

Test Report

Report No.: MTi220819018-15E2

Date of issue: 2022-11-28

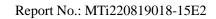
Applicant: Guangdong Wangjia Intelligent Robot Co., Ltd.

Product: Robotic Vacuum Cleaner

Model(s): T100

FCC ID: 2AVYJ-T100

Shenzhen Microtest Co., Ltd. http://www.mtitest.com


Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Contents

1	General Description	5
	1.1 Description of EUT	5
	1.2 Description of test modes	5
	1.3 Measurement uncertainty	6
2	Summary of Test Result	7
3	Test Facilities and Accreditations	8
	3.1 Test laboratory	8
4	Equipment List	9
5	Test Result	10
	5.1 Antenna requirement	10
	5.2 AC power line conducted emissions	
	5.3 6dB occupied bandwidth	16
	5.4 Conducted peak output power	18
	5.5 Power spectral density test	
	5.6 Conducted emissions at the band edge	22
	5.7 Conducted spurious emissions	24
	5.8 Duty Cycle	27
	5.9 Radiated spurious emission	28
Ρ	Photographs of the Test Setup	37
Ρ	Photographs of the EUT	38

Test Result Certification				
Applicant:	Guangdong Wangjia Intelligent Robot Co., Ltd.			
Address:	Room 301, The Fifth Building No.1 Junma Road, Humen Town 523900 Dongguan, Guangdong PEOPLE'S REPUBLIC OF CHINA			
Manufacturer:	Guangdong Wangjia Intelligent Robot Co., Ltd.			
Address:	Room 301, The Fifth Building No.1 Junma Road, Humen Town 523900 Dongguan, Guangdong PEOPLE'S REPUBLIC OF CHINA			
Product description				
Product name: Robotic Vacuum Cleaner				
Trademark: N/A				
Model name:	T100			
Serial Model:	N/A			
Standards:	FCC 47 CFR Part 15 Subpart C			
Test method:	ANSI C63.10-2013			
Date of Test				
Date of test:	2022-08-30 ~ 2022-09-22			
est result: Pass				

Test Engineer :		Yanice Xie
		(Yanice Xie)
Reviewed By:	:	leon chen
		(Leon Chen)
Approved By:	:	Tom Xue
		(Tom Xue)

1 General Description

1.1 Description of EUT

Product name:	Robotic Vacuum Cleaner
Model name:	T100
Series Model:	N/A
Model difference:	N/A
Electrical rating:	Input: DC 19V/1A Battery: DC 14.4V 3000mAh 43.2Wh
Hardware version:	AJT100-MB-V1.0
Software version:	V99
Accessories:	1. Adapter: Model: CZH024190100TRWO Input: 100-240V~ 50/60Hz 0.8A MAX Output: 19.0V-1.0A 19.0W 2. Remote control*1
EUT serial number:	MTi220819018-15-S0001
RF specification:	
Bluetooth version:	V4.2
Operation frequency:	2402 MHz ~ 2480 MHz
Modulation type:	GFSK
Antenna designation:	PCB antenna, antenna Gain: 3.02 dBi
Max. peak conducted output power:	5.26 dBm

1.2 Description of test modes

1.2.1 Operation channel list

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.2.2 Test channels

Chanel	Frequency	
Lowest (CH0)	2402MHz	
Middle (CH19)	2440MHz	
Highest (CH39)	2480MHz	

Note: The test software has been used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

1.2.3 Description of support units

Support equipment list						
Description	Model	Serial No.	Manufacturer			
Mobile phone	S9+	/	SAMSUNG			

1.3 Measurement uncertainty

Parameter	Measurement uncertainty		
AC power line conducted emission (9 kHz~30 MHz)	±2.5 dB		
Occupied Bandwidth	±3 %		
Conducted RF output power	±0.16 dB		
Conducted spurious emissions	±0.21 dB		
Radiated emission (9 kHz ~ 30 MHz)	±4.0 dB		
Radiated emission (30 MHz~1 GHz)	±4.2 dB		
Radiated emission (above 1 GHz)	±4.3 dB		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	FCC reference	Description of test	Result
1	§ 15.203	Antenna requirement	Pass
2	§ 15.207	AC power line conducted emissions	Pass
3	15.247(a)(2)	6dB occupied bandwidth	Pass
4	15.247(b)(3)	Conducted peak output power	Pass
5	15.247(e)	Power Spectral Density	Pass
6	15.247(d)	Conducted emission at the band edge	Pass
7	15.247(d)	Conducted spurious emissions	Pass
8	/	Duty Cycle	Pass
9	15.247(d)	Radiated spurious emissions	Pass

Note: N/A means not applicable.

