Telephone: 859-226-1000 Facsimile: 859-226-1040 www.intertek-etlsemko.com # **EMC TEST REPORT** Report Number: 102921149LEX-001 Project Number: G102921149 Report Issue Date: 3/8/2017 Product Name: GPS-610 FCC Standards: Title 47 CFR Part 15 Subpart C Industry Canada Standards: RSS-247 Issue 1 & RSS-GEN Issue 4 Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Drive Lexington, KY 40510 Client: Alcohol Monitoring Systems 1035 Windward Ridge Pkwy Ste 575 Alpharetta, GA 30005-1788 Report prepared by Brian Lackey, Project Engineer Report reviewed by Bryan Taylor, Team Leader This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. # Intertek Report Number: 102921149LEX-001 Issued: 3/8/2017 # **TABLE OF CONTENTS** | 1 | Introduction and Conclusion | | |----|---|----| | 2 | Test Summary | | | 3 | Description of Equipment Under Test | | | 4 | Peak Output Power | | | 5 | Occupied Bandwidth | | | 6 | Channel Separation | 1 | | 7 | Number of Hopping Channels | | | 8 | Time of Occupancy | 16 | | 9 | Conducted Spurious Emissions | 19 | | 10 | Radiated Spurious Emissions (Transmitter) | 2 | | 11 | Radiated Spurious Emissions (Receiver) | 29 | | 12 | AC Powerline Conducted Emissions | 3: | | 13 | Antenna Requirement per FCC Part 15.203 | 38 | | 14 | Measurement Uncertainty | 39 | | 15 | Revision History | 4(| #### 1 Introduction and Conclusion The tests indicated in section 2 were performed on the product constructed as described in section 3. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test method, a list of the actual test equipment used, documentation photos, results and raw data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted. Based on the results of our investigation, we have concluded the product tested complied with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. The INTERTEK-Lexington is located at 731 Enterprise Drive, Lexington Kentucky, 40510. The radiated emission test site is a 10-meter semi-anechoic chamber. The chamber meets the characteristics of CISPR 16-1 and ANSI C63.4. For measurements, a remotely controlled flush-mount metal-top turntable is used to rotate the EUT a full 360 degrees. A remote controlled non-conductive antenna mast is used to scan the antenna height from one to four meters. The test site is listed with the FCC under registration number 485103. The test site is listed with Industry Canada under site number IC 2042M-1. #### 2 Test Summary | Page | Test full name | FCC Reference | IC Reference | Result | |------|---|--|-----------------|--------| | 6 | Peak Output Power | § 15.247(b)(2) | RSS-247 (5.4.1) | Pass | | 7 | Occupied Bandwidth | § 15.247(a)(1)(i) | RSS-247 (5.1.1) | Pass | | 11 | Channel Separation | § 15.247(a)(1) | RSS-247 (5.1.2) | Pass | | 12 | Number of Hopping Channels | § 15.247(a)(1)(iii) | RSS-247 (5.1.3) | Pass | | 16 | Time of Occupancy | § 15.247(a)(1)(iii) | RSS-247 (5.1.3) | Pass | | 11 | Conducted Spurious Emissions | § 15.247(d) | RSS-247 (5.5) | Pass | | 21 | Radiated Spurious Emissions (Transmitter) | § 15.247(d), § 15.209,
and § 15.205 | RSS-247 (5.5) | Pass | | 29 | Radiated Spurious Emissions (Receiver) | § 15.109 | RSS-Gen (6.1) | Pass | | 32 | AC Powerline Conducted Emissions | § 15.107, § 15.207 | RSS-Gen (7.2.4) | Pass | | 38 | Antenna Requirement per FCC Part 15.203 | § 15.203 | RSS-Gen (7.1.2) | Pass | # 3 Description of Equipment Under Test | Equipm | Equipment Under Test | | | | | |-----------------------------------|------------------------------|--|--|--|--| | Manufacturer | Alcohol Monitoring Systems | | | | | | Model Number | GPS-610 | | | | | | Serial Number | Test Sample 1 | | | | | | Receive Date | 3/22/2016 | | | | | | Test Start Date | 3/22/2016 | | | | | | Test End Date | 3/8/2017 | | | | | | Device Received Condition | Good | | | | | | Test Sample Type | Production | | | | | | Frequency Band | 902MHz-928MHz | | | | | | Modulation Type | FHSS | | | | | | Duty Cycle | 100% | | | | | | Transmission Control | Test Commands | | | | | | Maximum Output Power | -1.48 dBm | | | | | | Test Channels | 6, 59, 120 | | | | | | Antenna Type (15.203) | PCB Antenna | | | | | | Maximum Antenna Gain ¹ | -1.00 dBi | | | | | | Operating Voltage | 5VDC via 120Vac 60Hz Charger | | | | | # **Description of Equipment Under Test** The GPS-610 is a body worn one-piece GPS tracking bracelet that combines superior location accuracy with industry-leading battery life and tamper detection. It integrates the Telit DE910-DUAL module (FCCID: RI7DE910-DUAL) for communication with the cellular network. #### Operating modes of the EUT: | - | operating incutes of the zerr | | | | |------------------------------------|---|--|--|--| | No. Descriptions of EUT Exercising | | | | | | 1 | Transmitting on low, mid, or high channel | | | | | 2 | Frequency hopping mode within 902MHz-928MHz | | | | _ ¹ From antenna datasheet # 3.1 System setup including cable interconnection details, support equipment and simplified block diagram # 3.2 EUT Block Diagram: ### 3.3 Cables: | | | | Cables | | | |-------------|--------|-----------|----------|------|----------| | Description | Longth | Shielding | Earritas | Conn | ection | | Description | Length | Shielding | Ferrites | From | То | | Power Cable | 1m | No | No | EUT | AC Mains | # 3.4 Support Equipment: | Support Equipment | | | | | | |-------------------|--------------|-----------------|---------------|--|--| | Description | Manufacturer | Model Number | Serial Number | | | | Laptop | HP | EliteBook 8440p | CND046136B | | | #### 4 Peak Output Power #### 4.1 Test Limits § 15.247(b)(3): For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. § 15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### 4.2 Test Procedure ANSI C63.10: 2013 and KDB Publication No. 558074 D01 v03r05: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247). The peak output power was measured using an EMI receiver. # 4.3 Test Equipment Used: | Description | Serial Number | Manufacturer | Model | Cal. Date | Cal. Due | |-------------------|---------------|--------------------|-------|-----------|-----------| | EMI Test Receiver | 1302.6005.40 | Rohde &
