	と 灰リ chnology				
	TEST REPOR	T			
FCC ID :	2BN8F-VDP80				
Test Report No::	TCT250317E009				
Date of issue:	Mar. 20, 2025				
Testing laboratory:	SHENZHEN TONGCE TESTING LAB				
Testing location/ address:	2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China				
Applicant's name: :	NUMLAKE TECH LIMITED				
Address:	UNIT 1505, 15/F WORKINGPO HAU FOOK STREET TSIM SHA	RT COMMERCIAL BUILDING 3 A TSUI HONG KONG, China			
Manufacturer's name :	NUMLAKE TECH LIMITED				
Address:	UNIT 1505, 15/F WORKINGPO HAU FOOK STREET TSIM SH	RT COMMERCIAL BUILDING 3 A TSUI HONG KONG, China			
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2020				
Product Name::	Doorbell Camera				
Trade Mark :	N/A				
Model/Type reference :	P80, M60, M70, M80, M90, T60 U90, N60, N70, N80, N90, P60,	, T70, T80, T90, U60, U70, U80, P70, P90			
Rating(s):	Rechargeable Li-ion Battery DC	3.7V			
Date of receipt of test item	Mar. 17, 2025				
Date (s) of performance of test:	Mar. 17, 2025 ~ Mar. 20, 2025				
Tested by (+signature) :	Onnado YE	Onnado JENGCE 7			
Check by (+signature) :	Beryl ZHAO	Boyt 2 TCT			
Approved by (+signature):	Tomsin	Tomsness			
TONGCE TESTING LAB. TH	his document may be altered or ly, and shall be noted in the revis	e written approval of SHENZHEN revised by SHENZHEN TONGCE sion section of the document. The			

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.								
	1.1. EUT des	cription						
	1.2. Model(s) 1.3. Operatio							
2	Test Result		;y		(\mathcal{G})		(\mathcal{C})	
2.								
3.	General Inf							
	3.1. Test env	ironment a	nd mode.					6
	3.2. Descript							
4.	Facilities a							
	4.1. Facilities	5						8
	4.2. Location							8
	4.3. Measure							
5.	Test Result	ts and Me	asureme	ent Data .		<u>(6</u>)		9
	5.1. Antenna	requiremen	nt					9
	5.2. Conduct							
	5.3. Maximur	n Conducte	d (Peak)		wer			14
	5.4. Emission	n Bandwidt	h					15
	5.5. Power S	pectral Den	sity					16
	5.6. Conduct	ed Band Ec	lge and S	purious En	nission M	easureme	nt	17
	5.7. Radiated	Spurious I	Emission	Measurem	ent			19
Ap	opendix A: T	lest Resu	It of Con	ducted T	est			
A	opendix B: F	Photograp	hs of Te	est Setup				
-	opendix C: I			-				

1. General Product Information

1.1. EUT description

Product Name:	Doorbell Camera
Model/Type reference:	P80
Sample Number:	TCT250317E008-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing (OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna Gain:	1.65dBi
Rating(s):	Rechargeable Li-ion Battery DC 3.7V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model N	lo.	Tested with
1	P80		$\overline{\mathbf{X}}$
Other models	 0, M90, T60, T70 N60, N70, N80, N		\mathcal{D}
	els are derivative modes. So the test data of		
)	
			Page 3 of 68

Report No.: TCT250317E009

1.3. Operation Frequency

For 802.11b/g/n(HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
N	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n(HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Page 4 of 68

2. Test Result Summary

Requirement	Requirement CFR 47 Section	
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Condition	Conducted Emission	Radiated Emission
Temperature:	22.1 °C	22.7 °C
Humidity:	52 % RH	57 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	ETF GUI Tool(Version:1.3.3	(b
Power Level:	40	
Test Mode:		
Engineer mode:	Keep the EUT in continuous channel and modulations wi	• •
above the ground plane of 3 polarities were performed. I he EUT continuously worki	8m & 1.5m for the measure on chamber. Measurements in During the test, each emission ng, investigated all operating usidered, typical, configuration	ment below & above 1GH: n both horizontal and vertica n was maximized by: having n modes, rotated about all 3
above the ground plane of 3 polarities were performed. I the EUT continuously worki axis (X, Y & Z) and con manipulating interconnectin from 1m to 4m in both	om chamber. Measurements in During the test, each emission	ment below & above 1GH h both horizontal and vertican h was maximized by: having modes, rotated about all 3 h to obtain worst position ble, varying antenna heigh larizations. The emissions
above the ground plane of 3 polarities were performed. If the EUT continuously worki axis (X, Y & Z) and con manipulating interconnectin from 1m to 4m in both	om chamber. Measurements in During the test, each emission ing, investigated all operating sidered typical configuration g cables, rotating the turnta horizontal and vertical po	ment below & above 1GH h both horizontal and vertican h was maximized by: having modes, rotated about all 3 h to obtain worst position ble, varying antenna heigh larizations. The emissions
above the ground plane of 3 polarities were performed. If the EUT continuously worki axis (X, Y & Z) and con- manipulating interconnecting from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra	am chamber. Measurements in During the test, each emission ing, investigated all operating isidered typical configuration g cables, rotating the turnta horizontal and vertical po wn in Test Results of the follow	ment below & above 1GH h both horizontal and vertica h was maximized by: having modes, rotated about all 3 h to obtain worst position ble, varying antenna heigh larizations. The emissions ving pages.
above the ground plane of 3 colarities were performed. If the EUT continuously worki axis (X, Y & Z) and con- manipulating interconnectin from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra- was worst case.	am chamber. Measurements in During the test, each emission ing, investigated all operating isidered typical configuration g cables, rotating the turnta horizontal and vertical po wn in Test Results of the follow uction and function in typical of IT in transmitting operation, w s:	ment below & above 1GH h both horizontal and vertica h was maximized by: having modes, rotated about all 3 h to obtain worst position ble, varying antenna heigh larizations. The emissions ving pages.
above the ground plane of 3 polarities were performed. If the EUT continuously working axis (X, Y & Z) and com- manipulating interconnection from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra- was worst case. Mode	am chamber. Measurements in During the test, each emission ing, investigated all operating isidered typical configuration g cables, rotating the turnta horizontal and vertical po wn in Test Results of the follow uction and function in typical of IT in transmitting operation, w s:	ment below & above 1GH h both horizontal and vertical h was maximized by: having modes, rotated about all 3 h to obtain worst position ble, varying antenna heigh larizations. The emissions ving pages. operation. All the test modes hich was shown in this test bund the follow list which i Data rate
above the ground plane of 3 colarities were performed. If the EUT continuously worki axis (X, Y & Z) and con- manipulating interconnectin from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra- was worst case.	am chamber. Measurements in During the test, each emission ing, investigated all operating isidered typical configuration g cables, rotating the turnta horizontal and vertical po wn in Test Results of the follow uction and function in typical of IT in transmitting operation, w s:	ment below & above 1GH h both horizontal and vertica h was maximized by: having modes, rotated about all 3 h to obtain worst position ble, varying antenna heigh larizations. The emissions ving pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3	/	SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

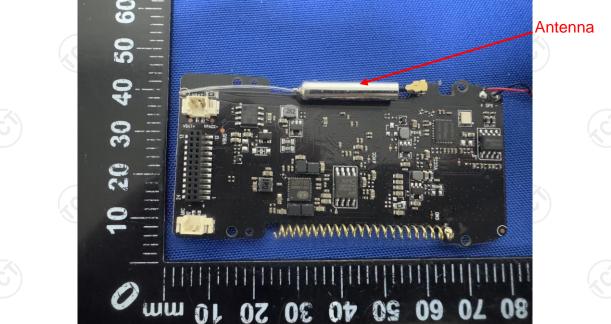
No.	Item	MU
7	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is internal antenna which permanently attached, and the best case gain of the antenna is 1.65dBi.

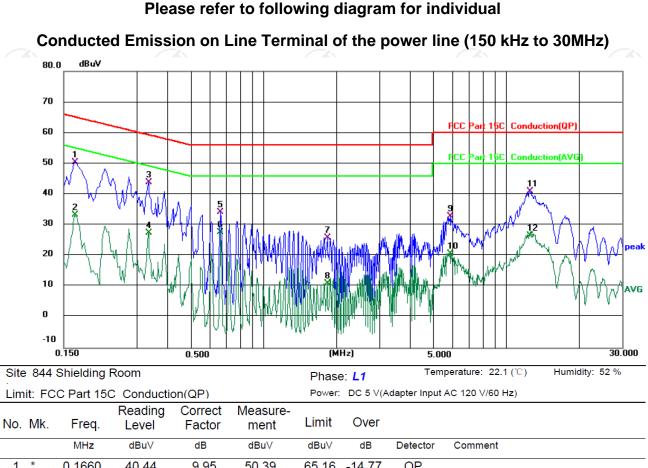
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	40			
Test Method:	ANSI C63.10:2020					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto			
	Frequency range	Limit (Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46* 🔍			
	0.5-5	56	46			
	5-30	60	50			
	Referenc	e Plane				
Test Setup:	40cm 40cm 40cm E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m	EMI Receiver	- AC power			
Test Mode:	Charging + Transmittir	ng Mode	l'			
Test Procedure:		bilization network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm term diagram of the line are checkence. In order to fir e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the mair a 50ohm/50uF nination. (Please test setup and ed for maximum nd the maximum ipment and all o ed according to			
	the interface cables must be changed ANSI C63.10:2020 on conducted measu					

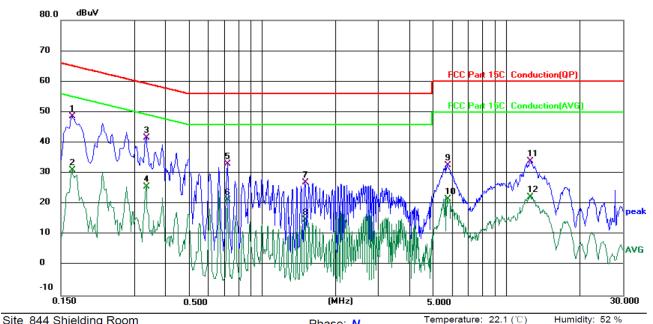
Page 10 of 68

5.2.2. Test Instruments


Conducted Emission Shielding Room Test Site (843)								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025				
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 20, 2026				
Attenuator	N/A	10dB	164080	Jun. 26, 2025				
Line-5	тст	CE-05	/	Jun. 26, 2025				
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1				
9 8		S.						

