MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 1905RSU034-U3 Report Version: V01 Issue Date: 08-23-2019 # **MEASUREMENT REPORT** # FCC PART 15.247 / RSS-247 Bluetooth-LE FCC ID: H8N-AP6356S IC: 1353A-AP6356S **Applicant**: Askey Computer Corp **Application Type:** CLASS II PERMISSIVE CHANGE **Product:** WIFI+BT Combo Module Model No.: AP6356S **Brand Name:** ASKEY FCC Classification: Digital Transmission System (DTS) FCC Rule Part(s): Part 15 Subpart C (Section 15.247) IC Rule(s): RSS-247 Issue 2, RSS-GEN Issue 5 **Test Procedure(s):** ANSI C63.10-2013, KDB 558074 D01v05r02 **Test Date:** July 20 ~ August 03, 2019 Reviewed By: Com Como Kevin Guo Approved By: Robin Wu (Robin Wu) The test results relate only to the samples tested. This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested. The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd. FCC ID: H8N-AP6356S IC: 1353A-AP6356S Page Number: 1 of 46 **Revision History** | Report No. | Version | Description | Issue Date | Note | |-----------------------|---------|----------------|------------|-------| | 1905RSU034-U3 Rev. 01 | | Initial Report | 08-23-2019 | Valid | | | | | | | Note: This report is prepared for FCC Class II permissive change supplement to MRT original "1902RSU013-U3" report adding a PIFA antenna and RF output power & Radiated Emission Data. FCC ID: H8N-AP6356S Page Number: 2 of 46 ## **CONTENTS** | De | scriptio | on | Page | |----|----------|---|------| | 1. | INTR | ODUCTION | 6 | | | 1.1. | Scope | 6 | | | 1.2. | MRT Test Location | 6 | | 2. | PROD | DUCT INFORMATION | 7 | | | 2.1. | Feature of Equipment under Test | 7 | | | 2.2. | Product Specification Subjective to this Report | | | | 2.3. | Working Frequencies for this report | | | | 2.4. | Description of Available Antennas | 9 | | | 2.5. | Description of Antenna RF Port | 10 | | | 2.6. | Device Capabilities | 11 | | | 2.7. | Test Configuration | 11 | | | 2.8. | Test Software | 11 | | | 2.9. | EMI Suppression Device(s)/Modifications | 11 | | | 2.10. | Labeling Requirements | 12 | | 3. | DESC | CRIPTION OF TEST | 13 | | | 3.1. | Evaluation Procedure | 13 | | | 3.2. | AC Line Conducted Emissions | 13 | | | 3.3. | Radiated Emissions | 14 | | 4. | ANTE | ENNA REQUIREMENTS | 15 | | 5. | TEST | EQUIPMENT CALIBRATION DATE | 16 | | 6. | MEAS | SUREMENT UNCERTAINTY | 18 | | 7. | TEST | RESULT | 19 | | | 7.1. | Summary | 19 | | | 7.2. | Output Power Measurement | 20 | | | 7.2.1. | Test Limit | 20 | | | 7.2.2. | Test Procedure Used | 20 | | | 7.2.3. | Test Setting | 20 | | | 7.2.4. | Test Setup | 21 | | | 7.2.5. | Test Result of Output Power | 22 | | | 7.3. | Radiated Spurious Emission Measurement | | | | 7.3.1. | Test Limit | | | | 7.3.2. | Test Procedure Used | 23 | | | 7.3.3. | Test Setting | 23 | | Арр | ppendix B - EUT Photograph46 | | | | |-----|------------------------------|---|------|--| | Арр | endix A | A - Test Setup Photograph | . 45 | | | 8. | CONC | LUSION | . 44 | | | | 7.4.5. | Test Result | . 36 | | | | 7.4.4. | Test Setup | | | | | 7.4.3. | Test Setting | . 34 | | | | 7.4.2. | Test Procedure Used | . 34 | | | | 7.4.1. | Test Limit | . 31 | | | | 7.4. | Radiated Restricted Band Edge Measurement | . 31 | | | | 7.3.5. | Test Result | . 26 | | | | 7.3.4. | Test Setup | . 25 | | | | | | | | ## §2.1033 General Information | Applicant: | Askey Computer Corp. | | | | | | |-------------------------|--|--|--|--|--|--| | Applicant Address: | 10F, No.119, JIANKANG RD., ZHONGHE DIST., NEW TAIPEI CITY | | | | | | | | TAIWAN | | | | | | | Manufacturer: | Askey Computer Corp. | | | | | | | Manufacturer Address: | 10F, No.119, JIANKANG RD., ZHONGHE DIST., NEW TAIPEI CITY | | | | | | | | TAIWAN | | | | | | | Test Site: | MRT Technology (Suzhou) Co., Ltd | | | | | | | Test Site Address: | D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development | | | | | | | | Zone, Suzhou, China | | | | | | | Test Device Serial No.: | N/A ☐ Production ☐ Pre-Production ☐ Engineering | | | | | | #### **Test Facility / Accreditations** Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China. - MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014. - MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada. - MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council. - MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing. #### 1. INTRODUCTION ## 1.1. Scope Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau. #### 1.2. MRT Test Location The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014. ## 2. PRODUCT INFORMATION ## 2.1. Feature of Equipment under Test | Product Name: | WIFI+BT Combo Module | |--------------------------|-------------------------------| | Model No.: | AP6356S | | Brand Name: | ASKEY | | Wi-Fi Specification: | 802.11a/b/g/n/ac | | Bluetooth Specification: | V4.2 dual mode | | Power Type: | VBAT: 3.3V DC; VDDIO: 1.8V DC | ## 2.2. Product Specification Subjective to this Report | Bluetooth Frequency: | 2402~2480MHz | |----------------------|----------------------| | Bluetooth Version: | V4.2 dual mode | | Type of Modulation: | GFSK | | Data Rate: | 1Mbps | | Antenna Information: | Refer to section 2.4 | Note: For other features of this EUT, test report will be issued separately. # 2.3. Working Frequencies for this report | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 00 | 2402 MHz | 01 | 2404 MHz | 02 | 2406 MHz | | 03 | 2408 MHz | 04 | 2410 MHz | 05 | 2412 MHz | | 06 | 2414 MHz | 07 | 2416 MHz | 08 | 2418 MHz | | 09 | 2420 MHz | 10 | 2422 MHz | 11 | 2424 MHz | | 12 | 2426 MHz | 13 | 2428 MHz | 14 | 2430 MHz | | 15 | 2432 MHz | 16 | 2434 MHz | 17 | 2436 MHz | | 18 | 2438 MHz | 19 | 2440 MHz | 20 | 2442 MHz | | 21 | 2444 MHz | 22 | 2446 MHz | 23 | 2448 MHz | | 24 | 2450 MHz | 25 | 2452 MHz | 26 | 2454 MHz | | 27 | 2456 MHz | 28 | 2458 MHz | 29 | 2460 MHz | | 30 | 2462 MHz | 31 | 2464 MHz | 32 | 2466 MHz | | 33 | 2468 MHz | 34 | 2470 MHz | 35 | 2472 MHz | | 36 | 2474 MHz | 37 | 2476 MHz | 38 | 2478 MHz | | 39 | 2480 MHz | | | | | ### 2.4. Description of Available Antennas | Antenna Type | Frequency | T _X | Per Chain Max Antenna | | na Directional Gain | | | |----------------------------|-------------|----------------|-----------------------|------------|---------------------|---------|--| | | Band | Paths | Gain | Gain (dBi) | | 3i) | | | | (GHz) | | Ant 0 | Ant 1 | For Power | For PSD | | | Wi-Fi Internal Antenna | | | | | | | | | DIEA | 2412 ~ 2462 | 2 | 1.98 | 2.40 | 2.40 | 5.41 | | | PIFA | 5150 ~ 5825 | 2 | 3.14 | 4.34 | 4.34 | 7.35 | | | Bluetooth Internal Antenna | | | | | | | | | PIFA | 2402 ~ 2480 | 1 | 1.98 | | - | - | | #### Note: The EUT supports Cyclic Delay Diversity (CDD) technology on 802.11a/b/g mode, and CDD signals are correlated. For CDD transmissions, directional gain is calculated as follows, $N_{ANT} = 2$, $N_{SS} = 1$. If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows. - For power spectral density (PSD) measurements on all devices, Array Gain = 10 log (N_{ANT}/ N_{SS}) dB = 3.01; - For power measurements on IEEE 802.11 devices, Array Gain = 0 dB for N_{ANT} ≤ 4; If antenna gains are not equal, Directional gain may be calculated by using the formulas applicable to equal gain antennas with G_{ANT} set equal to the gain of the antenna having the highest gain. ## 2.5. Description of Antenna RF Port ## 2.6. Device Capabilities This device contains the following capabilities: 802.11a/b/g/n/ac WLAN, Bluetooth EDR & LE ## 2.7. Test Configuration The device was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. #### 2.8. Test Software The test utility software used during testing was the command provided by the customer. ## 2.9. EMI Suppression Device(s)/Modifications No EMI suppression device(s) were added and/or no modifications were made during testing. ## 2.10. Labeling Requirements #### Per 2.1074 & 15.19; Docket 95-19 The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per
Section 15.19(a)(5). Please see attachment for FCC ID label and label location. #### RSP-100 Issue 11 Section 3 The manufacturer, importer or distributor shall meet the labelling requirements set out in this section for every unit: - (i) prior to marketing in Canada, for products manufactured in Canada - (ii) prior to importation into Canada, for imported products For information regarding the e-labelling option, see Notice 2014-DRS1003. The label for the certified product represents the manufacturer's or importer's compliance with Innovation, Science and Economic Development Canada's (ISED) regulatory requirements. Please see attachment for IC label and label location. FCC ID: H8N-AP6356S Page Number: 12 of 46 IC: 1353A-AP6356S Report No.: 1905RSU034-U3 #### 3. DESCRIPTION OF TEST #### 3.1. Evaluation Procedure The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided were used in the measurement. Deviation from measurement procedure......None #### 3.2. AC Line Conducted Emissions The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure. The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions were used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements. An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013. FCC ID: H8N-AP6356S Page Number: 13 of 46 IC: 1353A-AP6356S Report No.: 1905RSU034-U3 #### 3.3. Radiated Emissions The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the Antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive Antenna height using a broadband Antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn Antennas were used. For frequencies below 30MHz, a calibrated loop Antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband Antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive Antenna height was noted for each frequency found. Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn Antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive Antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive Antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn Antenna, the horn Antenna should be always directed to the EUT when rising height. ## 4. ANTENNA REQUIREMENTS ### Excerpt from §15.203 of the FCC Rules/Regulations: "An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section." #### Conclusion: The unit complies with the requirement of §15.203. FCC ID: H8N-AP6356S Page Number: 15 of 46 IC: 1353A-AP6356S ## 5. TEST EQUIPMENT CALIBRATION DATE ### Conducted Emissions - SR2 | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | |--------------------|--------------|-------------|-------------|----------------|----------------| | EMI Test Receiver | R&S | ESR3 | MRTSUE06185 | 1 year | 2020/04/15 | | Two-Line V-Network | R&S | ENV 216 | MRTSUE06002 | 1 year | 2020/06/13 | | Two-Line V-Network | R&S | ENV 216 | MRTSUE06003 | 1 year | 2020/06/13 | | Thermohygrometer | Testo | 608-H1 | MRTSUE06404 | 1 year | 2019/08/14 | | Shielding Room | MIX-BEP | Chamber-SR2 | MRTSUE06215 | N/A | N/A | #### Radiated Emissions - AC1 | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | |----------------------------|--------------|-------------|-------------|----------------|----------------| | EMI Test Receiver | R&S | ESR7 | MRTSUE06001 | 1 year | 2020/08/01 | | PXA Signal Analyzer | Keysight | 9030B | MRTSUE06395 | 1 year | 2019/09/25 | | Loop Antenna | Schwarzbeck | FMZB 1519 | MRTSUE06025 | 1 year | 2019/11/09 | | Bilog Period Antenna | Schwarzbeck | VULB 9168 | MRTSUE06172 | 1 year | 2020/03/31 | | Broad Band Horn Antenna | Schwarzbeck | BBHA 9120D | MRTSUE06023 | 1 year | 2019/10/19 | | Broad Band Horn Antenna | Schwarzbeck | BBHA 9170 | MRTSUE06024 | 1 year | 2019/12/17 | | Microwave System Amplifier | Agilent | 83017A | MRTSUE06076 | 1 year | 2019/11/16 | | Preamplifier | Schwarzbeck | BBV 9721 | MRTSUE06121 | 1 year | 2020/06/11 | | Thermohygrometer | Testo | 608-H1 | MRTSUE06403 | 1 year | 2019/08/14 | | Anechoic Chamber | TDK | Chamber-AC1 | MRTSUE06212 | 1 year | 2020/04/30 | #### Radiated Emission - AC2 | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | |--------------------------------|--------------|-------------|-------------|----------------|----------------| | Spectrum Analyzer | Keysight | N9038A | MRTSUE06125 | 1 year | 2020/08/01 | | Loop Antenna | Schwarzbeck | FMZB 1519 | MRTSUE06025 | 1 year | 2019/11/09 | | Bilog Period Antenna | Schwarzbeck | VULB 9162 | MRTSUE06022 | 1 year | 2019/10/19 | | Horn Antenna | Schwarzbeck | BBHA9120D | MRTSUE06171 | 1 year | 2019/11/09 | | Broad Band Horn Antenna | Schwarzbeck | BBHA 9170 | MRTSUE06024 | 1 year | 2019/12/17 | | Broadband Coaxial Preamplifier | Schwarzbeck | BBV 9718 | MRTSUE06176 | 1 year | 2019/11/16 | | Preamplifier | Schwarzbeck | BBV 9721 | MRTSUE06121 | 1 year | 2020/06/11 | | Temperature/Humidity Meter | Minggao | ETH529 | MRTSUE06170 | 1 year | 2019/12/13 | | Anechoic Chamber | RIKEN | Chamber-AC2 | MRTSUE06213 | 1 year | 2020/04/30 | FCC ID: H8N-AP6356S
Page Number: 16 of 46 IC: 1353A-AP6356S Report No.: 1905RSU034-U3 ## Conducted Test Equipment - TR3 | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | |-------------------------------------|--------------|-------------|-------------|----------------|----------------| | EXA Signal Analyzer | Agilent | N9020A | MRTSUE06106 | 1 year | 2020/04/15 | | EXA Signal Analyzer | Keysight | N9010B | MRTSUE06452 | 1 year | 2020/07/11 | | Signal Analyzer | R&S | FSV40 | MRTSUE06218 | 1 year | 2020/04/15 | | Power Meter | Agilent | U2021XA | MRTSUE06030 | 1 year | 2019/11/16 | | USB wideband power sensor | Keysight | U2021XA | MRTSUE06446 | 1 year | 2020/06/30 | | USB wideband power sensor | Keysight | U2021XA | MRTSUE06447 | 1 year | 2020/06/30 | | Bluetooth Test Set | Anritsu | MT8852B-042 | MRTSUE06389 | 1 year | 2020/06/13 | | Audio Analyzer | Agilent | U8903B | MRTSUE06143 | 1 year | 2020/06/13 | | Modulation Analyzer | HP | 8901A | MRTSUE06098 | 1 year | 2019/10/18 | | Wideband Radio Communication Tester | R&S | CMW 500 | MRTSUE06243 | 1 year | 2019/11/16 | | DC Power Supply | GWINSTEK | DPS-3303C | MRTSUE06064 | N/A | N/A | | Temperature & Humidity Chamber | BAOYT | BYH-150CL | MRTSUE06051 | 1 year | 