Schwarz | ESU40 | 9/26/2016 | 9/26/2017 | #### 4.4 Results: The peak output power measurements below show that the transmitter is outputting less that the 1W (30dBm) limit. | Mode | Channel
Number | Frequency
(MHz) | Туре | Measured
Power
(dBm) | Correction
Factor
(dB) | Conducted
Power
(dBm) | Limit
(dBm) | Margin
(dB) | |-----------|-------------------|--------------------|------|----------------------------|------------------------------|-----------------------------|----------------|----------------| | Single TX | 6 | 903.2 | Peak | -4.05 | 2.57 | -1.48 | 30 | 31.48 | | Single TX | 59 | 913.8 | Peak | -4.18 | 2.59 | -1.59 | 30 | 31.59 | | Single TX | 120 | 926.0 | Peak | -4.10 | 2.61 | -1.49 | 30 | 31.49 | # 5 Occupied Bandwidth #### 5.1 Test Limits § 15.247(a)(1)(i): For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz. #### 5.2 Test Procedure ANSI C63.10: 2013 and KDB Publication No. 558074 D01 v03r05: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247) 5.3 Test Equipment Used: | Description | Serial Number | Manufacturer | Model | Cal. Date | Cal. Due | |----------------------|---------------|--------------------|-------|-----------|-----------| | EMI Test
Receiver | 10887490.26 | Rohde &
Schwarz | ESI26 | 9/20/2015 | 9/20/2016 | #### 5.4 Results: | Mode | Channel | Frequency | 20dB | 99% Power | | |-----------|---------|-----------|-------------|-------------|--------| | | Number | (MHz) | Bandwidth | Bandwidth | Result | | Single TX | 6 | 903.2 | 163.327 kHz | 294.589 kHz | Pass | | Single TX | 59 | 913.8 | 163.527 kHz | 292.585 kHz | Pass | | Single TX | 120 | 926.0 | 163.527 kHz | 290.581 kHz | Pass | Ch. 6 (903.2 MHz) 20dB Banwidth = 163.327 kHz Ch. 6 (903.2 MHz) 99% Power Bandwidth = 294.589 kHz Ch. 59 (913.8 MHz) 99% Power Bandwidth = 292.585 kHz Ch. 120 (926.0 MHz) 20dB Bandwidth = 163.527 kHz Ch. 120 (926.0 MHz) 99% Power Bandwidth = 290.581 kHz # 6 Channel Separation #### 6.1 Test Limits - § 15.247(a): Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions: - (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. #### 6.2 Test Procedure ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. ### 6.3 Test Equipment Used: | Description | Serial Number | Manufacturer | Model | Cal. Date | Cal. Due | |----------------------|---------------|--------------------|-------|-----------|-----------| | EMI Test
Receiver | 10887490.26 | Rohde &
Schwarz | ESI26 | 9/20/2015 | 9/20/2016 | #### 6.4 Results: The plot below shows that the carrier frequency separation is 201.2kHz. **Carrier Frequency Separation** # 7 Number of Hopping Channels #### 7.1 Test Limits § 15.247(a): Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions: (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz. #### 7.2 Test Procedure ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. 7.3 Test Equipment Used: | Description | Serial Number | Manufacturer | Model | Cal. Date | Cal. Due | |----------------------|---------------|--------------------|-------|-----------|-----------| | EMI Test
Receiver | 10887490.26 | Rohde &
Schwarz | ESI26 | 9/20/2015 | 9/20/2016 | #### 7.4 Results: The plots below show that there are 50 hopping frequencies channels being used. The middle of the hopping spectrum was filtered out in order to avoid potential interference with some cordless phones. 900 MHz - 905 MHz: 4 channels 905 MHz - 910 MHz: 13 channels 910 MHz - 915 MHz: 12 channels 920 MHz - 925 MHz: 12 channels 925 MHz - 930 MHz: 4 channels Total channels = 4 + 13 + 12 + 5 + 12 + 4 = 50 channels # 8 Time of Occupancy #### 8.1 Test Limits § 15.247(a): Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions: (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz. #### 8.2 Test Procedure ANSI C63.10: 2013 and FCC Public Notice DA 00-705 Released March 30, 2000: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. #### 8.3 Test Equipment Used: | Description | Serial Number | Manufacturer | Model | Cal. Date | Cal. Due | |----------------------|---------------|--------------------|-------|-----------|-----------| | EMI Test
Receiver | 10887490.26 | Rohde &