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.2.3. Test data



1 *	0.1660	40.44	9.95	50.39	65.16 -14.77	QP
2	0.1660	23.25	9.95	33.20	55.16 -21.96	AVG
3	0.3339	33.90	9.93	43.83	59.35 -15.52	QP
4	0.3339	17.52	9.93	27.45	49.35 -21.90	AVG
5	0.6660	24.34	9.90	34.24	56.00 -21.76	QP
6	0.6660	17.80	9.90	27.70	46.00 -18.30	AVG
7	1.8340	15.91	10.00	25.91	56.00 -30.09	QP
8	1.8340	1.07	10.00	11.07	46.00 -34.93	AVG
9	5.8780	22.62	10.17	32.79	60.00 -27.21	QP
10	5.8780	10.51	10.17	20.68	50.00 -29.32	AVG
11	12.4780	30.72	10.35	41.07	60.00 -18.93	QP
12	12.4780	16.24	10.35	26.59	50.00 -23.41	AVG

Note:

Frea. = Emission frequency in MHz		
Reading level (dB μ V) = Receiver reading		
Corr. Factor (dB) = LISN factor + Cable loss		
Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)		
Limit (dB μ V) = Limit stated in standard		
Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)		
Q.P. =Quasi-Peak		
AVG =average		
* in the second second for the second s	450 111-1-001	<i></i>

 * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

844 5	Shielding F	Room			Phase	e: N	N Temperature: 22.1 (℃)		Humidity: 52 %
t: FCC	C Part 15C	Conductio	on(QP)		Power:	DC 5 V(A	dapter Input	AC 120 ∨/60 Hz)	
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
*	0.1660	38.71	9.94	48.65	65.16	-16.51	QP		
	0.1660	21.07	9.94	31.01	55.16	-24.15	AVG		
	0.3339	31.79	9.93	41.72	59.35	-17.63	QP		
	0.3339	15.76	9.93	25.69	49.35	-23.66	AVG		
	0.7220	23.20	9.94	33.14	56.00	-22.86	QP		
	0.7220	11.48	9.94	21.42	46.00	-24.58	AVG		
	1.4980	17.03	10.00	27.03	56.00	-28.97	QP		
	1.4980	4.79	10.00	14.79	46.00	-31.21	AVG		
	5.7260	22.42	10.18	32.60	60.00	-27.40	QP		
	5.7260	11.34	10.18	21.52	50.00	-28.48	AVG		
	12.5700	23.64	10.41	34.05	60.00	-25.95	QP		
	12.5700	11.93	10.41	22.34	50.00	-27.66	AVG		
	:: FCC Mk.	E: FCC Part 15C Mk. Freq. MHz * 0.1660 0.1660 0.3339 0.3339 0.7220 0.7220 0.7220 1.4980 1.4980 5.7260 5.7260 12.5700	Mk. Freq. Reading Level MHz dBu√ * 0.1660 38.71 0.1660 21.07 0.3339 31.79 0.3339 15.76 0.7220 23.20 0.7220 11.48 1.4980 17.03 5.7260 22.42 5.7260 11.34 12.5700 23.64	Freq. Conduction(QP) Mk. Freq. Reading Level Correct Factor MHz dBuV dB * 0.1660 38.71 9.94 0.1660 21.07 9.94 0.3339 31.79 9.93 0.3339 15.76 9.93 0.7220 23.20 9.94 0.7220 11.48 9.94 1.4980 17.03 10.00 1.4980 4.79 10.00 5.7260 22.42 10.18 5.7260 11.34 10.18 12.5700 23.64 10.41	Freq. Reading Level Correct Factor Measure- ment MHz dBuV dB dBuV * 0.1660 38.71 9.94 48.65 0.1660 21.07 9.94 31.01 0.3339 31.79 9.93 41.72 0.3339 15.76 9.93 25.69 0.7220 23.20 9.94 33.14 0.7220 11.48 9.94 21.42 1.4980 17.03 10.00 27.03 1.4980 4.79 10.00 14.79 5.7260 22.42 10.18 32.60 5.7260 11.34 10.18 21.52 12.5700 23.64 10.41 34.05	Freq.Reading LevelCorrect FactorMeasure- mentLimitMk.Freq. $dBuV$ dB $dBuV$ $dBuV$ *0.166038.719.9448.6565.160.166021.079.9431.0155.160.333931.799.9341.7259.350.333915.769.9325.6949.350.722023.209.9433.1456.001.498017.0310.0027.0356.001.49804.7910.0014.7946.005.726022.4210.1832.6060.005.726011.3410.1821.5250.0012.570023.6410.4134.0560.00	Reading Level Correct Factor Measurement Limit Over Mk. Freq. dBuV dB dBuV dBuV dB * 0.1660 38.71 9.94 48.65 65.16 -16.51 0.1660 21.07 9.94 31.01 55.16 -24.15 0.3339 31.79 9.93 41.72 59.35 -17.63 0.3339 15.76 9.93 25.69 49.35 -23.66 0.7220 23.20 9.94 33.14 56.00 -24.58 0.7220 11.48 9.94 21.42 46.00 -24.58 1.4980 17.03 10.00 27.03 56.00 -28.97 1.4980 4.79 10.00 14.79 46.00 -31.21 5.7260 22.42 10.18 32.60 60.00 -27.40 5.7260 11.34 10.18 21.52 50.00 -28.48 12.5700 23.64 10.41 34.05 60.00 -25.95	EFCC Part 15C Conduction(QP) Power: DC 5 V(Adapter Input Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over Mk. Freq. dBuV dB dBuV dB Detector * 0.1660 38.71 9.94 48.65 65.16 -16.51 QP 0.1660 21.07 9.94 31.01 55.16 -24.15 AVG 0.3339 31.79 9.93 41.72 59.35 -17.63 QP 0.3339 15.76 9.93 25.69 49.35 -23.66 AVG 0.7220 23.20 9.94 33.14 56.00 -22.86 QP 0.7220 11.48 9.94 21.42 46.00 -24.58 AVG 1.4980 17.03 10.00 27.03 56.00 -28.97 QP 1.4980 4.79 10.00 14.79 46.00 -31.21 AVG 5.7260 21.34 10.18 <td>Ministry (Setting (Conduction)(QP) Power: DC 5 V(Adapter Input AC 120 V/60 Hz) Mk. Freq. Reading Level Correct Factor Measurement Limit Over Mk. Freq. dBuV dB dBuV dBuV dB Detector Comment * 0.1660 38.71 9.94 48.65 65.16 -16.51 QP 0.1660 21.07 9.94 31.01 55.16 -24.15 AVG 0.3339 31.79 9.93 41.72 59.35 -17.63 QP 0.3339 15.76 9.93 25.69 49.35 -23.66 AVG 0.7220 23.20 9.94 33.14 56.00 -24.58 AVG 0.7220 11.48 9.94 21.42 46.00 -24.58 AVG 1.4980 17.03 10.00 27.03 56.00 -28.97 QP 1.4980 4.79 10.00 14.79 46.00 -31.21 AVG 5.7260 22.42 10.18 32.60 60.00 -27.40 QP <td< td=""></td<></td>	Ministry (Setting (Conduction)(QP) Power: DC 5 V(Adapter Input AC 120 V/60 Hz) Mk. Freq. Reading Level Correct Factor Measurement Limit Over Mk. Freq. dBuV dB dBuV dBuV dB Detector Comment * 0.1660 38.71 9.94 48.65 65.16 -16.51 QP 0.1660 21.07 9.94 31.01 55.16 -24.15 AVG 0.3339 31.79 9.93 41.72 59.35 -17.63 QP 0.3339 15.76 9.93 25.69 49.35 -23.66 AVG 0.7220 23.20 9.94 33.14 56.00 -24.58 AVG 0.7220 11.48 9.94 21.42 46.00 -24.58 AVG 1.4980 17.03 10.00 27.03 56.00 -28.97 QP 1.4980 4.79 10.00 14.79 46.00 -31.21 AVG 5.7260 22.42 10.18 32.60 60.00 -27.40 QP <td< td=""></td<>

Note 1:

Freq. = Emission frequency in MHz

TCT通测检测 TCT通测检测

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note 2: Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (Middle channel and 802.11b) was submitted only.

