



# **FCC Test Report**

Part 15 subpart C

# **Client Information:**

| Applicant:                  | VVDN Technologies Pvt. Ltd.                                                 |
|-----------------------------|-----------------------------------------------------------------------------|
| Applicant add.:             | 398, Sector 8, Imt Manesar, Gurugram, Haryana 122051.                       |
| Product Information:        |                                                                             |
| EUT Name:                   | QCS610-410EVK                                                               |
| Model No.:                  | QCS610 EVK (SOM+Carrier)                                                    |
| Brand Name:                 | VVDN                                                                        |
| FCC ID:                     | 2A8AKQC610-410EVK                                                           |
| Standards:                  | FCC PART 15 Subpart C: 2013 section 15.247                                  |
| Serial Model:               | QCS410 SOM, QCS610 SOM                                                      |
| AA H                        | Electro Magnetic Test Laboratory Private Limited                            |
| Add.                        | : Plot No 174, Udyog Vihar - Phase 4, Sector 18,<br>Gurgaon, Haryana, India |
| Data of Dessints Man 28, 20 | Data of Tracts Mar 28 Mars 04 2                                             |

| Date of Receipt: | Mar. 28, 2022 | Date of Test: | Mar. 28 ~ May. 04, 2022 |
|------------------|---------------|---------------|-------------------------|
| Date of Issue:   | May. 05, 2022 | Test Result:  | Pass                    |

This device described above has been tested by AA Electro Magnetic Test Laboratory Private Limited, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

\*This test report must not be used by the client to claim product endorsement by any agency of the U.S. government.

Prepared By (+ signature) Ankur Kumar:

Reviewed & Approved by: (+ signature)

Dr. Lenin Raja (Authorized Representative) (/ lenin83/)





# 1 Contents

|   | COVER | PAGE                                                                | Page      |
|---|-------|---------------------------------------------------------------------|-----------|
| 1 |       | <b>FENTS</b>                                                        | 2         |
|   |       |                                                                     |           |
| 2 | TEST  | SUMMARY                                                             | 4         |
|   | 2.1 C | COMPLIANCE WITH FCC PART 15 SUBPART C                               | 4         |
|   | 2.2 T | 'EST LOCATION                                                       | 5         |
|   | 2.3 N | IEASUREMENT UNCERTAINTY                                             | 5         |
| 3 | TEST  | FACILITY                                                            | 6         |
|   | 3.1 D | DEVIATION FROM STANDARD                                             | 6         |
|   | 3.2 A | BNORMALITIES FROM STANDARD CONDITIONS                               | 6         |
| 4 | GENI  | ERAL INFORMATION                                                    | 7         |
|   | 4.1 C | GENERAL DESCRIPTION OF EUT                                          | 7         |
|   | 4.2 D | DESCRIPTION OF TEST CONDITIONS                                      | 9         |
|   |       | 'est Peripheral List                                                |           |
|   | 4.4 E | UT PERIPHERAL LIST                                                  |           |
| 5 | EQUI  | PMENTS LIST FOR ALL TEST ITEMS                                      |           |
| 6 |       | RESULT                                                              |           |
|   |       | INTENNA REQUIREMENT                                                 |           |
|   | 6.1.1 | Standard requirement                                                |           |
|   | 6.1.2 | EUT Antenna                                                         |           |
|   |       | Conduction Emissions Measurement                                    |           |
|   | 6.2.1 | Applied procedures / Limit                                          |           |
|   | 6.2.2 | Test procedure                                                      |           |
|   | 6.2.3 | Test results                                                        |           |
|   | 6.3 R | ADIATED EMISSIONS MEASUREMENT                                       |           |
|   | 6.3.1 | Applied procedures / Limit                                          |           |
|   | 6.3.2 | Test setup                                                          |           |
|   | 6.3.3 | Test procedure                                                      |           |
|   | 6.3.4 | Test Result                                                         |           |
|   | 6.3.5 | TEST RESULTS (Restricted Bands Requirements)                        |           |
|   | 6.4 E | ANDWIDTH TEST                                                       |           |
|   | 6.4.1 | Applied procedures / Limit                                          |           |
|   | 6.4.2 | Test procedure                                                      |           |
|   | 6.4.3 | Deviation from standard                                             |           |
|   | 6.4.4 | Test setup                                                          |           |
|   | 6.4.5 | Test results                                                        |           |
|   | 6.5 P | EAK POWER DENSITY                                                   |           |
|   | 6.5.1 | Applied procedures / Limit                                          |           |
|   |       | Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Harya | na, India |



### AA Electro Magnetic Test Laboratory Private Limited



### Report No.: AAEMT/EMC/220328-02-02

| 6.5.2   | Test procedure             |    |
|---------|----------------------------|----|
| 6.5.3   | Deviation from standard    |    |
| 6.5.4   | Test results               |    |
| 6.6 MA  | XIMUM PEAK OUTPUT POWER    |    |
| 6.6.1   | Applied procedures / Limit |    |
| 6.6.2   | Test procedure             |    |
| 6.6.3   | Deviation from standard    |    |
| 6.6.4   | Test setup                 |    |
| 6.6.5   | Test results               |    |
| 6.7 BAN | ND EDGE                    |    |
| 6.7.1   | Applied procedures / Limit |    |
| 6.7.2   | Test procedure             |    |
| 6.7.3   | Deviation from standard    |    |
| 6.7.4   | Test setup                 |    |
| 6.7.5   | Test results               |    |
| 6.8 Con | NDUCTED SPURIOUS EMISSIONS | 40 |
| 6.8.1   | Applied procedures / Limit | 40 |
| 6.8.2   | Test procedure             |    |
| 6.8.3   | Deviation from standard    | 40 |
| 6.8.4   | Test setup                 |    |
| 6.8.5   | Test results               | 41 |
|         |                            |    |





# 2 Test Summary

| Test                         | Test Requirement                                 | Standard Paragraph   | Result |  |  |
|------------------------------|--------------------------------------------------|----------------------|--------|--|--|
| Antenna Requirement          | FCC Part 15 C:2013                               | Section 15.247(c)    | PASS   |  |  |
| Conduction Emissions         | FCC Part 15 C:2013                               | Section 15.207(a)    | PASS   |  |  |
| Radiated Emissions           | FCC Part 15 C:2013                               | Section 15.247(d)    | PASS   |  |  |
| Occupied Bandwidth           | FCC Part 15 C:2013                               | Section 15.247(a)(2) | PASS   |  |  |
| Peak power density           | FCC Part 15 C:2013                               | Section 15.247(e)    | PASS   |  |  |
| Maximum Peak Output Power    | FCC Part 15 C:2013                               | Section 15.247(b)(1) | PASS   |  |  |
| Band edge                    | FCC Part 15 C:2013                               | Section 15.247(d)    | PASS   |  |  |
| Conducted Spurious Emissions | FCC Part 15 C:2013                               | Section 15.247(d)    | PASS   |  |  |
| Note:                        |                                                  |                      |        |  |  |
| (1) Reference to the         | e to the KDB 558074 D01 DTS Meas Guidance v03r03 |                      |        |  |  |
| (2) Reference to AN          | e to ANSI C63.10:2013.                           |                      |        |  |  |

# **Compliance with FCC Part 15 subpart C**





# **Test Location**

All tests were performed at:

AA Electro Magnetic Test Laboratory Private Limited

Plot No 174, Udyog Vihar - Phase 4, Sector 18, Gurgaon, Haryana, India

Tel.: +91-0124-4235350

# **Measurement Uncertainty**

All measurements involve certain levels of uncertainties, The following measurements uncertainty Levels have estimated based on ANSI C63.4:2013, the maximum value of the uncertainty as below

| No. | Item                    | Uncertainty |  |
|-----|-------------------------|-------------|--|
| 1   | Conducted Emission Test | 2.69dB      |  |
| 2   | Radiated Emission Test  | 3.09dB      |  |





# **3** Test Facility

#### The test facility is recognized, certified or accredited by the following organizations:

#### ILAC / NABL Accreditation No.: TC-8597

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by National Accreditation Board for Testing and Calibration Laboratories (NABL).

#### ILAC -A2LA Accreditation No.: 5593.01

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered American Association of Laboratory Accreditation (A2LA.)

#### FCC- Recognition No.: 137777

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Federal Communications Commission (FCC).

#### **ISED Recognition No.: 26046**

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Institute for Social and Economic Development.(ISED)

#### VCCI- Registration No: 4053

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Voluntary Control Council for Interference.(VCCI)

#### **TEC Designation No.: IND063**

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Telecommunication Engineering (TEC) Center.

#### **BIS Recognition No: 816586**

BIS recognized as per CRS scheme for IT electronics, LED control gears, Lamp, Inverter / UPS are recognized as per LRS 2020.