3 Test Facilities and Accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone: (86-755)88850135	
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 Equipment List

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2022/05/05	2023/05/04
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2022/05/05	2023/05/04
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2022/05/05	2023/05/04
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2022/05/05	2023/05/04
MTI-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00044	2021/05/30	2023/05/29
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2022/05/05	2023/05/04
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2022/05/05	2023/05/04
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2022/04/15	2023/04/14
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2022/05/05	2023/05/04
MTi-E135	Horn antenna	Schwarzbeck	BBHA 9170	00987	2021/05/30	2023/05/29
MTi-E136	Pre-amplifier	Space-Dtronics	EWLAN1840G -G45	210405001	2022/05/05	2023/05/04
MTi-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2022/05/05	2023/05/04
MTi-E067	RF Control Unit	Tonscend	JS0806-1	19D8060152	2022/05/05	2023/05/04
MTi-E068	RF Control Unit	Tonscend	JS0806-2	19D8060153	2022/05/05	2023/05/04
MTi-E069	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2022/05/05	2023/05/04
MTI-E010S	EMI Measurement Software	Farad	EZ-EMC Ver. EMEC-3A1	/	/	/
MTI-E014S	RF Test System	Tonscend	TS®JS1120 V2.6.88.0330	/	/	/

5 Test Result

5.1 Antenna requirement

15.203 requirement

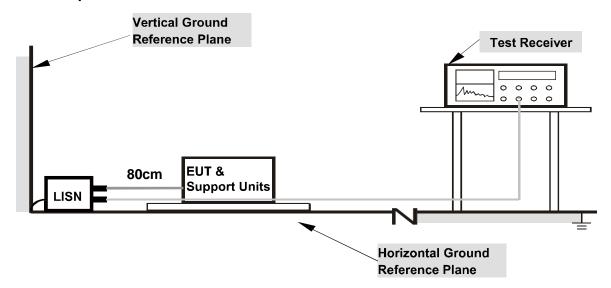
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Description of the antenna of EUT

The antenna of EUT is PCB antenna (Antenna Gain: 3.02dBi). which is no consideration of replacement.

5.2 AC power line conducted emissions

5.2.1 Limits


Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5		66 to 56	56 to 46
0.5 -5	Average / 9 kHz	56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.2.2 Test Procedures

- a) The test setup is refer to the standard ANSI C63.10-2013.
- b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).
- c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.
- d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.
- e) The test data of the worst-case condition(s) was recorded.

5.2.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.2.4 Test Result

Notes:

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

Calculation formula:

Measurement (dB μ V) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

Test m	node:	Chagi	ing+TX		Phase:			L		
Power	r supply:	Powe (AC 1	r by AC 20V/60	C/DC adapter OHz)	Test site:			CE chambe	r 1	
80.0	dBuV									
70						Feen	lead E Clean D 4 C	: CtK(OD)		
60						FULF	aiti 5 ClassB AC	Conduction(QP)		
50 40	3 2 3 5 7 4 1	10	h.u.u.##/1/4	Talay (Milya _{ke} dan arahiya tanki	Marth Harris Lawrah		art15 ClassB AC	Conduction(AVG)		
30 20				TV TV APPEL SHOW SHOW SHOW SHOW SHOW SHOW SHOW SHOW	Alexandra Antonio de la companya de	Mathy Hall	WATER COMMENT HAVE BEEN ALL	12 MAY	l. # 15-0	eak WG
10				Lu , lik	.,	'		Andrew March political Contraction of the Contracti		
0										
-10										
-20										
0.5	150	0.500	0.800	(MH	lz)	5.	000		30.0	000