Schwarz | ESI26 | 9/20/2015 | 9/20/2016 | #### 8.4 Results: The time of occupancy calculations are shown below. The plots which follow illustrate the on time of the pulses (two lengths) and the number of pulse trains in 20 seconds. The total "on" time is less than the 400mS limit for this product. (Beacon On Time) = 25 Beacon Pulses * 1.25mS = 31.25mS Number of Pulse Trains in 20 Seconds = 2 (Total On Time in 20 Seconds) = (31.25mS) * 2 = 62.5mS Limit = 400mS **Time of Occupancy Calculation** Beacon Pulses in one Train = 25 Beacon On Time = 1.25ms Beacon Total Time = 15.9ms Number of Pulse Trains in 20 Seconds = 2 ### 9 Conducted Spurious Emissions #### 9.1 Test Limits § 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. #### 9.2 Test Procedure ANSI C63.10: 2013 and KDB Publication No. 558074 D01 v03r05: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247) ### 9.3 Test Equipment Used: | Description | Serial Number | Manufacturer | Model | Cal. Date | Cal. Due | |-------------------|---------------|--------------------|-------|-----------|-----------| | EMI Test Receiver | 10887490.26 | Rohde &
Schwarz | ESI26 | 9/20/2015 | 9/20/2016 | #### 9.4 Results: The following plots show that there are no conducted spurious emissions exceeding the 20dB down criteria. Conducted Spurious Emissions - 30 MHz to 10 GHz **Emissions Close to Band Edge** # 10 Radiated Spurious Emissions (Transmitter) #### 10.1 Test Limits § 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Part 15.205(a): Restricted Bands of Operations | MHz | MHz | MHz | GHz | |-------------------|---------------------|---------------|-------------| | 0.090–0.110 | 16.42-16.423 | 399.9-410 | 4.5–5.15 | | 1 0.495–0.505 | 16.69475-16.69525 | 608–614 | 5.35-5.46 | | 2.1735–2.1905 | 16.80425-16.80475 | 960–1240 | 7.25–7.75 | | 4.125–4.128 | 25.5-25.67 | 1300–1427 | 8.025-8.5 | | 4.17725–4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0–9.2 | | 4.20725–4.20775 | 73–74.6 | 1645.5-1646.5 | 9.3–9.5 | | 6.215–6.218 | 74.8–75.2 | 1660–1710 | 10.6–12.7 | | 6.26775–6.26825 | 108-121.94 | 1718.8–1722.2 | 13.25–13.4 | | 6.31175–6.31225 | 123-138 | 2200-2300 | 14.47–14.5 | | 8.291–8.294 | 149.9-150.05 | 2310-2390 | 15.35–16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7–21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2655-2900 | 22.01–23.12 | | 8.41425–8.41475 | 162.0125-167.17 | 3260-3267 | 23.6–24.0 | | 12.29–12.293 | 167.72-173.2 | 3332-3339 | 31.2–31.8 | | 12.51975–12.52025 | 240-285 | 3345.8–3358 | 36.43–36.5 | | 12.57675–12.57725 | 322-335.4 | 3600-4400 | (2) | | 13.36–13.41. | | | | ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. Part 15.209(a): Field Strength Limits for Restricted Bands of Operation | Frequency (MHz) | Field Strength
(microvolts/meter) | Measurement
Distance
(meters) | |-----------------|--------------------------------------|-------------------------------------| | 0.009 - 0.490 | 2,400 / F (kHz) | 300 | | 0.490 - 1.705 | 24,000 / F (kHz) | 30 | | 1.705 - 30.0 | 30 | 30 | | 30 – 88 | 100 | 3 | | 88 – 216 | 150 | 3 | | 216 – 960 | 200 | 3 | | Above 960 | 500 | 3 | ²Above 38.6 #### 10.2 Test Procedure ANSI C63.10: 2013 and KDB Publication No. 558074 D01 v03r05: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247) #### 10.3 Example of Field Strength Calculation Method: The measured field strength was calculated by summing the readings taken from the spectrum analyzer with the appropriate correction factors associated with the antenna losses and cable losses. The calculation formula and sample calculations are listed below: #### Formula: FS = RA + AF + CF $FS = Field Strength in dB\mu V/m$ $RA = Receiver Amplitude in dB\mu V$ AF = Antenna Factor in dB CF = Cable Attenuation Factor in dB (Including preamplifier and filter attenuation) #### Example Calculation: $RA = 19.48 dB\mu V$ $AF = 18.52 \, dB$ CF = 0.78 dB $FS = 19.48 + 18.52 + 0.78 = 38.78 dB\mu V/m$ Level in $\mu V/m = Common Antilogarithm [(38.78 dB<math>\mu V/m)/20] = 86.89 \mu V/m$ # 10.4 Test Equipment Used: | December 11 and | Serial | | 84 - 1 - 1 | 0-1 0-4- | Oal Day | |---------------------------------------|--------------|--------------------|----------------------------------|--------------------------|--------------------------| | Description | Number | Manufacturer | Model | Cal. Date | Cal. Due | | EMI Test Receiver | 1302.6005.40 | Rohde &
Schwarz | ESU40 | 9/26/2016 | 9/26/2017 | | Preamplifier | 122005 | Rohde&Schwarz | TS-PR18 | 11/17/2016 | 11/17/2017 | | Biconnilog Antenna | 00051864 | ETS | 3142C | 3/23/2016 | 3/23/2017 | | Horn Antenna | 00156319 | ETS | 3117 | 3/8/2016 | 3/8/2017 | | System Controller | 121701-1 | Sunol Sciences | SC99V | Verify at
Time of Use | Verify at
Time of Use | | Highpass Filter | 25 | Wainwright | WHKX12-
1028.5-
15000-40SS | 11/17/2016 | 11/17/2017 | | 3m Cable
Antenna→Preamp | 3074 | | | 11/17/2016 | 11/17/2017 | | 3m Cable Preamp→Chamber | 2588 | | | 11/17/2016 | 11/17/2017 | | 3m Cable Chamber→Control Room | 2593 | | | 11/17/2016 | 11/17/2017 | | 3m Cable
Control
Room→Receiver | 2592 | | | 11/17/2016 | 11/17/2017 | | 10m Cable
Antenna→Preamp | 3339 | | | 11/17/2016 | 11/17/2017 | | 10m Cable
Preamp→Chamber | 3172 | | | 11/17/2016 | 11/17/2017 | | 10m Cable
Chamber→Control
Room | 2590 | | | 11/17/2016 | 11/17/2017 | | 10m Cable
Control
