

RADIO TEST REPORT FCC ID: QRP-SP-029

Product: Mobile Phone Trade Mark: AZUMI Model No.: V60 Family Model: N/A Report No.: S22031002101001 Issue Date: Mar 28. 2022

Prepared for

Azumi S.A

Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	1 TEST RESULT CERTIFICATION					
2	2 SUMMARY OF TEST RESULTS					
3	FACILITIES AND ACCREDITATIONS5					
	3.1	FACILITIES				
	3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY				
4	GE	NERAL DESCRIPTION OF EUT	6			
5	DES	SCRIPTION OF TEST MODES	8			
6	SET	UP OF EQUIPMENT UNDER TEST	9			
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM				
	6.2 6.3	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	10 11			
7		T REQUIREMENTS				
-						
	7.1 7.2	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION				
	7.2 7.3	NUMBER OF HOPPING CHANNEL				
	7.3 7.4	HOPPING CHANNEL SEPARATION MEASUREMENT				
	7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)				
	7.6	20DB BANDWIDTH TEST				
	7.7	PEAK OUTPUT POWER				
	7.8	CONDUCTED BAND EDGE MEASUREMENT				
	7.9	SPURIOUS RF CONDUCTED EMISSION	32			
	7.10	ANTENNA APPLICATION				
	7.11 FI	REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	34			
8	TES	ST RESULTS	35			
	8.1	DWELL TIME	35			
	8.2	MAXIMUM CONDUCTED OUTPUT POWER				
	8.3	OCCUPIED CHANNEL BANDWIDTH				
	8.4	CARRIER FREQUENCIES SEPARATION	55			
	8.5	NUMBER OF HOPPING CHANNEL				
	8.6	BAND EDGE				
	8.7	CONDUCTED RF SPURIOUS EMISSION	74			

1 TEST RESULT CERTIFICATION

Azumi S.A
Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama
AZUMI HK LTD
FLAT/RM 18 BLK 1 14/F GOLDEN INDUSTRIAL BUILDING 16-26 KWAI TAK STREET KWAI CHUNG, HK
Mobile Phone
V60
N/A

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test

Mar 11. 2022 ~ Mar 26, 2022

Nen lin

(Allen Liu)

Testing Engineer

Authorized Signatory

(Alex Li)

SUMMARY OF TEST RESULTS FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Mobile Phone	
Trade Mark	AZUMI	
FCC ID	QRP-SP-029	
Model No.	V60	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	0.18dBi	
Adapter	INPUT: AC 100-240V~50-60Hz 0.2A OUTPUT: DC 5.0V1A	
Battery	DC 3.8V, 3000mAh	
Power supply	DC 3.8V from battery or DC 5V from Adapter.	
HW Version	AZUMI_V60_HW_V001	
SW Version	AZUMI_V60_OM_LTM_V001	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01			
Report No.	Version	Description	Issued Date
S22031002101001	Rev.01	Initial issue of report	Mar 28, 2022
	ļ		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

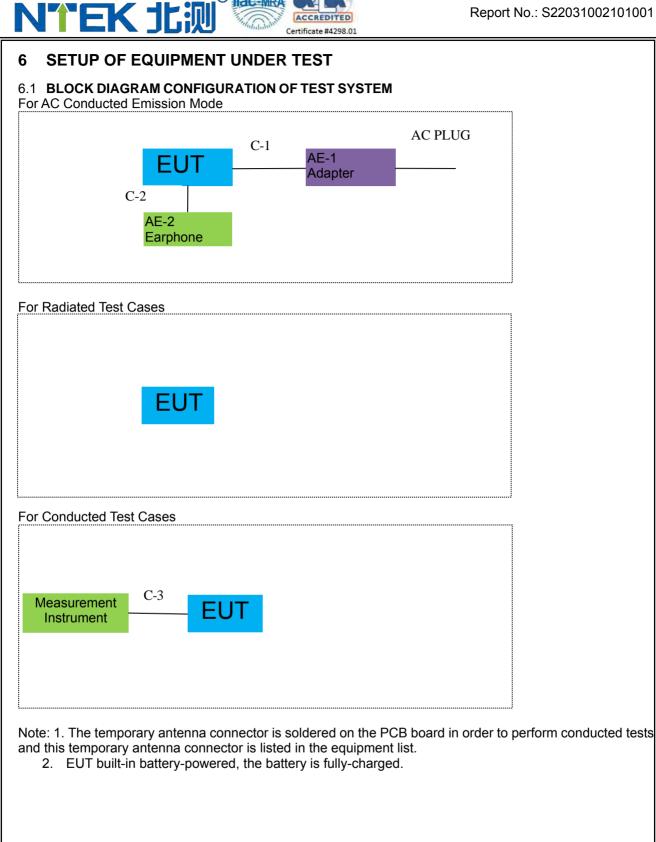
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission				
Final Test Mode Description				
Mode 1 normal link mode				
Note: AQ assumption. Quandante di Englishi anno a tanta dana dan manimum anta dan anno				


Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	0.9m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2021.03.29	2022.03.28	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2021.04.27	2022.04.26	1 year
2	LISN	R&S	ENV216	101313	2021.04.27	2022.04.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2021.04.27	2022.04.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

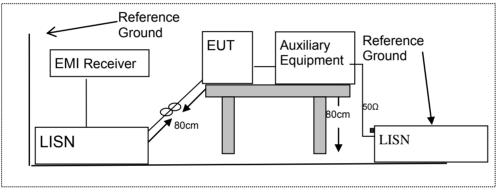
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

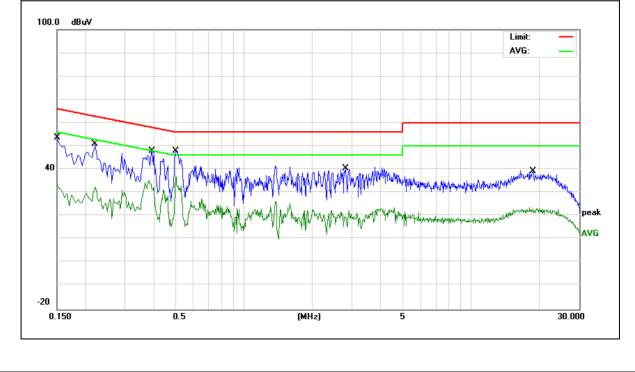
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

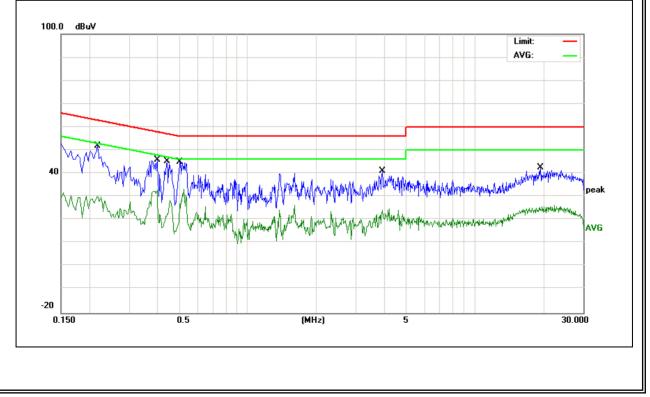

EUT:	Mobile Phone	Model Name :	V60
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
Trequency				Einito	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
0.1500	43.87	9.73	53.60	65.99	-12.39	QP
0.1500	23.88	9.73	33.61	55.99	-22.38	AVG
0.2220	41.34	9.63	50.97	62.74	-11.77	QP
0.2220	30.62	9.63	40.25	52.74	-12.49	AVG
0.3940	38.35	9.64	47.99	57.98	-9.99	QP
0.3940	28.47	9.64	38.11	47.98	-9.87	AVG
0.5020	38.45	9.64	48.09	56.00	-7.91	QP
0.5020	27.09	9.64	36.73	46.00	-9.27	AVG
2.8020	30.83	9.73	40.56	56.00	-15.44	QP
2.8020	12.94	9.73	22.67	46.00	-23.33	AVG
18.8180	29.37	9.85	39.22	60.00	-20.78	QP
18.8180	13.66	9.85	23.51	50.00	-26.49	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Mobile Phone	Model Name :	V60
Temperature:	25 °C	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

	T	I	I			
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2180	42.22	9.64	51.86	62.89	-11.03	QP
0.2180	31.38	9.64	41.02	52.89	-11.87	AVG
0.3980	36.08	9.71	45.79	57.89	-12.10	QP
0.3980	23.49	9.71	33.20	47.89	-14.69	AVG
0.4420	35.40	9.72	45.12	57.02	-11.90	QP
0.4420	25.64	9.72	35.36	47.02	-11.66	AVG
0.5020	35.27	9.74	45.01	56.00	-10.99	QP
0.5020	25.51	9.74	35.25	46.00	-10.75	AVG
3.9020	31.30	9.76	41.06	56.00	-14.94	QP
3.9020	15.17	9.76	24.93	46.00	-21.07	AVG
19.4700	32.86	9.75	42.61	60.00	-17.39	QP
19.4700	16.54	9.75	26.29	50.00	-23.71	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to roo rai (19.200, Nestheted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
Γ	0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
	0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
	1.705~30.0	30	29.5	30
	30-88	100	40	3
	88-216	150	43.5	3
	216-960	200	46	3
	Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

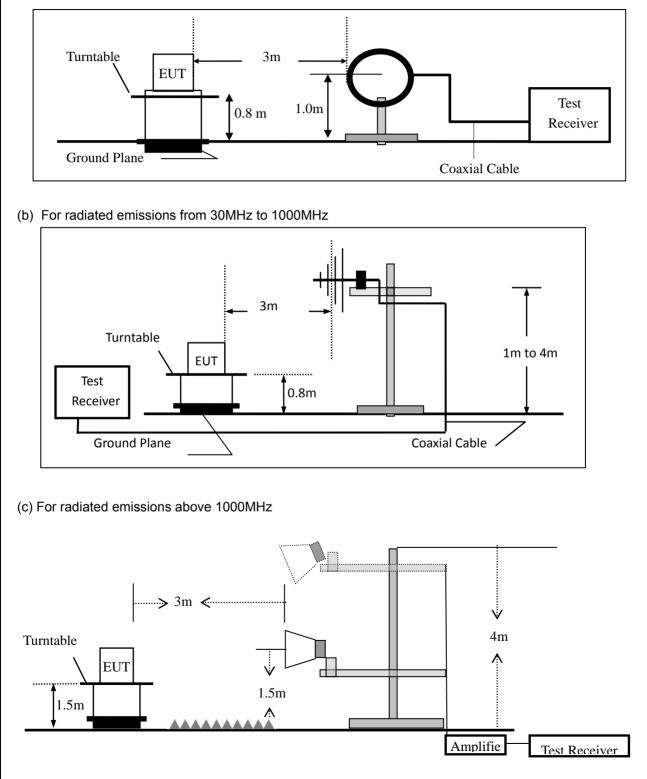
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments


'EK 北测

The Measuring equipment is listed in the section 6.3 of this test report.