5.3. Maximum Conducted (Peak) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	Power meter EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the power meter by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results in the test report.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Power Sensor	Agilent	8184A	MY41096530	Jun. 26, 2025
Power Meter	Agilent	E4418B	MY45100357	Jun. 26, 2025

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	<u>6</u> 1	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Trace mode =max hold. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

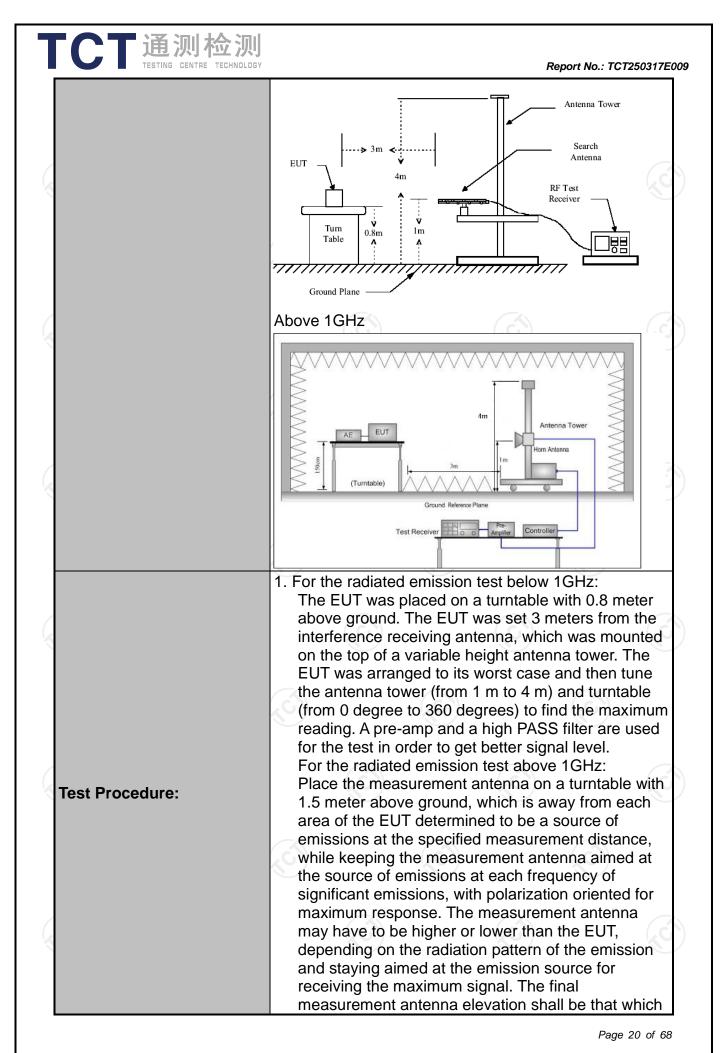
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1(0)	1

5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB558074 D01 v05r02				
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. 				
	used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).				

5.6.2. Test Instruments


Name	Manufacturer	Model No.	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB	1	/	
	40 Tel: 86-755-276			Page 18 o	

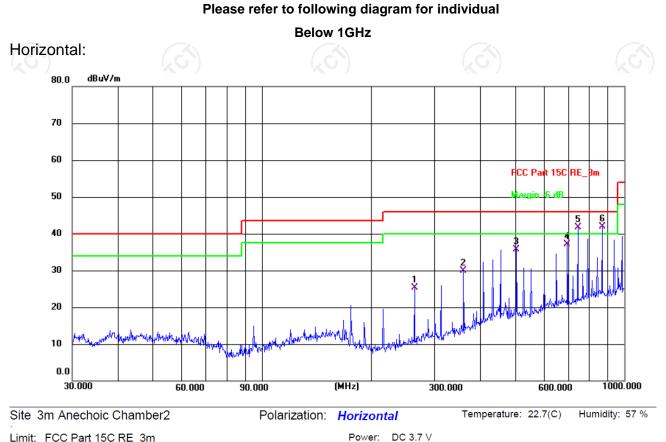
5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

Test Method:			n 15.209			K
	ANSI C63.10	0:2020				
Frequency Range:	9 kHz to 25 (GHz				6
Measurement Distance:	3 m		<u>()</u>		10	
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	mode wit	th modulat	ion		C
	Frequency	Detector	RBW	VBW		Remark
	9kHz- 150kHz	Quasi-pea		1kHz	Qua	si-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peal		30kHz		si-peak Value
·	30MHz-1GHz	Quasi-peal	k 120KHz	300KHz	Quas	si-peak Value
		Peak	1MHz	3MHz		eak Value
	Above 1GHz	Peak	1MHz	10Hz		erage Value
	Frequen	су	Field Stro (microvolts			asurement Ince (meters)
	0.009-0.490		2400/F(KHz)		300	
	0.490-1.705		24000/F(KHz)		30	
	1.705-30		30		30	
	30-88		100		3	
	88-216		150		3	
Limit:	216-960		200			3
	Above 960		500			3
	Frequency		Field Strength (microvolts/meter)		Measurement Distance Det (meters)	
	Above 1GHz	,	500 3		Average	
	Above IGH2	<u> </u>	5000 3		Peak	
Test setup:	EUT 0.Sm	stance = 3m	s below 30	Pre -A	Compu	
	30MHz to 10	SHz				

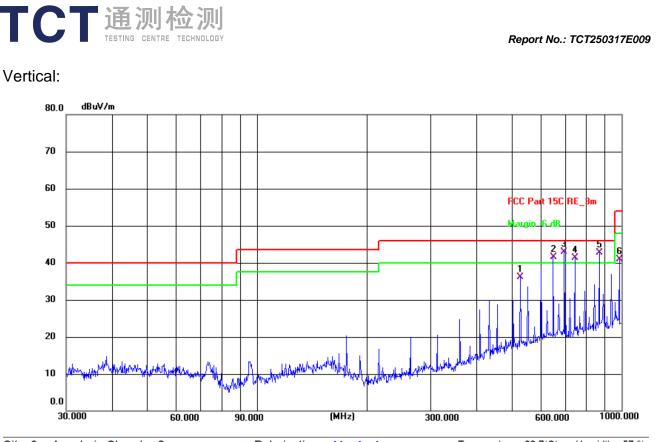
TCT通测检测	
TESTING CENTRE TECHNOLOGY	Report No.: TCT250317E009
	 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
	 5. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement.
	For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW \ge 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

Page 21 of 68


5.7.2. Test Instruments

	Radiated Em	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 20, 2026
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 20, 2026
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 20, 2026
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 22, 2026
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	1	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	KG)	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM	1	
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


5.7.3. Test Data

7			<u></u>									
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark		
	1	263.8190	44.26	-18.91	25.35	46.00	-20.65	QP	Ρ			
	2	360.4476	46.37	-16.38	29.99	46.00	-16.01	QP	Ρ			
ſ	3	504.7062	47.94	-12.21	35.73	46.00	-10.27	QP	Ρ			
	4	696.8567	45.69	-8.52	37.17	46.00	-8.83	QP	Ρ			
	5!	744.8660	49.59	-7.82	41.77	46.00	-4.23	QP	Ρ			
	6 *	869.1302	48.21	-6.39	41.82	46.00	-4.18	QP	Ρ			

Page 23 of 68

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Humidity: 57 % Polarization: Vertical Temperature: 22.7(C) Site 3m Anechoic Chamber2 Limit: FCC Part 15C RE_3m DC 3.7 V Power: Frequency Reading Factor Level Limit Margin No. Detector P/F Remark (dBuV/m) (dBuV/m) (MHz) (dBuV) (dB/m) (dB) 1 528.2458 47.99 -11.82 36.17 46.00 -9.83 QP Ρ 2! 649.6596 50.28 -8.83 41.45 46.00 -4.55 QP Ρ 3 * 696.8567 51.34 -8.52 42.82 46.00 -3.18 QP Ρ 4 ! 744.8660 49.21 -7.82 41.39 46.00 -4.61 QP Ρ 5 I 869.1302 49.04 -6.39 42.65 46.00 -3.35 QP Ρ 6 986.0716 45.78 -4.84 40.94 54.00 -13.06 QP Ρ

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

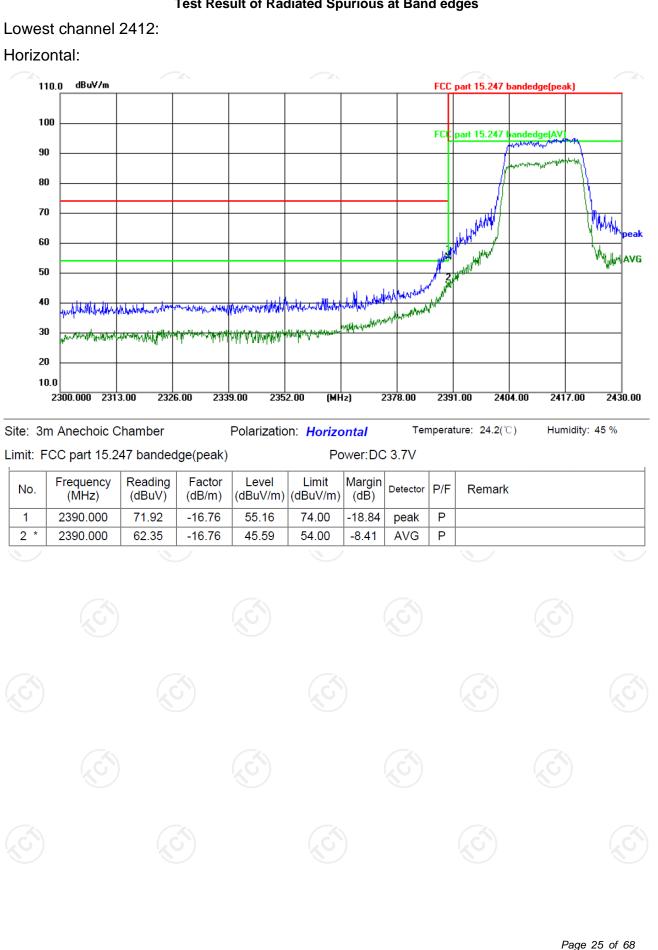
2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (Middle channel and 802.11b) was submitted only.