Room→Receiver | 2589 | | | 11/17/2016 | 11/17/2017 | #### 10.5 Results: All spurious emissions were attenuated by at least 20dB below the level of the fundamental as required by Part 15.247(d). Additionally, all emissions falling within restricted bands of operation and at the band edges were found to be below the limit specified in Part 15.209(a). The spurious emissions listed in the following tables are the worst case emissions. Emissions were investigated with the test sample positioned in 3 orthogonal axis and the worst case reported. ### **Channel 6 Spurious Measurements** #### Final Result PK+ | Frequency | MaxPeak | Limit | Margin | Bandwidth | Height | Pol | Azimuth | Corr. | |-------------|----------|----------|--------|-----------|--------|-----|---------|-------| | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (kHz) | (cm) | | (deg) | (dB) | | 1807.798900 | 35.43 | 74.00 | 38.57 | 1000.000 | 161.0 | Н | 0.0 | 0.5 | | 2709.132900 | 39.86 | 74.00 | 34.14 | 1000.000 | 132.0 | Н | 26.0 | 4.1 | | 3612.498800 | 43.51 | 74.00 | 30.49 | 1000.000 | 200.0 | Н | 50.0 | 5.6 | | 4517.330800 | 42.90 | 74.00 | 31.10 | 1000.000 | 135.0 | ٧ | 28.0 | 7.7 | | 5419.382400 | 51.58 | 74.00 | 22.42 | 1000.000 | 178.0 | ٧ | 0.0 | 9.2 | | 6321.783500 | 45.39 | 74.00 | 28.61 | 1000.000 | 200.0 | V | 25.0 | 9.9 | | 7225.444600 | 45.44 | 74.00 | 28.56 | 1000.000 | 130.0 | Н | 50.0 | 10.4 | | 8128.556100 | 45.80 | 74.00 | 28.20 | 1000.000 | 200.0 | ٧ | 50.0 | 11.3 | | 9032.684000 | 47.43 | 74.00 | 26.57 | 1000.000 | 184.0 | ٧ | 0.0 | 12.4 | #### Final Result AVG | i mai_ncsait_Ave | | | | | | | | | |------------------|----------|----------|--------|-----------|--------|-----|---------|-------| | Frequency | Average | Limit | Margin | Bandwidth | Height | Pol | Azimuth | Corr. | | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (kHz) | (cm) | | (deg) | (dB) | | 1807.798900 | 23.38 | 54.00 | 30.62 | 1000.000 | 161.0 | Н | 0.0 | 0.5 | | 2709.132900 | 26.49 | 54.00 | 27.51 | 1000.000 | 132.0 | Н | 26.0 | 4.1 | | 3612.498800 | 33.72 | 54.00 | 20.28 | 1000.000 | 200.0 | Н | 50.0 | 5.6 | | 4517.330800 | 29.92 | 54.00 | 24.08 | 1000.000 | 135.0 | ٧ | 28.0 | 7.7 | | 5419.382400 | 46.28 | 54.00 | 7.72 | 1000.000 | 178.0 | ٧ | 0.0 | 9.2 | | 6321.783500 | 32.25 | 54.00 | 21.75 | 1000.000 | 200.0 | ٧ | 25.0 | 9.9 | | 7225.444600 | 33.98 | 54.00 | 20.02 | 1000.000 | 130.0 | Н | 50.0 | 10.4 | | 8128.556100 | 33.37 | 54.00 | 20.63 | 1000.000 | 200.0 | ٧ | 50.0 | 11.3 | | 9032.684000 | 35.09 | 54.00 | 18.91 | 1000.000 | 184.0 | ٧ | 0.0 | 12.4 | | Test Personnel: | Bryan Taylor | Test Date: | 3/6/2017 | |---|-----------------------|----------------------|----------| | Supervising/Reviewing Engineer: | | | | | (Where Applicable) | NA | Limit Applied: | Class B | | Product Standard: | FCC Part 15 Subpart C | | | | Input Voltage: | 5VDC (Charging) | Ambient Temperature: | 21.0 °C | | Pretest Verification w/
Ambient Signals or | | | | | BB Source: | Yes | Relative Humidity: | 21.0 % | # **Channel 59 Spurious Measurements** ### Final Result PK+ | Frequency | MaxPeak | Limit | Margin | Bandwidth | Height | Pol | Azimuth | Corr. | |-------------|----------|----------|--------|-----------|--------|-----|---------|-------| | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (kHz) | (cm) | | (deg) | (dB) | | 1827.229800 | 35.94 | 74.00 | 38.06 | 1000.000 | 134.0 | Н | 24.0 | 0.6 | | 2742.451800 | 39.69 | 74.00 | 34.31 | 1000.000 | 134.0 | Н | 50.0 | 4.2 | | 3654.894900 | 42.86 | 74.00 | 31.14 | 1000.000 | 200.0 | Н | 50.0 | 5.7 | | 4570.349400 | 42.89 | 74.00 | 31.11 | 1000.000 | 180.0 | ٧ | 50.0 | 7.7 | | 5483.025900 | 53.59 | 74.00 | 20.41 | 1000.000 | 179.0 | ٧ | 11.0 | 9.4 | | 6396.286800 | 44.70 | 74.00 | 29.30 | 1000.000 | 170.0 | ٧ | 26.0 | 10.3 | | 7310.209800 | 47.23 | 74.00 | 26.77 | 1000.000 | 133.0 | Н | 39.0 | 10.5 | | 8223.750900 | 46.34 | 74.00 | 27.66 | 1000.000 | 200.0 | ٧ | 50.0 | 11.4 | | 9138.760500 | 47.52 | 74.00 | 26.48 | 1000.000 | 154.0 | V | 50.0 | 12.7 | ### Final Result AVG | Tillal_Nesalt_Ave | | | | | | | | | |-------------------|----------|----------|--------|-----------|--------|-----|---------|-------| | Frequency | Average | Limit | Margin | Bandwidth | Height | Pol | Azimuth | Corr. | | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (kHz) | (cm) | | (deg) | (dB) | | 1827.229800 | 23.81 | 54.00 | 30.19 | 1000.000 | 134.0 | Н | 24.0 | 0.6 | | 2742.451800 | 26.52 | 54.00 | 27.48 | 1000.000 | 134.0 | Н | 50.0 | 4.2 | | 3654.894900 | 32.81 | 54.00 | 21.19 | 1000.000 | 200.0 | Н | 50.0 | 5.7 | | 4570.349400 | 29.60 | 54.00 | 24.40 | 1000.000 | 180.0 | ٧ | 50.0 | 7.7 | | 5483.025900 | 48.35 | 54.00 | 5.65 | 1000.000 | 179.0 | ٧ | 11.0 | 9.4 | | 6396.286800 | 32.49 | 54.00 | 21.51 | 1000.000 | 170.0 | ٧ | 26.0 | 10.3 | | 7310.209800 | 38.17 | 54.00 | 15.83 | 1000.000 | 133.0 | Н | 39.0 | 10.5 | | 8223.750900 | 33.21 | 54.00 | 20.79 | 1000.000 | 200.0 | ٧ | 50.0 | 11.4 | | 9138.760500 | 34.92 | 54.00 | 19.08 | 1000.000 | 154.0 | ٧ | 50.0 | 12.7 | | Test Personnel: | Bryan Taylor | Test Date: | 3/6/2017 | |---|-----------------------|----------------------|----------| | Supervising/Reviewing Engineer: | | | | | (Where Applicable) | NA | Limit Applied: | Class B | | Product Standard: | FCC Part 15 Subpart C | | | | Input Voltage: | 5VDC (Charging) | Ambient Temperature: | 21.0 °C | | Pretest Verification w/
Ambient Signals or | | | | | BB Source: | Yes | Relative Humidity: | 21.0 % | # **Channel 120 Spurious Measurements** ### Final Result PK+ | I IIIai_I\coalt_I I | • • | | | | | | | | |---------------------|---------------------|-------------------|----------------|--------------------|----------------|-----|---------------|---------------| | Frequency
(MHz) | MaxPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth (deg) | Corr.