### **Deviation from standard**

None

### Abnormalities from standard conditions

None





# 4 General Information

| Manufacturer:                   | VVDN Technologies Pvt. Ltd.                                                                                                                                                                                |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Manufacturer Address:           | 398, Sector 8, Imt Manesar, Gurugram, Haryana 122051.                                                                                                                                                      |  |  |  |
| EUT Name:                       | QCS610-410EVK                                                                                                                                                                                              |  |  |  |
| Model No:                       | QCS610 EVK (SOM+Carrier)                                                                                                                                                                                   |  |  |  |
| Brand Name:                     | VVDN                                                                                                                                                                                                       |  |  |  |
| Serial No:                      | 12                                                                                                                                                                                                         |  |  |  |
| Derivative model No.:           | QCS410 SOM, QCS610 SOM                                                                                                                                                                                     |  |  |  |
| Operation frequency:            | 2402 MHz to 2480 MHz                                                                                                                                                                                       |  |  |  |
| NUMBER OF CHANNEL:              | 40                                                                                                                                                                                                         |  |  |  |
| Modulation Technology:          | GSFK                                                                                                                                                                                                       |  |  |  |
| Bluetooth version:              | 5.0                                                                                                                                                                                                        |  |  |  |
| Antenna Type:                   | Flexible Antenna with Cable                                                                                                                                                                                |  |  |  |
| Antenna Gain:                   | 3.2dBi                                                                                                                                                                                                     |  |  |  |
| H/W No.:                        | QCS610 SOM Board:-701-1-01948_A1<br>QCS410 SOM Board:-701-1-02751_A1<br>Carrier Board:- 701-1-01949_A3                                                                                                     |  |  |  |
| S/W No.:                        | QCS410 SOM : FW version 0.0.2<br>QCS610 SOM : FW version 0.0.8                                                                                                                                             |  |  |  |
| Power Supply Range:             | Input of EUT: Powered through Adapter<br>Input for Meanwell adapter: 110-240VAC,50/60Hz,1.4A,<br>Output: 12VDC,5A, 60W (max)                                                                               |  |  |  |
| Output power (max) :            | 6.87 dBm                                                                                                                                                                                                   |  |  |  |
| Condition of Sample on receipt: | Good                                                                                                                                                                                                       |  |  |  |
| Note:                           | <ol> <li>For a more detailed features description, please refer to the manufacturer's specifications or<br/>the User's Manual.</li> <li>Antenna gain and antenna type provided by manufacturer.</li> </ol> |  |  |  |

# **General Description of EUT**





| Description of Channel: |                 |         |                 |  |  |  |
|-------------------------|-----------------|---------|-----------------|--|--|--|
| Channel                 | Frequency (MHz) | Channel | Frequency (MHz) |  |  |  |
| 00                      | 2402            | 20      | 2442            |  |  |  |
| 01                      | 2404            | 21      | 2444            |  |  |  |
| 02                      | 2406            | 22      | 2446            |  |  |  |
| 03                      | 2408            | 23      | 2448            |  |  |  |
| 04                      | 2410            | 24      | 2450            |  |  |  |
| 05                      | 2412            | 25      | 2452            |  |  |  |
| 06                      | 2414            | 26      | 2454            |  |  |  |
| 07                      | 2416            | 27      | 2456            |  |  |  |
| 08                      | 2418            | 28      | 2458            |  |  |  |
| 09                      | 2420            | 29      | 2460            |  |  |  |
| 10                      | 2422            | 30      | 2462            |  |  |  |
| 11                      | 2424            | 31      | 2464            |  |  |  |
| 12                      | 2426            | 32      | 2466            |  |  |  |
| 13                      | 2428            | 33      | 2468            |  |  |  |
| 14                      | 2430            | 34      | 2470            |  |  |  |
| 15                      | 2432            | 35      | 2472            |  |  |  |
| 16                      | 2434            | 36      | 2474            |  |  |  |
| 17                      | 2436            | 37      | 2476            |  |  |  |
| 18                      | 2438            | 38      | 2478            |  |  |  |
| 19                      | 2440            | 39      | 2480            |  |  |  |





## **Description of Test conditions**

#### (1) EUT was tested in normal configuration (Please See following Block diagram)

| 1. Block di                                                                                                                                                                                                                                      | 1. Block diagram of EUT configuration(TX Mode) |  |     |   |          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|-----|---|----------|--|--|
|                                                                                                                                                                                                                                                  | Laptop                                         |  | EUT | ] | Spectrum |  |  |
| <ul><li>Note: 1.The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.</li><li>2. Using the notebook and the transform board to control the fixed transmitting frequency and</li></ul> |                                                |  |     |   |          |  |  |
| 2. Using the hotebook and the transform board to control the fixed transmitting frequency and other test mode. After finishing the test setting, the notebook and the transform board will be removed during measurements.                       |                                                |  |     |   |          |  |  |

(2) E.U.T. test conditions:

15.31(e): For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

(3) Test frequencies:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. If required reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

| Frequency range over  | Number of   | Location in                   |
|-----------------------|-------------|-------------------------------|
| which device operates | frequencies | the range of operation        |
| 1 MHz or less         | 1           | Middle                        |
| 1 to 10 MHz           | 2           | 1 near top and 1 near bottom  |
| More than 10 MHz      | 2           | 1 near top, 1 near middle and |
| More than 10 MHz      | 3           | 1 near bottom                 |

(4) Frequency range of radiated measurements:

According to the 15.33, the test range will be up to the tenth harmonic of the highest fundamental frequency.





# **Test Peripheral List**

| No. | Equipment | Manufacturer | EMC<br>Compliance | Model No.        | Serial No. | Power cord    | signal cable |
|-----|-----------|--------------|-------------------|------------------|------------|---------------|--------------|
| 1   | Laptop    | DELL         | N/A               | Latitude<br>3490 | 5M2Z1W2    | 2m unshielded | N/A          |

# **EUT Peripheral List**

| No. | Equipment            | Manufacturer | Model No.               | Serial No. | Power cord             | signal cable                |
|-----|----------------------|--------------|-------------------------|------------|------------------------|-----------------------------|
| 1.  | AC-DC<br>Adapter     | Meanwell     | GST60A12                | SC103R1080 | 1 m Unshielded<br>wire | N/A                         |
| 2   | Micro SD<br>Card     | Sandisk      | 32GB Class 10           | -          | -                      | -                           |
| 3   | HDMI<br>Monitor      | LAPCARE      | -                       | -          |                        | -                           |
| 4   | HDMI Cable           | -            | -                       | -          | N/A                    | 1.5m shielded<br>wire       |
| 5   | Camera<br>Module     | ECON         | e-CAM83_CUMI41<br>5_MOD | -          | N/A                    | N/A                         |
| 6   | Camera<br>Cable      | I-PEX        | 81214-530B-300-1        | -          | N/A                    | 30cm<br>unshielded<br>cable |
| 7   | USB 3.0 Pen<br>drive | Sandisk      | 16GB                    | -          | N/A                    | N/A                         |
| 8   | Ethernet<br>Cable    | -            | -                       | -          | N/A                    | 2m UTP LAN<br>Cable         |
| 9   | RF Antenna           | Molex        | 1461530050              | -          | -                      | -                           |





# 5 Equipments List for All Test Items

| No | Test Equipment                                | Manufacturer         | Model No    | Serial No  | Cal. Date  | Cal.Due<br>Date |
|----|-----------------------------------------------|----------------------|-------------|------------|------------|-----------------|
| 1  | Spectrum Analyzer     Rohde and       Schwarz |                      | FSP40       | 101163     | 2020/12/11 | 2022/12/10      |
| 2  | Loop antenna                                  | DAZE Beijing         | ZN30900C    | 18052      | 2021/01/29 | 2023/01/28      |
| 3  | Hi power horn antenna                         | DAZE Beijing         | ZN30700     | 18012      | 2021/01/30 | 2023/01/29      |
| 4  | Horn antenna                                  | DAZE Beijing         | ZN30702     | 18006      | 2021/01/30 | 2023/01/29      |
| 5  | Horn antenna                                  | DAZE Beijing         | ZN30703     | 18005      | 2021/01/30 | 2023/01/29      |
| 6  | Pre amplifier                                 | KELIANDA             | LNA-0009295 | -          | 2021/01/13 | 2023/01/13      |
| 7  | Pre amplifier                                 | KELIANDA             | CF-00218    | -          | 2021/01/13 | 2023/01/13      |
| 8  | Biconical Antenna DAZE Beijing ZN3            |                      | ZN30505C    | 17038      | 2021/01/13 | 2023/01/13      |
| 9  | EMI-RECEIVER                                  | Schwarzbeck          | FCKL        | 1528194    | 2021/01/13 | 2023/01/13      |
| 10 | Spectrum Analyzer                             | ADVANTEST            | R3361       | -          | 2021/01/13 | 2023/01/13      |
| 11 | LISN                                          | Kyoritsu             | KNW-407     | 8-1789-5   | 2021/01/13 | 2023/01/13      |
| 12 | Network-LISN                                  | SCHWAR<br>ZBECK      | NNBM8125    | 81251314   | 2021/01/13 | 2023/01/13      |
| 13 | Network-LISN                                  | SCHWAR<br>ZBECK      | NNBM8125    | 81251315   | 2021/01/13 | 2023/01/13      |
| 14 | PULSELIMITER                                  | Rohde and<br>Schwarz | ESH3-Z2     | 100681     | 2022/05/13 | 2023/05/12      |
| 15 | 50ΩCoaxialSwitch                              | DAIWA                | 1565157     | -          | 2022/05/13 | 2023/05/12      |
| 16 | 50ΩCoaxialSwitch                              | -                    | -           | -          | 2022/05/13 | 2023/05/12      |
| 17 | Wireless signal power meter                   | DARE!!               | RPR3006W    | RFSW190220 | 2021/01/13 | 2023/01/13      |