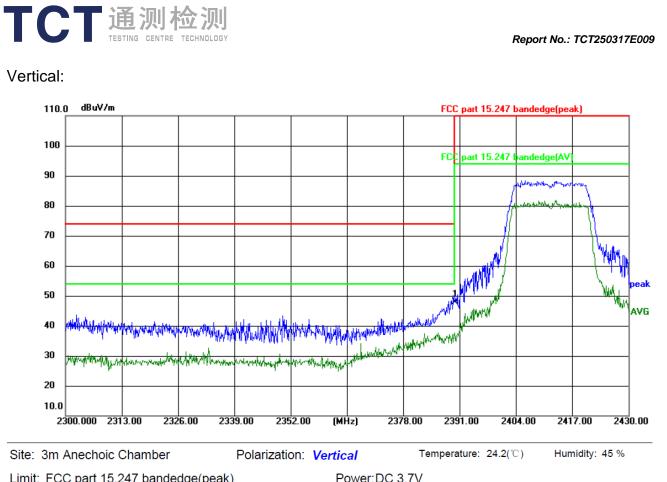
3. Freq. = Emission frequency in MHz

Measurement $(dB\mu V/m) = Reading \ level \ (dB\mu V) + Corr. \ Factor \ (dB)$

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

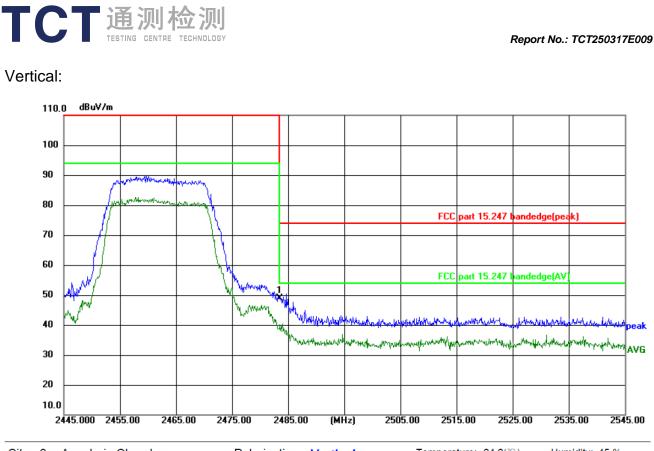
Limit $(dB\mu V/m) = Limit$ stated in standard


Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)


* is meaning the worst frequency has been tested in the test frequency range.

Page 24 of 68

Test Result of Radiated Spurious at Band edges



			age (peak))					
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2390.000	64.55	-16.76	47.79	74.00	-26.21	peak	Ρ	

TC	CT 追		<mark>金测</mark> TECHNOLOGY							Report No.	: TCT2503	17E009
Highe	st channel	2462:										
Horizo	ontal:											
11	0.0 dBuV/m											_
10	20											
		an water	www.y.h.									
90	, Jane	normalites reported	Manner									1
80			N.	_				FCC	part 15.247	andedge(pe	ak)	
70	' tout			Marchimaka								1
60) (%,//////			WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	M,			FCC	part 15.247	andedge(AV		
50				ny2		wondertration				ation work they work and	hand a product of the start of the	_
40)				"Trouble of the second se	antana mananta	What Man Laws	diyff ffort	acitificacita/ ^{aci} tanna	and how we wanted	they way and	AVG
30)						_					-
20)											-
10).0 2445.000 2455	5.00 246	5.00 247	5.00 248	15.00 (MI	 z] 2	2505.00	251	5.00 252	25.00 253	35.00 2	545.00
ito: 2r	n Anechoic C	hambor		Polarizatio	op: Heviz		То	mpera	ture: 24.2(°	<u> </u>	nidity: 45 %	
	CC part 15.2					ower:DC		npera	uie. 24.2()	<i></i>	many. 40 /	0
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level	Limit (dBuV/m)	Margin	Detector	P/F	Remark			
1	2483.500	73.55	-16.50	57.05	74.00	-16.95	peak	Р				
2 *	2483.500	65.38	-16.50	48.88	54.00	-5.12	AVG	P				
										F	Page 27 o	f 68

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Site: 3m Anechoic ChamberPolarization:VerticalTemperature: 24.2(°C)Humidity: 45 %Limit: FCC part 15.247 bandedge(peak)Power:DC 3.7V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2483.500	65.39	-16.50	48.89	74.00	-25.11	peak	Ρ	

Note:

1. Peak Final Emission Level=Peak Reading + Correction Factor;

2. Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

3. Measurements were conducted in all modulation (802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode 802.11n(HT20) was submitted only.

Above 1GHz Modulation Type: 802.11b

	Low channel: 2412 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4824	Н	55.34		-9.48	45.86		74	54	-8.14				
7236	Н	46.12		-1.34	44.78		74	54	-9.22				
	Н												
4824	V	56.11	6	-9.48	46.63		74	54	-7.37				
7236	V	46.22	(_C	-1.34	44.88	G`)	74	54	-9.12				
	V				7								

			М	iddle chann	el: 2437MH	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	55.49		-9.37	46.12		74	54	-7.88
7311	Н	46.76		-1.17	45.59		74	54	-8.41
	H				(
			KO.		X	6			
4874	V	55.54		-9.37	46.17	<u> </u>	74	54	-7.83
7311	V	46.97		-1.17	45.80		74	54	-8.20
	V								
				((

			H	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	55.67		-9.26	46.41		74	54	-7.59
7386	E.	46.88		-1.01	45.87		74	54	-8.13
	Η								
4924	V	55.37		-9.26	46.11		74	54	-7.89
7386	V	45.99		-1.01	44.98		74	54	-9.02
	V			🤇	ン				

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

	TESTI	NG CENTRE TEC	HNOLOGY				Rep	oort No.: TCT2	250317E009
			Μ	odulation T	ype: 802.11	lg			
			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	55.97		-9.48	46.49		74	54	-7.51
7236	Н	47.38		-1.34	46.04		74	54	-7.96
	Н			(J		<u> </u>		
4824	V	55.56		-9.48	46.08		74	54	-7.92
7236	V	47.04	()	-1.34	45.70		74	54	-8.30
	V		(_C	•)		G`)		(2G)	
		•			7		•		

			М	iddle chanr	el: 2437MF	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	56.69		-9.37	47.32		74	54	-6.68
7311	Н	48.15		-1.17	46.98		74	54	-7.02
	Н								
				6	(
4874	V	55.48	<u> </u>	-9.37	46.11	<u> </u>	74	54	-7.89
7311	V	46.82		-1.17	45.65		74	54	-8.35
	V								

			F	ligh channe	el: 2462 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	55.20		-9.26	45.94		74	54	-8.06
7386	H	45.65		-1.01	44.64		74	54	-9.36
	H			/		<u> </u>			
4924	V	55.48		-9.26	46.22		74	54	-7.78
7386	V	46.21		-1.01	45.20		74	54	-8.80
	V	U T		(, (
Madai									

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

ГСТ通测检测

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

TC		的加检					Rej	port No.: TCT	250317E009
			Modu	lation Type	: 802.11n(H	HT20)			
			L	.ow channe	l: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	55.55		-9.48	46.07		74	54	-7.93
7236	Н	45.81		-1.34	44.47		74	54	-9.53
	Н			(····				
4824	V	56.34		-9.48	46.86		74	54	-7.14
7236	\mathcal{N}^{-}	46.63	()	-1.34	45.29		74	54	-8.71
	V)	(<u> </u>			

			М	iddle chanr	nel: 2437MF	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	56.03		-9.37	46.66		74	54	-7.34
7311	Н	45.41		-1.17	44.24		74	54	-9.76
	Н								
					(
4874	V	55.25		-9.37	45.88	<u> </u>	74	54	-8.12
7311	V	46.13		-1.17	44.96		74	54	-9.04
	V								

		High channel: 2462 MHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	E.	54.72		-9.26	45.46		74	54	-8.54
7386	H	46.93		-1.01	45.92	<u> </u>	74	54	-8.08
	H			/		<u> </u>		· · · ·	
4924	V	56.19		-9.26	46.93		74	54	-7.07
7386	V	47.03		-1.01	46.02		74	54	-7.98
(\mathbf{G})	V	[. 6]		(, ($\mathcal{C}^{\rightarrow}$		(

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Appendix A: Test Result of Conducted Test

						Corroo	tion Factor	
C	Condition	Mode	Frequency (MHz)	y Di	ity Cycle (%)		(dB)	.0
	NVNT	b	2412		99.7		0.01	
	NVNT	b	2437		99.7		0.01	
	NVNT	b	2462		99.4		0.03	
	NVNT NVNT	g	2412 2437		99.6 99.4		0.02 0.03	
	NVNT	g g	2437		<u>99.4</u> 99.7		0.03	
	NVNT	n20	2412		99.5		0.02	
<u>C</u>	NVNT	n20	2437	(\mathcal{O})	99.7	(\mathbf{C})	0.01	
	NVNT	n20	2462		99.3		0.03	

Center 2.412000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (1001 pts) #VBW 8.0 MHz* 8.73 dBm 50.00 ms N 1 t

