.93	6.93	6.93	0.29	1.04	± 12.0 %
2600	39.0	1.96	6.82	6.82	6.82	0.30	1.07	± 12.0 %
5250	35.9	4.71	4.99	4.99	4.99	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.28	4.28	4.28	0.50	1.80	± 13.1 %
5750	35.4	5.22	4.40	4.40	4.40	0.50	1.80	± 13.1 %

Calibration otor Determined in Head Tissue Simulating Media

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.69	9.69	9.69	0.20	1.46	± 12.0 %
100		0.00	0.00	0.00	0.00	0.20	1.40	12.0 70
835	55.2	0.97	9.47	9.47	9.47	0.23	1.27	± 12.0 %
1750	53.4	1.49	7.71	7.71	7.71	0.38	0.88	± 12.0 %
1900	53.3	1.52	7.39	7.39	7.39	0.39	0.88	± 12.0 %
2450	52.7	1.95	7.08	7.08	7.08	0.43	0.80	± 12.0 %
2600	52.5	2.16	6.79	6.79	6.79	0.31	0.98	± 12.0 %
5250	48.9	5.36	4.20	4.20	4.20	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.67	3.67	3.67	0.60	1.90	± 13.1 %
5750	48.3	5.94	3.73	3.73	3.73	0.60	1.90	± 13.1 %

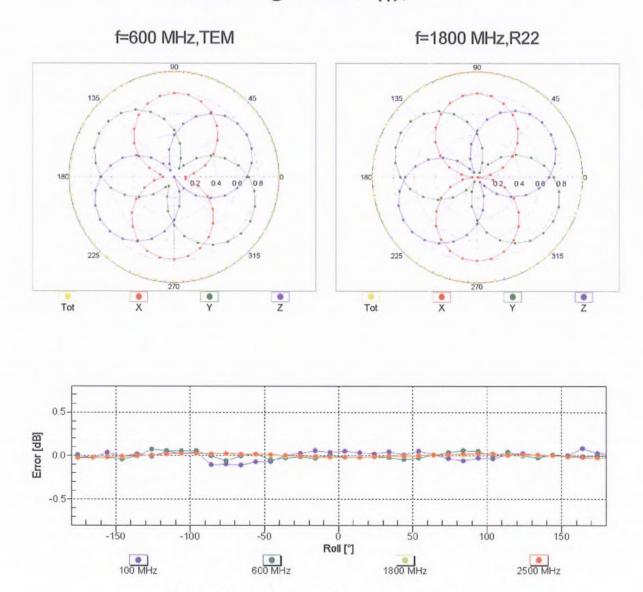
Calibration Parameter Determined in Body Tissue Simulating Media


^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁵ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

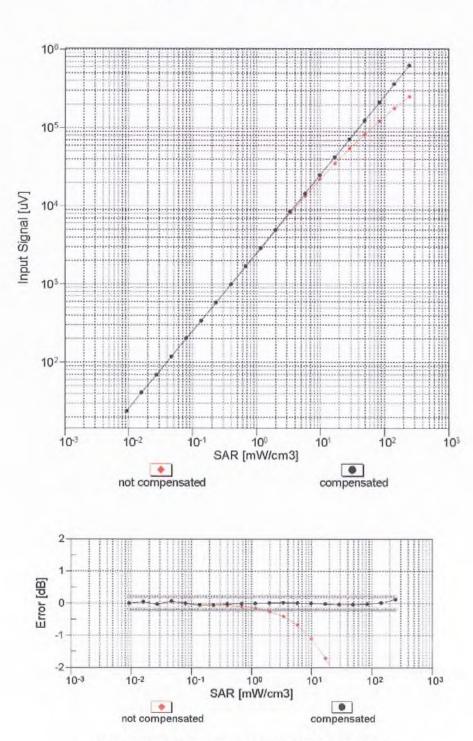
EX3DV4-SN:3819


November 27, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

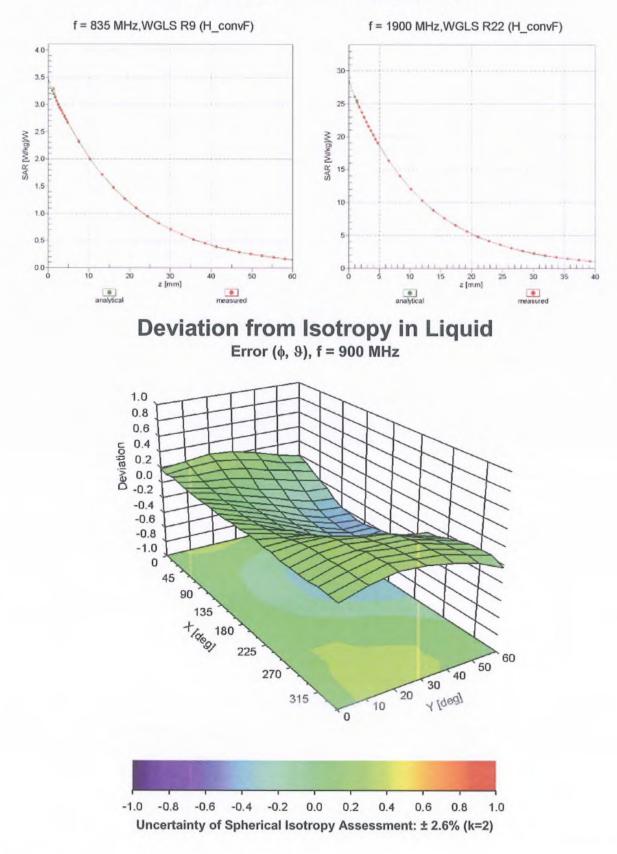
November 27, 2015



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

EX3DV4-SN:3819


November 27, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

EX3DV4-SN:3819

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

Other Probe Parameters

Sensor Arrangement		···	Triangular
Connector Angle (°)	······································	· · ·	114.1
Mechanical Surface Detection Mode	· · · · · · · · · · · · · · · · · · ·		enabled
Optical Surface Detection Mode		·····	disabled
Probe Overall Length			337 mm
Probe Body Diameter	······································		10 mm
Tip Length			9 mm
Tip Diameter			2.5 mm
Probe Tip to Sensor X Calibration Point	······································	······	1 mm
Probe Tip to Sensor Y Calibration Point	· • • • • • • • • • • • • • • • • • • •		1 mm
Probe Tip to Sensor Z Calibration Point			1 mm
Recommended Measurement Distance from	n Surface		1.4 mm