2019/11/16 | | Thermohygrometer | testo | 608-H1 | MRTSUE06401 | 1 year | 2019/08/14 | | Software | Version | Function | | |--------------|---------|-------------------|--| | EMI Software | V3 | EMI Test Software | | Page Number: 17 of 46 FCC ID: H8N-AP6356S 6. MEASUREMENT UNCERTAINTY Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Conducted Emission Measurement - SR2 The maximum measurement uncertainty is evaluated as: 9kHz~150kHz: 3.84dB 150kHz~30MHz: 3.46dB #### Radiated Emission Measurement - AC1 The maximum measurement uncertainty is evaluated as: Horizontal: 30MHz~300MHz: 4.07dB 300MHz~1GHz: 3.63dB 1GHz~18GHz: 4.16dB Vertical: 30MHz~300MHz: 4.18dB 300MHz~1GHz: 3.60dB 1GHz~18GHz: 4.76dB #### Radiated Emission Measurement - AC2 The maximum measurement uncertainty is evaluated as: Horizontal: 30MHz~300MHz: 3.75dB 300MHz~1GHz: 3.53dB 1GHz~18GHz: 4.28dB Vertical: 30MHz~300MHz: 3.86dB 300MHz~1GHz: 3.53dB 1GHz~18GHz: 4.33dB ### **TEST RESULT** ## 7.1. Summary | FCC | IC | Test | Test | Test | Test | Reference | |-----------------------|------------|-------------------|--------------------|-----------|--------|-----------| | Section(s) | Section(s) | Description | Limit | Condition | Result | | | 15 247(b)(3) | RSS-247 | Output Power | ≤ 30dBm | Conducted | Pass | Section | | 15.247(b)(3) [5.4(4)] | [5.4(4)] | Output Power | ≥ 30ubiii | Conducted | F488 | 7.2 | | | | General Field | Emissions in | | | | | 15.205 | DCC 047 | Strength Limits | restricted bands | | Pass | Section | | | RSS-247 | (Restricted Bands | must meet the | Radiated | | 7.3 & 7.4 | | 15.209 | [5.5] | and Radiated | radiated limits | | | 7.3 & 7.4 | | | | Emission Limits) | detailed in 15.209 | | | | #### Notes: - The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest. - 2) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions. FCC ID: H8N-AP6356S Page Number: 19 of 46 ## 7.2. Output Power Measurement #### 7.2.1.Test Limit The maximum out power shall be less 1 Watt (30dBm) and the E.I.R.P shall not exceed 4 Watt (36dBm). #### 7.2.2.Test Procedure Used ANSI C63.10-2013 - Section 11.9.2.3 #### 7.2.3.Test Setting #### Method PKPM1 (Peak Power Measurement of Signals with DTS BW ≤ 50MHz) Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz. ### Method AVGPM-G (Measurement using a gated RF average-reading power meter) Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required. FCC ID: H8N-AP6356S Page Number: 20 of 46 IC: 1353A-AP6356S ## 7.2.4.Test Setup ## 7.2.5.Test Result of Output Power | Product | WIFI+BT Combo Module | Temperature | 23°C | |---------------|----------------------|-------------------|------------| | Test Engineer | Hunk Li | Relative Humidity | 53% | | Test Site | TR3 | Test Date | 2019/07/20 | | Test Item | Peak Output Power | | | | Test Mode | Data Rate | Channel | Frequency | Peak Power | Limit | E.I.R.P | E.I.R.P | Result | |-----------|-----------|---------|-----------|------------|---------|---------|-------------|--------| | | (Mbps) | No. | (MHz) | (dBm) | (dBm) | (dBm) | Limit (dBm) | | | BLE | 1 | 00 | 2402 | 6.71 | ≤ 30.00 | 8.69 | ≤ 36.00 | Pass | | BLE | 1 | 19 | 2440 | 7.89 | ≤ 30.00 | 9.87 | ≤ 36.00 | Pass | | BLE | 1 | 39 | 2480 | 8.25 | ≤ 30.00 | 10.23 | ≤ 36.00 | Pass | Note: E.I.R.P (dBm) = Peak Power (dBm) + Antenna Gain (dBi), Antenna Gain = 1.98dBi. | Product | WIFI+BT Combo Module | Temperature | 23°C | |---------------|----------------------|-------------------|------------| | Test Engineer | Hunk Li | Relative Humidity | 53% | | Test Site | TR3 | Test Date | 2019/07/20 | | Test Item | Average Output Power | | | | Test Mode | Data Rate | Channel | Frequency | Average | Limit | E.I.R.P | E.I.R.P | Result | |-----------|-----------|---------|-----------|-------------|---------|---------|-------------|--------| | | (Mbps) | No. | (MHz) | Power (dBm) | (dBm) | (dBm) | Limit (dBm) | | | BLE | 1 | 00 | 2402 | 6.11 | ≤ 30.00 | 8.09 | ≤ 36.00 | Pass | | BLE | 1 | 19 | 2440 | 7.42 | ≤ 30.00 | 9.40 | ≤ 36.00 | Pass | | BLE | 1 | 39 | 2480 | 7.76 | ≤ 30.00 | 9.74 | ≤ 36.00 | Pass | Note: E.I.R.P (dBm) = Average Power (dBm) + Antenna Gain (dBi), Antenna Gain = 1.98dBi. FCC ID: H8N-AP6356S Page Number: 22 of 46 ### 7.3. Radiated Spurious Emission Measurement #### 7.3.1.Test Limit All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209. | FCC Part 15 Subpart C Paragraph 15.209 | | | | | | | | |--|----------------|-------------------|--|--|--|--|--| | Frequency | Field Strength | Measured Distance | | | | | | | [MHz] | [V/m] | [Meters] | | | | | | | 0.009 - 0.490 | 2400/F (kHz) | 300 | | | | | | | 0.490 - 1.705 | 24000/F (kHz) | 30 | | | | | | | 1.705 - 30 | 30 | 30 | | | | | | | 30 - 88 | 100 | 3 | | | | | | | 