Page 12 of 38

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1580	42.15	10.28	52.43	65.57	-13.14	QP
2	0.1580	29.54	10.28	39.82	55.57	-15.75	AVG
3	0.1980	34.80	10.68	45.48	63.69	-18.21	QP
4	0.1980	24.66	10.68	35.34	53.69	-18.35	AVG
5	0.2500	29.94	10.77	40.71	61.76	-21.05	QP
6	0.2500	16.28	10.77	27.05	51.76	-24.71	AVG
7	0.3420	28.04	10.96	39.00	59.15	-20.15	QP
8	0.3500	15.00	10.98	25.98	48.96	-22.98	AVG
9	0.4420	19.03	11.19	30.22	47.02	-16.80	AVG
10 *	0.4540	34.87	11.22	46.09	56.80	-10.71	QP
11	9.9900	30.97	10.41	41.38	60.00	-18.62	QP
12	10.2256	13.59	10.41	24.00	50.00	-26.00	AVG

Test mode:	Chaging+TX	Phase:	N
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1
80.0 dBuV			
70		FCCPart15 ClassB AC	Conduction(QP)
30 40 30 20		9	11 Mary John Mary John Mary Mary Mary Mary Mary Mary Mary Mary
10	it Allika intikki k i		peak AVG
-10			
-20 0.150	0.500 0.800 (MH	1z) 5.000	30.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1 *	0.1500	46.69	10.29	56.98	66.00	-9.02	QP
2	0.1500	30.76	10.29	41.05	56.00	-14.95	AVG
3	0.1940	41.82	10.59	52.41	63.86	-11.45	QP
4	0.2058	25.19	10.62	35.81	53.37	-17.56	AVG
5	0.4339	25.66	11.13	36.79	47.18	-10.39	AVG
6	0.4490	36.45	11.18	47.63	56.89	-9.26	QP
7	1.5620	13.20	13.53	26.73	46.00	-19.27	AVG
8	1.6376	26.60	13.69	40.29	56.00	-15.71	QP
9	3.2820	16.68	10.29	26.97	46.00	-19.03	AVG
10	3.4060	29.33	10.29	39.62	56.00	-16.38	QP
11	9.7576	29.68	10.31	39.99	60.00	-20.01	QP
12	10.1339	14.33	10.31	24.64	50.00	-25.36	AVG

Test mode:	Chaging+TX	Phase:	L
Power supply:	Power by AC/DC adapter (AC 240V/60Hz)	Test site:	CE chamber 1
80.0 dBuV			
70		FCCPart15 ClassB AC	Conduction(QP)
50		FCCPart15 ClassB AC	
40		Variable Valle de la la commencia de la commen	Maria de la companya
20		ty My	peak
0			
-10			
0.150	0.500 0.800 (MI	lz) 5.000	30.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1580	41.06	10.28	51.34	65.57	-14.23	QP
2	0.1900	25.09	10.66	35.75	54.04	-18.29	AVG
3	0.3379	34.80	10.96	45.76	59.25	-13.49	QP
4	0.3379	24.03	10.96	34.99	49.25	-14.26	AVG
5	0.4636	31.81	11.24	43.05	56.63	-13.58	QP
6 *	0.4818	23.54	11.28	34.82	46.31	-11.49	AVG
7	1.6975	14.92	13.52	28.44	46.00	-17.56	AVG
8	1.7217	26.96	13.55	40.51	56.00	-15.49	QP
9	8.1257	14.31	10.33	24.64	50.00	-25.36	AVG
10	9.7900	33.40	10.40	43.80	60.00	-16.20	QP
11	19.0579	25.86	10.63	36.49	60.00	-23.51	QP
12	19.0579	15.78	10.63	26.41	50.00	-23.59	AVG

30.000

-20 0.150

0.500

0.800

Test mode:	Chaging+TX	Phase:	N
Power supply:	Power by AC/DC adapter (AC 240V/60Hz)	Test site:	CE chamber 1
80.0 dBuV			
70		FCCPart15 ClassB AC	Conduction(QP)
60	-	FCCPart15 ClassB AC	
50	3- S 8	recraitis classo Ac	9
30		Juny Mary Mary Mary Mary	12
20		White you was a second	peak
10			
0			
-10			

(MHz)