ACCREDITED Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

<u> </u>					
Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average				

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth						
30 to 1000	QP	120 kHz	300 kHz						
Above 1000	Peak	1 MHz	1 MHz						
Above 1000	Average	1 MHz	1 MHz						

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

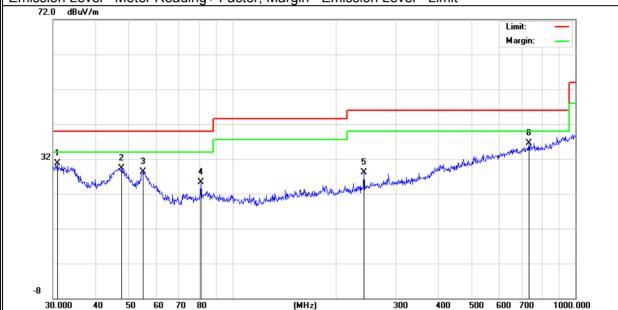
7.2.6 Test Results

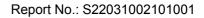
EUT:	Mobile Phone	Model No.:	V60
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK ÀV Í		PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the medulation medeo have been tested, and they


All the modulation	on modes have been tested,	, and the worst r	result was repor	rt as below:


EUT:	Mobile Phone	Model Name :	V60
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.8V		

Polar	Frequency	Meter Reading	FactorEmission LevelLimitsMargin		Remark		
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m) (dBuV/r		(dB)	
V	30.9619	7.53	23.11	30.64	40.00	-9.36	QP
V	47.4918	13.87	15.34	29.21	40.00	-10.79	QP
V	55.0274	13.88	14.35	28.23	40.00	-11.77	QP
V	80.9274	10.97	14.27	25.24	40.00	-14.76	QP
V	241.6761	8.99	19.03	28.02	46.00	-17.98	QP
V	731.9202	7.54	29.00	36.54	46.00	-9.46	QP QP QP QP QP QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remar
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.7455	6.22	23.22	29.44	40.00	-10.56	QP
Н	98.4865	14.61	15.19	29.80	43.50	-13.70	QP
Н	172.5988	6.69	16.72	23.41	43.50	-20.09	QP
Н	284.9767	7.46	20.11	27.57	46.00	-18.43	QP
Н	390.7226	7.19	23.89	31.08	46.00	-14.92	QP
Н	687.1507	8.26	28.19	36.45	46.00	-9.55	QP
						Limit: Margin:	
32 1	Mar with all have a way way in the first	dell's line of the dell's line o	wifered with deep clarate	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 Xulundurudu	6 Martinethan	un formation
-8	00 40 50 61	0 70 80	(MH	-	300 400 50	0 600 700	1000.000

∎ S	Spurious Emission Above 1GHz (1GHz to 25GHz)												
EUT:	EUT: Mobile Phone					Model No.:		V60					
Temp	erature:	20 °C	0 °C Relative Humidity: 48%				Relative Humidity:			48%			
Test N	st Mode: Mode2/Mode3/Mode4			Test	By:		Allen	Liu					
All the	e modulatio	on modes	s have b	een teste	d, ar		worst resu	lt was	repo	rt as belo	w:		
F	requency	Read Level	Cable loss	Antenna Factor		eamp actor	Emission Level	Lin	nits	Margin	Remark	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(0	dB)	(dBµV/m)	(dBµ	V/m)	(dB)			
				Low Chann	el (2	2402 N	IHz)(8-DPSI	≺)Ab	ove 10	G			
4	4804.214	62.63	5.21	35.59	44	4.30	59.13	74	.00	-14.87	Pk	Vertical	
4	4804.214	41.24	5.21	35.59	44	4.30	37.74	54	.00	-16.26	AV	Vertical	
7	7206.265	61.35	6.48	36.27	44	4.60	59.50	74	.00	-14.50	Pk	Vertical	
7	7206.265	44.43	6.48	36.27	44	4.60	42.58	54	.00	-11.42	AV	Vertical	
4	4804.109	60.98	5.21	35.55	44	4.30	57.44	74	.00	-16.56	Pk	Horizontal	
4	4804.109	42.65	5.21	35.55	44	4.30	39.11	54	.00	-14.89	AV	Horizontal	
7	7206.224	63.58	6.48	36.27	44	4.52	61.81	74	.00	-12.19	Pk	Horizontal	
7	7206.224	48.08	6.48	36.27	44	4.52	46.31	54	.00	-7.69	AV	Horizontal	
				Mid Chann	el (2	441 M	Hz)(8-DPSł	<)Ab	ove 10	3			
4	4882.396	62.36	5.21	35.66	44	4.20	59.03	74	.00	-14.97	Pk	Vertical	
4	4882.396	44.19	5.21	35.66	44	4.20	40.86	54	.00	-13.14	AV	Vertical	
7	7323.241	60.51	7.10	36.50	44	4.43	59.68	74	.00	-14.32	Pk	Vertical	
7	7323.241	47.84	7.10	36.50	44	4.43	47.01	54	.00	-6.99	AV	Vertical	
4	4882.108	61.07	5.21	35.66	44	4.20	57.74	74	.00	-16.26	Pk	Horizontal	
4	4882.108	48.63	5.21	35.66	44	4.20	45.30	54	.00	-8.70	AV	Horizontal	
7	7323.132	60.65	7.10	36.50	44	4.43	59.82	74	.00	-14.18	Pk	Horizontal	
7	7323.132	42.33	7.10	36.50		4.43	41.50		.00	-12.50	AV	Horizontal	
			ŀ	ligh Chann	el (2	2480 N	IHz)(8-DPSI	<) At	pove 1	G			
4	4960.397	66.90	5.21	35.52	44	4.21	63.42	74	.00	-10.58	Pk	Vertical	
4	4960.397	44.24	5.21	35.52	44	4.21	40.76	54	.00	-13.24	AV	Vertical	
7	7440.201	61.90	7.10	36.53	44	4.60	60.93	74	.00	-13.07	Pk	Vertical	
	7440.201	45.16	7.10	36.53	44	4.60	44.19	54	.00	-9.81	AV	Vertical	
4	4960.225	68.36	5.21	35.52	44	4.21	64.88	74	.00	-9.12	Pk	Horizontal	
4	4960.225	47.38	5.21	35.52	44	4.21	43.90	54	.00	-10.10	AV	Horizontal	
7	7440.298	61.22	7.10	36.53	44	4.60	60.25	74	.00	-13.75	Pk	Horizontal	
7	7440.298	45.01	7.10	36.53	44	4.60	44.04	54	.00	-9.96	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz											
EUT:	Mobile Ph	one		Мо	Model No.:			V60			
Temperature:	20 °C			Rel	ative Humidit	y: 4	8%				
Test Mode:	Mode2/ M	ode4		Tes	t By:	A	llen L	iu			
All the modul	ation mode	es have	been teste	ed, and	he worst res	ult was	repor	t as bel	low:		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Pream Factor	Emission Level	Limit	ts I	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	/m)	(dB)	Туре		
			3N	lbps(8-D	PSK)-Non-hop	ping					
2310.00	58.81	2.97	27.80	43.80	45.78	74		-28.22	Pk	Horizontal	
2310.00	44.51	2.97	27.80	43.80	31.48	54		-22.52	AV	Horizontal	
2310.00	58.49	2.97	27.80	43.80	45.46	74		-28.54	Pk	Vertical	
2310.00	42.50	2.97	27.80	43.80	29.47	54		-24.53	AV	Vertical	
2390.00	59.17	3.14	27.21	43.80	45.72	74		-28.28	Pk	Vertical	
2390.00	42.26	3.14	27.21	43.80	28.81	54		-25.19	AV	Vertical	
2390.00	56.72	3.14	27.21	43.80	43.27	74		-30.73	Pk	Horizontal	
2390.00	42.48	3.14	27.21	43.80	29.03	54		-24.97	AV	Horizontal	
2483.50	59.41	3.58	27.70	44.00	46.69	74		-27.31	Pk	Vertical	
2483.50	43.27	3.58	27.70	44.00	30.55	54		-23.45	AV	Vertical	
2483.50	60.23	3.58	27.70	44.00	47.51	74		-26.49	Pk	Horizontal	
2483.50	43.36	3.58	27.70	44.00	30.64	54		-23.36	AV	Horizontal	
				3Mbps(8	-DPSK)-hoppi	ng					
2310.00	54.22	2.97	27.80	43.80	41.19	74.0	0	-32.81	Pk	Vertical	
2310.00	44.19	2.97	27.80	43.80	31.16	54.0	0	-22.84	AV	Vertical	
2310.00	54.26	2.97	27.80	43.80	41.23	74.0	0	-32.77	Pk	Horizontal	
2310.00	44.36	2.97	27.80	43.80	31.33	54.0	0	-22.67	AV	Horizontal	
2390.00	51.84	3.14	27.21	43.80	38.39	74.0	0	-35.61	Pk	Vertical	
2390.00	44.58	3.14	27.21	43.80	31.13	54.0	0	-22.87	AV	Vertical	
2390.00	54.49	3.14	27.21	43.80	41.04	74.0	0	-32.96	Pk	Horizontal	
2390.00	44.88	3.14	27.21	43.80	31.43	54.0	0	-22.57	AV	Horizontal	
2483.50	52.41	3.58	27.70	44.00	39.69	74.0	0	-34.31	Pk	Vertical	
2483.50	41.68	3.58	27.70	44.00	28.96	54.0	0	-25.04	AV	Vertical	
2483.50	50.15	3.58	27.70	44.00	37.43	74.0	0	-36.57	Pk	Horizontal	
2483.50	41.21	3.58	27.70	44.00	28.49	54.0	0	-25.51	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

EUT: Mobile Phone				1	Model No.:			V60			
Femperature: 20 °C				Relative Humidity:			48%				
Test Mode: Mode2/ Mode4			Ī	Test I	est By: Allen Liu						
All the modula	ation mod	es have	been teste	∋d, a	ind the	e worst res	ult wa	is rep	ort as bel	low:	<u> </u>
Frequency	Reading Level	Cable Loss	Antenna Factor		eamp actor	Emission Level	Lir	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(0	dB)	(dBµV/m)	(dBµ	uV/m)	(dB)	Туре	
3260	60.54	4.04	29.57	44	4.70	49.45	7	74	-24.55	Pk	Vertical
3260	57.43	4.04	29.57	44	4.70	46.34	5	54	-7.66	AV	Vertical
3260	61.42	4.04	29.57	44	4.70	50.33	7	74	-23.67	Pk	Horizontal
3260	57.41	4.04	29.57	44	4.70	46.32	5	54	-7.68	AV	Horizontal
3332	64.54	4.26	29.87	44	4.40	54.27	7	74	-19.73	Pk	Vertical
3332	54.05	4.26	29.87	44	4.40	43.78	5	54	-10.22	AV	Vertical
3332	63.02	4.26	29.87	44	4.40	52.75	7	74	-21.25	Pk	Horizontal
3332	54.00	4.26	29.87	44	4.40	43.73	5	54	-10.27	AV	Horizontal
17797	44.24	10.99	43.95	43	3.50	55.68	7	74	-18.32	Pk	Vertical
17797	33.17	10.99	43.95	43	3.50	44.61	5	54	-9.39	AV	Vertical
17788	45.05	11.81	43.69	44	4.60	55.95	7	74	-18.05	Pk	Horizontal
17788	32.38	11.81	43.69	44	4.60	43.28	5	54	-10.72	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	V60
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	V60
Temperature:	20 °C	Relative Humidity:	V60 48% Allen Liu
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	V60
Temperature:	20 ℃	Relative Humidity:	V60 48% Allen Liu
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	V60
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	V60
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Mobile Phone	Model No.:	V60
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 0.18dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmission sover the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

