

Training Research Co., Ltd.

No. 2, Lane 194, Huan-Ho St., Hsi-Chih, Taipei Hsien 221, Taiwan, R.O.C. TEL: 886-2-26935155 FAX: 886-2-26934440

Measurement of MPE

1. Foreword

In adopt with the Human Exposure IEEE C95.1, and according to the FCC 1.1310. The *Maximum Permissible Exposure (MPE)* is obligated to measure in order to prove the safety of radiation harmfulness to the human body.

The *Gain* of the antenna used is measured in an *Anechoic chamber*. The *maximum total power to the antenna* is to be recorded. By adopting the *Friis Transmission Formula* and the *power gain of the antenna*, we can find the distance right away from the product, where the limit of the MPE is.

2. Description of EUT

EUT : BenQ WLAN PCMCIA Adapter

Classification: Portable &/or Mobile Device

(i) Under normal condition, the product maybe used in portable or mobile but not to be body-worn. The antenna is at least 2.5cm away

from the user;

(ii) Caution statement for keeping 2.5cm separation distance and the prohibition of operating next to the person has been printed in the

user's manual

Model No. : AWL100

Granted FCC ID: JVPAWL100

Frequency Range : 2.412 GHz ~ 2.462GHz

Antenna Kit : 2 patch antennas

Supported Channel: 11 Channel

Modulation Skill: DBPSK, DQPSK, CCK

Power Type : Powered by the PCMCIA slot of the client's device

Applicant : BenQ Corporation

8, Jihu Rd., Nei-hu Dist., Taipei 114, Taiwan, R.O.C.

Training Research Co., Ltd.

No. 2, Lane 194, Huan-Ho St., Hsi-Chih, Taipei Hsien 221, Taiwan, R.O.C. TEL: 886-2-26935155 FAX: 886-2-26934440

3. Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Filed Strength (H) (A/m)	Power Density (S) (mW/cm2)	Averaging Time $ E ^2, H ^2 \text{ or } S$ (minutes)
(A) Limits for Occupational/Controlled Exposure				
0.3-3.0	614	1.63	100	6
3.0-30	1842/f	4.89/f	$900/f^2$	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	100	30
1.34-30	824/f	2.19/f	$180/f^2$	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

[The EUT is tested in transmit and receive modes and in the first, middle and the last channel separately. The following shows only our observation have the greatest emissions.]

According to OET BULLETIN 56 Fourth Edition/August 1999, Equation for Predicting RF Fields:

Friis Transmission Formula:
$$S = \frac{PG}{4pR^2} = \frac{26.55 \times 1.021}{4p(2.5)^2} = 3.451 \times 10^{-1} \text{mW/cm}^2$$

Where: S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

The *Numeric gain G* of antenna with a gain specified in dB is determined by:

 $G = Log^{-1} (dB \text{ antenna gain}/10)$

$$G = Log^{-1} (0.09 / 10) = 1.021$$