Page 15 of 38

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBu∀)	Margin (dB)	Detector
1 *	0.1819	33.48	10.59	44.07	54.40	-10.33	AVG
2	0.1940	40.93	10.59	51.52	63.86	-12.34	QP
3	0.4636	32.94	11.21	44.15	56.63	-12.48	QP
4	0.4778	21.02	11.26	32.28	46.38	-14.10	AVG
5	0.6740	21.18	11.71	32.89	46.00	-13.11	AVG
6	0.6860	31.62	11.76	43.38	56.00	-12.62	QP
7	1.6612	16.82	13.74	30.56	46.00	-15.44	AVG
8	1.6700	29.06	13.76	42.82	56.00	-13.18	QP
9	9.9219	33.49	10.31	43.80	60.00	-16.20	QP
10	9.9219	18.66	10.31	28.97	50.00	-21.03	AVG
11	19.8900	30.25	10.69	40.94	60.00	-19.06	QP
12	20.1580	21.15	10.69	31.84	50.00	-18.16	AVG

5.3 6dB occupied bandwidth

5.3.1 Limits

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.2 Test setup

ELIT	Spectrum
EUI	Analyzer

5.3.3 Test procedures

- a) Test method: ANSI C63.10-2013 Section 11.8.2.
- b) The transmitter output of EUT is connected to the spectrum analyzer.
- c) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, detector = Peak

5.3.4 Test results

Mode	Test channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)
	СН0	2402	0.6517	≥ 0.5
BLE 1Mbps	CH19	2440	0.6353	≥ 0.5
	CH39	2480	0.6711	≥ 0.5

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

6dB occupied bandwidth

CH₀

CH19

CH39

5.4 Conducted peak output power

5.4.1 Limits

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

5.4.2 Test setup

CUT	Spectrum
E01	Analyzer

5.4.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 11.9.1.1.
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW ≥ 6dB occupied bandwidth, VBW ≥ 3 x RBW, detector = Peak

5.4.4 Test results

Mode	Test channel	Frequency (MHz)	Conducted peak output power (dBm)	Limit (dBm)
	CH0	2402	5.06	≤ 30
BLE 1Mbps	CH19	2440	5.13	≤ 30
	CH39	2480	4.37	≤ 30

Peak conducted output power

CH₀

CH19

CH39

5.5 Power spectral density test

5.5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.5.2 Test setup

5.5.3 Test Procedure

- a) Test method: ANSI C63.10-2013 Section 11.10.2.
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 3 kHz, VBW = 10 kHz, detector = Peak


5.5.4 Test Results

Mode	Test channel	Frequency (MHz)	Power spectral density (dBm/3kHz)	Limit (dBm/3kHz)
	CH0	2402	-9.36	≤ 8
BLE 1Mbps	CH19	2440	-9.85	≤ 8
	CH39	2480	-10.94	≤ 8

Power spectral density

CH₀

CH19

CH39

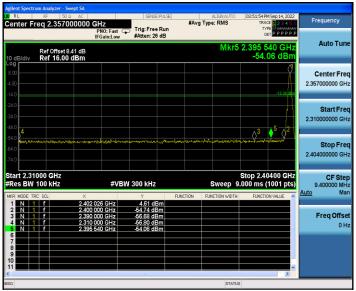
5.6 Conducted emissions at the band edge

5.6.1 Limits

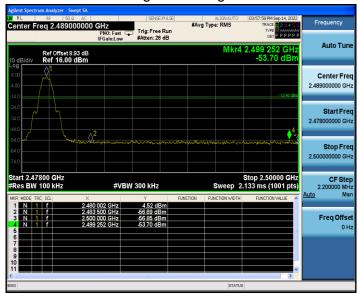
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.6.2 Test setup

5.6.3 Test procedure


- a) Test method: ANSI C63.10-2013 Section 11.13
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.6.4 Test results



BLE 1Mbps - conducted emissions at the band edge

Low band-edge

High band-edge

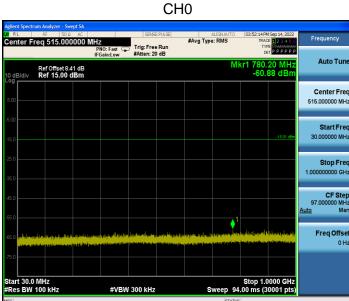
5.7 Conducted spurious emissions

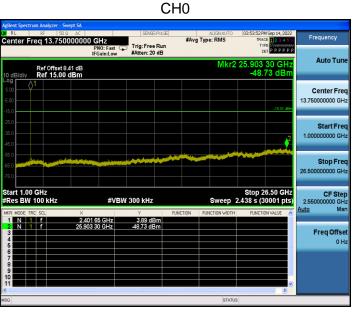
5.7.1 Limits

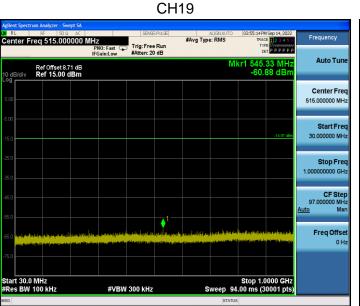
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