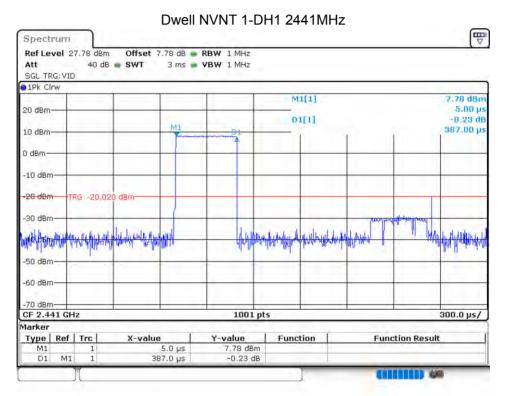
7.11.2 Frequency Hopping System

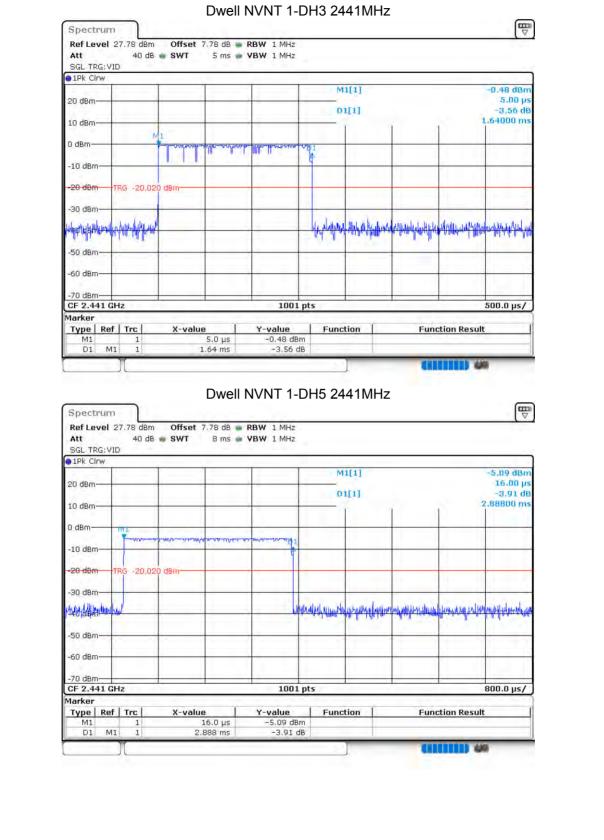
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

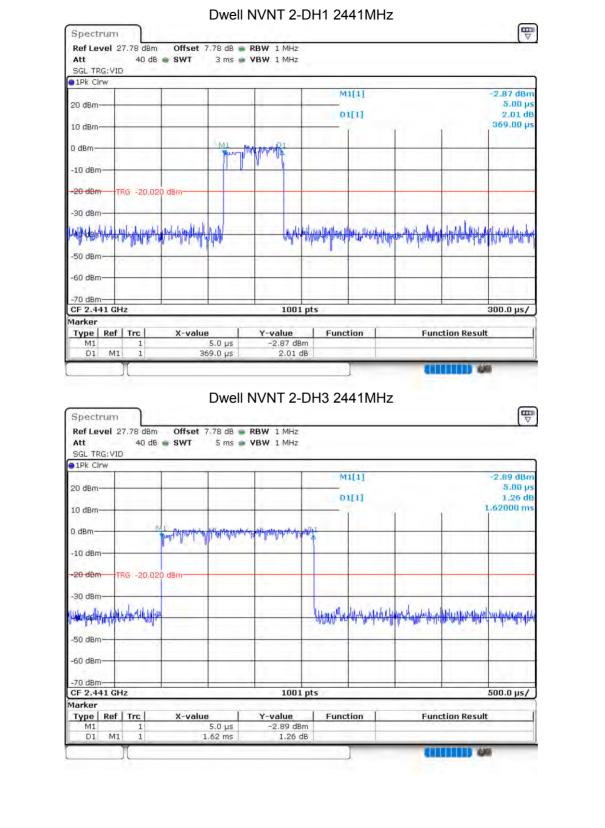
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

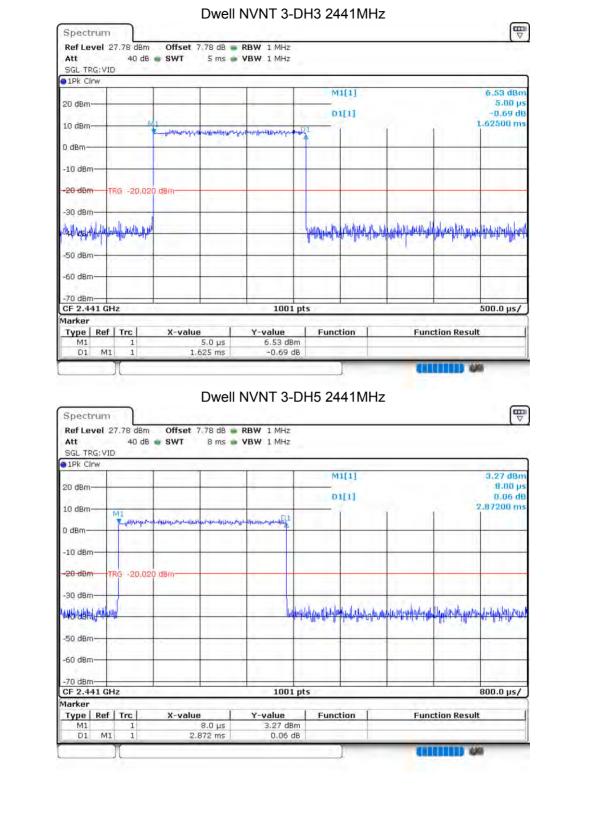
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

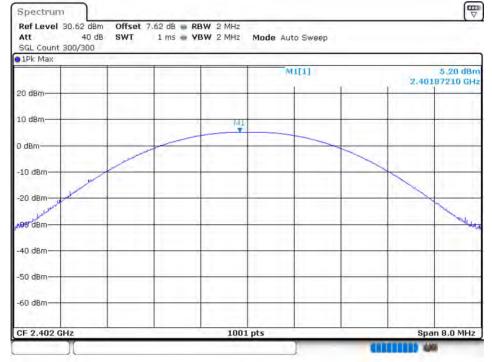

8 TEST RESULTS

8.1 DWELL TIME


O.I DWLLL							
Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.387	123.84	31600	400	Pass
NVNT	1-DH3	2441	1.64	262.4	31600	400	Pass
NVNT	1-DH5	2441	2.888	308.053	31600	400	Pass
NVNT	2-DH1	2441	0.369	118.08	31600	400	Pass
NVNT	2-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	3-DH1	2441	0.378	120.96	31600	400	Pass
NVNT	3-DH3	2441	1.625	260	31600	400	Pass
NVNT	3-DH5	2441	2.872	306.347	31600	400	Pass



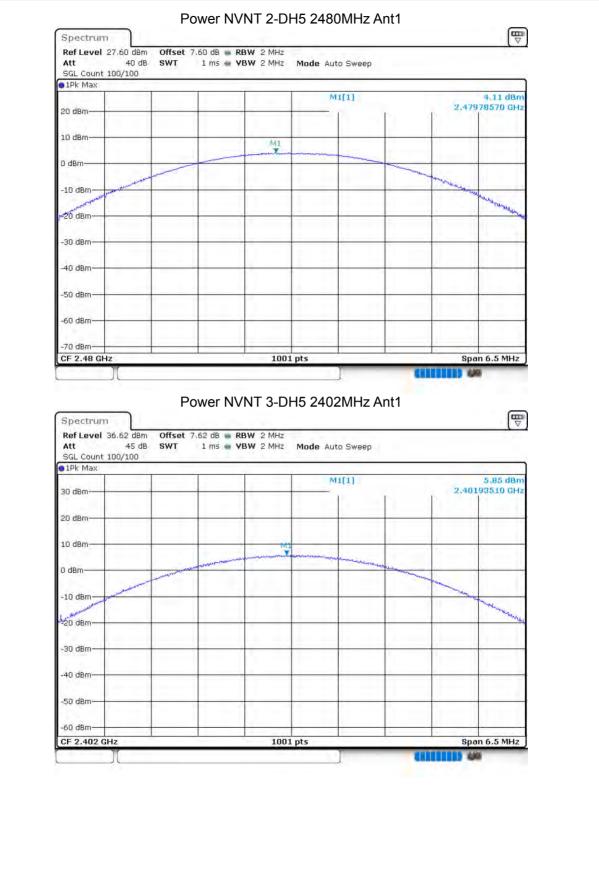
10 dBm 10 dBm 0 dBm 10 dBm		M1[1]		
10 dBm		1.1.1[1]		-5.23 dBm
D dBm		01[1]		8.00 µs -0.47 dB
Leven John Marsh mar Marsh and a stranger and the		1	1 1	2.88000 ms
ALL DAVID LONDON AND	helina hadementari Jander Hand I			_
-10 dBm	and the second s			_
-28 dBm TRG -20,020 dBm				
-30 dBm				
Ada Barren		1 Hand marte for Rolling	up her marken more all friendly were been	W. Mada burn
6400 dB WAAAA		here in the second standard in the	teri etterin aven trabilistiva, tita	enzeli i elle socielle diverte
-50 dBm				
-60 dBm				
-70 dBm-				
CF 2.441 GHz	1001	pts		800.0 µs/
Marker	I Mushus	Function	Function Do	evite I
Type Ref Trc X-value M1 1 8.0	<u>Υ-value</u> μs -5.23 dBr	n	Function Re	suit
D1 M1 1 2.88	ms -0.47 dl	3.[
			CHARACTERS	600
SGL TRG: VID 1Pk Clrw				
		111164		6 00 d0m
20 dBm		M1[1]		6.39 dBm 5.00 µs
	41	M1[1]		
10 dBm	al		1.1	5.00 µs -0,52 dB
				5.00 µs -0,52 dB
10 dBm				5.00 µs -0,52 dB
10 dBm				5.00 µs -0,52 dB
10 dBm				5.00 µs -0,52 dB
10 dBm		01[1]	a nai Atekult maxilu diret. thus	5.00 µs -0.52 dB 378.00 µs
10 dBm				5.00 µs -0.52 dB 378.00 µs
10 dBm		01[1]	rarshiphin marking the putting	5.00 µs -0.52 dB 378.00 µs
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -80 dBm -40 dBm -40 dBm		01[1]		5.00 µs -0.52 dB 378.00 µs
10 dBm		01[1]	Later of the first of the second s	5.00 µs -0.52 dB 378.00 µs
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm -40 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm		01[1]		5.00 µs -0.52 dB 378.00 µs
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm -40 dBm -60 dBm -70 dBm -70 dBm	- munta	01[1]	Function Re	5.00 µs -0.52 db 378.00 µs
10 dBm	сини 	01[1]		5.00 µs -0.52 db 378.00 µs