# AA Electro Magnetic Test Laboratory Private Limited



|    | Report No.: AAEWI //EWIC/220528-02-02 |                            |          |                          |            |            |  |  |
|----|---------------------------------------|----------------------------|----------|--------------------------|------------|------------|--|--|
| 18 | Signal Generator                      | KEYSIGHT                   | N5181A   | 512071                   | 2021/01/13 | 2023/01/13 |  |  |
| 19 | RF Vector Signal<br>Generator         | Keysight                   | N5182B   | 512094                   | 2021/01/13 | 2023/01/13 |  |  |
| 20 | Spectrum analyzer                     | R&S                        | FSV-40N  | 101385                   | 2021/01/13 | 2023/01/13 |  |  |
| 21 | Radio Communication<br>Tester         | R&S                        | CMW 500  | 124589                   | 2022/05/15 | 2023/05/14 |  |  |
| 22 | Signal Generator                      | Signal Generator R&S SMP02 |          | 837017/004<br>836593/005 | 2022/05/15 | 2023/05/14 |  |  |
| 23 | DC Power Supply                       | Guanker                    | JK15040K | TNC/ET/C/0<br>01/15      | 2021/02/02 | 2023/02/01 |  |  |
| 24 | Pro. Temp & Humi.<br>chamber          | MENTEK MHP-150-1C          |          | MAA081125<br>01          | 2021/02/02 | 2023/02/01 |  |  |
| 25 | Attenuators                           | AGILENT                    | 8494B    | -                        | -          | -          |  |  |
| 26 | Attenuators                           | AGILENT                    | 8495B    | -                        | -          | -          |  |  |

#### Report No.: AAEMT/EMC/220328-02-02





# 6 Test Result

### Antenna Requirement

### 6.1.1 Standard requirement

15.203 requirements: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### 6.1.2 EUT Antenna

The antenna is a Flexible Antenna with Cable which is connected to the board using a N-type to U.FL cable which is connected to the board via U.FL connector. Antenna gain is maximum 3.2dBi from 2.4GHz to 2.5 GHz





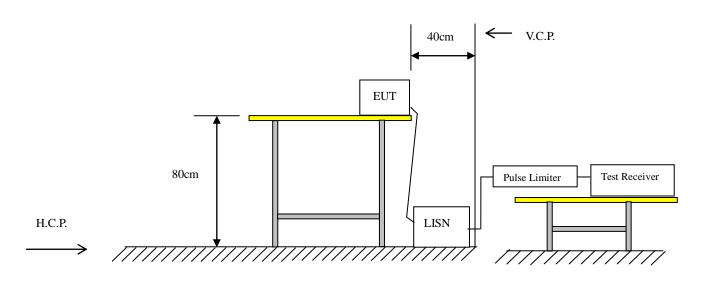
### **Conduction Emissions Measurement**

### 6.1.3 Applied procedures / Limit

| Frequency of Emission (MHz) | l Limit (dBμV) |            |
|-----------------------------|----------------|------------|
|                             | Quasi-peak     | Average    |
| 0.15-0.5                    | 66 to 56 *     | 56 to 46 * |
| 0.5-5                       | 56             | 46         |
| 5-30                        | 60             | 50         |

Note: Decreases with the logarithm of the frequency.

#### 6.1.4 Test procedure


1. The mains terminal disturbance voltage test was conducted in a shielded room.

2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a  $50\Omega/50\mu$ H +  $5\Omega$  linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.

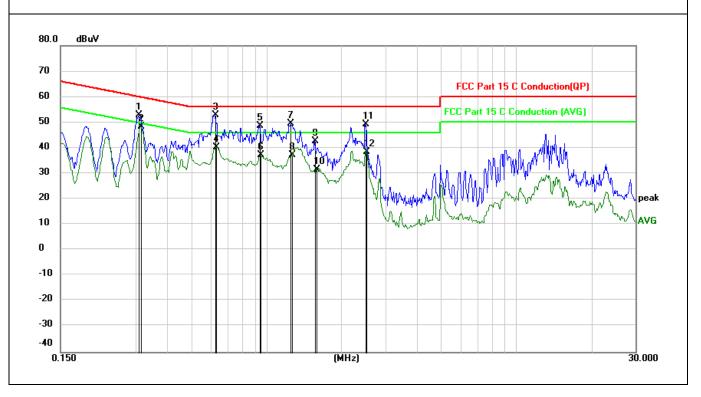
4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

#### Test setup



Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>





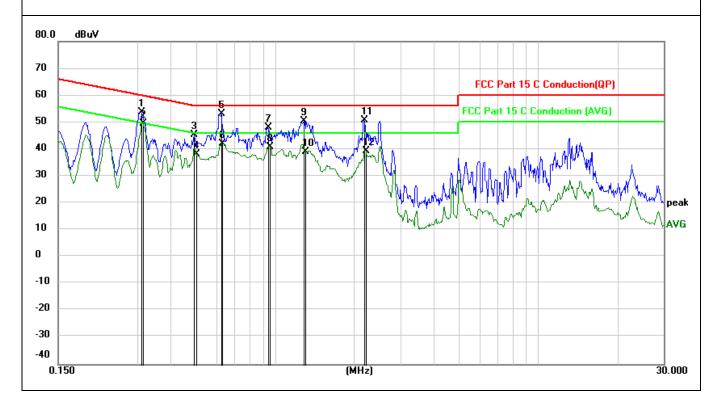

#### 6.1.5 Test results

| EUT:           | QCS610-410EVK        | Model Name. :      | QCS610 EVK (SOM+Carrier) |
|----------------|----------------------|--------------------|--------------------------|
| Temperature:   | 25 °C                | Relative Humidity: | 51%                      |
| Pressure:      | 1010hPa              | Test Date :        | 2022-03-28               |
| Test Mode:     | TX CH00 (worst case) | Phase :            | Positive                 |
| Test Voltage : | DC 12V               |                    |                          |

| No. I | Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-------|-----|--------|------------------|-------------------|------------------|-------|--------|----------|
|       |     | MHz    | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1     |     | 0.3085 | 52.46            | 0.45              | 52.91            | 60.01 | -7.10  | QP       |
| 2     | *   | 0.3134 | 48.03            | 0.45              | 48.48            | 49.88 | -1.40  | AVG      |
| 3     |     | 0.6260 | 52.39            | 0.41              | 52.80            | 56.00 | -3.20  | QP       |
| 4     |     | 0.6303 | 39.77            | 0.41              | 40.18            | 46.00 | -5.82  | AVG      |
| 5     |     | 0.9410 | 48.26            | 0.40              | 48.66            | 56.00 | -7.34  | QP       |
| 6     |     | 0.9498 | 36.87            | 0.40              | 37.27            | 46.00 | -8.73  | AVG      |
| 7     |     | 1.2424 | 49.14            | 0.40              | 49.54            | 56.00 | -6.46  | QP       |
| 8     |     | 1.2648 | 36.85            | 0.40              | 37.25            | 46.00 | -8.75  | AVG      |
| 9     |     | 1.5620 | 42.35            | 0.41              | 42.76            | 56.00 | -13.24 | QP       |
| 10    |     | 1.5933 | 31.13            | 0.41              | 31.54            | 46.00 | -14.46 | AVG      |
| 11    |     | 2.4890 | 48.85            | 0.41              | 49.26            | 56.00 | -6.74  | QP       |
| 12    |     | 2.5159 | 37.99            | 0.41              | 38.40            | 46.00 | -7.60  | AVG      |

Remark: Factor = LISN factor + Cable Loss + Pulse limiter factor.