Test Graphs Duty Cycle NVNT b 2412MHz

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 40 dB

ALIGN AUT

Avg Type: RMS

Duty Cycle NVNT b 2437MHz

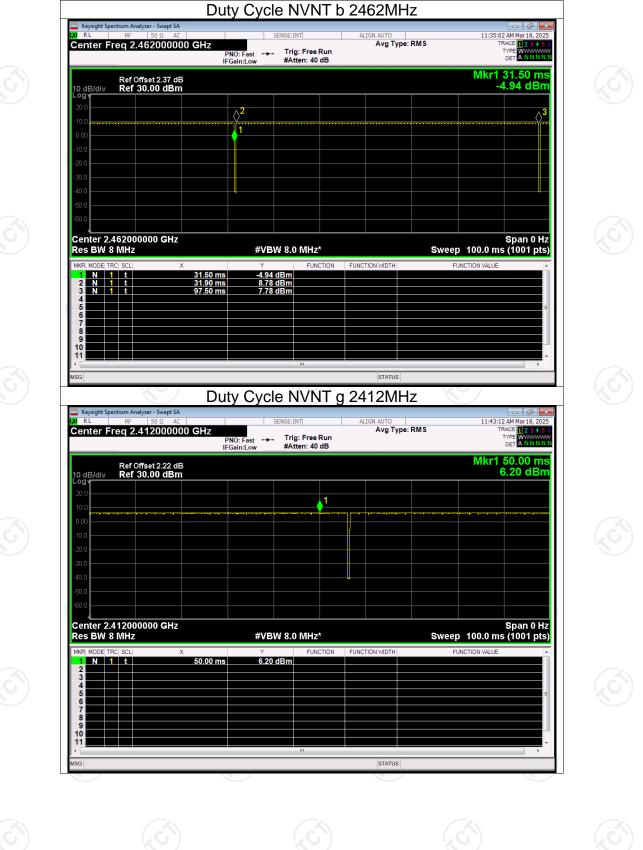
Keysight Spectrum Analyzer - Swept S 11:30:12 AM Mar 18, 2025 TRACE 1 2 3 4 5 6 TYPE DET A N N N N AUTO Avg Type: RMS Center Freq 2.437000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 40 dB Mkr1 50.00 ms 8.55 dBm Ref Offset 2.31 dB Ref 30.00 dBm 10 dB/di[,] Log Center 2.437000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (1001 pts) #VBW 8.0 MHz* FUNCTION WIDTH N 1 t 50.00 ms 8.55 dBm STATUS

Report No.: TCT250317E009

11:27:40 AM Mar18, 2025 TRACE 1 2 3 4 5 6 TYPE WWWWW DET ANNNN

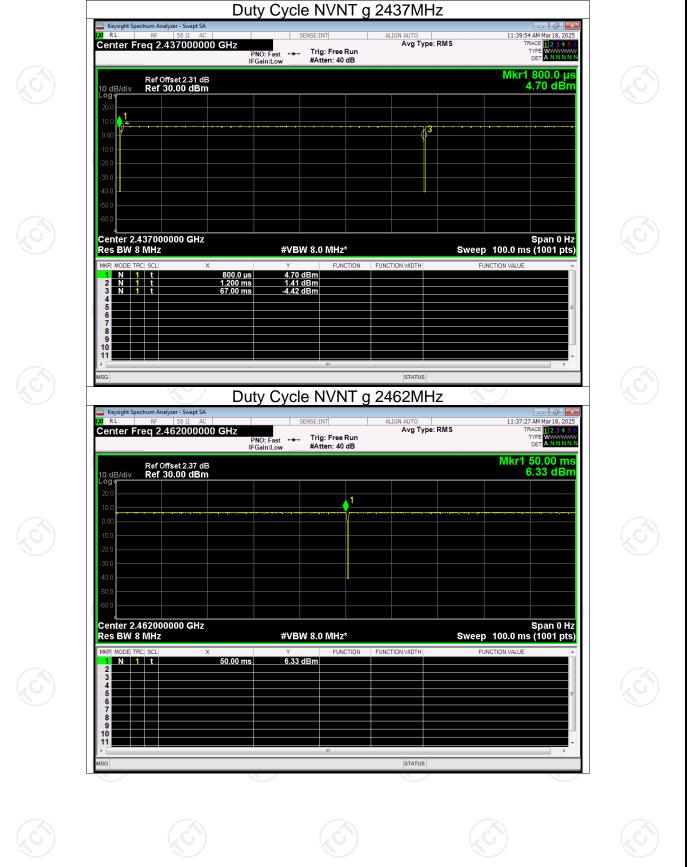
Mkr1 50.00 ms 8.73 dBm

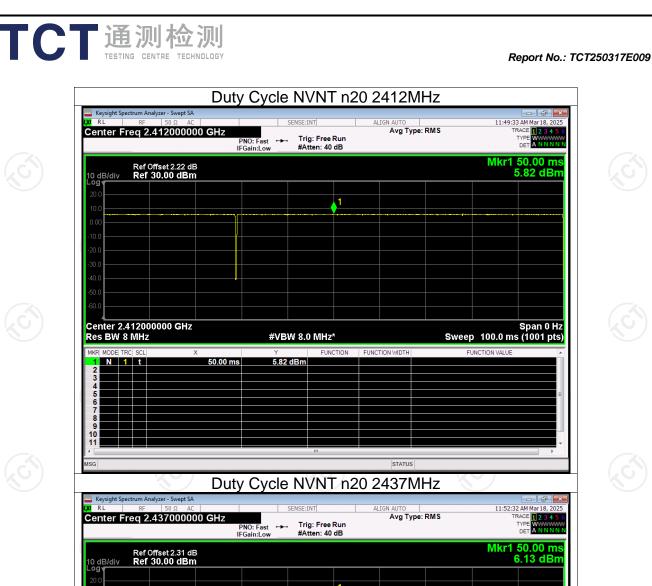
Keysight Spectrum Analyzer - Swept SA


10 dB/di Log**√**

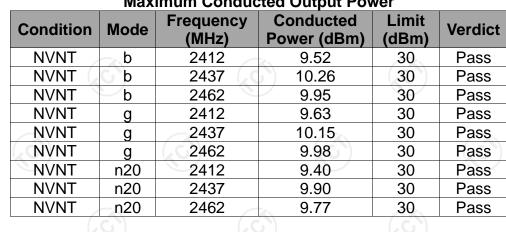
10 11

Center Freq 2.412000000 GHz


Ref Offset 2.22 dB Ref 30.00 dBm


TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250317E009


TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250317E009

Avg Type: RMS Trace I and trace I and trace PNO: Fast				NVNT n20		n Analyzer - Swept SA		
Ref 30.00 dBm 4.33 dBm 1 1	RACE 1 2 3 4 5 6 TYPE WWWWWW DET A N N N N N	Т		Trig: Free Run	Hz PNO: Fast ↔⊷	2.462000000 G	Center Free	
	1.33 dBm						20.0	
						·····	10.0 0.00 -10.0	
her 2 A 52000000 GHz Sweep 100.0 ums (1001 pts) W S MHz V FUCTOR PLACTOR PLACTOR UNDER V FUCTOR PLACTOR UNDER V FUCTOR PLACTOR UNDER V FUCTOR VALUE V F							-20.0 -30.0 -40.0	
S BW 81MHz #VBW 8.0 MHz* Sweep 100.0 ms (1001 pts) MODE TRO. SEL: X 1 5 80 ms 4 33 dBm N 1 1 1 1 6 80 ms 4 33 dBm MI 1 1 1 6 80 ms 4 33 dBm MI 1 1 1 6 80 ms 4 33 dBm MI 1 1 1 6 80 ms 4 33 dBm MI 1 1 1 6 80 ms 4 33 dBm MI 1 1 1 6 80 ms 4 33 dBm MI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Span 0 Hz					000000 GHz	-50.0 -60.0	
	(1001 pts)		UNCTION WIDTH	FUNCTION I	5.80 ms 4.33	Hz ^{CL} X		
	 =			dBm dBm	6.30 ms 5.68 7.00 ms 4.62		3 N 1 4 5 6	
							7 8 9 10 11	
	•		STATUS			V	MSG	

Report N	o.:	TCT250317E009
----------	-----	---------------

Maximum Conducted Output Power

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 38 of 68

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

		-	-6dB Bandwidth		
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	7.614	0.5	Pass
NVNT	b	2437	7.571	0.5	Pass
NVNT	b	2462	7.619	0.5	Pass
NVNT	g	2412	16.301	0.5	Pass
NVNT	g	2437	15.963	0.5	Pass
NVNT	g	2462	16.347	0.5	Pass
NVNT	n20	2412	17.560	0.5	Pass
NVNT	n20	2437	17.564	0.5	Pass
NVNT	n20	2462	17.628	0.5	Pass

Page 41 of 68

3 AM Mar 18, 2025 None	11:55:5 Radio Std: I	GN AUTO	Center Freq: 2.46200000	GHz	m Analyzer - Occupied BW RF 50 Ω AC 2.462000000 C	LXI RL
7083 GHz	Radio Devid	Avg Hold: 300/300	⊶ Trig: Free Run #Atten: 30 dB	#IFGain:Low	Ref Offset 2.37 dB	
1826 dBm	-7.1				Ref 22.37 dBm	10 dB/div Log 12.4
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	w.m.m.m.m.	1 normality parameter		2	2.37 -7.63 -17.6
n.	- Warden - W				Mahan	-27.6 -37.6 -47.6
- made						-47.6
pan 30 MHz p   2.933 ms	SI Swee		#VBW 300 kHz		2 GHz 00 kHz	Center 2.46 #Res BW 10
		16.5 dBm	Total Power	584 MHz	ed Bandwidth 17	Occupie
		99.00 %	% of OBW Power	15.995 kHz	Freq Error	
		-6.00 dB	x dB	17.63 MHz	lawiath	x dB Ban
		STATUS			NAM 1	MSG