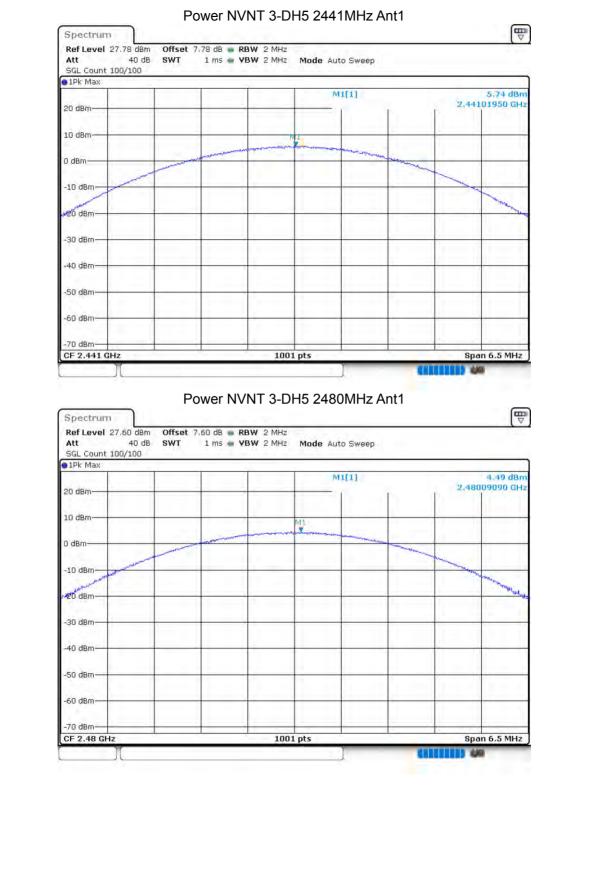


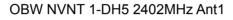
8.2 MAXIMUM CONDUCTED OUTPUT POWER

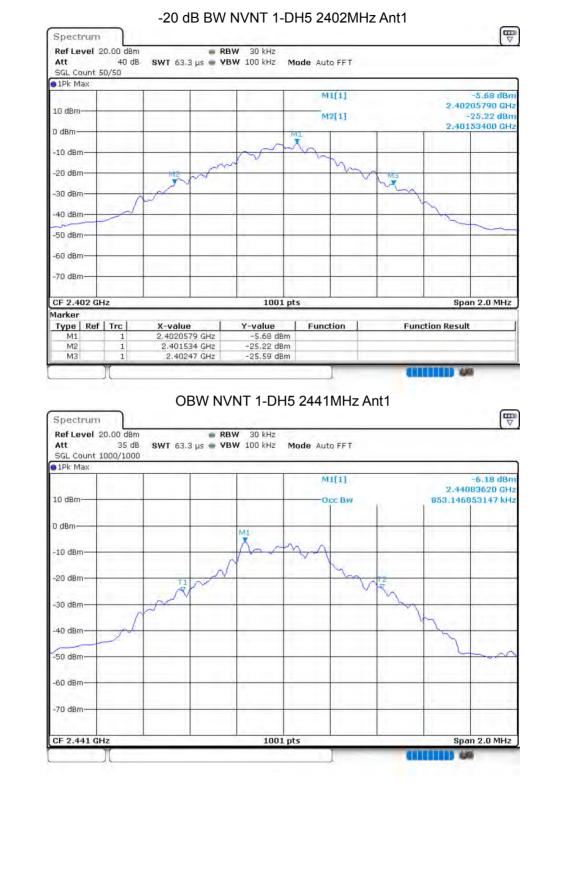
•						
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	5.202	30	Pass
NVNT	1-DH5	2441	Ant 1	3.364	30	Pass
NVNT	1-DH5	2480	Ant 1	3.81	30	Pass
NVNT	2-DH5	2402	Ant 1	5.524	21	Pass
NVNT	2-DH5	2441	Ant 1	5.317	21	Pass
NVNT	2-DH5	2480	Ant 1	4.107	21	Pass
NVNT	3-DH5	2402	Ant 1	5.854	21	Pass
NVNT	3-DH5	2441	Ant 1	5.739	21	Pass
NVNT	3-DH5	2480	Ant 1	4.488	21	Pass

Power NVNT 1-DH5 2402MHz Ant1

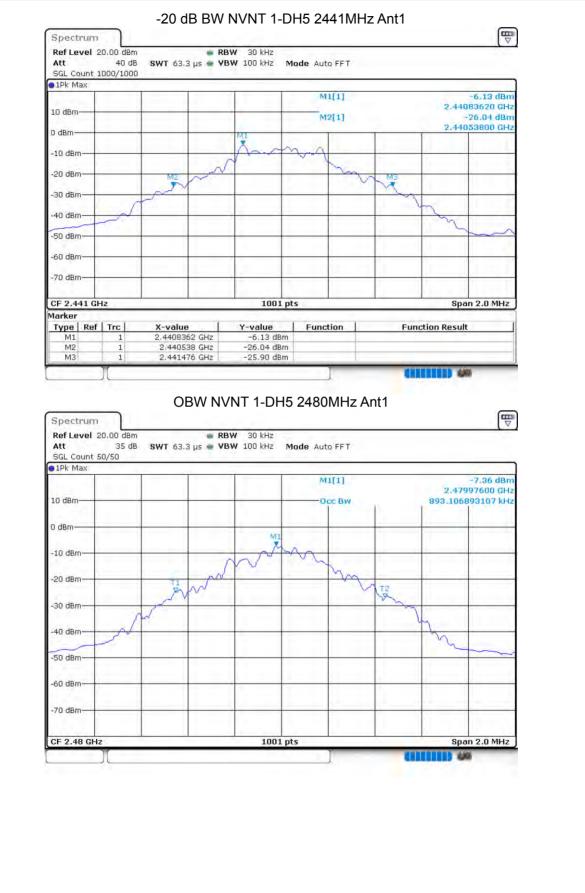


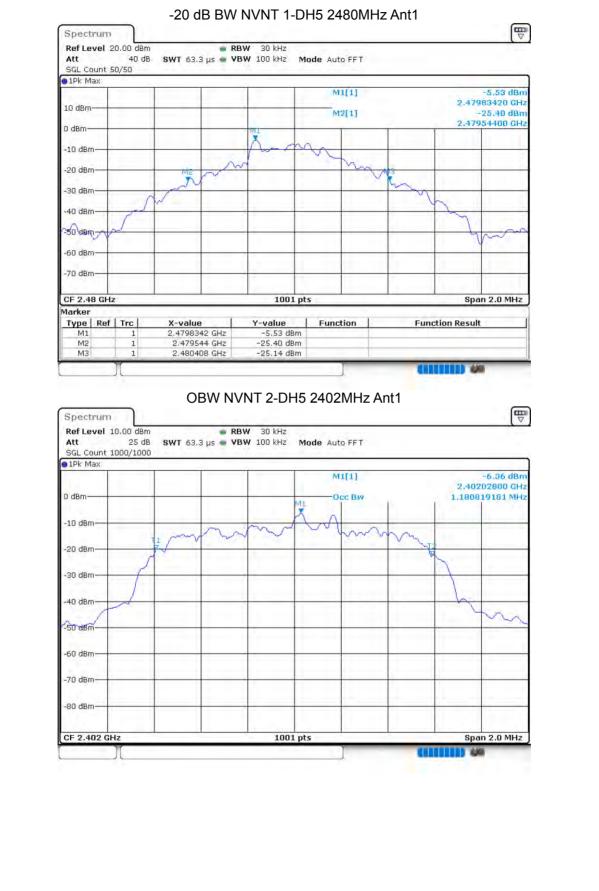


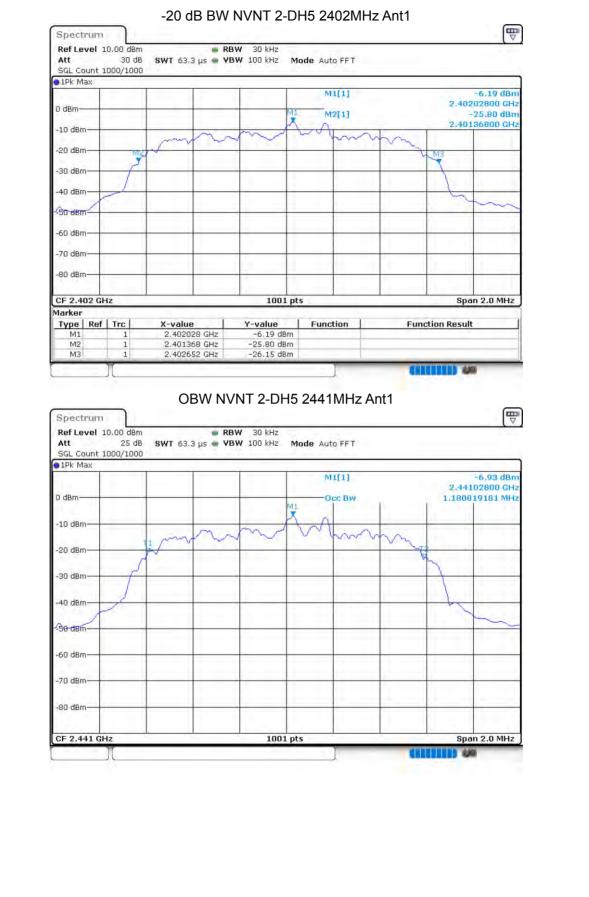


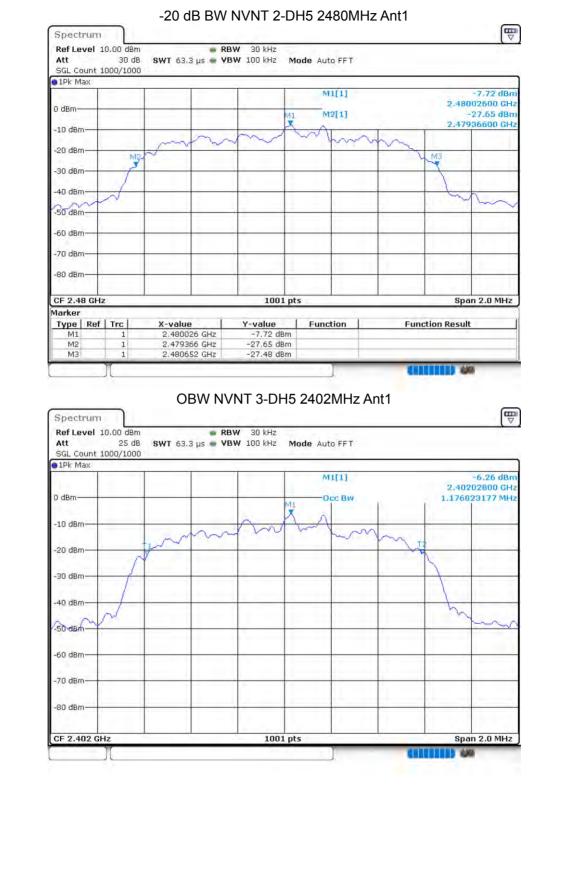

8.3 OCCUPIED CHANNEL BANDWIDTH

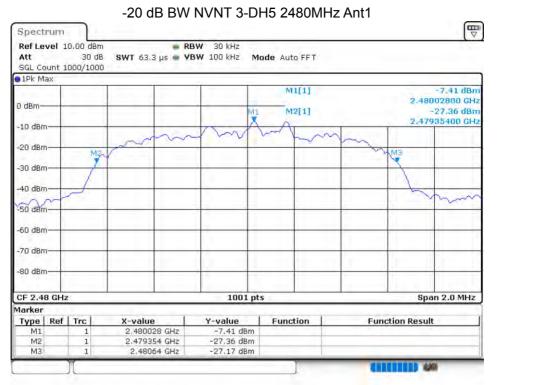
0.0 00001			••			
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.8711	0.936	Pass
NVNT	1-DH5	2441	Ant 1	0.8531	0.938	Pass
NVNT	1-DH5	2480	Ant 1	0.8931	0.864	Pass
NVNT	2-DH5	2402	Ant 1	1.1808	1.284	Pass
NVNT	2-DH5	2441	Ant 1	1.1808	1.288	Pass
NVNT	2-DH5	2480	Ant 1	1.1828	1.286	Pass
NVNT	3-DH5	2402	Ant 1	1.1768	1.29	Pass
NVNT	3-DH5	2441	Ant 1	1.1848	1.29	Pass
NVNT	3-DH5	2480	Ant 1	1.1788	1.286	Pass