| EUT:           | QCS610-410EVK        | Model Name. :      | QCS610 EVK (SOM+Carrier) |
|----------------|----------------------|--------------------|--------------------------|
| Temperature:   | 25 °C                | Relative Humidity: | 51%                      |
| Pressure:      | 1010hPa              | Test Date :        | 2022-03-28               |
| Test Mode:     | TX CH00 (worst case) | Phase :            | Negative                 |
| Test Voltage : | DC 12V               |                    |                          |

| No. | Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|--------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz    | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1   |     | 0.3103 | 53.41            | 0.45              | 53.86            | 59.96 | -6.10  | QP       |
| 2   | *   | 0.3140 | 49.14            | 0.45              | 49.59            | 49.86 | -0.27  | AVG      |
| 3   |     | 0.4916 | 45.06            | 0.41              | 45.47            | 56.14 | -10.67 | QP       |
| 4   |     | 0.5043 | 37.79            | 0.41              | 38.20            | 46.00 | -7.80  | AVG      |
| 5   |     | 0.6260 | 52.69            | 0.41              | 53.10            | 56.00 | -2.90  | QP       |
| 6   |     | 0.6303 | 41.75            | 0.41              | 42.16            | 46.00 | -3.84  | AVG      |
| 7   |     | 0.9410 | 47.54            | 0.40              | 47.94            | 56.00 | -8.06  | QP       |
| 8   |     | 0.9544 | 40.33            | 0.40              | 40.73            | 46.00 | -5.27  | AVG      |
| 9   |     | 1.2830 | 49.95            | 0.40              | 50.35            | 56.00 | -5.65  | QP       |
| 10  |     | 1.2963 | 38.77            | 0.40              | 39.17            | 46.00 | -6.83  | AVG      |
| 11  |     | 2.1785 | 50.39            | 0.41              | 50.80            | 56.00 | -5.20  | QP       |
| 12  |     | 2.2053 | 38.81            | 0.41              | 39.22            | 46.00 | -6.78  | AVG      |

Remark: Factor = LISN factor + Cable Loss + Pulse limiter factor.



Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u>





### **Radiated Emissions Measurement**

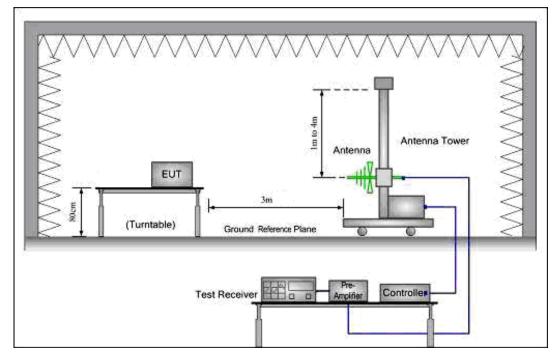
### 6.1.6 Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

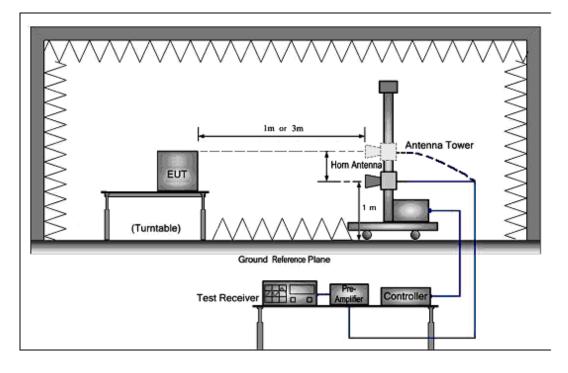
|                             | Field Stren  | gth    | Measurement       |
|-----------------------------|--------------|--------|-------------------|
| Frequency of Emission (MHz) | μV/m         | dBµV/m | Distance (meters) |
| 0.009-0.49                  | 2400/F(kHz)  |        | 300               |
| 0.49-1.705                  | 24000/F(kHz) |        | 30                |
| 1.705-30                    | 30           |        | 30                |
| 30-88                       | 100          | 40     | 3                 |
| 88-216                      | 150          | 43.5   | 3                 |
| 216-960                     | 200          | 46     | 3                 |
| Above 960                   | 500          | 54     | 3                 |

### 6.1.7 Test setup

#### **Test Configuration:**


1) 9 kHz to 30 MHz emissions:








#### 2) 30 MHz to 1 GHz emissions:



3) 1 GHz to 25 GHz emissions:







### 6.1.8 Test procedure

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter, for the test frequency of above 1GHz, horn antenna opening in the test would have been facing the EUT when rise or fall) and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. The resolution bandwidth and video bandwidth of the test receiver was 1MHz and 1MHz for Peak detection at frequency above 1GHz.
- g. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz)
- h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
- i. Repeat above procedures until all frequencies measured was complete.

For measurement at frequency above 1GHz

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For Average measurement at frequency above 1GHz.

The resolution bandwidth of the test receiver was 1MHz; due to the shortest pulse width T is 116us, according the video bandwidth should not smaller than 1/T, so the video bandwidth is 10Hz.

In 18GHz to 25GHz, The EUT was checked by Horn ANT. But the test result at least have 20dB margin. The EUT was tested in Chamber Site.





### 6.1.9 Test Result

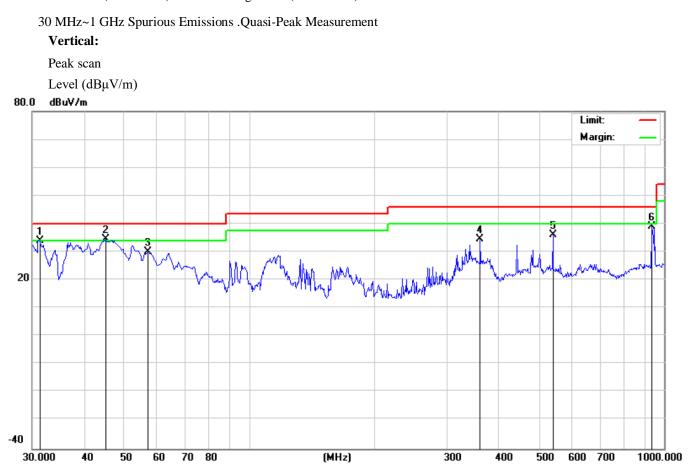
#### **Radiated Emissions Test Data Below 30MHz**

| EUT:                 | QCS610-410EVK                                            | Model Name. :      | QCS610 EVK (SOM+Carrier) |  |  |  |
|----------------------|----------------------------------------------------------|--------------------|--------------------------|--|--|--|
| Temperature:         | 23 °C                                                    | Test Data          | 2022-03-29               |  |  |  |
| Pressure:            | 1005 hPa                                                 | Relative Humidity: | 56%                      |  |  |  |
| Test Mode :          | TX                                                       | Test Voltage :     | DC 12V                   |  |  |  |
| Measurement Distance | 3 m                                                      | Frequency Range    | 9KHz to 30MHz            |  |  |  |
| RBW/VBW              | 9KHz~150KHz/RB 200Hz for QP, 150KHz~30MHz/RB 9KHz for QP |                    |                          |  |  |  |

No emission found between lowest internal used/generated frequencies to 30MHz.






#### **Radiated Emissions Test Data Below 1GHz**

| EUT:                 | QCS610-410EVK                                          | Model Name. :      | QCS610 EVK (SOM+Carrier) |  |  |  |
|----------------------|--------------------------------------------------------|--------------------|--------------------------|--|--|--|
| Temperature:         | 23 °C                                                  | Test Data          | 2022-03-29               |  |  |  |
| Pressure:            | 1005 hPa                                               | Relative Humidity: | 56%                      |  |  |  |
| Test Mode :          | TX:802.11b 2.412 GHz(worst-case)                       | Test Voltage :     | DC 12V                   |  |  |  |
| Measurement Distance | 3 m                                                    | Frequency Range    | 30MHz to 1GHz            |  |  |  |
| RBW/VBW              | 100KHz / 300KHz for spectrum, RBW=120KHz for receiver. |                    |                          |  |  |  |