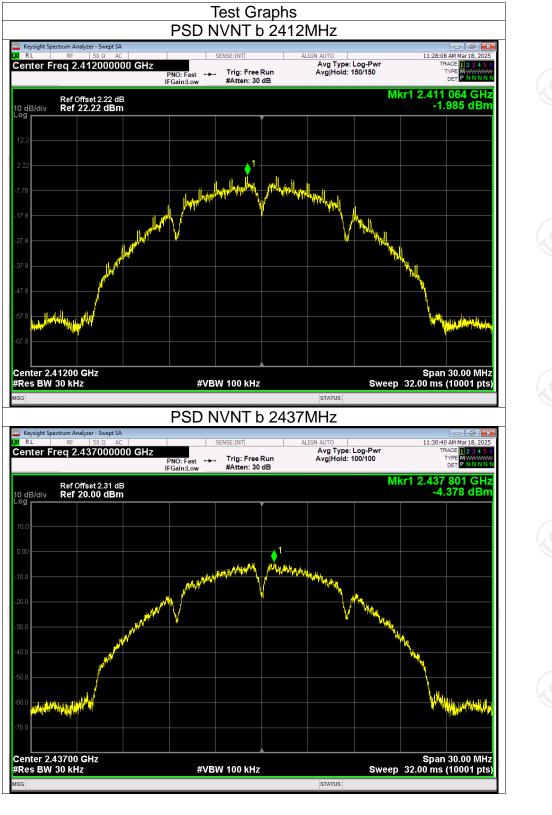
СТ	通测	检测
	TESTING CENT	RE TECHNOLOGY

 $\Gamma($ 

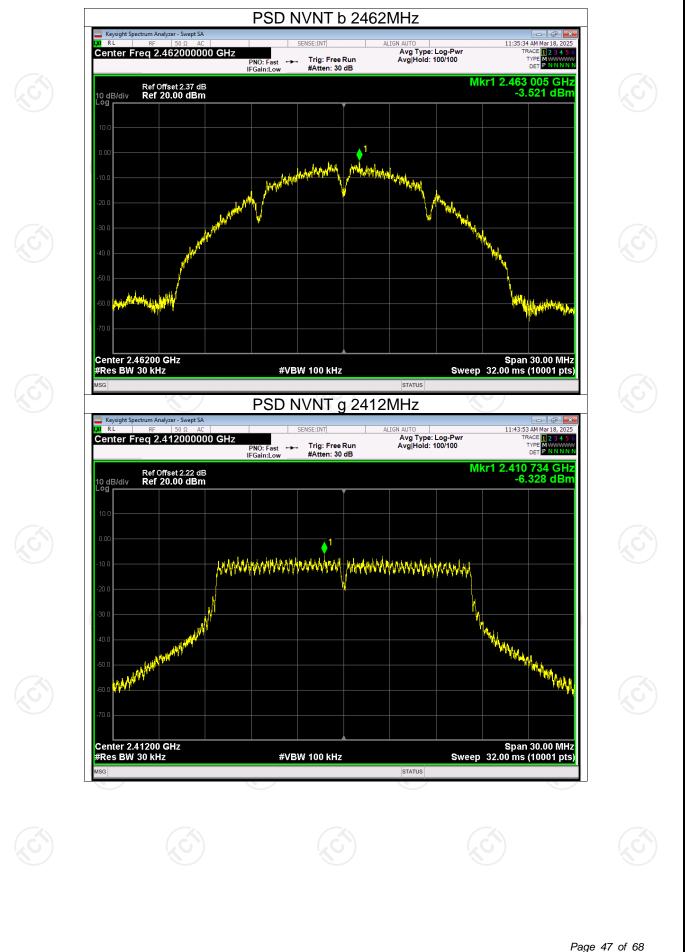
Report No.: TCT250317E009

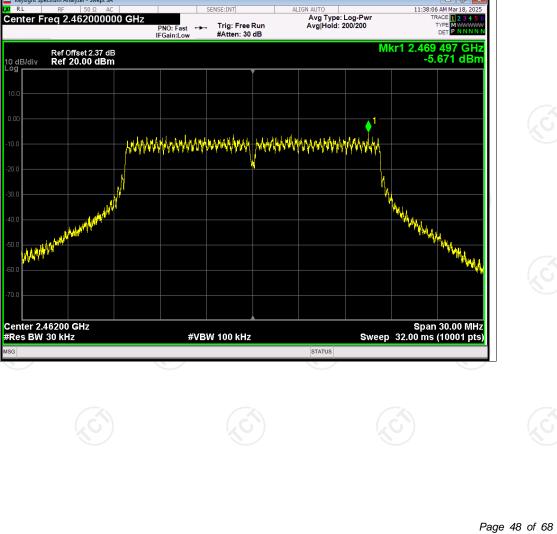
Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/30kHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
ONVNT	b	2412	-1.99	-11.99	8	Pass
NVNT	b	2437	-4.38	-14.38	8	Pass
NVNT	b	2462	-3.52	-13.52	8	Pass
NVNT	g	2412	-6.33	-16.33	8	Pass
NVNT	g	2437	-5.39	-15.39	8 G	Pass
NVNT 🔍	g	2462	-5.67	-15.67	8	Pass
NVNT	n20	2412	-5.83	-15.83	8	Pass
NVNT	n20	2437	-5.75	-15.75	8	Pass
NVNT	n20	2462	-6.51	-16.51	8	Pass

### **Maximum Power Spectral Density Level**


Note: Result[dBm/3kHz] = Result[dBm/30kHz] +10log(3kHz/30kHz)




Page 45 of 68


TCT 通测检测 TESTING CENTRE TECHNOLOGY





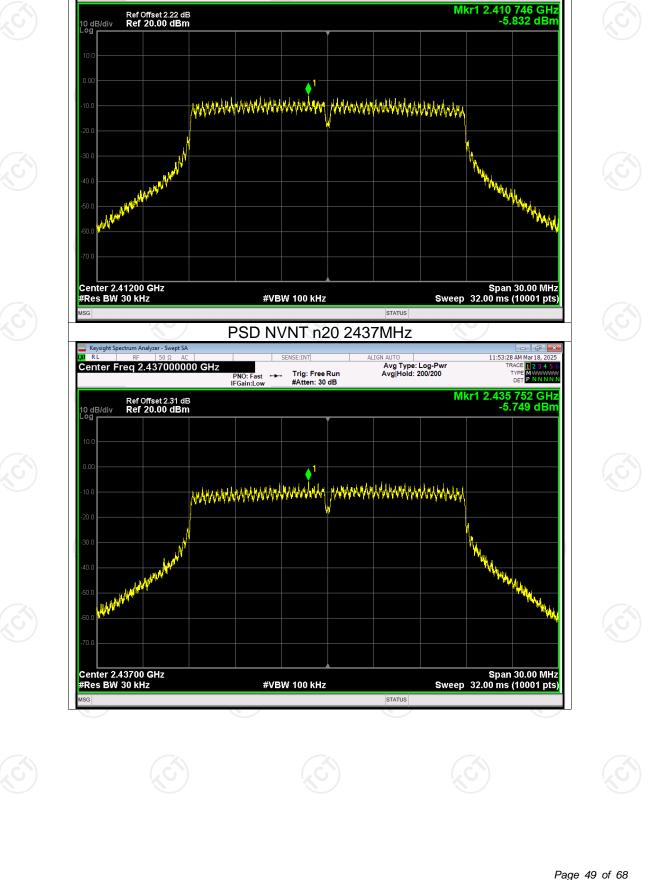
Page 46 of 68





PSD NVNT g 2437MHz Keysight Spectrum Analyzer - Swept S 11:40:37 AM Mar 18, 2025 TRACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N a RL Avg Type: Log-Pwr Avg|Hold: 200/200 Center Freg 2.437000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Mkr1 2.435 743 GHz -5.389 dBm Ref Offset 2.31 dB Ref 20.00 dBm 10 dB/div •¹ wintertally and the standing was the Addad WW www.www. Mar Marker HAN WWW ANA W Center 2.43700 GHz #Res BW 30 kHz Span 30.00 MHz Sweep 32.00 ms (10001 pts) #VBW 100 kHz STATUS

## PSD NVNT g 2462MHz


# TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spectrum Analyzer - Swept SA

U RL

10 dB/div

ANN



PSD NVNT n20 2412MHz

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low AI IGN

Avg Type: Log-Pwr Avg|Hold: 200/200

TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight Spe

Center Freg 2.412000000 GHz

a RL

11:50:21 AM Mar 18, 2025 TRACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N

LX/RL	um Analyzer - Swept SA RF 50 Ω AC		VNT n20 24	ALIGN AUTO	11:56:0	8 AM Mar 18, 2025	
	q 2.462000000 (	CHZ PNO: Fast ↔ IFGain:Low		Avg Type: Log-P Avg Hold: 100/100	Mkr1 2.463	RACE 1 2 3 4 5 6 TYPE MWWWW DET PNNNNN	
10 dB/div Log	Ref Offset 2.37 dB Ref 20.00 dBm		Ť		-6	508 dBm	
10.0							
-10.0		mmmmmmmmmm	AMARAAAAAA AMAAAA	www.www.	MMM		
-20.0		and the effective					
-30.0	I LAMAN				Mile.		
-50.0					The second se		
-60.0						[™] ₩₩	
-70.0							
Center 2.46 #Res BW 30	200 GHz ) kHz	#VE	3W 100 kHz	STATUS	Spar weep 32.00 ms	30.00 MHz (10001 pts)	
					NC N		

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	Band Edge									
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict					
NVNT	b	2412	-58.07	-20	Pass					
NVNT	b	2462	-59.04	-20	Pass					
NVNT	g	2412	-58.33	-20	Pass					
NVNT	g	2462	-55.51	-20	Pass					
NVNT	n20	2412	-56.69	-20	Pass					
NVNT	n20	2462	-55.83	-20	Pass					





**Test Graphs** 

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 52 of 68

STATUS

Report No.: TCT250317E009

11:28:20 AM Mar 18, 2025

TRACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N

Ward



Band Edge NVNT b 2462MHz Ref Keysight S 35:46 AM Mar 18, 2025 TRACE 1 2 3 4 5 ( TYPE M WWWW DET P N N N N a RL Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.462000000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast IFGain:Low -----Mkr1 2.463 02 GHz 1.994 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Loa innun MMMM mm My (V Mary my for the Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS