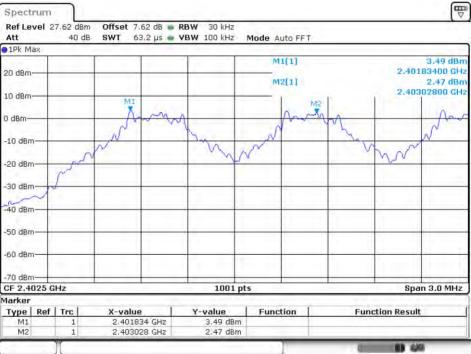


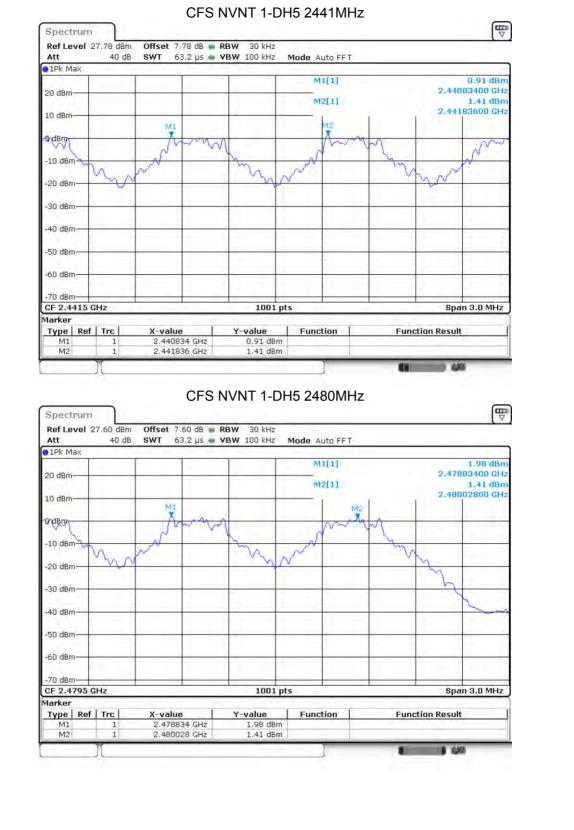




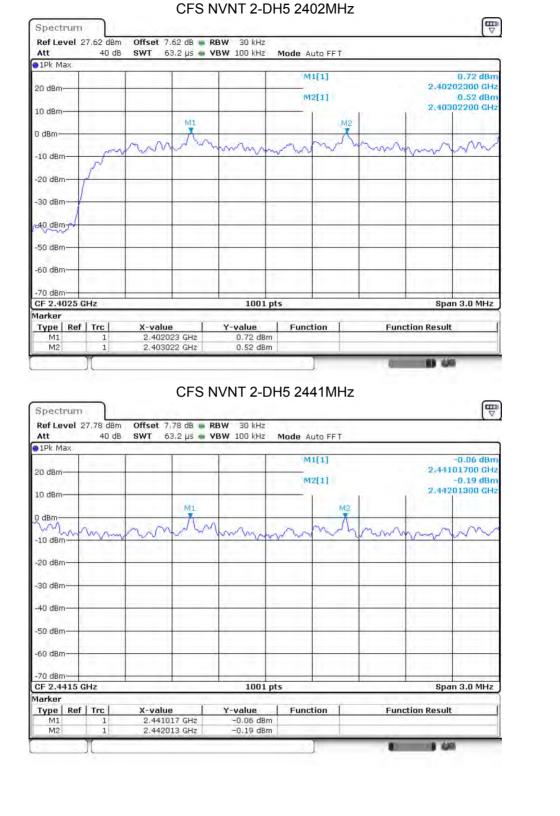


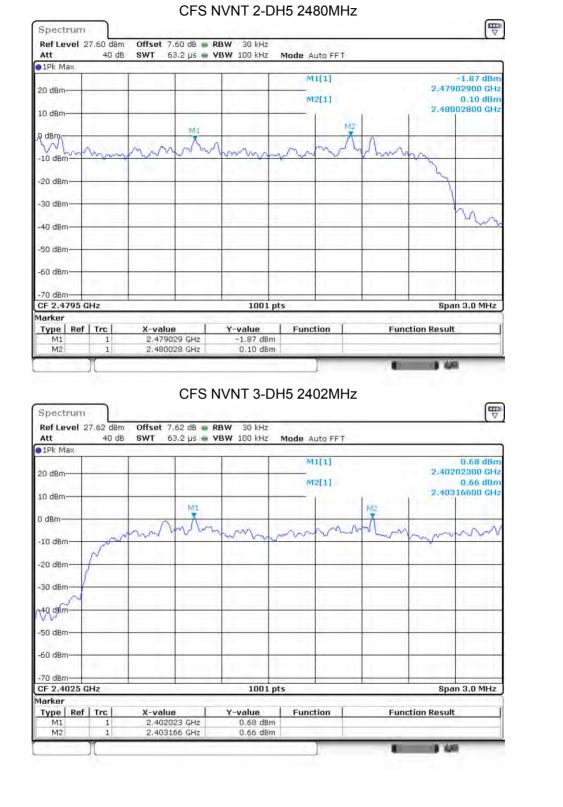


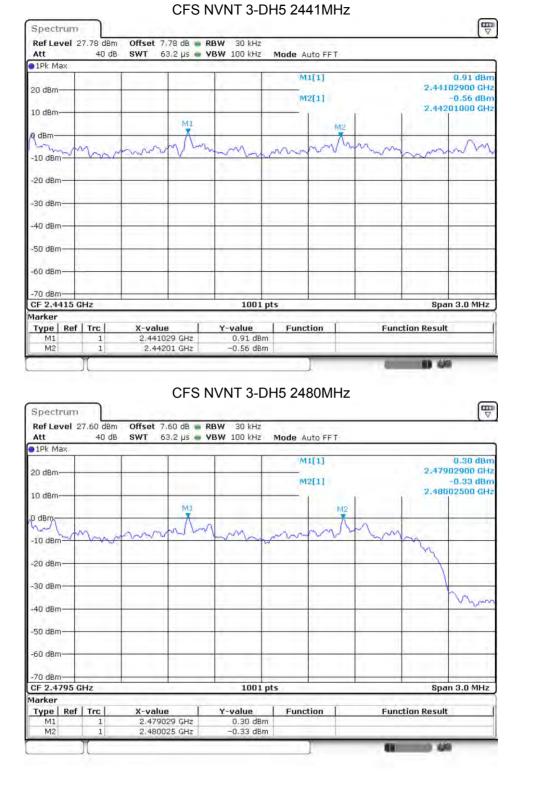


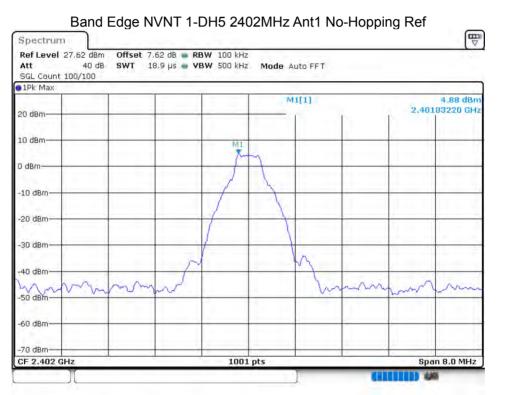

8.4 CARRIER FREQUENCIES SEPARATION

Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.834	2403.028	1.194	0.936	Pass
NVNT	1-DH5	2440.834	2441.836	1.002	0.938	Pass
NVNT	1-DH5	2478.834	2480.028	1.194	0.864	Pass
NVNT	2-DH5	2402.023	2403.022	0.999	0.856	Pass
NVNT	2-DH5	2441.017	2442.013	0.996	0.859	Pass
NVNT	2-DH5	2479.029	2480.028	0.999	0.857	Pass
NVNT	3-DH5	2402.023	2403.166	1.143	0.86	Pass
NVNT	3-DH5	2441.029	2442.01	0.981	0.86	Pass
NVNT	3-DH5	2479.029	2480.025	0.996	0.857	Pass









			CHANNI g Numbe		it Ver	dict				
	DH5		79	15						
I I-L	5115		19	10	i i a	33				
			Hor	nina N	o. NVN		5 240	2MH7		
G	Spectrun		ΠΟΡ	ping n	0. 19919		0 240			
		27.62 dBm	Offset 7.6	52 dB 🖷 RI	3W 100 kHz	2				(v)
	Att	40 dB 20000/200	SWT		BW 300 kHz		Auto Swe	ер		
	1Pk Max	20000/200	00							-
	20 dBm					N	11[1]		2.4	4,11 dBm +018370 GHz
1						M	12[1]			2.94 dBm
7	LQ ₁ dBm	******	nnn600000	10110000	nnnnnnnn	habbabbb	Innan	B B A B B A B A B A B	-	1802435 GHz M2
c	o de militat		handing	WWWW	UNUT UT		<u>ARNAN</u>	ANNALMAN	RANAAAAA	hannan
	10 diBm	AAAAAAAA	AAAAAaaaa	abanasab	INTO A RAD	ANANANAN.	YVYYYY		MANANANA	YYYYYY (
	an dha				1	1.11				
	20 dBm								1	
	30 dBm				2					
4	40 dBm			1	-				-	n
Ľ	50 dBm				-					ve v
-	60 dBm									
	70 dBm								-	0.1005.011
<u>_</u>	Start 2.4 0 Iarker	iHz			100:	l pts		-	Stop	2.4835 GHz
	Type Re	f Trc	X-value	1	Y-value	I com	ation 1	Eu	nction Resu	lit I
						Fund	Luon		netion kesu	
	M1 M2	1	2.40183 2.480243	7 GHz	4.11 de 2.94 de	3m	ction		netion Reso	
			2.40183	7 GHz	4.11 dt	3m				2
			2.40183	7 GHz	4.11 dt	3m				

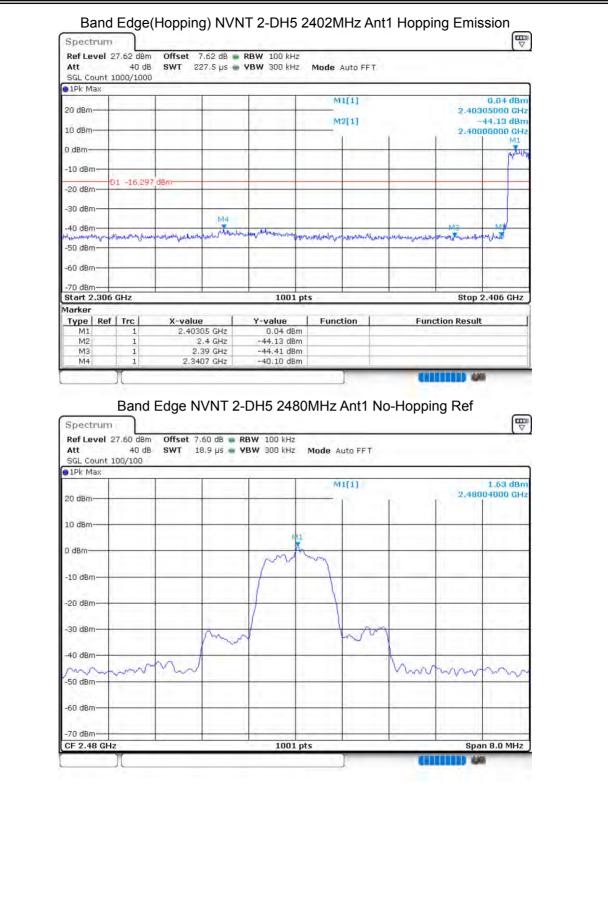
8.6 BAND EDGE

0.0 DANDL							
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-46.36	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-45.58	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-44.48	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-46.14	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-45	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-43.8	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-43.96	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-44.64	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-44.61	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-43.81	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-44.47	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-44.28	-20	Pass