#### Test at Channel 00 (2.402 GHz) in transmitting status (Worst Case)

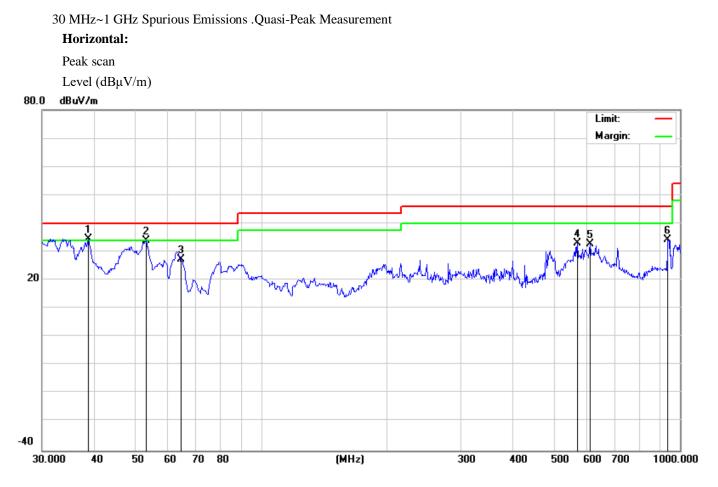


Quasi-peak measurement

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBu∨             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | İ  | 31.2892  | 45.77            | -11.68            | 34.09            | 40.00 | -5.91  | QP       |
| 2   | *  | 45.0583  | 52.59            | -18.08            | 34.51            | 40.00 | -5.49  | QP       |
| 3   |    | 57.1599  | 47.07            | -17.03            | 30.04            | 40.00 | -9.96  | QP       |
| 4   |    | 360.7699 | 43.28            | -8.77             | 34.51            | 46.00 | -11.49 | QP       |
| 5   |    | 540.2199 | 40.94            | -4.86             | 36.08            | 46.00 | -9.92  | QP       |
| 6   |    | 937.9198 | 36.38            | 2.53              | 38.91            | 46.00 | -7.09  | QP       |

Note: "\*' means the worst case

Measurement Level = Reading Level + Factor


Factor= Ant Factor + Cable Loss - Pre-amplifier

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com





#### Test at Channel 00 (2.402 GHz) in transmitting status



Quasi-peak measurement

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBu∨             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *   | 38.7299  | 53.08            | -18.49            | 34.59            | 40.00 | -5.41  | QP       |
| 2   |     | 53.2800  | 50.71            | -16.75            | 33.96            | 40.00 | -6.04  | QP       |
| 3   |     | 64.4330  | 44.68            | -17.37            | 27.31            | 40.00 | -12.69 | QP       |
| 4   |     | 569.3200 | 37.35            | -4.19             | 33.16            | 46.00 | -12.84 | QP       |
| 5   |     | 610.0596 | 35.99            | -3.34             | 32.65            | 46.00 | -13.35 | QP       |
| 6   | 9   | 937.9198 | 31.84            | 2.53              | 34.37            | 46.00 | -11.63 | QP       |

Note: '\*' means the worst case

Measurement Level = Reading Level + Factor

Factor= Ant Factor + Cable Loss - Pre-amplifier





#### Radiated Emissions Test Data Above 1GHz

| EUT:                 | QCS610-410EVK                                                 | Model Name. :                 | QCS610 EVK (SOM+Carrier) |  |  |
|----------------------|---------------------------------------------------------------|-------------------------------|--------------------------|--|--|
| Temperature:         | 25 °C                                                         | Test Data                     | 2022-03-29               |  |  |
| Pressure:            | 1010 hPa                                                      | Relative Humidity:            | 56%                      |  |  |
| Test Mode :          | TX                                                            | Test Voltage :                | DC 12V                   |  |  |
| Measurement Distance | 3 m                                                           | Frequency Range 1GHz to 25GHz |                          |  |  |
| RBW/VBW              | Spurious emission: 1MHz/1MHz for Peak, 1MHz/10Hz for Average. |                               |                          |  |  |
|                      | non-restricted band: 100KHz/300KHz for Peak.                  |                               |                          |  |  |

(a) Antenna polarization: Horizontal

| Frequency | Reading | Correct | Measure  | Limit    | Margin | Detector |
|-----------|---------|---------|----------|----------|--------|----------|
| (MHz)     | Level   | Factor  | Level    | (dBuV/m) | (dB)   | Туре     |
|           | (dBuV)  | (dB)    | (dBuV/m) |          |        |          |
| 4804      | 50.95   | 5.06    | 56.01    | 74       | -17.99 | PEAK     |
| 4804      | 39.22   | 5.06    | 44.28    | 54       | -9.72  | AVERAGE  |
| 7206      | 46.61   | 7.03    | 53.64    | 74       | -20.36 | PEAK     |
| 7206      | 35.70   | 7.03    | 42.73    | 54       | -11.27 | AVERAGE  |

#### (b) Antenna polarization: Vertical

| Frequency | Reading | Correct | Measure  | Limit    | Margin | Detector |
|-----------|---------|---------|----------|----------|--------|----------|
| (MHz)     | Level   | Factor  | Level    | (dBuV/m) | (dB)   | Туре     |
|           | (dBuV)  | (dB)    | (dBuV/m) |          |        |          |
| 4804      | 49.70   | 5.06    | 54.76    | 74       | -19.24 | PEAK     |
| 4804      | 36.64   | 5.06    | 41.70    | 54       | -12.30 | AVERAGE  |
| 7206      | 45.26   | 7.03    | 52.29    | 74       | -21.71 | PEAK     |
| 7206      | 34.95   | 7.03    | 41.98    | 54       | -12.02 | AVERAGE  |

Note:

8~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor Factor= Ant Factor + Cable Loss - Pre-amplifier Low Channel 00: 2402 MHz (Worst Case) Data rate: 1Mbps





### 6.1.10TEST RESULTS (Restricted Bands Requirements)

| EUT:         | QCS610-410EVK                                                                                                                    | Model Name. :                                                                                                                                                                                                                              | QCS610 EVK (SOM+Carrier) |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| Temperature: | 25 °C                                                                                                                            | Test Data                                                                                                                                                                                                                                  | 2022-03-29               |  |  |  |
| Pressure:    | 1010 hPa                                                                                                                         | Relative Humidity:                                                                                                                                                                                                                         | 60%                      |  |  |  |
| Test Mode :  | TX                                                                                                                               | Test Voltage :                                                                                                                                                                                                                             | DC 12V                   |  |  |  |
| RBW/VBW      | 1MHz/1MHz for Peak, 1MHz/10Hz for                                                                                                | or Average.                                                                                                                                                                                                                                |                          |  |  |  |
| Note:        | <ul> <li>measured at 2310-2390 MHz.</li> <li>2. The transmitter was setup to transmitter measured at 2483.5-2500 MHz.</li> </ul> | <ol> <li>The transmitter was setup to transmit at the lowest channel. Then the field strength was measured at 2310-2390 MHz.</li> <li>The transmitter was setup to transmit at the highest channel. Then the field strength was</li> </ol> |                          |  |  |  |

| Test  | Ant.Pol. Freq. |          | Reading |               | Ant/CF | Act      |          | Limit    |          |
|-------|----------------|----------|---------|---------------|--------|----------|----------|----------|----------|
| Mode  | H/V            | (MHz)    | Peak    | AV            | CF(dB) | Peak     | AV       | Peak     | AV       |
| Midde | 11/ V          | (dBuv) ( |         | (dBuv) CF(dB) |        | (dBuv/m) | (dBuv/m) | (dBuv/m) | (dBuv/m) |
|       | Н              | 2390     | 44.57   | 36.09         | -5.79  | 38.78    | 30.30    | 74       | 54       |
| TX    | V              | 2390     | 45.91   | 37.90         | -5.79  | 40.12    | 32.11    | 74       | 54       |
|       | Н              | 2483.5   | 46.45   | 32.60         | -4.98  | 41.47    | 27.62    | 74       | 54       |
|       | V              | 2483.5   | 46.31   | 34.69         | -4.98  | 41.33    | 29.71    | 74       | 54       |





# **BANDWIDTH TEST**

### **6.1.11** Applied procedures / Limit

15.247(a) (2) Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **6.1.12**Test procedure

- a The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW= 100KHz, VBW≧3×RBW, Sweep time = Auto, Detector Function = Peak, centering on a hopping channel Trace = Max Hold.
- d. Mark the peak frequency and -6 dB points bandwidth.

### **6.1.13**Deviation from standard

No deviation.