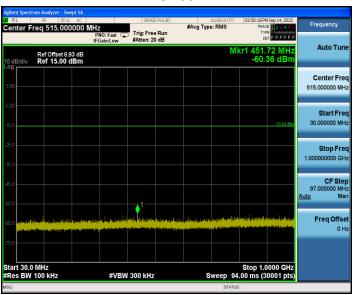
5.7.2 Test setup

5.7.3 Test procedure


- a) Test method: ANSI C63.10-2013 Section 11.11 & 11.12.
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.


5.7.4 Test results


BLE 1Mbps - conducted spurious emissions



BLE 1Mbps - conducted spurious emissions

CH39 CH39

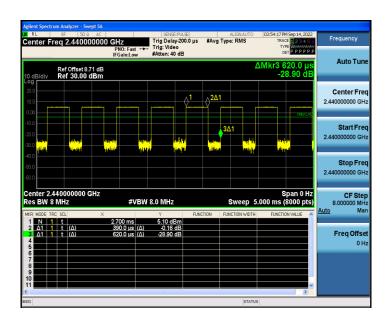
CH39

5.8 Duty Cycle

5.8.1 Conformance Limit

None, for reporting purposes only.

5.8.2 Test setup


5.8.3 Test procedure

- a) Test method: KDB 558074 Zero-span spectrum analyzer method.
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 8MHz, VBW = 8MHz, Detector = Peak.

5.8.4 Test Results

TestMode	Transmission Duration (ms]	Transmission Period (ms]	Duty Cycle (%)
BLE 1Mbps	0.39	0.62	62.90

BLE 1Mbps

5.9 Radiated spurious emission

5.9.1 Limits

§ 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

§ 15.209 Radiated emission limits at restricted bands:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note 1: the tighter limit applies at the band edges.

Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

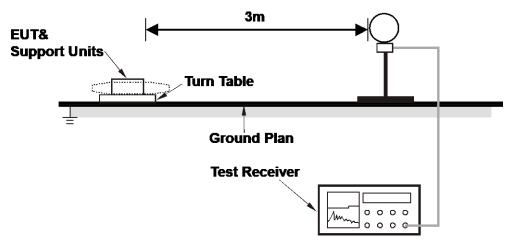
§ 15.35 (b) requirements:

When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

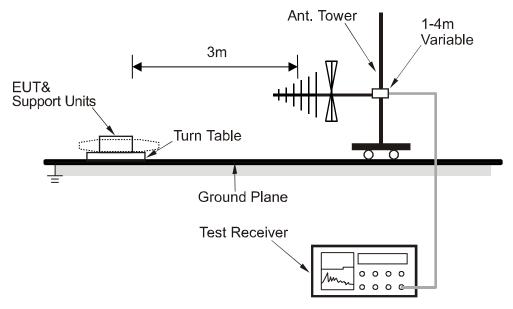
According to ANSI C63.10-2013, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device

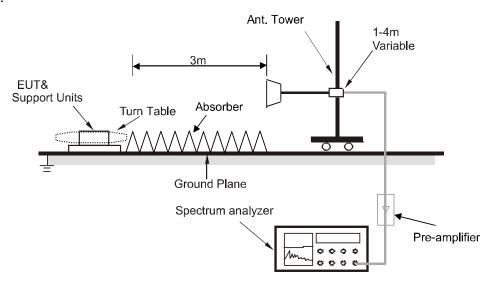
Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified


Frequency range of measurements for unlicensed wireless device with digital device

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
	5th harmonic of the highest frequency or 40 GHz, whichever is lower



5.9.2 Test setup


Below 30MHz:

30MHz~1GHz:

Above 1GHz:

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.9.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 6.3, 6.4, 6.5, 6.6, 11.11, 11.12, 11.13.
- b) The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) Emission blew 18 GHz were measured at a 3 meters test distance, above 18 GHz were measured at 1-meter test distance with the application of a distance correction factor
- d) The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Test instrument setup