Att SGL Count 1	40 dB 100/100	5W1 22	27.5 µs 🖷 1	BW SUU KH	z Mode Au	to FF I				_
1Pk Max				1	M1[1]			4.87 dB	m
20 dBm		-			M2[11		2.4	-46.22 dB	
10 dBm				1				2.4	00000001GH	
0 dBm				-			-	-		-
-10 dBm-	A 174 A4						-			1
-20 dBm	01 -15,119	dBm		-				-		-
-30 dBm					_		_			-
-40 dBm			1	M4		-		140	MO	
-50 dBm	humalitymous	ullippin man	and the production of the second	annantin	annutation	ye Helvilia and	-manufuntutur	Marian	interpreter la	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm				·						1
				· · · · · · ·						1
-70 dBm	GHz			1001	pts	1		Sto	p 2.406 GHz	3
Marker Type Ref	Tre	X-value		Y-value	Functio	n I	Fun	tion Resi	alt	
M1 M2	1 1	2,401	35 GHz .4 GHz	4.87 dB -46.22 dB	m		1 4115			
MЗ	1	2.3	39 GHz	-47.09 dB	m					
M4	1	2,34	39 GHz	-41.49 dB	m	- L.			AME	
	The						-			
Spectrum Ref Level 2 Att SGL Count 8	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	o FFT	nt1 Ho	pping	Ē	
Spectrum Ref Level 2 Att SGL Count 8	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	- 	o FFT	.nt1 Hop			
Spectrum Ref Level 2 Att SGL Count 6 1Pk Max	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT 1]	.nt1 Hoj		5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	o FFT	.nt1 Hop		5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT 1]			5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT 1]			5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT			5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm 0 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT	.nt1 Hoj		5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT			5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT			5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT			5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT			5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 I PK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT			5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 RI	BW 100 kHz	Mode Auto	0 FFT			5.09 dB	
Spectrum Ref Level 2 Att SGL Count 8 PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB 🐞 RI	BW 100 kHz		0 FFT		2.4	5.09 dB	m iz
Spectrum Ref Level 2 Att SGL Count 8 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB 🐞 RI	BW 100 kHz BW 300 kHz		0 FFT		2.4	5.09 dBi	m iz
Spectrum Ref Level 2 Att SGL Count 8 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB 🐞 RI	BW 100 kHz BW 300 kHz		0 FFT	Int1 Ho	2.4	5.09 dBi	m iz
Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB 🐞 RI	BW 100 kHz BW 300 kHz		0 FFT		2.4	5.09 dBi	m iz

Att SGL Count 100			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Mode Auto FFT			
	1	1	1-1	M1[1]		4.52 dB	
20 dBm				M2[1]		2.40585000 GF -43.48 dB	
10 dBm					() (2.40000000 GH	12
0 dBm					-		Ĥ
-10 dBm-	14,914 dBm						N.
-20 dBm-	14/914 08/0						
-30 dBm		-			-		-
-40 dBm		1. John La	M4.	1	ИЗ	MP	5
-50 dBm	secon them and the second second	how and the state of the state	which a managed by	-hours and have been a second	and pursues a prime with the say	una marchard	
-60 dBm					i		
-70 dBm					· · · · · · · · · · · · · · · · · · ·		
Start 2.306 GH	z	1	1001 p	ts		Stop 2.406 GHz	2
Marker Type Ref T	rc X-va	lue 1	Y-value	Function	Function	Result	1
M1 M2		0585 GHz 2.4 GHz	4.52 dBm -43.48 dBm		, 300000		
M3	1 2	2.387 GHz	-42.93 dBm				
M4	1 2.	3516 GHz	-40.49 dBm	7		AND AND	
B Spectrum Ref Level 27.6 Att SGL Count 100, 1Pk Max	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz	Mode Auto FFT	No-Hopping	Ę	
Spectrum Ref Level 27.6 Att SGL Count 100,	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz	A 2011 10	No-Hopping		m
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm-	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, 1Pk Max	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm-	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm- 10 dBm- 0 dBm-	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm- 10 dBm-	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm- 10 dBm- 0 dBm-	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, ● 1Pk Max 20 dBm 10 dBm 0 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	m
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dBi	
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz VBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dB/ 2,4800000 GH	
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz VBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dB/ 2,4800000 GH	
Spectrum Ref Level 27.6 Att SGL Count 100, • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	0 dBm Offset 40 dB SWT	7.60 dB 🖷 🖡	RBW 100 kHz VBW 300 kHz	Mode Auto FFT	No-Hopping	2,91 dB/ 2,4800000 GH	

• 1Pk Max		1	-					
20 dBm	_		1	M	1[1]		2.480	3.16 dBm 15000 GHz
10 dBm-				M	2[1]		-	-44.66 dBm
					1	1	2.463	150000 GHz
	-		1	1	1		1	
-10 dBm-	091.dBm		1					
-20 dBm-01-17,	191 UDIII		1 *			-		1
-30 dBm	Ma				1			-
-40 dBmie		man product	approximation provident	There is the set for	Surdent service	an an and at the second	M. M. Min Mark	the same to a
-50 dBm	You of a survey you day	and and	- Delandrane de altra	how ho have when he	key were Art	Land Low and Subsection	No contra contra	Contactional
-60 dBm			-	-	-	-		
-70 dBm-	_				1			1
Start 2.476 GHz Marker		-	1001	pts	-	-	Stop	2.576 GHz
Type Ref Trc	X-valu		Y-value	Fund	tion	Fund	tion Result	-
M1 1 M2 1	2.48	015 GHz 335 GHz	3.16 dB -44.66 dB	m				
M3 1 M4 1		2.5 GHz 966 GHz	-45.84 dB -41.58 dB		-			
	dge(Hop	ping) N	IVNT 1-D RBW 100 kHz YBW 300 kHz	0H5 248 Mode A	uto FF T	Ant1 Ho	pping R	ef
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A		Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 • 1Pk Max 20 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 1Pk Max 20 dBm 10 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 • 1Pk Max 20 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 1Pk Max 20 dBm 10 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm 10 dBm 10 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm 10 dBm 10 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count B000/80 • IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count B000/80 • IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count B000/80 • IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dge(Hop	ping) N	IVNT 1-D	0H5 248 Mode A	uto FF T	Ant1 Ho		₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 • IPk Max 20 dBm 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dge(Hop	ping) N	IVNT 1-D	PH5 248	uto FF T	Ant1 Ho	2.476	₩ 3.81 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Court 8000/80 1Pk Max 20 dBm 1D dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dge(Hop	ping) N		PH5 248	uto FF T	Ant1 Ho	2.476	3.81 dBm 83520 GHz
Band E Spectrum Ref Level 27.60 d Att 40 SGL Court 8000/80 1Pk Max 20 dBm 1D dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dge(Hop	ping) N		PH5 248	uto FF T	Ant1 Ho	2.476	3.81 dBm 83520 GHz
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 8000/80 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dge(Hop	ping) N		PH5 248	uto FF T	Ant1 Ho	2.476	3.81 dBm 83520 GHz



20 dBm 2.4788500 M2[1] -44.6 2.47885000 M2[1] -44.6 2.4835000 M2[1] -44.6 2.4835000 D1 -16.193 dBm - -20 dBm - -30 dBm - -30 dBm - -40 dBm - -50 dBm - -50 dBm - -70 dBm - -	63 dBm 000 GHz
10, dBm 2.4835000 10, dBm 2.4835000 10, dBm 2.4835000 10, dBm 1 -20, dBm 1 -30, dBm 1 -40, dBm2 144 M3 -50, dBm 1 -60, dBm 1 -70, dBm 1 -70, dBm 1 11, 1, 2, 47885, GHz 3.61 dBm M1 1 12, 47885, GHz 3.61 dBm M3 1 2, 47895, GHz -44, 03 dBm M3 1 11, 2, 47885, GHz -43, 94 dBm M3 1 M4 1 2, 4969, GHz -42, 33 dBm	100 GHz
40 gbms 01 -16,193 dBm 0 0 0 -20 cBm 01 -16,193 dBm 0 0 0 -30 cBm 0 0 0 0 -40 dBms 0 0 0 0 -50 dBm 0 0 0 0 -50 dBm 0 0 0 0 -60 dBm 0 0 0 0 -70 dBm 0 0 0 0 M1 1 2.47885 GHz -3.61 dBm 0 M3 1 2.5 GHz -43.94 dBm M4 </th <th></th>	
D1 -16.193 dBm Image: Constraint of the second	
-20 dBm -30 dBm -40 dBm2 -50 dBm -50 dBm -50 dBm -70 dBm -7	
40 cBmic 14 M3 160 Bm 160 Bm 160 Bm 16 M3	
Type Ref Trc X-value Y-value Function Marker Type Ref Trc X-value Marker M1 1 2.47885 GHz M3 1 2.5 GHz M3 1 2.5 GHz M4 1 2.4969 GHz	
-50 dBm -60 dBm -70	
-60 dBm -70 dBm -70 dBm -70 dBm Stop 2.576 Start 2.476 GHz 1001 pts Stop 2.576 Marker -70 dBm -70 dBm -70 dBm M1 1 2.47885 GHz 3.61 dBm Function Result M1 1 2.47885 GHz -44.63 dBm -44.63 dBm M3 1 2.5 GHz -43.94 dBm -44.33 dBm M4 1 2.4969 GHz -42.33 dBm -44.63 dBm	'6 GHz
Type Ref Trc X-value Y-value Function Function Result Marker 1 2.47885 GHz 3.61 dBm 1 1 2.47885 GHz 3.61 dBm 1	/6 GHz
Start 2.476 GHz 1001 pts Stop 2.576 Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.47885 GHz 3.61 dBm Function Function Result M2 1 2.4895 GHz -44.63 dBm Function Function Result M3 1 2.5 GHz -43.94 dBm Function Function M4 1 2.4969 GHz -42.33 dBm Function Function	26 GHz
Type Ref Trc X-value Y-value Function Function Result M1 1 2.47885 GHz 3.61 dBm M2 1 2.4835 GHz -44.63 dBm <td></td>	
M1 1 2.47885 GHz 3.61 dBm M2 1 2.4835 GHz -44.63 dBm M3 1 2.5 GHz -43.94 dBm M4 1 2.4969 GHz -42.33 dBm	
M3 1 2.5 GHz -43,94 dBm M4 1 2.4969 GHz -42.33 dBm	
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Ref	
	10 dBm
20 dBm-2,4021598	80 GH2
10 dBm-	
	1.1
-10 dBm	
	1.1
-20 dBm	
-20 dBm	
-20 dBm	
-20 dBm -30 dBm -40 dBm	
-20 dBm	~~~
-20 dBm -30 dBm -40 dBm -50 dBm	~~~~
-20 dBm -30 dBm -40 dBm	~~~~
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm	~~~~
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0 MHz