### Band Edge NVNT b 2462MHz Emission er - Swept SA

Trig: Free Run #Atten: 30 dB

PNO: Fast IFGain:Low

Page 53 of 68

Hotline: 400-6611-140

Keysight Sp U RL

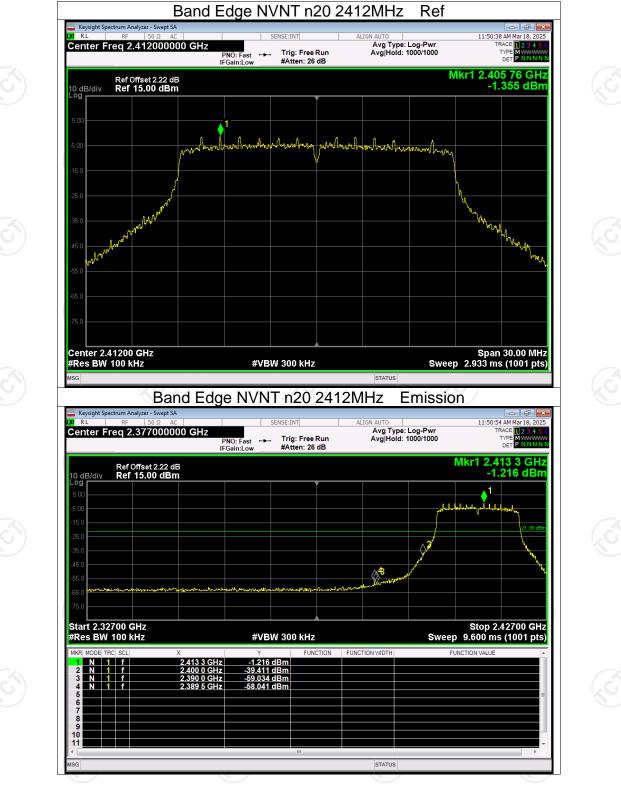
Center Freg 2.497000000 GHz

Ref Offset 2.37 dB Ref 20.00 dBm

Report No.: TCT250317E009

1:36:03 AM Mar 18,

TYPE


Mkr1 2.463 0 GHz 2.006 dBm

12345 MWWW PNNNN

Avg Type: Log-Pwr Avg|Hold: 1000/1000








TCT通测检测 TESTING CENTRE TECHNOLOGY



Page 56 of 68

Ref



TCT通测检测 TESTING CENTRE TECHNOLOGY



### **Conducted RF Spurious Emission**

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-43.23	-20	Pass
NVNT	b	2437	-44.54	-20	Pass
<b>NVNT</b>	b	2462	-44.77	-20	Pass
NVNT	g	2412	-41.53	-20	Pass
NVNT	g	2437	-40.95	-20	Pass
NVNT	g	2462	-40.93	-20	Pass
NVNT 🔍	n20	2412	-40.69	-20	Pass
NVNT 🔍	n20	2437	-40.85	-20	Pass
NVNT	n20	2462	-42.03	-20	Pass







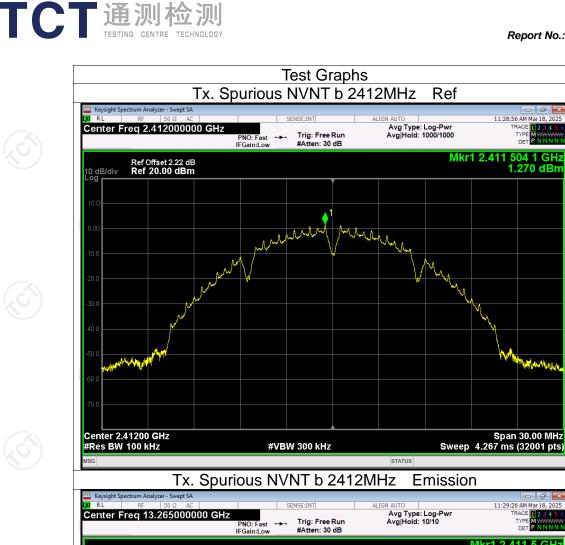


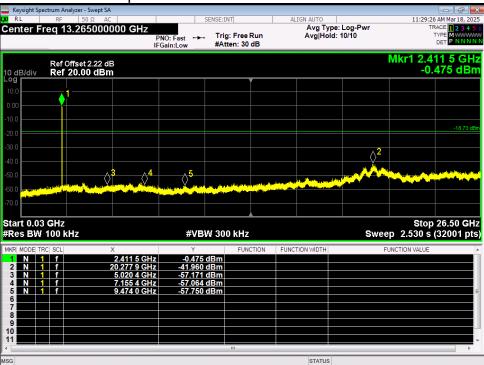




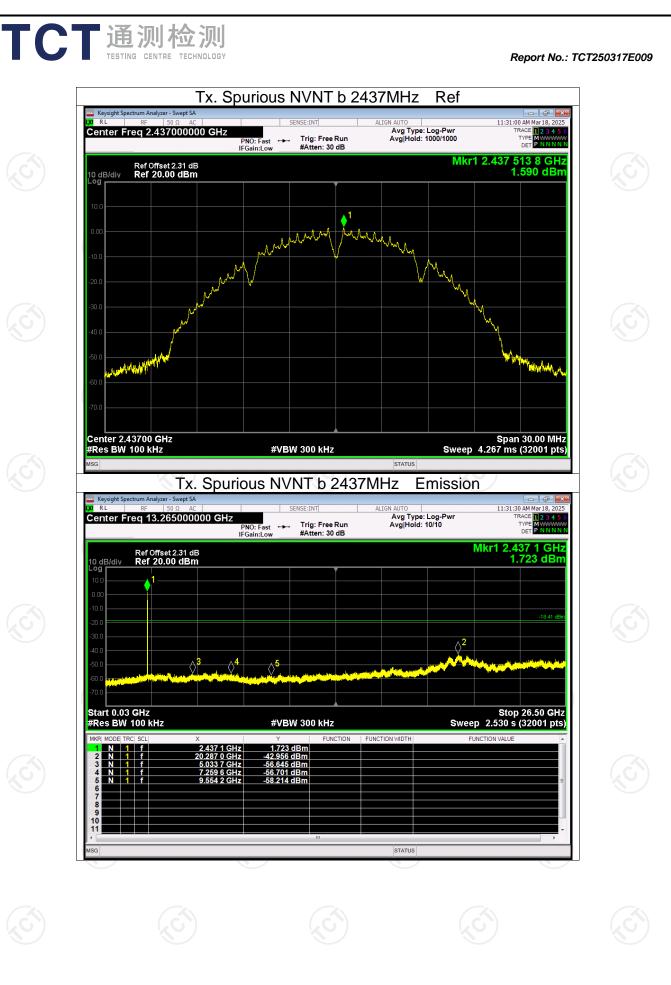




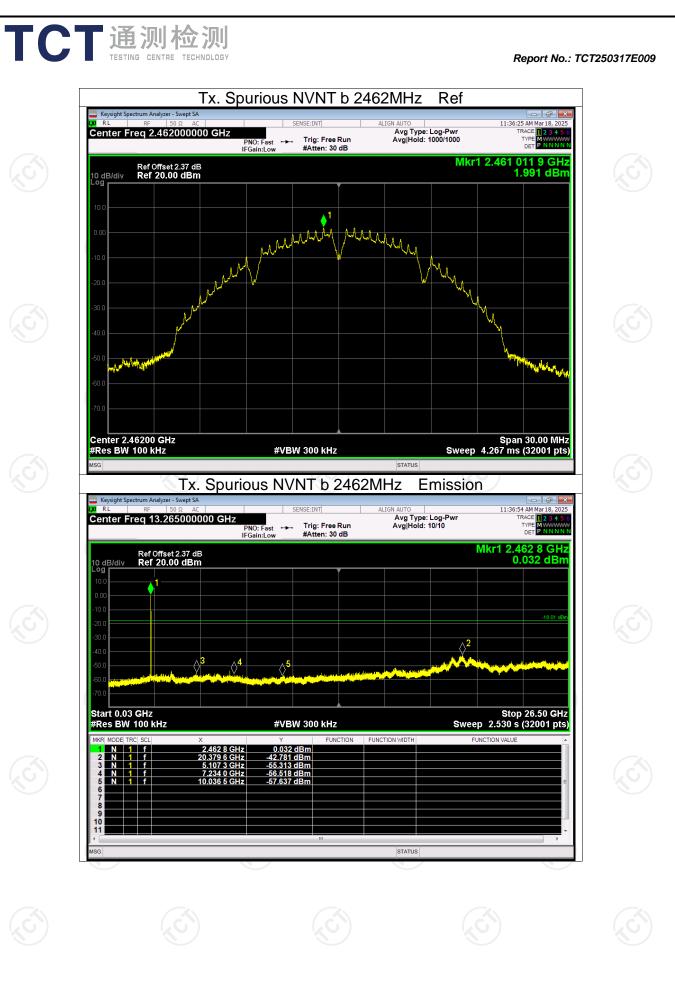





Page 58 of 68



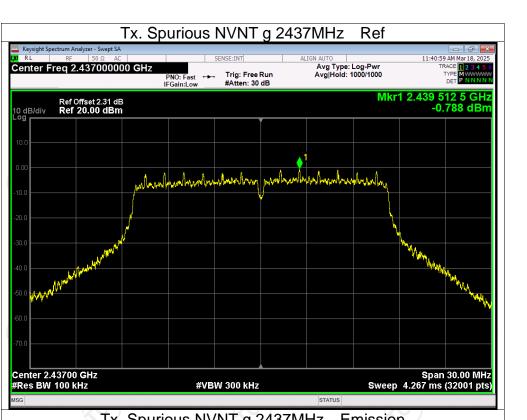



Page 59 of 68



Page 60 of 68




Page 61 of 68

Tx. Spurious NVNT g 2412MHz Ref 🔤 Keysight S 11:44:48 AM Mar 18, 2025 TRACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N KI RL Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.412000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Mkr1 2.407 008 8 GHz -1.321 dBm Ref Offset 2.22 dB Ref 20.00 dBm 10 dB/div Loa 1 Inwalny Amerika Incol mentangentraling and markers and WWW And Ward MMWWW Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 4.267 ms (32001 pts) #VBW 300 kHz STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Sp