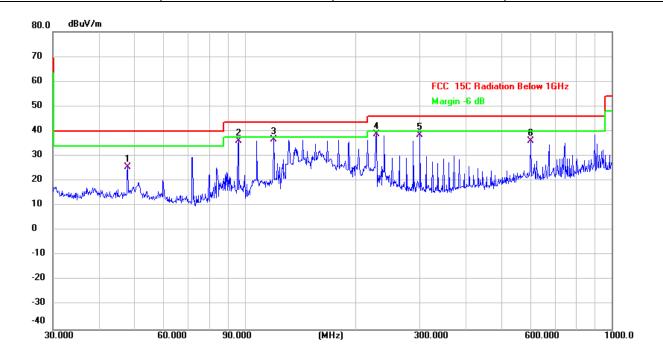
Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / RBW: 200 Hz
150 kHz ~ 30 MHz	Quasi Peak / RBW: 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / RBW: 120 kHz
Above 1 GHz	Peak / RBW: 1 MHz, VBW: 3MHz, Peak detector AVG / RBW: 1 MHz, VBW: 3MHz, Average detector

5.9.4 Test results

Notes:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

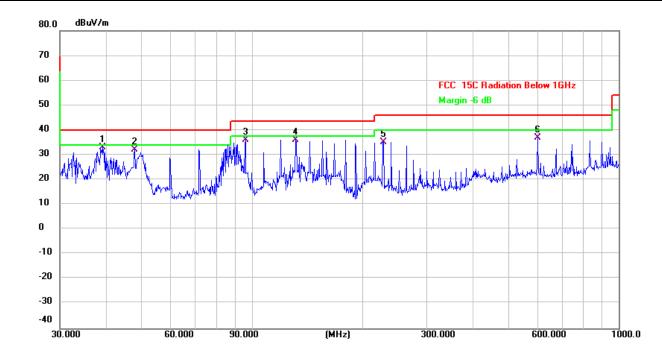
All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.


Calculation formula:

Measurement (dB μ V/m) = Reading Level (dB μ V) + Correct Factor (dB/m) Over (dB) = Measurement (dB μ V/m) – Limit (dB μ V/m)

Radiated emissions between 30MHz - 1GHz

Test mode:	BLE 1Mbps – 2402 MHz TX mode	Polarization:	Horizontal
Power supply:	DC 14.4V	Test site:	RE chamber 2



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector
1		47.9940	34.69	-9.25	25.44	40.00	-14.56	QP
2		96.0986	46.41	-10.48	35.93	43.50	-7.57	QP
3	*	119.8556	48.70	-12.15	36.55	43.50	-6.95	QP
4	2	228.4904	47.66	-9.03	38.63	46.00	-7.37	QP
5	,	300.3672	46.68	-8.21	38.47	46.00	-7.53	QP
6	(601.4265	38.72	-2.73	35.99	46.00	-10.01	QP

Radiated emissions between 30MHz - 1GHz

Test mode:	BLE 1Mbps – 2402 MHz TX mode	Polarization:	Vertical
Power supply:	DC 14.4V	Test site:	RE chamber 2

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector
1	*	39.2991	43.06	-10.00	33.06	40.00	-6.94	QP
2		47.9940	41.50	-9.25	32.25	40.00	-7.75	QP
3		96.0986	46.65	-10.48	36.17	43.50	-7.33	QP
4		131.7577	48.71	-12.78	35.93	43.50	-7.57	QP
5		228.4904	44.31	-9.03	35.28	46.00	-10.72	QP
6		601.4265	39.54	-2.73	36.81	46.00	-9.19	QP