(dB) | | 1851.813400 | 37.83 | 74.00 | 36.17 | 1000.000 | 146.0 | Н | 24.0 | 0.8 | | 2778.347400 | 38.86 | 74.00 | 35.14 | 1000.000 | 173.0 | ٧ | 37.0 | 4.2 | | 3703.911500 | 43.79 | 74.00 | 30.21 | 1000.000 | 176.0 | Н | 50.0 | 5.7 | | 4631.147200 | 43.29 | 74.00 | 30.71 | 1000.000 | 141.0 | ٧ | 33.0 | 7.7 | | 5555.674200 | 54.75 | 74.00 | 19.25 | 1000.000 | 173.0 | ٧ | 50.0 | 9.5 | | 6482.596400 | 44.11 | 74.00 | 29.89 | 1000.000 | 160.0 | ٧ | 50.0 | 10.5 | | 7407.815200 | 46.24 | 74.00 | 27.76 | 1000.000 | 129.0 | Н | 38.0 | 10.8 | | 8333.632500 | 45.89 | 74.00 | 28.11 | 1000.000 | 158.0 | ٧ | 0.0 | 11.4 | | 9259.499600 | 48.90 | 74.00 | 25.10 | 1000.000 | 200.0 | Н | 50.0 | 12.8 | # Final Result AVG | Frequency | Average | Limit | Margin | Bandwidth | Height | Pol | Azimuth | Corr. | |-------------|----------|----------|--------|-----------|--------|-----|---------|-------| | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (kHz) | (cm) | | (deg) | (dB) | | 1851.813400 | 27.05 | 54.00 | 26.95 | 1000.000 | 146.0 | Н | 24.0 | 0.8 | | 2778.347400 | 26.52 | 54.00 | 27.48 | 1000.000 | 173.0 | ٧ | 37.0 | 4.2 | | 3703.911500 | 35.82 | 54.00 | 18.18 | 1000.000 | 176.0 | Н | 50.0 | 5.7 | | 4631.147200 | 29.52 | 54.00 | 24.48 | 1000.000 | 141.0 | ٧ | 33.0 | 7.7 | | 5555.674200 | 49.98 | 54.00 | 4.02 | 1000.000 | 173.0 | ٧ | 50.0 | 9.5 | | 6482.596400 | 31.95 | 54.00 | 22.05 | 1000.000 | 160.0 | ٧ | 50.0 | 10.5 | | 7407.815200 | 35.82 | 54.00 | 18.18 | 1000.000 | 129.0 | Н | 38.0 | 10.8 | | 8333.632500 | 32.81 | 54.00 | 21.19 | 1000.000 | 158.0 | ٧ | 0.0 | 11.4 | | 9259.499600 | 38.30 | 54.00 | 15.70 | 1000.000 | 200.0 | Н | 50.0 | 12.8 | | Test Personnel: | Bryan Taylor | Test Date: | 3/6/2017 | |-------------------------|-----------------------|----------------------|----------| | Supervising/Reviewing | | | | | Engineer: | | | | | (Where Applicable) | NA | Limit Applied: | Class B | | Product Standard: | FCC Part 15 Subpart C | | | | Input Voltage: | 5VDC (Charging) | Ambient Temperature: | 21.0 °C | | Pretest Verification w/ | | | | | Ambient Signals or | Vee | Dolotivo I lumiditu | 24.0.9/ | | BB Source: | res | Relative Humidity: | Z1.U % | # 10.5.1 Low Channel Band Edge Emissions ### Final_Result | Frequency | QuasiPeak | Limit | Margin | Bandwidth | Height | Pol | Azimuth | Corr. | |------------|-----------|----------|--------|-----------|--------|-----|---------|-------| | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (kHz) | (cm) | | (deg) | (dB) | | 844.780000 | 42.41 | 46.02 | 3.61 | 120.000 | 399.9 | ٧ | 0.0 | 34.3 | | 893.580000 | 43.74 | 46.02 | 2.28 | 120.000 | 104.8 | Н | 63.0 | 35.4 | | 911.300000 | 44.13 | 46.02 | 1.89 | 120.000 | 118.1 | ٧ | 290.0 | 35.7 | | 951.860000 | 44.80 | 46.02 | 1.22 | 120.000 | 335.2 | Н | 120.0 | 35.9 | | 954.680000 | 44.67 | 46.02 | 1.35 | 120.000 | 343.4 | Н | 54.0 | 35.9 | | Test Personnel: | Bryan Taylor | |-------------------------|-----------------------| | Supervising/Reviewing | | | Engineer: | | | (Where Applicable) | NA | | Product Standard: | FCC Part 15 Subpart C | | Input Voltage: | 5VDC (Charging) | | Pretest Verification w/ | | | Ambient Signals or | | | BB Source: | Yes | | Test Date: | 3/6/2017 | |----------------------|----------| | | | | Limit Applied: | Class B | | | | | Ambient Temperature: | 21.0 °C | | | | | Relative Humidity: | 21.0 % | # 10.5.2 High Channel Band Edge Emissions # Final_Result | Frequency | QuasiPeak | Limit | Margin | Bandwidth | Height | Pol | Azimuth | Corr. | |------------|-----------|----------|--------|-----------|--------|-----|---------|-------| | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (kHz) | (cm) | | (deg) | (dB) | | 805.160000 | 42.00 | 46.02 | 4.02 | 120.000 | 111.9 | ٧ | 249.0 | 34.0 | | 835.260000 | 42.73 | 46.02 | 3.29 | 120.000 | 109.1 | Н | 50.0 | 34.6 | | 896.020000 | 43.89 | 46.02 | 2.13 | 120.000 | 114.1 | Н | 163.0 | 35.5 | | 947.140000 | 44.53 | 46.02 | 1.49 | 120.000 | 110.3 | ٧ | 13.0 | 35.9 | | 954.340000 | 44.85 | 46.02 | 1.17 | 120.000 | 112.8 | Н | 224.0 | 35.9 | | Test Personnel: | Bryan Taylor | Test Date: | 3/6/2017 | |---|-----------------------|----------------------|----------| | Supervising/Reviewing | | | | | Engineer: | | | | | (Where Applicable) | NA | Limit Applied: | Class B | | Product Standard: | FCC Part 15 Subpart C | | | | Input Voltage: | 5VDC (Charging) | Ambient Temperature: | 21.0 °C | | Pretest Verification w/
Ambient Signals or | | • | | | BB Source: | Yes | Relative Humidity: | 21.0 % | | | | | | # 11 Radiated Spurious Emissions (Receiver) #### 11.1 Test Limits § 15.109: Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values: | Frequency of emission (MHz) | Field strength (microvolts/meter) | Field strength