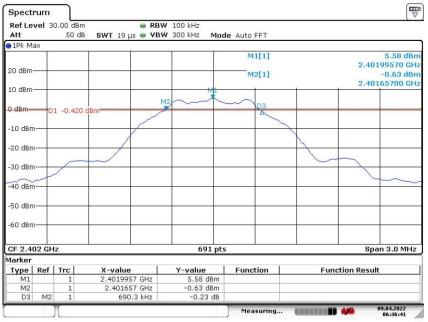
### 6.1.14Test setup



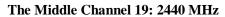


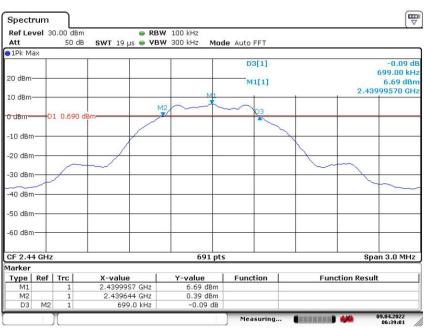


### 6.1.15Test results


| EUT:         | QCS610-410EVK | Model Name. :      | QCS610 EVK (SOM+Carrier) |
|--------------|---------------|--------------------|--------------------------|
| Temperature: | 26 °C         | Relative Humidity: | 53%                      |
| Pressure:    | 1010 hPa      | Test Power :       | DC 12V                   |
| Test Mode :  | Tx            |                    |                          |

| Test Mode | Test Channel | Frequency | 6 dB Bandwidth | Limit |
|-----------|--------------|-----------|----------------|-------|
|           | Test Chumier | (MHz)     | (KHz)          | (kHz) |
|           | CH00         | 2402      | 690.30         | ≥500  |
| Тх        | CH19         | 2440      | 699.00         | ≥500  |
|           | CH39         | 2480      | 703.30         | ≥500  |



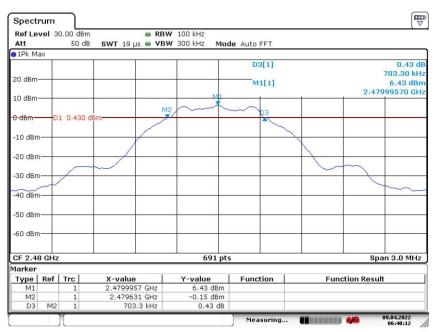








Date: 9.APR.2022 06:36:41






Date: 9.APR.2022 06:39:01





#### The High Channel 39: 2480MHz



Date: 9.APR.2022 06:40:12





# **Peak Power Density**

### **6.1.16**Applied procedures / Limit

15.247(a) (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

### **6.1.17**Test procedure

- a. The testing follows Measurement procedure 10.2 Method PKPSD of FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Connected the antenna port to the Spectrum Analyzer, set the Spectrum Analyzer as center frequency to channel center frequency, span=1.5 times the bandwith, detector = peak 3kHz≤RBW≤100kHz, VBW≥3×RBW kHz, Sweep time=Auto.
- d. Trace mode = max hold. Mark the peak.
- e. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

### **6.1.18**Deviation from standard

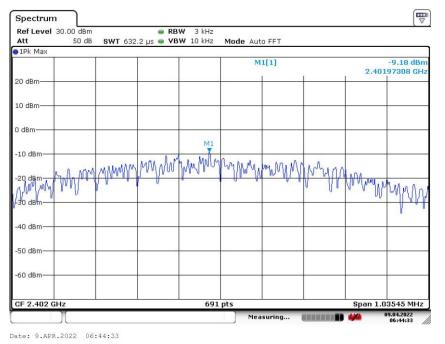
No deviation.

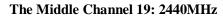


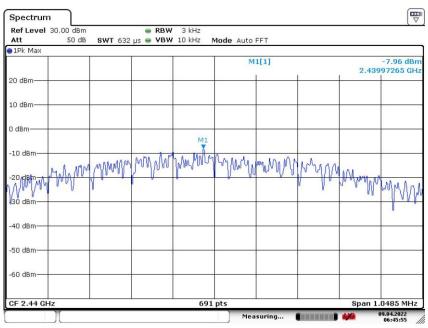


# 6.1.19Test results

| EUT:         | QCS610-410EVK | Model Name. :      | QCS610 EVK (SOM+Carrier) |
|--------------|---------------|--------------------|--------------------------|
| Temperature: | 24 °C         | Relative Humidity: | 53%                      |
| Pressure:    | 1010 hPa      | Test Power :       | DC 12V                   |
| Test Mode :  | TX            |                    |                          |


| Test<br>Mode | Channel frequency<br>(MHz) | Power Density<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Result |
|--------------|----------------------------|-----------------------------|---------------------|--------|
|              | 2402                       | -9.18                       | 8                   | Pass   |
| ТХ           | 2440                       | -7.96                       | 8                   | Pass   |
|              | 2480                       | -8.15                       | 8                   | Pass   |


Note: The cable loss is 1.0dB

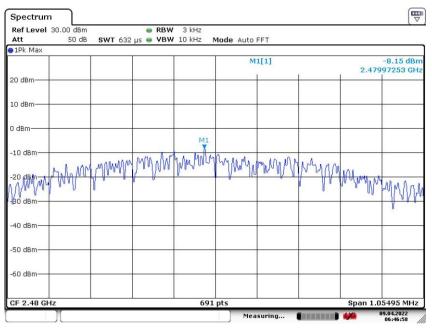





#### The Lowest Channel 00: 2402MHz








Date: 9.APR.2022 06:45:55





#### The High Channel 39: 2480MHz



Date: 9.APR.2022 06:46:58





# **Maximum Peak Output Power**

### 6.1.20 Applied procedures / Limit

15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

### 6.1.21 Test procedure

- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- <sup>c.</sup> Spectrum Setting: RBW≥Bandwidth, VBW≥3×RBW, Sweep time = Auto, Span≥3×RBW,
- d. Detector = peak. Trace mode = max hold.
- e. Use peak marker function to determine the peak amplitude level.

### 6.1.22 Deviation from standard

No deviation.

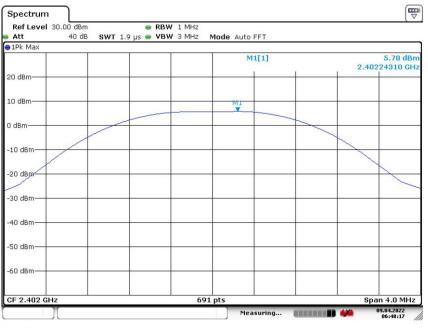
### 6.1.23Test setup







# 6.1.24Test results


| EUT:         | QCS610-410EVK | Model Name. :      | QCS610 EVK (SOM+Carrier) |
|--------------|---------------|--------------------|--------------------------|
| Temperature: | 26 °C         | Relative Humidity: | 60%                      |
| Pressure:    | 1010 hPa      | Test Voltage :     | DC 12V                   |
| Test Mode :  | TX            |                    |                          |
| Note: N/A    |               |                    |                          |

| Test Mode | Frequency | Peak Output Power<br>(dBm) | Limit<br>(dBm) | Result |
|-----------|-----------|----------------------------|----------------|--------|
|           | 2402 MHz  | 5.78                       | 30             | Pass   |
| Tx        | 2440 MHz  | 6.87                       | 30             | Pass   |
|           | 2480 MHz  | 6.68                       | 30             | Pass   |

Note: The cable loss is 1.0dB



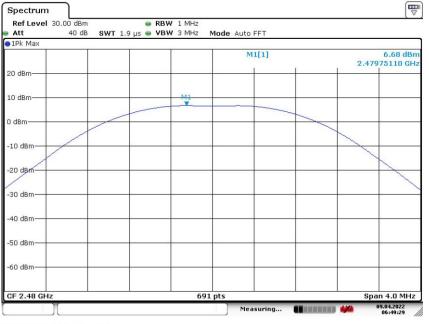





#### The Lowest Channel 00: 2402MHz

Date: 9.APR.2022 06:48:17

#### The Middle Channel 19: 2440MHz




Date: 9.APR.2022 06:49:00





#### The High Channel 39: 2480MHz



Date: 9.APR.2022 06:49:30



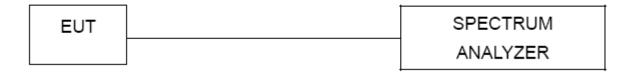


# Band edge

### **6.1.25**Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

### 6.1.26Test procedure


- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW=100kHz, VBW≧300kHz, Sweep time=Auto, Detector Function=Peak.
- d. The band edges was measured and recorded Result:

The Lower Edges attenuated more than 20dB. The Upper Edges attenuated more than 20dB.

### 6.1.27 Deviation from standard

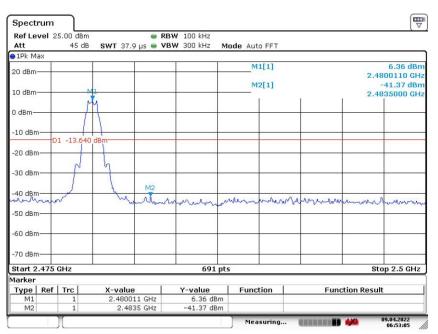
No deviation.

### 6.1.28Test setup








### 6.1.29Test results

#### Spectrum Ref Level 25.00 dBm RBW 100 kHz Att 45 dB SWT 113.8 µs 👄 VBW 300 kHz Mode Auto FFT 1Pk Max M2[1] 42.05 dBr 20 dBm 2.400000 GH M1[1] 5.39 dBn 10 dBm 2.401970 GH 0 dBm -10 dBm D1 -14.610 dBm -20 dBm -30 dBm -40 dBmhard Murne mit upperstudies mon working mot MA rh -50 dBm -60 dBm -70 dBm Stop 2.41 GHz Start 2.31 GHz 691 pts Marker Type Ref Trc Function Result Function X-value Y-value 2.40197 GHz 2.4 GHz 5.39 dBm -42.05 dBm M1 M2 9.04.2022 Measuring...