Radiated emissions 1 GHz ~ 25 GHz

Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
		BLE	1Mbps - 240	02 MHz TX m	ode		
4804.000	41.37	0.81	42.18	74.00	-31.82	Peak	V
4804.000	35.30	0.81	36.11	54.00	-17.89	AVG	V
7206.000	40.79	5.86	46.65	74.00	-27.35	Peak	V
7206.000	34.50	5.86	40.36	54.00	-13.64	AVG	V
9608.000	41.92	6.32	48.24	74.00	-25.76	Peak	V
9608.000	35.86	6.32	42.18	54.00	-11.82	AVG	V
4804.000	41.30	0.81	42.11	74.00	-31.89	Peak	Н
4804.000	35.24	0.81	36.05	54.00	-17.95	AVG	Н
7206.000	40.19	5.86	46.05	74.00	-27.95	Peak	Н
7206.000	34.17	5.86	40.03	54.00	-13.97	AVG	Н
9608.000	42.26	6.32	48.58	74.00	-25.42	Peak	Н
9608.000	36.01	6.32	42.33	54.00	-11.67	AVG	Н
		BLE	1Mbps - 244	40 MHz TX m	ode		
4880.000	41.41	1.17	42.58	74.00	-31.42	Peak	V
4880.000	35.18	1.17	36.35	54.00	-17.65	AVG	V
7320.000	40.67	5.52	46.19	74.00	-27.81	Peak	V
7320.000	34.61	5.52	40.13	54.00	-13.87	AVG	V
9760.000	41.73	6.21	47.94	74.00	-26.06	Peak	V
9760.000	35.12	6.21	41.33	54.00	-12.67	AVG	V
4880.000	42.28	1.17	43.45	74.00	-30.55	Peak	Н
4880.000	36.15	1.17	37.32	54.00	-16.68	AVG	Н
7320.000	40.70	5.52	46.22	74.00	-27.78	Peak	Н
7320.000	34.63	5.52	40.15	54.00	-13.85	AVG	Н
9760.000	41.25	6.21	47.46	74.00	-26.54	Peak	Н
9760.000	35.04	6.21	41.25	54.00	-12.75	AVG	Н

Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization		
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V		
		BLI	E 1Mbps - 248	30 MHz TX m	ode				
4960.000 41.65 1.53 43.18 74.00 -30.82 Peak V									
4960.000	35.59	1.53	37.12	54.00	-16.88	AVG	V		
7440.000	41.56	5.16	46.72	74.00	-27.28	Peak	V		
7440.000	35.09	5.16	40.25	54.00	-13.75	AVG	V		
9920.000	41.16	6.09	47.25	74.00	-26.75	Peak	V		
9920.000	35.07	6.09	41.16	54.00	-12.84	AVG	V		
4960.000	41.99	1.53	43.52	74.00	-30.48	Peak	Н		
4960.000	35.79	1.53	37.32	54.00	-16.68	AVG	Н		
7440.000	41.14	5.16	46.30	74.00	-27.70	Peak	Н		
7440.000	34.98	5.16	40.14	54.00	-13.86	AVG	Н		
9920.000	41.59	6.09	47.68	74.00	-26.32	Peak	Н		
9920.000	35.27	6.09	41.36	54.00	-12.64	AVG	Н		

Radiated emissions at band edge

Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
BLE 1Mbps – Low band-edge							
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
2310.000	47.29	-8.20	39.09	74.00	-34.91	Peak	V
2310.000	37.43	-8.20	29.23	54.00	-24.77	AVG	V
2390.000	47.02	-7.83	39.19	74.00	-34.81	Peak	V
2390.000	37.86	-7.83	30.03	54.00	-23.97	AVG	V
2310.000	46.89	-8.20	38.69	74.00	-35.31	Peak	Н
2310.000	37.59	-8.20	29.39	54.00	-24.61	AVG	Н
2390.000	47.97	-7.83	40.14	74.00	-33.86	Peak	Н
2390.000	39.20	-7.83	31.37	54.00	-22.63	AVG	Н
BLE 1Mbps – High band-edge							
2483.500	50.36	-7.39	42.97	74.00	-31.03	Peak	V
2483.500	39.20	-7.39	31.81	54.00	-22.19	AVG	V
2500.000	47.02	-7.32	39.70	74.00	-34.30	Peak	V
2500.000	37.98	-7.32	30.66	54.00	-23.34	AVG	V
2483.500	53.78	-7.39	46.39	74.00	-27.61	Peak	Н
2483.500	41.48	-7.39	34.09	54.00	-19.91	AVG	Н
2500.000	47.42	-7.32	40.10	74.00	-33.90	Peak	Н
2500.000	38.22	-7.32	30.90	54.00	-23.10	AVG	Н

Photographs of the Test Setup

See the appendix – Test Setup Photos.

Photographs of the EUT

See the appendix - EUT Photos.

----End of Report----