•1Pk Max								
20 dBm		-		M	L[1]			3.07 dBm 215000 GHz
10 dBm				Ma	2[1]			-46.44 dBm 000000,GHz
0 dBm			-			-		1 X
-10 dBm					4			
-20 dBm-D1 -1	6.902 dBm			-		_	-	
-30 dBm						_		
-40 dBm			M4				MO	MB
-50 dBm	Manananturan	Manhumanatera	and will be and a factor	adablembas	www.may.comb	monstration	ntru Manuun	we the wa
-60 dBm	_				1			
-70 dBm			· · · · ·		1	1		
Start 2.306 GHz		2	1001	pts	-		Stop	2.406 GHz
Marker Type Ref Tro	X-valu	ie I	Y-value	Funct	ion	Fund	tion Resu	it I
M1	1 2.40	215 GHz	3.07 dB	m		T dife	cion Resu	
		2.4 GHz .39 GHz	-46.44 dB -47.21 dB					
		488 GHz	-41.90 dB					
Y					1			1
Spectrum Ref Level 27.62 Att 2 SGL Count 15000	O dB SWT	7.62 dB 🖷 R	BW 100 kHz			nt1 Hop	oping F	Ref
Spectrum Ref Level 27.62 Att 2 SGL Count 15000 • 1Pk Max	dBm Offset 7 0 dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au		nt1 Hop		
Spectrum Ref Level 27.52 Att 2 SGL Count 15000 1Pk Max 20 dBm-	dBm Offset 7 0 dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT	nt1 Hop		(₩) 3.70 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 15000 1Pk Max	dBm Offset 7 0 dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT	mt1 Hop		(₩) 3.70 dBm
Spectrum Ref Level 27.52 Att 2 SGL Count 15000 1Pk Max 20 dBm-	dBm Offset 7 0 dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT			(₩) 3.70 dBm
Spectrum Ref Level 27.52 Att 2 SGL Count 15000 1Pk Max 20 dBm- 10 dBm-	dBm Offset 7 O dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT			(₩) 3.70 dBm
Spectrum Ref Level 27.52 Att 2 SGL Count 15000 1Pk Max 20 dBm- 10 dBm- 0 dBm-	dBm Offset 7 O dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT			(₩) 3.70 dBm
Spectrum Ref Level 27.52 Att 2 SGL Count 15000 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	dBm Offset 7 O dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT			(₩) 3.70 dBm
Spectrum Ref Level 27.52 Att 2 SGL Count 15000 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 7 O dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT			(₩) 3.70 dBm
Spectrum Ref Level 27.52 Att 2 SGL Count 15000 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	dBm Offset 7 O dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT			(₩) 3.70 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 15000 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 7 O dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT			(₩) 3.70 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 15000 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 7 O dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT			(₩) 3.70 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 15000 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	dBm Offset 7 O dB SWT	7.62 dB 🖷 R	BW 100 kHz	Mode Au	uto FFT			(₩) 3.70 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 15000 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	dBm Offset 7 O dB SWT	7.62 dB 🖷 R	BW 100 kHz		uto FFT		2.40	(₩) 3.70 dBm
Spectrum Ref Level 27.52 Att 2 SGL Count 15000 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7 O dB SWT	7.62 dB 🖷 R	BW 100 kHz BW 300 kHz		uto FFT		2.40	3.70 dBm 416580 GHz
Spectrum Ref Level 27.52 Att 2 SGL Count 15000 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7 0 dB SWT	7.62 dB 🖷 R	BW 100 kHz BW 300 kHz		uto FFT	MI	2.40	3.70 dBm 416580 GHz
Spectrum Ref Level 27.52 Att 2 SGL Count 15000 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7 0 dB SWT	7.62 dB 🖷 R	BW 100 kHz BW 300 kHz		uto FFT	MI	2.40	3.70 dBm 416580 GHz

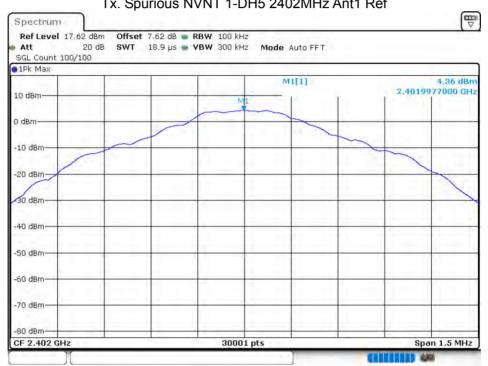
1Pk Max		-		r i	M	1[1]			0.49 dBm
20 dBm									105000 GHz -45.78 dBm
10 dBm			-		141	2[1]	C		50000 GHz
0 dBm								-	
-10 cBm		-	-	-	-		-		
-20 dBm	D1 -18.370	dBm							
-38 dem							-		
-40 dBm	M4	INIS I	and phantas	- Mary Martin		and the	a an an an tar	5. Nolition	ab
-50 dBm	of how many in the	an summer and	(frind)		and the second	An also morellane	a Bran and with way	a Ann	and the process of the second s
-60 dBm									
-70 dBm	i GHz		_	1001	nts		-	Stop	2.576 GHz
Marker								10.0	
Type Ref M1	1		05 GHz	Y-value 0.49 dB		tion	Func	tion Result	
M2 M3	1	2	35 GHz .5 GHz	-45.78 dB -45.97 dB	m				
M4	1	2.489	99 GHz	-42.34 dB	m	7			
Spectrum Ref Level Att SGL Count 1Pk Max	27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	RBW 100 kHz /BW 300 kHz	1.1.2.				
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	288W 100 kHz 78W 300 kHz	Mode A				
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 27.60 dBm 40 dB	Offset 7.	60 dB 👜 R 3,9 µš 🛶 V	288W 100 kHz 78W 300 kHz	Mode A	uto FFT			2,18 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 27.60 dBm 40 dB	Offset 7.	60 dB 👜 R 3,9 µš 🛶 V	288W 100 kHz 78W 300 kHz	Mode A	uto FFT			2,18 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- • ddBm-	1 27.60 dBm 40 dB	Offset 7.	60 dB 👜 R 3,9 µš 🛶 V	288W 100 kHz 78W 300 kHz	Mode A	uto FFT			2,18 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	1 27.60 dBm 40 dB	Offset 7.	60 dB 👜 R 3,9 µš 🛶 V	288W 100 kHz 78W 300 kHz	Mode A	uto FFT			2,18 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	1 27.60 dBm 40 dB	Offset 7.	60 dB 👜 R 3,9 µš 🛶 V	288W 100 kHz 78W 300 kHz	Mode A	uto FFT			2,18 dBm
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 👜 R 3,9 µš 🛶 V	288W 100 kHz 78W 300 kHz	Mode A	uto FFT			2,18 dBm
Spectrum Ref Level Att SGL Count I SGL Count I D dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 👜 R 3,9 µš 🛶 V	288W 100 kHz 78W 300 kHz	Mode A	uto FFT			2,18 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 👜 R 3,9 µš 🛶 V	288W 100 kHz 78W 300 kHz	Mode A	uto FFT			2,18 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	27.60 dBm 40 dB 8000/8000	Offset 7.	60 dB 👜 R 3,9 µš 🛶 V	288W 100 kHz 78W 300 kHz	Mode A	uto FFT		2.475	2,18 dBm

1Pk Max 20 dBm 20 dBm 10 dB	M1[1] M2[1]	2,483	-1.16 dBm 35000 GHz 44.36 dBm 50000 GHz
10 dBm dBm dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm		2,483	44.36 dBm 50000 GH2
10 dBm -10 cBm -20 cBm -30 dBm -40 dBm -30 dBm -30 dBm -30 dBm -50 dBm	Mar Mark Warmer		
-10 cBm -20 cBm -30 cBm -30 cBm -40 cBm -40 cBm -40 cBm -50 cBm	Mar and the provide and the	hereburner, More mystel	
-20 cBm D1 -17.815 dBm	Marine Contraction	Linderson Maringarden	
-20 dBm -40 define M4 M2 -50 dBm	nostan material and marine	Lindenser Mor moviel	
-40 denie M4 M3 -40 denie wieren wieren wieren Marken Ma -50 dBm	and	1. Lougener Marenson Mary Mary	
-40 demini- -50 dem	who was a superior	statement Marine was here the	
-50 dBm			Carel Date on And
-60 dBm			
	_		
-70 dBm-			1
Start 2.476 GHz 11 Marker	001 pts	Stop 2	2.576 GHz
Type Ref Trc X-value Y-valu M1 1 2.47635 GHz -1.16 M2 1 2.4835 GHz -44.36 M3 1 2.5 GHz -44.36 M4 1 2.4895 GHz -44.247	i dBm i dBm 2 dBm	Function Result	
MH I 2.4095 GH2 -42.47	ubiii		
Att 40 dB SWT 18.9 µs • VBW 300 SGL Count 300/300 • 1Pk Max		No-Hopping Ref	
SGL Count 300/300			2.67 dBm 05590 GH2
SGL Count 300/300 1Pk Max	Mode Auto FFT		2.67 dBm
SGL Count 300/300	kHz Mode Auto FFT		2.67 dBm
SGL Count 300/300	Mode Auto FFT		2.67 dBm
SGL Count 300/300	Mode Auto FFT		2.67 dBm
SGL Count 300/300	Mode Auto FFT		2.67 dBm
SGL Count 300/300 • 1Pk Max 20 dBm- 10 dBm- -10 dBm-	Mode Auto FFT		2.67 dBm
SGL Count 300/300 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Mode Auto FFT		2.67 dBm
SGL Count 300/300	Mil Mil		2.67 dBm
SGL Count 300/300 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Mil Mil		2.67 dBm
SGL Count 300/300 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Mil Mil		2.67 dBm
SGL Count 300/300 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Mil Mil		2.67 dBm
SGL Count 300/300 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm	Mil Mil	2.402	2.67 dBm