#### The Lowest Channel 00: 2402MHz

Date: 9.APR.2022 06:51:42

#### The High Channel 39: 2480MHz



Date: 9.APR.2022 06:53:05





# **Conducted Spurious Emissions**

### 6.1.30 Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

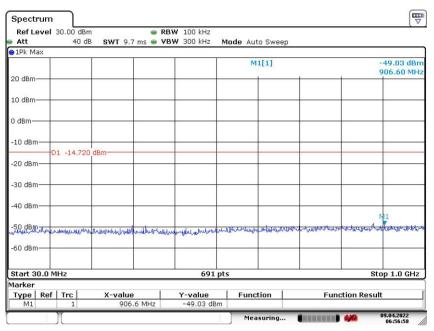
### 6.1.31 Test procedure

- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW=100kHz, VBW=300kHz, Sweep time=Auto, Detector Function=Peak, sweep points ≥ investigated frequency range/RBW.

### 6.1.32 Deviation from standard

No deviation.

### 6.1.33Test setup








### 6.1.34Test results

The Lowest Channel 00 : 2402MHz



Date: 9.APR.2022 06:56:58

|         | evel      | 30.00 dBm    |                            | <b>BW</b> 100 kHz  |               |                      |                        |
|---------|-----------|--------------|----------------------------|--------------------|---------------|----------------------|------------------------|
| Att     |           | 40 dB        | 3 SWT 20 ms 👄 V            | BW 300 kHz Mo      | de Auto Sweep |                      |                        |
| 1Pk M   | ах        |              | 1 1                        |                    |               |                      |                        |
|         |           |              |                            |                    | M1[1]         |                      | 5.28 dBr<br>2.40230 GH |
| 20 dBm  | _         |              |                            |                    | 1             | - I - I -            | 2.40200 011            |
|         |           |              |                            |                    |               |                      |                        |
| 10 dBm  |           |              |                            |                    |               | MI                   |                        |
| o in    |           |              |                            |                    |               |                      |                        |
| 0 dBm-  |           |              |                            |                    |               |                      |                        |
| -10 dBm |           |              |                            |                    |               |                      |                        |
| 10 001  | Si        | 1 -14.720    | l dBm                      |                    |               |                      |                        |
| -20 dBn |           |              |                            |                    |               |                      |                        |
|         |           |              |                            |                    |               |                      |                        |
| -30 dBn | 1-        |              |                            |                    |               |                      |                        |
|         |           |              |                            |                    |               |                      |                        |
| -40 dBn |           |              |                            |                    |               |                      |                        |
| Horaen  | Addingard | when we flat | a have and have done debut | waterelleraumature | nummenu       | and an work work was | anunannahilana         |
| -50 001 |           |              |                            |                    |               |                      |                        |
| -60 dBn | -         |              |                            |                    |               |                      |                        |
|         |           |              |                            |                    |               |                      |                        |
| Start 1 | .0 GF     | z            |                            | 691 pts            | 8             |                      | Stop 3.0 GHz           |
| larker  |           |              |                            |                    |               |                      | are are                |
| Туре    | Ref       | Trc          | X-value                    | Y-value            | Function      | Function             | Result                 |
| M1      |           | 1            | 2.4023 GHz                 | 5.28 dBm           |               |                      |                        |

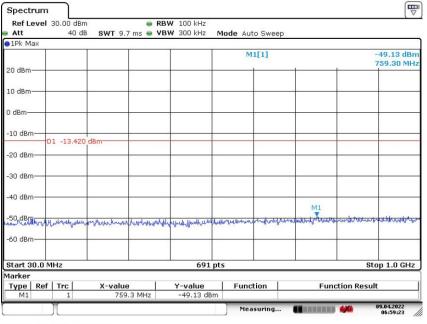
Date: 9.APR.2022 06:56:32





| Ref Level         30.00 dBm           Att         40 dB         SWT         100   | ● RBW 100 kHz<br>ms ● VBW 300 kHz Mode Auto Sweep           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1Pk Max                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   | M1[1]                                                       | -43.42 dBr<br>6.5670 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20 dBm                                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 dBm                                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 dBm                                                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -10 dBm                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -20 dBm                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -30 dBm                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -40 dBm-                                                                          | MJ                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| stalls minhours here work when                                                    | mothing inversely and the warm                              | and a support of the second and the |
| -60 dBm                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Start 3.0 GHz                                                                     | 691 pts                                                     | Stop 13.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Aarker                                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Type         Ref         Trc         X-value           M1         1         6.567 | Y-value         Function           7 GHz         -43,42 dBm | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Date: 9.APR.2022 06:57:18


| 1Pk Max      | 1          |                              |               | M1[1]            |                   | -39.69 dB    |
|--------------|------------|------------------------------|---------------|------------------|-------------------|--------------|
| 20 dBm       |            |                              |               |                  |                   | 17.7670 G    |
| :0 ubiii     |            |                              |               |                  |                   |              |
| LO dBm       |            |                              |               |                  |                   |              |
| ) dBm        |            |                              |               |                  |                   |              |
| 10 dBm       |            | 10                           |               |                  |                   |              |
| 20 dBm       | 01 -14.720 | dBm                          |               |                  |                   |              |
| 30 dBm       |            |                              |               |                  |                   |              |
| 40 dBm       |            | Star 11 Tanana               | MI            |                  |                   |              |
|              | Munch      | he make mark when the second | and have been | ware and the war | newarkananapotora | mundum       |
| 60 dBm       |            |                              |               |                  |                   |              |
|              |            |                              |               |                  |                   |              |
| Start 13.0 ( | GHz        |                              | 691 p         | ts               |                   | Stop 25.0 GH |

Date: 9.APR.2022 06:57:46





#### The Middle Channel 19: 2440MHz



Date: 9.APR.2022 06:59:23

| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | itart 1<br>arker | .0 GH | z                    |                                | 691 pt                   | 5                         |                      | Stop 3.0 GH                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|----------------------|--------------------------------|--------------------------|---------------------------|----------------------|-----------------------------------------|
| 0 dBm     2.43990 Gl       0 dBm     41       d                                                                                                                                                                                                                                               | 60 dBm           |       |                      |                                |                          |                           |                      |                                         |
| 0 dBm     2.43990 G       0 dBm     1       0 dBm     1       0 dBm     1       dBm     1       dBm     1       0 dBm     1       0 dBm     1       0 dBm     1       10 dBm     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |       | <u>n mining an d</u> | B-th shime La schill shahedhad | From the Acceleration of |                           |                      |                                         |
| 0 dBm     2.43990 Gl       0 dBm     M1       0 dBm     M1       dBm     M1       dBm     M1       0 dBm     M1       dBm     M1       0 dBm     M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |       |                      |                                | a section beaters        | - the marker has have and | WARD LINE MAL MALLAN | والمستعمل والمطالب ومسالته المسام المست |
| 2.43990 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40 dBm           |       |                      |                                |                          |                           |                      |                                         |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30 dBm           | -     |                      |                                |                          |                           |                      |                                         |
| 0 dBm | 20 dBm           | -     |                      |                                |                          |                           |                      |                                         |
| 0 dBm 2.43990 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 dBm           |       | 1 -13.420            | dBm                            |                          |                           |                      |                                         |
| 0 dBm 2.43990 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aBm—             |       |                      |                                |                          |                           |                      | 0                                       |
| 0 dBm 2.43990 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dDes             |       |                      |                                |                          |                           | T I                  |                                         |
| 2.43990 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0 dBm-          |       |                      |                                |                          |                           | 641                  |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 dBm-           | _     |                      |                                |                          | -                         | 1 1                  | 2.43990 G                               |
| 1Pk Max 6 50 dP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11 11 11         |       |                      |                                |                          | M1[1]                     |                      | 6.58 dB                                 |