(dBuV/m) | |-----------------------------|-----------------------------------|----------------------------| | 30–88 | 100 | 40 | | 88–216 | 150 | 43.5 | | 216–960 | 200 | 46 | | Above 960 | 500 | 54 | These limits are identical to those in RSS-GEN #### 11.2 Test Procedure ANSI C63.4: 2014 ### 11.3 Example of Field Strength Calculation Method: The measured field strength was calculated by summing the readings taken from the spectrum analyzer with the appropriate correction factors associated with the antenna losses and cable losses. The calculation formula and sample calculations are listed below: ### Formula: FS = RA + AF + CF $FS = Field Strength in dB\mu V/m$ $RA = Receiver Amplitude in dB\mu V$ AF = Antenna Factor in dB CF = Cable Attenuation Factor in dB (Including preamplifier and filter attenuation) #### Example Calculation: $RA = 19.48 dB\mu V$ AF = 18.52 dB CF = 0.78 dB $FS = 19.48 + 18.52 + 0.78 = 38.78 \, dB\mu V/m$ Level in μ V/m = Common Antilogarithm [(38.78 dB μ V/m)/20] = 86.89 μ V/m # 11.4 Test Equipment Used: | | Serial | | | | | |---------------------------------------|--------------|--------------------|---------|--------------------------|--------------------------| | Description | Number | Manufacturer | Model | Cal. Date | Cal. Due | | EMI Test Receiver | 1302.6005.40 | Rohde &
Schwarz | ESU40 | 9/26/2016 | 9/26/2017 | | Preamplifier | 122005 | Rohde&Schwarz | TS-PR18 | 11/17/2016 | 11/17/2017 | | Biconnilog Antenna | 00051864 | ETS | 3142C | 3/23/2016 | 3/23/2017 | | Horn Antenna | 00156319 | ETS | 3117 | 3/8/2016 | 3/8/2017 | | System Controller | 121701-1 | Sunol Sciences | SC99V | Verify at
Time of Use | Verify at
Time of Use | | 3m Cable Antenna→Preamp | 3074 | | | 11/17/2016 | 11/17/2017 | | 3m Cable Preamp→Chamber | 2588 | | | 11/17/2016 | 11/17/2017 | | 3m Cable Chamber→Control Room | 2593 | | | 11/17/2016 | 11/17/2017 | | 3m Cable
Control
Room→Receiver | 2592 | | | 11/17/2016 | 11/17/2017 | | 10m Cable
Antenna→Preamp | 3339 | | | 11/17/2016 | 11/17/2017 | | 10m Cable
Preamp→Chamber | 3172 | | | 11/17/2016 | 11/17/2017 | | 10m Cable
Chamber→Control
Room | 2590 | | | 11/17/2016 | 11/17/2017 | | 10m Cable
Control
Room→Receiver | 2589 | | | 11/17/2016 | 11/17/2017 | # 11.5 Results: All spurious emissions with the test sample in receive mode were below the limits specified in Part 15.109 for a class B digital device and RSS-GEN Section 6.1. #### **Final Result** | i iiiai_i\csait | | | | | | | | | |-----------------|-----------|----------|--------|-----------|--------|-----|---------|-------| | Frequency | QuasiPeak | Limit | Margin | Bandwidth | Height | Pol | Azimuth | Corr. | | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (kHz) | (cm) | | (deg) | (dB) | | 53.692000 | 28.31 | 40.00 | 11.69 | 120.000 | 105.3 | ٧ | 6.0 | 15.0 | | 53.695000 | 27.54 | 40.00 | 12.46 | 120.000 | 99.7 | ٧ | 324.0 | 15.0 | | 56.061000 | 21.58 | 40.00 | 18.42 | 120.000 | 325.0 | ٧ | 340.0 | 14.7 | | 105.580000 | 38.33 | 43.52 | 5.19 | 120.000 | 103.7 | ٧ | 285.0 | 16.6 | | 126.060000 | 32.85 | 43.52 | 10.67 | 120.000 | 103.9 | ٧ | 303.0 | 16.5 | | 246.300000 | 28.12 | 46.02 | 17.90 | 120.000 | 153.8 | ٧ | 18.0 | 21.3 | | 294.200000 | 29.79 | 46.02 | 16.23 | 120.000 | 343.0 | ٧ | 101.0 | 23.1 | | 704.440000 | 41.19 | 46.02 | 4.83 | 120.000 | 369.9 | ٧ | 146.0 | 33.6 | | 780.350000 | 41.72 | 46.02 | 4.30 | 120.000 | 388.4 | ٧ | 82.0 | 33.8 | | 940.540000 | 44.39 | 46.02 | 1.63 | 120.000 | 386.5 | Н | 173.0 | 35.7 | Test Personnel: Carmen Davis Supervising/Reviewing Engineer: (Where Applicable) Product Standard: FCC Part 15 Subpart B Input Voltage: Charging / Radios Idle Pretest Verification w/ Ambient Signals or BB Source: Yes Test Date: <u>12/14/2016</u> Limit Applied: Class B Ambient Temperature: 21.0 °C Relative Humidity: 21.0 % # Final_Result_PK+ | <u></u> | | | | | | | | | |--------------|----------|----------|--------|-----------|--------|-----|---------|-------| | Frequency | MaxPeak | Limit | Margin | Bandwidth | Height | Pol | Azimuth | Corr. | | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (kHz) | (cm) | | (deg) | (dB) | | 3895.259100 | 42.59 | 80.00 | 37.41 | 1000.000 | 300.0 | Н | 263.0 | 6.1 | | 4570.646000 | 42.40 | 80.00 | 37.60 | 1000.000 | 276.0 | Н | 321.0 | 7.7 | | 8854.893300 | 45.91 | 80.00 | 34.09 | 1000.000 | 278.0 | Н | 46.0 | 12.1 | | 11954.345800 | 50.64 | 80.00 | 29.36 | 1000.000 | 170.0 | ٧ | 130.0 | 17.5 | | 17053.378200 | 54.19 | 80.00 | 25.81 | 1000.000 | 130.0 | ٧ | 321.0 | 21.4 | | 17998.391969 | 55.69 | 80.00 | 24.31 | 1000.000 | 169.0 | Н | -10.0 | 23.0 | # Final_Result_AVG | Frequency | Average | Limit | Margin | Bandwidth | Height | Pol | Azimuth | Corr. | |--------------|----------|----------|--------|-----------|--------|-----|---------|-------| | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (kHz) | (cm) | | (deg) | (dB) | | 3895.259100 | 28.38 | 60.00 | 31.62 | 1000.000 | 300.0 | Н | 263.0 | 6.1 | | 4570.646000 | 29.59 | 60.00 | 30.41 | 1000.000 | 276.0 | Н | 321.0 | 7.7 | | 8854.893300 | 32.53 | 60.00 | 27.47 | 1000.000 | 278.0 | Н | 46.0 | 12.1 | | 11954.345800 | 37.60 | 60.00 | 22.40 | 1000.000 | 170.0 | ٧ | 130.0 | 17.5 | | 17053.378200 | 41.45 | 60.00 | 18.55 | 1000.000 | 130.0 | ٧ | 321.0 | 21.4 | | 17998.391969 | 42.53 | 60.00 | 17.47 | 1000.000 | 169.0 | Н | -10.0 | 23.0 | | Test Personnel: | Carmen Davis | Test Date: | 12/14/2016 | |--|------------------------|----------------------|------------| | Supervising/Reviewing
Engineer: | | | | | (Where Applicable) | NA | Limit Applied: | Class B | | Product Standard: | FCC Part 15 Subpart B | | | | Input Voltage: | Charging / Radios Idle | Ambient Temperature: | 21.0 °C | | Pretest Verification w/ Ambient Signals or | | · | | | BB Source: | Yes | Relative Humidity: | 21.0 % | | | | | | ### 12 AC Powerline Conducted Emissions #### 12.1 Test Limits § 15.107(e): Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges. | Eraguanay of amission | Conducted limit (dBµV) | | | | |-----------------------------|------------------------|-----------|--|--| | Frequency of emission (MHz) | Quasi-peak | Average | | | | 0.15–0.5 | 66 to 56* | 56 to 46* | | | | 0.5–5 | 56 | 46 | | | | 5–30 | 60 | 50 | | | ^{*}Decreases with the logarithm of the frequency. #### 12.2 Test Procedure ANSI C63.4: 2014 # 12.3 Test Equipment Used: | Description | Serial Number | Manufacturer | Model | Cal. Date | Cal. Due | |-------------------|---------------|------------------------------|-----------------------|-----------|-----------| | EMI Test Receiver | 10887490.26 | Rohde &
Schwarz | ESI26 | 9/20/2015 | 9/20/2016 | | LISN | 2509 | Fischer Custom Communication | FCC-LISN-50-
50-2M | 3/17/2016 | 3/17/2017 | # 12.4 Results (Line 1, Transmitting): | | | | | T - | г. | 1 - | |-------------|------------|--------------|-------------|---------|--------------|-------------| | Frequency | Quasi-Peak | Quasi-Peak | Quasi-Peak | Average | Average | Average | | (MHz) | (dBuV) | Limit (dBuV) | Margin (dB) | (dBuV) | Limit (dBuV) | Margin (dB) | | 150.300 KHz | 52.367 | 65.991 | 13.625 | 40.304 | 55.991 | 15.687 | | 280.600 KHz | 32.294 | 62.269 | 29.975 | 13.474 | 52.269 | 38.795 | | 418.100 KHz | 26.783 | 58.340 | 31.557 | 14.192 | 48.340 | 34.148 | | 1.300 MHz | 32.137 | 56.000 | 23.863 | 27.250 | 46.000 | 18.750 | | 1.580 MHz | 28.197 | 56.000 | 27.803 | 23.842 | 46.000 | 22.158 | | 3.615 MHz | 28.540 | 56.000 | 27.460 | 21.067 | 46.000 | 24.933 | | 15.582 MHz | 28.296 | 60.000 | 31.704 | 20.957 | 50.000 | 29.043 | | 18.301 MHz | 29.054 | 60.000 | 30.946 | 22.087 | 50.000 | 27.913 | | 23.268 MHz | 22.590 | 60.000 | 37.410 | 15.780 | 50.000 | 34.220 | | 29.904 MHz | 21.659 | 60.000 | 38.341 | 13.786 | 50.000 | 36.214 | | Test Personnel: | Brian Lackey | Test Date: | 3/23/2016 | |--|-----------------------|----------------------|-----------| | Supervising/Reviewing
Engineer:
(Where Applicable) | _NA | Limit Applied: | _Class B | | Product Standard: | FCC Part 15 Subpart B | | | | Input Voltage: | 5VDC (Charging) | Ambient Temperature: | 21.0 °C | | Pretest Verification w/
Ambient Signals or | | | 40.0 | | BB Source: | Yes | Relative Humidity: | 12.0 % | # 12.1 Results (Line 2, Transmitting) | | | | | | | _ | |-------------|------------|--------------|-------------|---------|--------------|-------------| | Frequency | Quasi-Peak | Quasi-Peak | Quasi-Peak | Average | Average | Average | | (MHz) | (dBuV) | Limit (dBuV) | Margin (dB) | (dBuV) | Limit (dBuV) | Margin (dB) | | 151.300 KHz | 51.134 | 65.963 | 14.829 | 36.653 | 55.963 | 19.310 | | 189.300 KHz | 44.261 | 64.877 | 20.617 | 31.307 | 54.877 | 23.570 | | 236.400 KHz | 35.070 | 63.531 | 28.462 | 18.644 | 53.531 | 34.888 | | 354.300 KHz | 33.738 | 60.163 | 26.425 | 24.379 | 50.163 | 25.784 | | 1.582 MHz | 27.764 | 56.000 | 28.236 | 23.278 | 46.000 | 22.722 | | 3.480 MHz | 29.837 | 56.000 | 26.163 | 20.165 | 46.000 | 25.835 | | 4.225 MHz | 25.638 | 56.000 | 30.362 | 15.071 | 46.000 | 30.929 | | 14.521 MHz | 22.475 | 60.000 | 37.525 | 15.799 | 50.000 | 34.201 | | 18.186 MHz | 29.013 | 60.000 | 30.987 | 22.075 | 50.000 | 27.925 | | 24.325 MHz | 17.744 | 60.000 | 42.256 | 12.677 | 50.000 | 37.323 | | Test Personnel: | Brian Lackey | Test Date: | 3/23/2016 | |--|-----------------------|----------------------|-----------| | Supervising/Reviewing