88 - 216 | 150 | 3 | | | | | | | 216 - 960 | 200 | 3 | | | | | | | Above 960 | 500 | 3 | | | | | | #### 7.3.2.Test Procedure Used ANSI C63.10 Section 6.3 (General Requirements) ANSI C63.10 Section 6.4 (Standard test method below 30MHz) ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz) ANSI C63.10 Section 6.6 (Standard test method above 1GHz) #### 7.3.3.Test Setting ### **Peak Field Strength Measurements** - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2. RBW = as specified in Table 1 - 3. VBW = 3MHz - 4. Detector = peak - 5. Sweep time = auto couple - 6. Trace mode = max hold - 7. Trace was allowed to stabilize FCC ID: H8N-AP6356S Page Number: 23 of 46 Table 1 - RBW as a function of frequency | Frequency | RBW | |---------------|---------------| | 9 ~ 150 kHz | 200 ~ 300 Hz | | 0.15 ~ 30 MHz | 9 ~ 10 kHz | | 30 ~ 1000 MHz | 100 ~ 120 kHz | | > 1000 MHz | 1 MHz | #### **Average Field Strength Measurements** - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2. RBW = 1MHz - 3. VBW ≥ 1/T - 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode - 5. Detector = Peak - 6. Sweep time = auto - 7. Trace mode = max hold - 8. Allow max hold to run for at least 50 times (1/duty cycle) traces FCC ID: H8N-AP6356S Page Number: 24 of 46 ## 7.3.4.Test Setup ## 30MHz ~ 1GHz Test Setup: ## 1GHz ~ 18GHz Test Setup: #### 7.3.5.Test Result | Product | WIFI+BT Combo Module | Temperature | 25°C | |---------------|--|-------------------|------------| | Test Engineer | Dandy Li | Relative Humidity | 56% | | Test Site | AC1 | Test Date | 2019/08/03 | | Test Mode | BLE | Test Channel | 00 | | Remark | Average measurement was no limit (54dBµV/m). Other frequency was 20dB belon the report. | | Ç | | Mark | Frequency | Reading | Factor | Measure | Limit | Margin | Detector | Polarization | |------|-----------|---------|--------|----------|----------|--------|----------|--------------| | | (MHz) | Level | (dB) | Level | (dBµV/m) | (dB) | | | | | | (dBµV) | | (dBµV/m) | | | | | | | 4068.5 | 38.5 | 2.7 | 41.2 | 74.0 | -32.8 | Peak | Horizontal | | | 4808.0 | 36.8 | 5.6 | 42.4 | 74.0 | -31.6 | Peak | Horizontal | | * | 6712.0 | 36.2 | 9.6 | 45.8 | 80.8 | -35.0 | Peak | Horizontal | | * | 10010.0 | 34.8 |
16.1 | 50.9 | 80.8 | -29.9 | Peak | Horizontal | | | 3822.0 | 39.3 | 1.9 | 41.2 | 74.0 | -32.8 | Peak | Vertical | | | 4808.0 | 37.9 | 5.6 | 43.5 | 74.0 | -30.5 | Peak | Vertical | | * | 6542.0 | 35.3 | 9.6 | 44.9 | 80.8 | -35.9 | Peak | Vertical | | * | 8582.0 | 36.2 | 12.9 | 49.1 | 80.8 | -31.7 | Peak | Vertical | Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (100.8dBµV/m) or 15.209 which is higher. Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB) | Product | WIFI+BT Combo Module | Temperature | 25°C | | | | |---------------|--|-----------------------|-------------------------|--|--|--| | Test Engineer | Dandy Li | Relative Humidity | 56% | | | | | Test Site | AC1 | Test Date | 2019/08/03 | | | | | Test Mode | BLE | Test Channel | 19 | | | | | Remark | Average measurement was no limit (54dRu)//m) | t performed if peak I | evel lower than average | | | | | | limit (54dBμV/m).Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report. | | | | | | | Mark | Frequency | Reading | Factor | Measure | Limit | Margin | Detector | Polarization | |------|-----------|---------|--------|----------|----------|--------|----------|--------------| | | (MHz) | Level | (dB) | Level | (dBµV/m) | (dB) | | | | | | (dBµV) | | (dBµV/m) | | | | | | | 4068.5 | 37.9 | 2.7 | 40.6 | 74.0 | -33.4 | Peak | Horizontal | | | 4995.0 | 36.0 | 6.1 | 42.1 | 74.0 | -31.9 | Peak | Horizontal | | * | 6023.5 | 36.1 | 7.5 | 43.6 | 82.7 | -39.1 | Peak | Horizontal | | * | 9967.5 | 34.8 | 16.0 | 50.8 | 82.7 | -31.9 | Peak | Horizontal | | | 4068.5 | 38.2 | 2.7 | 40.9 | 74.0 | -33.1 | Peak | Vertical | | | 4876.0 | 37.0 | 5.7 | 42.7 | 74.0 | -31.3 | Peak | Vertical | | * | 6550.5 | 35.0 | 9.5 | 44.5 | 82.7 | -38.2 | Peak | Vertical | | * | 9950.5 | 35.7 | 16.1 | 51.8 | 82.7 | -30.9 | Peak | Vertical | Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (102.7dBµV/m) or 15.209 which is higher. Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB) | Product | WIFI+BT Combo Module | Temperature | 25°C | | | |---------------|--|-------------------|------------|--|--| | Test Engineer | Dandy Li | Relative Humidity | 56% | | | | Test Site | AC1 | Test Date | 2019/08/03 | | | | Test Mode | BLE | Test Channel | 39 | | | | Remark | Average measurement was not performed if peak level lower than average limit (54dBµV/m). Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report. | | | | | | Mark | Frequency | Reading | Factor | Measure | Limit | Margin | Detector | Polarization | |------|-----------|---------|--------|----------|----------|--------|----------|--------------| | | (MHz) | Level | (dB) | Level | (dBµV/m) | (dB) | | | | | | (dBµV) | | (dBµV/m) | | | | | | | 4060.0 | 37.5 | 2.7 | 40.2 | 74.0 | -33.8 | Peak | Horizontal | | | 4910.0 | 37.0 | 5.7 | 42.7 | 74.0 | -31.3 | Peak | Horizontal | | * | 6533.5 | 35.9 | 9.6 | 45.5 | 83.2 | -37.7 | Peak | Horizontal | | * | 10154.5 | 34.5 | 16.4 | 50.9 | 83.2 | -32.3 | Peak | Horizontal | | | 4102.5 | 38.5 | 2.9 | 41.4 | 74.0 | -32.6 | Peak | Vertical | | | 4944.0 | 36.6 | 5.8 | 42.4 | 74.0 | -31.6 | Peak | Vertical | | * | 6482.5 | 35.3 | 9.4 | 44.7 | 83.2 | -38.5 | Peak | Vertical | | * | 9670.0 | 34.3 | 15.3 | 49.6 | 83.2 | -33.6 | Peak | Vertical | Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (103.2dBµV/m) or 15.209 which is higher. Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB) #### The worst case of Radiated Emission below 1GHz: | Site: AC2 | Time: 2019/08/08 - 22:41 | | | | |--|--------------------------|--|--|--| | Limit: FCC_Part15.209_RSE(3m) | Engineer: Dillon Diao | | | | | Probe: VULB9162_0.03-8GHz | Polarity: Horizontal | | | | | EUT: WIFI+BT Combo Module | Power: AC 120V/60Hz | | | | | Worst Case Mode: There is the worst case within frequency range 30MHz~1GHz | | | | | | No | Flag | Mark | Frequency | Measure | Reading | Margin | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|---------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | | 36.305 | 20.746 | 7.630 | -19.254 | 40.000 | 13.116 | QP | | 2 | | | 44.550 | 21.222 | 6.584 | -18.778 | 40.000 | 14.638 | QP | | 3 | | | 200.150 | 25.493 | 13.410 | -18.007 | 43.500 | 12.084 | QP | | 4 | | | 294.820 | 25.463 | 11.250 | -20.537 | 46.000 | 14.213 | QP | | 5 | | | 368.510 | 31.075 | 15.240 | -14.925 | 46.000 | 15.835 | QP | | 6 | | * | 835.585 | 33.217 | 10.311 | -12.783 | 46.000 | 22.906 | QP | Note 1: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report. FCC ID: H8N-AP6356S Page Number: 29 of 46 | Site: AC2 | Time: 2019/08/08 - 22:45 | | | | |--|--------------------------|--|--|--| | Limit: FCC_Part15.209_RSE(3m) | Engineer: Dillon Diao | | | | | Probe: VULB9162_0.03-8GHz | Polarity: Vertical | | | | | EUT: WIFI+BT Combo Module | Power: AC 120V/60Hz | | | | | Worst Case Mode: There is the worst case within frequency range 30MHz~1GHz | | | | | | No | Flag | Mark | Frequency | Measure | Reading | Margin | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|---------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | * | 37.240 | 31.118 | 17.840 | -8.882 | 40.000 | 13.279 | QP | | 2 | | | 54.240 | 22.166 | 7.450 | -17.834 | 40.000 | 14.716 | QP | | 3 | | | 68.800 | 19.941 | 8.768 | -20.059 | 40.000 | 11.173 | QP | | 4 | | | 368.530 | 26.358 | 10.522 | -19.642 | 46.000 | 15.836 | QP | | 5 | | | 725.005 | 30.226 | 8.723 | -15.774 | 46.000 | 21.503 | QP | | 6 | | | 897.180 | 30.839 | 7.254 | -15.161 | 46.000 | 23.585 | QP | Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report. ## 7.4. Radiated Restricted Band Edge Measurement ### 7.4.1.Test Limit ### For 15.205 requirement: Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a). | Frequency | Frequency | Frequency | Frequency | |----------------------------|---------------------|-----------------|------------------| | (MHz) | (MHz) | (MHz) | (GHz) | | 0.090 - 0.110 | 16.42 - 16.423 | 399.9 - 410 | 4.5 - 5.15 | | ¹ 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614 | 5.35 - 5.46 | | 2.1735 - 2.1905 | 16.80425 - 16.80475 | 960 - 1240 | 7.25 - 7.75 | | 4.125 - 4.128 | 25.5 - 25.67 | 1300 - 1427 | 8.025 - 8.5 | | 4.17725 - 4.17775 | 37.5 - 38.25 | 1435 - 1626.5 | 9.0 - 9.2 | | 4.20725 - 4.20775 | 73 - 74.6 | 1645.5 - 1646.5 | 9.3 - 9.5 | | 6.215 - 6.218 | 74.8 - 75.2 | 1660 - 1710 | 10.6 - 12.7 | | 6.26775 - 6.26825 | 108 - 121.94 | 1718.8 - 1722.2 | 13.25 - 13.4 | | 6.31175 - 6.31225 | 123 - 138 | 2200 - 2300 | 14.47 - 14.5 | | 8.291 - 8.294 | 149.9 - 150.05 | 2310 - 2390 | 15.35 - 16.2 | | 8.362 - 8.366 | 156.52475 - 156.525 | 2483.5 - 2500 | 17.7 - 21.4 | | 8.37625 - 8.38675 | 156.7 - 156.9 | 2690 - 2900 | 22.01 - 23.12 | | 8.41425 - 8.41475 | 162.0125 - 167.17 | 3260 - 3267 | 23.6 - 24.0 | | 12.29 - 12.293 | 167.72 - 173.2 | 3332 - 3339 | 31.2 - 31.8 | | 12.51975 - 12.52025 | 240 - 285 | 3345.8 - 3358 | 36.43 - 36.5 | | 12.57675 - 12.57725 | 322 - 335.4 | 3600 - 4400 | (²) | | 13.36 - 13.41 | | | | FCC ID: H8N-AP6356S Page Number: 31 of 46 All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209. | FCC Part 15 Subpart C Paragraph 15.209 | | | | | | | | |--|----------------|-------------------|--|--|--|--|--| | Frequency | Field Strength | Measured Distance | | | | | | | [MHz] | [uV/m] | [Meters] | | | | | | | 0.009 - 0.490 | 2400/F (kHz) | 300 | | | | | | | 0.490 - 1.705 | 24000/F (kHz) | 30 | | | | | | | 1.705 - 30 | 30 | 30 | | | | | | | 30 - 88 | 100 | 3 | | | | | | | 88 - 216 | 150 | 3 | | | | | | | 216 - 960 | 200 | 3 | | | | | | | Above 960 | 500 | 3 | | | | | | ## For RSS-Gen Section 8.10 requirement: Radiated emissions which fall in the restricted bands, as defined in Section 8.10 of RSS-Gen, must also comply with the radiated emission limits specified in Section 8.9. | Frequency | Frequency | Frequency | |---------------------|------------------------|---------------| | (MHz) | (MHz) | (GHz) | | 0.009 - 0.110 | 149.9 - 150.05 | 9.0 - 9.2 | | 0.495 - 0.505 | 156.52475
- 156.525225 | 9.3 - 9.5 | | 2.1735 - 2.1905 | 156.7 - 156.9 | 10.6 - 12.7 | | 3.020 - 3.026 | 162.0125 - 167.17 | 13.25 - 13.4 | | 4.125 - 4.128 | 167.72 - 173.2 | 14.47 - 14.5 | | 4.17725 - 4.17775 | 240 - 285 | 15.35 - 16.2 | | 4.20725 - 4.20775 | 322 - 335.4 | 17.7 - 21.4 | | 5.677 - 5.683 | 399.9 - 410 | 22.01 - 23.12 | | 6.215 - 6.218 | 608 - 614 | 23.6 - 24.0 | | 6.26775 - 6.26825 | 960 - 1427 | 31.2 - 31.8 | | 6.31175 - 6.31225 | 1435 - 1626.5 | 36.43 - 36.5 | | 8.291 - 8.294 | 1645.5 - 1646.5 | Above 38.6 | | 8.362 - 8.366 | 1660 - 1710 | | | 8.37625 - 8.38675 | 1718.8 -1722.2 | | | 8.41425 - 8.41475 | 2200 - 2300 | | | 12.29 - 12.293 | 2310 -2390 | | | 12.51975 - 12.52025 | 2655 - 2900 | | | 12.57675 - 12.57725 | 3260 - 3267 | | | 13.36 -13.41 | 3332 -3339 | | | 16.42 - 16.423 | 334.5 - 3358 | | | 16.69475 - 16.69525 | 3500 - 4400 | | | 16.80425 - 16.80475 | 4500 - 5150 | | | 25.5 - 25.67 | 5350 - 5460 | | | 37.5 - 38.25 | 7250 - 7750 | | | 73 - 74.6 | 8025 - 8500 | | | 74.8 - 75.2 | _ | | | 108 - 138 | | | All out of band emissions appearing in a restricted band as specified in Section 8.10 of the RSS-Gen must not exceed the limits shown in Table per Section 8.9. | RSS-Gen Section 8.9 | | | | | | | |---------------------|----------------|-------------------|--|--|--|--| | Frequency | Field Strength | Measured Distance | | | | | | [MHz] | [uV/m] | [Meters] | | | | | | 0.009 - 0.490 | 2400/F (kHz) | 300 | | | | | | 0.490 - 1.705 | 24000/F (kHz) | 30 | | | | | | 1.705 - 30 | 30 | 30 | | | | | | 30 - 88 | 100 | 3 | | | | | | 88 - 216 | 150 | 3 | | | | | | 216 - 960 | 200 | 3 | | | | | | Above 960 | 500 | 3 | | | | | #### 7.4.2.Test Procedure Used ANSI C63.10 Section 6.3 (General Requirements) ANSI C63.10 Section 6.6 (Standard test method above 1GHz) ## 7.4.3.Test Setting ### **Peak Field Strength Measurements** - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2. RBW = 1MHz - 3. VBW = 3MHz - 4. Detector = peak - 5. Sweep time = auto couple - 6. Trace mode = max hold - 7. Trace was allowed to stabilize ### **Average Field Strength Measurements** - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2. RBW = 1MHz - 3. VBW ≥ 1/T - 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode - 5. Detector = Peak - 6. Sweep time = auto - 7. Trace mode = max hold - 8. Allow max hold to run for at least 50 times (1/duty cycle) traces #### 7.4.4.Test Setup #### 7.4.5.Test Result | Site: AC1 | Time: 2019/08/03 - 00:25 | | | |--|--------------------------|--|--| | Limit: FCC_Part15_RE(3m) | Engineer: Dandy Li | | | | Probe: BBHA9120D_1-18GHz | Polarity: Horizontal | | | | EUT: WIFI+BT Combo Module | Power: AC120V/60Hz | | | | Note: Transmit by BLE at channel 2402MHz | | | | | No | Mark | Frequency | Measure | Reading | Margin | Limit | Factor | Туре | |----|------|-----------|----------|---------|---------|----------|--------|------| | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | 2342.300 | 59.315 | 26.772 | -14.685 | 74.000 | 32.543 | PK | | 2 | | 2390.000 | 57.080 | 24.667 | -16.920 | 74.000 | 32.413 | PK | | 3 | * | 2402.293 | 100.829 | 68.433 | N/A | N/A | 32.396 | PK | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC1 | Time: 2019/08/03 - 00:29 | |--|--------------------------| | Limit: FCC_Part15_RE(3m) | Engineer: Dandy Li | | Probe: BBHA9120D_1-18GHz | Polarity: Horizontal | | EUT: WIFI+BT Combo Module | Power: AC120V/60Hz | | Note: Transmit by BLE at channel 2402MHz | | | No | Mark | Frequency | Measure | Reading | Margin | Limit | Factor | Туре | |----|------|-----------|----------|---------|---------|----------|--------|------| | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | 2390.000 | 42.868 | 10.455 | -11.132 | 54.000 | 32.413 | AV | | 2 | * | 2402.102 | 100.180 | 67.784 | N/A | N/A | 32.395 | AV | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC1 | Time: 2019/08/03 - 00:30 | |--|--------------------------| | Limit: FCC_Part15_RE(3m) | Engineer: Dandy Li | | Probe: BBHA9120D_1-18GHz | Polarity: Vertical | | EUT: WIFI+BT Combo Module | Power: AC120V/60Hz | | Note: Transmit by BLE at channel 2402MHz | | | No | Mark | Frequency | Measure | Reading | Margin | Limit | Factor | Туре | |----|------|-----------|----------|---------|---------|----------|--------|------| | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | 2337.075 | 59.451 | 26.889 | -14.549 | 74.000 | 32.562 | PK | | 2 | | 2390.000 | 56.969 | 24.556 | -17.031 | 74.000 | 32.413 | PK | | 3 | * | 2402.245 | 93.494 | 61.098 | N/A | N/A | 32.396 | PK | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC1 | Time: 2019/08/03 - 00:31 | |--|--------------------------| | Limit: FCC_Part15_RE(3m) | Engineer: Dandy Li | | Probe: BBHA9120D_1-18GHz | Polarity: Vertical | | EUT: WIFI+BT Combo Module | Power: AC120V/60Hz | | Note: Transmit by BLE at channel 2402MHz | | 130 80 50 40 30 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 Frequency(MHz) | No | Mark | Frequency | Measure | Reading | Margin | Limit | Factor | Туре | |----|------|-----------|----------|---------|---------|----------|--------|------| | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | 2380.490 | 44.251 | 11.821 | -9.749 | 54.000 | 32.431 | AV | | 2 | | 2390.000 | 42.338 | 9.925 | -11.662 | 54.000 | 32.413 | AV | | 3 | * | 2402.102 | 92.239 | 59.843 | N/A | N/A | 32.395 | AV | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC1 | Time: 2019/08/03 - 00:32 | |--|--------------------------| | Limit: FCC_Part15_RE(3m) | Engineer: Dandy Li | | Probe: BBHA9120D_1-18GHz | Polarity: Horizontal | | EUT: WIFI+BT Combo Module | Power: AC120V/60Hz | | Note: Transmit by BLE at channel 2480MHz | | Level(dBuV/m) 2477 2478 Frequency(MHz) | No | Mark | Frequency | Measure | Reading | Margin | Limit | Factor | Туре | |----|------|-----------|----------|---------|---------|----------|--------|------| | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | * | 2480.266 | 103.169 | 70.760 | N/A | N/A | 32.409 | PK | | 2 | | 2483.500 | 56.583 | 24.168 | -17.417 | 74.000 | 32.416 | PK | | 3 | | 2492.663 | 59.306 | 26.872 | -14.694 | 74.000 | 32.433 | PK | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC1 | Time: 2019/08/03 - 00:33 | |--|--------------------------| | Limit: FCC_Part15_RE(3m) | Engineer: Dandy Li | | Probe: BBHA9120D_1-18GHz | Polarity: Horizontal | | EUT: WIFI+BT Combo Module | Power: AC120V/60Hz | | Note: Transmit by BLE at channel 2480MHz | | | No | Mark | Frequency | Measure | Reading | Margin | Limit | Factor | Туре | |----|------|-----------|----------|---------|---------|----------|--------|------| | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | * | 2480.082 | 102.473 | 70.064 | N/A | N/A | 32.408 | AV | | 2 | | 2483.500 | 43.590 | 11.175 | -10.410 | 54.000 | 32.416 | AV | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC1 | Time: 2019/08/03 - 00:34 | |--|--------------------------| | Limit: FCC_Part15_RE(3m) | Engineer: Dandy Li | | Probe: BBHA9120D_1-18GHz | Polarity: Vertical | | EUT: WIFI+BT Combo Module | Power: AC120V/60Hz | | Note: Transmit by BLE at channel 2480MHz | | Level(dBuV/m) 2477 2478 Frequency(MHz) | No | Mark | Frequency | Measure | Reading | Margin | Limit | Factor | Туре | |----|------|-----------|----------|---------|---------|----------|--------|------| | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | * | 2480.255 | 96.398 | 63.989 | N/A | N/A | 32.409 | PK | | 2 | | 2483.500 | 56.319 | 23.904 | -17.681 | 74.000 | 32.416 | PK | | 3 | | 2487.948 | 59.153 | 26.729 | -14.847 | 74.000 | 32.425 | PK | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC1 | Time: 2019/08/03 - 00:35 | | | |--|--------------------------|--|--| | Limit: FCC_Part15_RE(3m) | Engineer: Dandy Li | | | | Probe: BBHA9120D_1-18GHz | Polarity: Vertical | | | | EUT: WIFI+BT Combo Module | Power: AC120V/60Hz | | | | Note: Transmit by BLE at channel 2480MHz | | | | | No | Mark | Frequency | Measure | Reading | Margin | Limit | Factor | Туре | |----|------|-----------|----------|---------|---------|----------|--------|------| | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | * | 2480.094 | 95.577 | 63.168 | N/A | N/A | 32.408 | AV | | 2 | | 2483.500 | 43.172 | 10.757 | -10.828 | 54.000 | 32.416 | AV | | 3 | | 2495.239 | 45.189 | 12.750 | -8.811 | 54.000 | 32.439 | AV | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) Report No.: 1905RSU034-U3 ## 8. CONCLUSION The data collected relate only the item(s) tested and show that the unit is in compliance with Part 15C of the FCC rules and ISED rules. _____ The End _____ # Appendix A - Test Setup Photograph Refer to
"1905RSU034-UT" file. # Appendix B - EUT Photograph Refer to "1905RSU034-UE" file.