# Tx. Spurious NVNT g 2412MHz Emission



TCT通测检测 TESTING CENTRE TECHNOLOGY

Tx. Spurious NVNT g 2437MHz Emission

Trig: Free Run #Atten: 30 dB

PNO: Fast IFGain:Low

Avg Type: Log-Pw Avg|Hold: 10/10

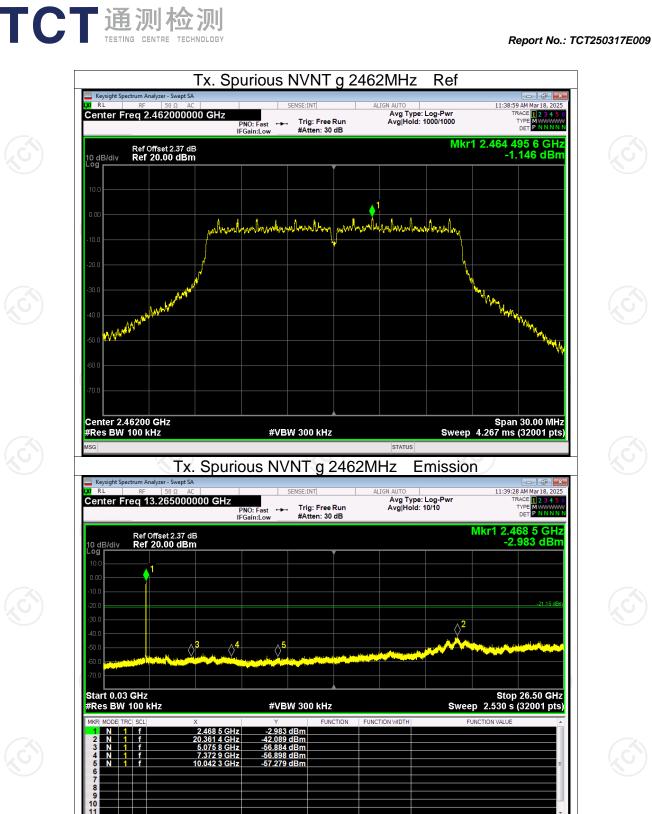
zer - Swept SA

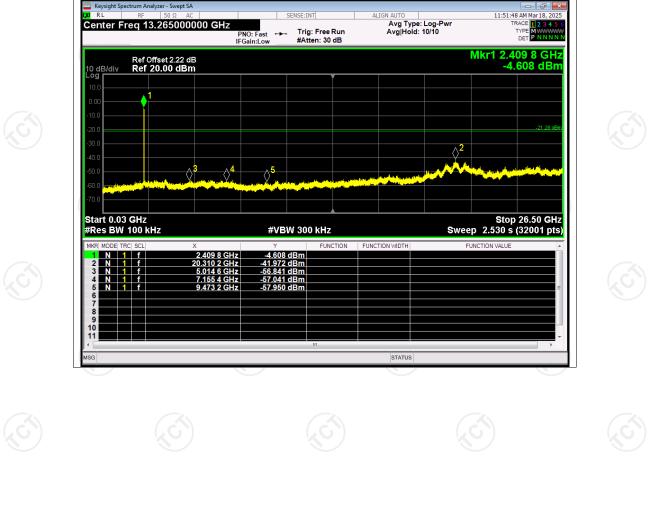
Center Freg 13.265000000 GHz

Ref Offset 2.31 dB Ref 20.00 dBm

Keysight Sp U RL

10 dB/div Log **r** 


Report No.: TCT250317E009


1:41:29 AM Mar 18,

TYPE

Mkr1 2.439 6 GHz -1.563 dBm

12345 MWWWW PNNNN





11:51:18 AM Mar 18, 2025 TRACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.412000000 GHz Trig: Free Run #Atten: 30 dB TYPE DET PNO: Fast ↔→ IFGain:Low Mkr1 2.407 010 6 GHz -1.283 dBm Ref Offset 2.22 dB Ref 20.00 dBm 10 dB/div Loa **1** . Annala walnung uhuntur went went more thank and the section of the MM Here War "mull Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 4.267 ms (32001 pts) #VBW 300 kHz STATUS

Tx. Spurious NVNT n20 2412MHz

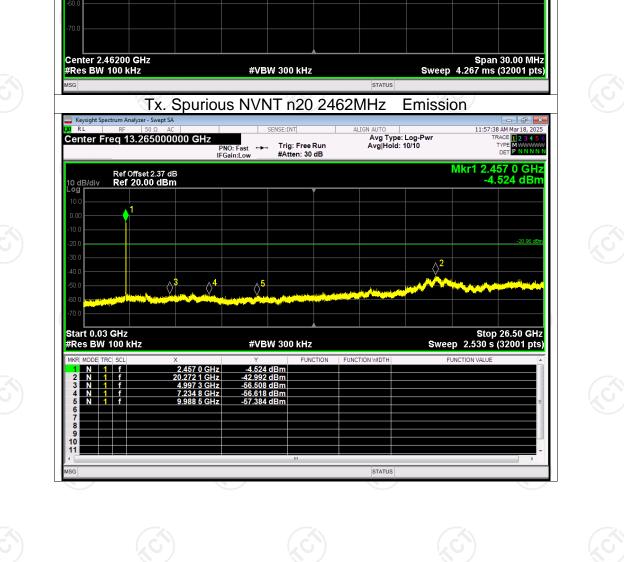
TCT通测检测 TESTING CENTRE TECHNOLOGY

- Keysight

KI RL

### Tx. Spurious NVNT n20 2412MHz Emission

Report No.: TCT250317E009


Ref

TCT通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT250317E009 Tx. Spurious NVNT n20 2437MHz Ref - Keysight 11:53:52 AM Mar 18, 2025 TRACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N KI RL Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.437000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Mkr1 2.438 259 1 GHz -0.917 dBm Ref Offset 2.31 dB Ref 20.00 dBm 10 dB/div Loa ø in menterenterenterenterenterenter WWW MM WWW Mary Mary Center 2.43700 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 4.267 ms (32001 pts) #VBW 300 kHz STATUS Tx. Spurious NVNT n20 2437MHz Emission er - Swept SA Keysight Sp :54:22 AM Mar 18, U RL Avg Type: Log-Pw Avg|Hold: 10/10 1 2 3 4 5 MWWWW P N N N N Center Freg 13.265000000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast IFGain:Low Mkr1 2.442 9 GHz -4.098 dBm Ref Offset 2.31 dB Ref 20.00 dBm 10 dB/div Log **r** 

Page 66 of 68

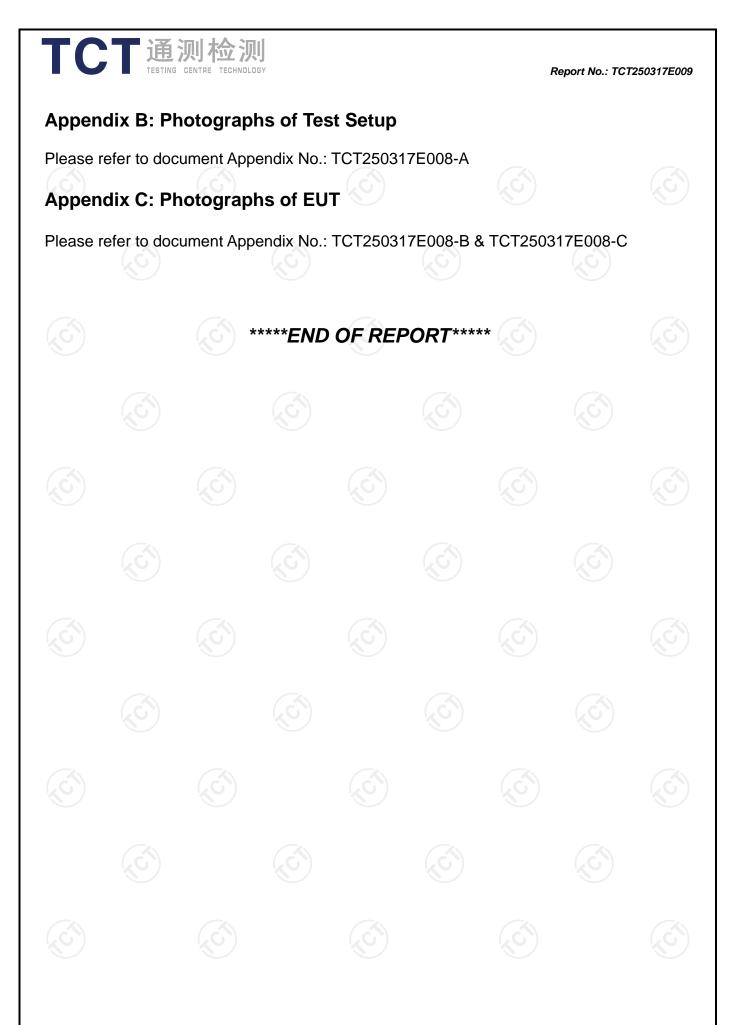
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332





:57:08 AM Mar 18, 2025 TRACE 1 2 3 4 5 ( TYPE M WWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.462000000 GHz Trig: Free Run #Atten: 30 dB TYPE DET PNO: Fast ↔→ IFGain:Low Mkr1 2.463 277 8 GHz -0.957 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Loa ø manterenterenterenterenterenterenter montenantenantenantenantenanten WWW MM WW AMM M

Tx. Spurious NVNT n20 2462MHz


TCT通测检测 TESTING CENTRE TECHNOLOGY

- Keysight

KI RL

### Report No.: TCT250317E009

Ref



Page 68 of 68