Engineer:
(Where Applicable) | NA | Limit Applied: | Class B | | Product Standard: | FCC Part 15 Subpart B | | | | Input Voltage: | 5VDC (Charging) | Ambient Temperature: | 21.0 °C | | Pretest Verification w/
Ambient Signals or | | | | | BB Source: | Yes | Relative Humidity: | 12.2 % | # 12.3 Results (Line 1, Idle) | Frequency | Quasi-Peak | Quasi-Peak | Quasi-Peak | Average | Average | Average | |-------------|------------|--------------|-------------|---------|--------------|-------------| | (MHz) | (dBuV) | Limit (dBuV) | Margin (dB) | (dBuV) | Limit (dBuV) | Margin (dB) | | 150.200 KHz | 54.946 | 65.994 | 11.048 | 39.141 | 55.994 | 16.853 | | 235.600 KHz | 38.935 | 63.554 | 24.619 | 22.634 | 53.554 | 30.921 | | 321.500 KHz | 31.177 | 61.100 | 29.923 | 13.896 | 51.100 | 37.204 | | 464.800 KHz | 26.995 | 57.006 | 30.010 | 16.477 | 47.006 | 30.529 | | 1.300 MHz | 31.324 | 56.000 | 24.676 | 27.672 | 46.000 | 18.328 | | 3.559 MHz | 26.259 | 56.000 | 29.741 | 18.967 | 46.000 | 27.033 | | 12.090 MHz | 20.452 | 60.000 | 39.548 | 15.137 | 50.000 | 34.863 | | 23.363 MHz | 26.727 | 60.000 | 33.273 | 18.997 | 50.000 | 31.003 | | 23.826 MHz | 25.497 | 60.000 | 34.503 | 18.107 | 50.000 | 31.893 | | 24.215 MHz | 24.660 | 60.000 | 35.340 | 16.949 | 50.000 | 33.051 | | Test Personnel: | Brian Lackey | Test Date: | 3/23/2016 | |------------------------------------|-----------------------|----------------------|-----------| | Supervising/Reviewing
Engineer: | | | | | (Where Applicable) | NA | Limit Applied: | Class B | | Product Standard: | FCC Part 15 Subpart B | | | | Input Voltage: | 5VDC (Charging) | Ambient Temperature: | 21.0 °C | | Pretest Verification w/ | | | | | Ambient Signals or
BB Source: | Yes | Relative Humidity: | 12.4 % | # 12.5 Results (Line 2, Idle) | Frequency | Quasi-Peak | Quasi-Peak | Quasi-Peak | Average | Average | Average | |-------------|------------|--------------|-------------|---------|--------------|-------------| | (MHz) | (dBuV) | Limit (dBuV) | Margin (dB) | (dBuV) | Limit (dBuV) | Margin (dB) | | 152.700 KHz | 52.730 | 65.923 | 13.193 | 37.166 | 55.923 | 18.757 | | 236.300 KHz | 37.173 | 63.534 | 26.361 | 21.191 | 53.534 | 32.343 | | 324.400 KHz | 34.352 | 61.017 | 26.665 | 20.325 | 51.017 | 30.692 | | 439.100 KHz | 31.896 | 57.740 | 25.844 | 21.558 | 47.740 | 26.182 | | 3.429 MHz | 29.399 | 56.000 | 26.601 | 20.379 | 46.000 | 25.621 | | 15.605 MHz | 32.490 | 60.000 | 27.510 | 26.207 | 50.000 | 23.793 | | 17.409 MHz | 26.837 | 60.000 | 33.163 | 19.266 | 50.000 | 30.734 | | 18.496 MHz | 28.958 | 60.000 | 31.042 | 21.590 | 50.000 | 28.410 | | 23.570 MHz | 25.480 | 60.000 | 34.520 | 19.127 | 50.000 | 30.873 | | 25.508 MHz | 16.832 | 60.000 | 43.168 | 11.181 | 50.000 | 38.819 | | Test Personnel: | Brian Lackey | Test Date: | 3/23/2016 | |---|-----------------------|----------------------|-----------| | Supervising/Reviewing
Engineer:
(Where Applicable) | _NA | Limit Applied: | Class B | | Product Standard: | FCC Part 15 Subpart B | | | | , , | 5VDC (Charging) | Ambient Temperature: | 21.0 °C | | Pretest Verification w/
Ambient Signals or
BB Source: | Yes | Relative Humidity: | 12.6 % | #### 13 Antenna Requirement per FCC Part 15.203 #### 13.1 Test Limits § 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded. #### 13.2 Results: The sample tested met the antenna requirement. The antenna used was permanently attached and integral to the PCB. ### Intertek Report Number: 102921149LEX-001 Issued: 3/8/2017 # 14 Measurement Uncertainty The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements. The measurement uncertainty figures were calculated and correspond to a coverage factor of k = 2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian). Measurement uncertainty Table | Parameter | Uncertainty | Notes | |--|----------------|-------| | Radiated emissions, 30 to 1000 MHz | <u>+</u> 3.9dB | | | Radiated emissions, 1 to 18 GHz | <u>+</u> 4.2dB | | | Radiated emissions, 18 to 40 GHz | <u>+</u> 4.3dB | | | Power Port Conducted emissions, 150kHz to 30 | <u>+</u> 2.8dB | | | MHz | _ | | # Intertek Report Number: 102921149LEX-001 Issued: 3/8/2017 # 15 Revision History | Revision
Level | Date | Report Number | Notes | |-------------------|----------|------------------|----------------| | 0 | 3/8/2017 | 102921149LEX-001 | Original Issue |