Date: 9.APR.2022 06:58:58

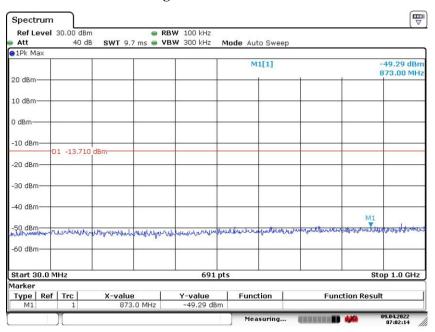


### AA Electro Magnetic Test Laboratory Private Limited



### Report No.: AAEMT/EMC/220328-02-02

| Spectrum       |            |                         |                   |             |                     |                             |
|----------------|------------|-------------------------|-------------------|-------------|---------------------|-----------------------------|
| Ref Level      |            |                         | RBW 100 kHz       |             |                     | <u> </u>                    |
| Att<br>1Pk Max | 40 (       | dB SWT 100 ms 👄         | VBW 300 kHz       | Mode Auto S | weep                |                             |
| OIPK Max       |            |                         |                   | M1[1]       | L.                  | -44.04 dBm                  |
|                |            |                         |                   | INTEL1      |                     | 6.8130 GH                   |
| 20 dBm         |            |                         |                   |             |                     |                             |
| 10 dBm         |            |                         |                   |             |                     |                             |
| 0 dBm          |            |                         |                   |             |                     |                             |
| -10 dBm        | 1 -13.42   | in dem                  |                   |             |                     |                             |
| -20 dBm        | 1 -13,42   |                         |                   |             |                     |                             |
| -30 dBm        |            |                         |                   |             |                     |                             |
| -40 dBm        |            |                         | MI                |             |                     |                             |
| web them when  | ymen whall | www.www.www.wlldreaders | native television | alunimere   | houter a United and | une multiple and the market |
| -60 dBm        |            |                         | -                 |             |                     |                             |
| Start 3.0 GH   | z          |                         | 691               | pts         |                     | Stop 13.0 GHz               |
| Marker         |            |                         |                   |             |                     |                             |
| Type Ref       |            | X-value                 | Y-value           | Function    | FL                  | Inction Result              |
| M1             | 1          | 6.813 GHz               | -44.04 dB         | Sm          |                     |                             |
|                |            |                         |                   | Measuri     | ng 🚺 🖬 🖬 🕷          | 09.04.2022                  |


Date: 9.APR.2022 06:59:49

| Ref Level 30.00 dB     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RBW 100 kHz             |                            |                                    |       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|------------------------------------|-------|
| Att 40 c               | iB 🛛 SWT 120 ms 👄 🕅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /BW 300 kHz N           | Node Auto Sweep            |                                    |       |
| 1Pk Max                | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                            | 10.5                               | 0.10  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | M1[1]                      | -40.5<br>18.114                    |       |
| 20 dBm                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            | 1 1 1                              |       |
| (                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
| 10 dBm                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
| 0 dBm                  | t. E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                            |                                    |       |
| 10 10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
| -10 dBm-01 -13.42      | 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                            |                                    |       |
| -20 dBm                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
| -20 UBIII              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
| -30 dBm                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1                      |                            |                                    |       |
| -40 dBm                | An on the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                            |                                    |       |
| 4. menteres and manual | superinder and have a server and the server of the server | worked and before about | and a charter and a contra | and man to an and the server above | where |
| -50 dBm                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
| -60 dBm                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
| Start 13.0 GHz         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 691 pt                  | s                          | Stop 25.0                          | ) GH  |
| 1arker                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                    |       |
| Type   Ref   Trc       | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y-value                 | Function                   | Function Result                    |       |
| M1 1                   | 18.114 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -40.58 dBm              |                            |                                    |       |

Date: 9.APR.2022 07:00:15







#### The High Channel 39 : 2480MHz

Date: 9.APR.2022 07:02:14



### AA Electro Magnetic Test Laboratory Private Limited



### Report No.: AAEMT/EMC/220328-02-02

| Spectrum         |                   |                  |                            |                        |                 |                          |
|------------------|-------------------|------------------|----------------------------|------------------------|-----------------|--------------------------|
| Ref Level<br>Att | 30.00 dBi<br>40 d |                  | 3W 100 kHz<br>3W 300 kHz N | 1ode Auto Sweep        |                 |                          |
| 1Pk Max          |                   |                  |                            |                        |                 |                          |
|                  |                   |                  |                            | M1[1]                  |                 | 6.29 dBm<br>2.48050 GHz  |
| 20 dBm           |                   |                  |                            |                        | 1               |                          |
| 10 dBm           |                   |                  |                            |                        | M1              |                          |
| 0 dBm            |                   |                  |                            |                        |                 |                          |
| -10 dBm-         | 01 -13.71         | 0 dBm            |                            |                        |                 |                          |
| -20 dBm          | /1 -15./1         |                  |                            |                        |                 |                          |
| -30 dBm          |                   |                  |                            |                        |                 |                          |
| -40 dBm          |                   |                  | _                          |                        |                 |                          |
| -50'88/11        | An allow          | mound mar derive | monumental                 | onto have a considered | undullereniepro | mulantintrenimenteristic |
| -60 dBm          |                   |                  |                            |                        |                 |                          |
| Start 1.0 GF     | z                 |                  | 691 p                      | ts                     |                 | Stop 3.0 GHz             |
| Marker           |                   |                  |                            |                        |                 |                          |
| Type Ref<br>M1   | Trc<br>1          | 2.4805 GHz       | Y-value<br>6.29 dBm        | Function               | Functio         | n Result                 |
|                  | )[                |                  |                            | Measuring              |                 | 09.04.2022<br>07:01:57   |

Date: 9.APR.2022 07:01:57

| Pofle      | vel 30.00 dBm            |                                                                                                                  | RBW 100 kHz           |                 |                    |                        |
|------------|--------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|--------------------|------------------------|
| Att        | 40 dB                    | i and a second |                       | Hode Auto Sweep |                    |                        |
| 1Pk Ma     | X                        |                                                                                                                  |                       |                 |                    | -                      |
|            |                          |                                                                                                                  |                       | M1[1]           |                    | -43.43 dB<br>5.8150 GF |
| 20 dBm-    |                          |                                                                                                                  |                       |                 |                    |                        |
| 10 dBm-    |                          |                                                                                                                  | _                     |                 |                    |                        |
| 0 dBm—     |                          |                                                                                                                  | _                     |                 |                    |                        |
| -10 dBm    | D1 -13.710               | dBm                                                                                                              |                       |                 |                    |                        |
| -20 dBm    | South Contraction of the |                                                                                                                  |                       |                 |                    |                        |
| -30 dBm    | -                        |                                                                                                                  |                       |                 |                    |                        |
| -40 dBm    |                          | M1                                                                                                               |                       |                 |                    |                        |
| Boldem     | in an an and a second    | Man and and and and                                                                                              | the have had and from | untur minuto    | when when when the | whenty                 |
| -60 dBm    |                          |                                                                                                                  |                       |                 |                    |                        |
| Start 3.   | 0 GHz                    |                                                                                                                  | 691 pt                | s               | S                  | top 13.0 GH:           |
| 1arker     |                          |                                                                                                                  |                       |                 | Lauren al anti-    |                        |
| Type<br>M1 | Ref Trc 1                | X-value<br>5.815 GHz                                                                                             | Y-value<br>-43.43 dBm | Function        | Function Res       | ult                    |

Date: 9.APR.2022 07:02:36



### AA Electro Magnetic Test Laboratory Private Limited



### Report No.: AAEMT/EMC/220328-02-02

| Spectrum                         |                    |                       |                            |                |                   |                           |
|----------------------------------|--------------------|-----------------------|----------------------------|----------------|-------------------|---------------------------|
| Ref Level<br>Att                 | 30.00 dBn<br>40 dB |                       | RBW 100 kHz<br>VBW 300 kHz | Mode Auto Swee | n                 |                           |
| 1Pk Max                          | 40 48              | 5 3WI 120 ms -        | YBW 300 KH2                | MOUE AUTO SWEE | P                 |                           |
|                                  |                    |                       |                            | M1[1]          |                   | -40.44 dBm<br>15.7180 GHz |
| 20 dBm                           |                    |                       |                            |                |                   |                           |
| 10 dBm                           |                    |                       |                            |                |                   |                           |
| 0 dBm                            |                    |                       | _                          |                |                   |                           |
| -10 dBm-0                        | 1 -13.710          | ) dBm                 |                            |                |                   |                           |
| -20 dBm                          |                    |                       |                            |                |                   |                           |
| -30 dBm                          |                    |                       |                            |                |                   |                           |
| -40 dBm<br>Muundunner<br>-50 dBm | hiptoder           | MI                    | www.runuuu                 | wither         | un and a superior | allowahandarin            |
| -60 dBm                          |                    |                       |                            |                |                   |                           |
| Start 13.0 G                     | Hz                 |                       | 691 p                      | ts             |                   | Stop 25.0 GHz             |
| Marker                           |                    | 4                     |                            | 1              |                   |                           |
| Type Ref<br>M1                   | Trc 1              | X-value<br>15.718 GHz | Y-value<br>-40.44 dBm      | Function       | Functio           | on Result                 |
|                                  | Y                  |                       |                            | Measuring      |                   | 09.04.2022<br>07:03:01    |

Date: 9.APR.2022 07:03:01



\*\*\*End of Report\*\*\*