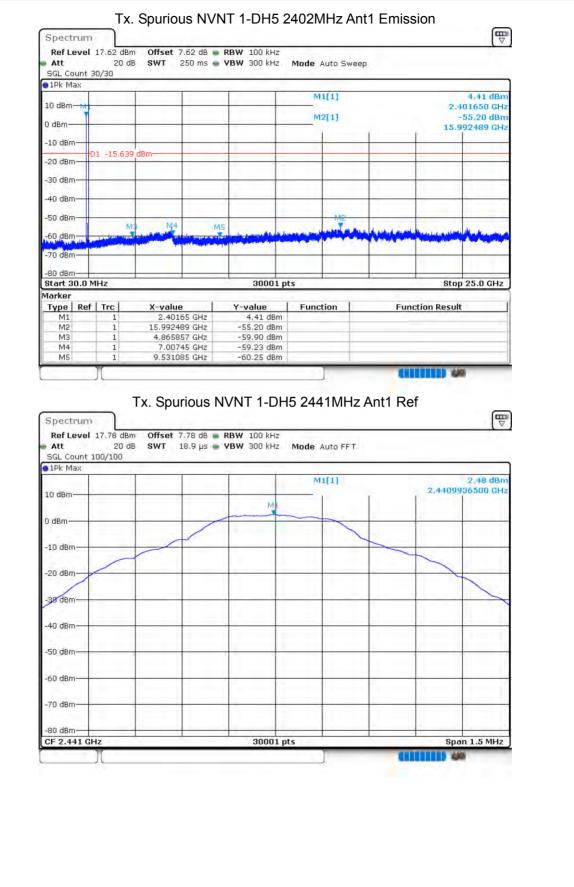
SGL Count 1 1Pk Max	00/100		_	-				
20 dBm				2	M1[1]		2.	3.54 dBm 0185000 GHz
10 dBm	1		1		M2[1]			-44.71 dBm Ю0000000 GHz
0 dBm								
-10 dBm	_							
-20 dBm-0	1 -17.329	dBm		-				
-30 dBm	_							
-40 dBm		1.000	Millypression	M4			. M3	m
-50 dBm	numultur	ABL MARKER CONTRACT	while and a	and the as a new ways	antopoolestantin	nerillundunun	halter phyle (112-hours and	newselful full
-60 dBm	_		-					
-70 dBm	CH2	-		1001	nts		St	op 2.406 GHz
Marker					the state of the	í.		
Type Ref M1	1		85 GHz	Y-value 3.54 dBr			Function Res	sult
	1		2.4 GHz 39 GHz	-44.71 dBr -47.11 dBr	n			
M2 M3	1				n –			
M3 M4 Ba Spectrum Ref Level 2 Att SGL Count 8	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	87 GHz Ding) N	RBW 100 kHz	H5 2402M Mode Auto F	FT	Hopping	(The second seco
M3 M4 Ba Spectrum Ref Level 2 Att SGL Count B 1Pk Max	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	87 GHz Ding) N	VNT 3-DI	H5 2402M	FT		
M3 M4 Ba Spectrum Ref Level 2 Att SGL Count 6 1Pk Max 20 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	87 GHz Ding) N	VNT 3-DI	H5 2402M Mode Auto F	FT		(₩) 3,32 dBm
M3 M4 Ba Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	87 GHz Ding) N	VNT 3-DI	H5 2402M Mode Auto F	FT		(₩) 3,32 dBm
M3 M4 Ba Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	87 GHz Ding) N	VNT 3-DI	Mode Auto F	FT		(₩) 3,32 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 6 1Pk Max 20 dBm 10 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	87 GHz Ding) N	VNT 3-DI	Mode Auto F	FT	2.4	(₩) 3,32 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	87 GHz Ding) N	VNT 3-DI	Mode Auto F	FT	2.4	(₩) 3,32 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	87 GHz Ding) N	VNT 3-DI	Mode Auto F	FT	2.4	(₩) 3,32 dBm
M3 M4 Ba Spectrum Ref Level 2 Att SGL Count 8 O 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	62 dB 1		Mode Auto F	FT	2.4	(₩) 3,32 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	87 GHz Ding) N		Mode Auto F	FT	2.4	(₩) 3,32 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 OTR Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	62 dB 1		Mode Auto F	FT	2.4	(₩) 3,32 dBm
M3 M4 Ba Spectrum Ref Level 2 Att SGL Count 8 SGL Count 8 O 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	62 dB 1		Mode Auto F	FT	2.4	(₩) 3,32 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 O 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	1 nd Ed 7.62 dBm 40 dB	2.34 ge(Hopp Offset 7. swr 11	62 dB 1		Mode Auto F	FT	2.4	(₩) 3,32 dBm
M3 M4 Ba Spectrum Ref Level 2 Att SGL Count 8 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm	1 nd Ed 7.62 dBm 40 dB 000/8000	2.34 ge(Hopp Offset 7. swr 11	62 dB 1		H5 2402M	FT	2.	(₩) 3,32 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 OTPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	1 nd Ed 7.62 dBm 40 dB 000/8000	2.34 ge(Hopp Offset 7. swr 11	62 dB 1		H5 2402M	FT	2.	3,32 dBm 10283920 GHz

1Pk Max	-	1	_	i i	MI	E11		_	0.92 dBm
20 dBm	-			-					595000 GHz
10 dBm	_		-		M2	[1]	6		-44.80 dBm 000000 GHz
0 dBm							-		mora
-10 dBm			-						
-20 dBm-0	1 -16.676	dBm						÷	
-30 dBm						-	_		
-40 dBm			M4	unimonutury	1.12.00	Co.C.C.		MS	MP
-50 dBm	approxim ward	adament and a sol	ments where	non constant	mountangla	chronik mythin	and manufactures	And the planning	sugart
-60 dBm									
-70 dBm						1	1		
Start 2.306	GHz			1001	pts			Stop	2.406 GHz
Marker Type Ref		X-value		Y-value	Functi	on	Fun	ction Resul	lt
M1 M2	1		95 GHz .4 GHz	0.92 dBr -44.80 dBr					
				-45.10 dBr	0	T			
M3 M4	1		39 GHz 27 GHz	-40.49 dBr					
M3 M4 Spectrum Ref Level 2 Att SGL Count 11	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz VNT 3-		OMHZ A	to FFT	o-Hoppi	ng Ref	
M3 M4 Spectrum Ref Level 2' Att SGL Count 11 • 1Pk Max	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz VNT 3-	-40.49 dBr DH5 248 BW 100 kHz	0MHz A	to FFT	o-Hoppi		2.05 dBm 015980 GHz
M3 M4 Spectrum Ref Level 2 Att SGL Count 10	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz VNT 3-	-40.49 dBr DH5 248 BW 100 kHz	OMHZ A	to FFT	o-Hoppi		2.05 dBm
M3 M4 Spectrum Ref Level 2' Att SGL Count 11 • 1Pk Max	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz VNT 3-	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	Mode Aut	to FFT	o-Hoppi		2.05 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 11 • 1Pk Max 20 dBm-	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz VNT 3-	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	OMHZ A	to FFT	o-Hoppi		2.05 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 11 • 1Pk Max 20 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz VNT 3-	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	Mode Aut	to FFT	o-Hoppi		2.05 dBm
M3 M4 Spectrum Ref Level 2' Att SGL Count 11 • 1Pk Max 20 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	VNT 3-	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	Mode Aut	to FFT	o-Hoppi		2.05 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 11 • 1Pk Max 20 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	VNT 3-	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	Mode Aut	to FFT	o-Hoppi		2.05 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 11 • 1Pk Max 20 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	Mode Aut	to FFT	o-Hoppin		2.05 dBm
M3 M4 Spectrum Ref Level 2' Att SGL Count 11 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	VNT 3-	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	Mode Aut	to FFT	o-Hoppi		2.05 dBm
M3 M4 Spectrum Ref Level 2' Att SGL Count 11 • 1Pk Max 20 dBm 10 dBm - 10 dBm - 10 dBm - 20 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	Mode Aut	to FFT	o-Hoppi		2.05 dBm
M3 M4 Spectrum Ref Level 2' Att SGL Count 11 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	Mode Aut	to FFT	o-Hoppin		2.05 dBm
M3 M4 Spectrum Ref Level 2' Att SGL Count 11 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	Mode Aut	to FFT	o-Hoppi		2.05 dBm
M3 M4 Spectrum Ref Level 2' Att SGL Count 11 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz	Mode Aut	to FFT	o-Hoppin		2.05 dBm
M3 M4 Spectrum Ref Level 2' Att SGL Count 11 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz	-40.49 dBr DH5 248 (BW 100 kHz (BW 300 kHz		to FFT	o-Hoppin	2.48	2.05 dBm
M3 M4 Spectrum Ref Level 2' Att SGL Count 11 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm	1 Band 7.60 dBm 40 dB	2.34 Edge N Offset 7,	27 GHz	-40.49 dBr		to FFT	o-Hoppi	2.48	2.05 dBm 015980 GHz

1Pk Max	10/100								
20 dBm					M	1[1]		2 480	1.65 dBm 105000 GHz
					M	2[1]			-46.08 dBm
10 dBm						1	0	2.483	350000 GHz
0 d8m									
-10 cBm			,				1		1
-20 dBm-D1	-17,946 dBr	n	_	-					
-30 dBm			-						
-40 dem	M4	Ma	. ht rate		-			a monther that he has	
-50 dBm	and plade house	the manual and	M. was able	pundrar withour may	physiological physiology and the state of th	and all and a second	and the Mathematic	hillion and the	at when what are
-60 dBm			_	· · · · ·					
-70 dBm			-	1		1	1		·
Start 2.476 (Hz	<u>.</u>		1001	pts			Stop	2.576 GHz
Marker Type Ref	Trc	X-value	1	Y-value	Func	tion	Fund	tion Result	t
M1 M2	1 1	2.48005 2.4835		1.65 dB -46.08 dB	m				
M3	1	2.5	GHz	-46.32 dB	m				
M4	1	2.4919	GHZ	-42.42 dB	m.		-		
Spectrum Ref Level 27 Att SGL Count 20	7.60 dBm C 40 dB S)ffset 7.60	dB 💼 RI	/NT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Ho	oping R	
Spectrum Ref Level 27 Att SGL Count 20 1Pk Max	7.60 dBm C 40 dB S)ffset 7.60	dB 💼 RI	3W 100 kHz	Mode A		Ant1 Ho		
Spectrum Ref Level 27 Att SGL Count 20	7.60 dBm C 40 dB S)ffset 7.60	dB 💼 RI	3W 100 kHz	Mode A	uto FFT	Ant1 Ho		2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 1Pk Max	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FFT	Ant1 Ho		2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 1Pk Max 20 dBm- 10 dBm-	7.60 dBm C 40 dB S)ffset 7.60	dB 💼 RI	3W 100 kHz	Mode A	uto FFT			2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 1Pk Max 20 dBm 10 dBm	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FFT	Ant1 Ho		2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 1Pk Max 20 dBm- 10 dBm-	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FFT	Ant1 Ho		2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 1Pk Max 20 dBm 10 dBm	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FFT			2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FF T	Ant1 Ho		2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FFT			2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FF T	Ant1 Ho		2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FF T	Ant1 Ho		2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 PIPk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm-	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FF T			2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 PIPk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm-	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FF T			2,41 dBm
Spectrum Ref Level 27 Att SGL Count 20 • IPk Max 20 dBm • 10 dBm • 0 dBm • -10 dBm • -20 dBm • -30 dBm • -60 dBm	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	BW 100 kHz BW 300 kHz	Mode A	uto FF T	Ant1 Ho	2.475	2,41 dBm 316180 GHz
Spectrum Ref Level 27 Att SGL Count 20 • IPk Max 20 dBm • 10 dBm - • 10 dBm - • 10 dBm - • -10 dBm - • -20 dBm - • -30 dBm - • -60 dBm -	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	3W 100 kHz	Mode A	uto FF T		2.475	2,41 dBm 316180 GHz
Spectrum Ref Level 27 Att SGL Count 20 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	BW 100 kHz BW 300 kHz	Mode A	uto FF T		2.475	2,41 dBm 316180 GHz
Spectrum Ref Level 27 Att SGL Count 20 • IPk Max 20 dBm • 10 dBm • 0 dBm • -10 dBm • -20 dBm • -30 dBm • -60 dBm	7.60 dBm C 40 dB S	0ffset 7.60 WT 18.9	dB 💼 RI	BW 100 kHz BW 300 kHz	Mode A	uto FF T	Ant1 Ho	2.475	2,41 dBm 316180 GHz

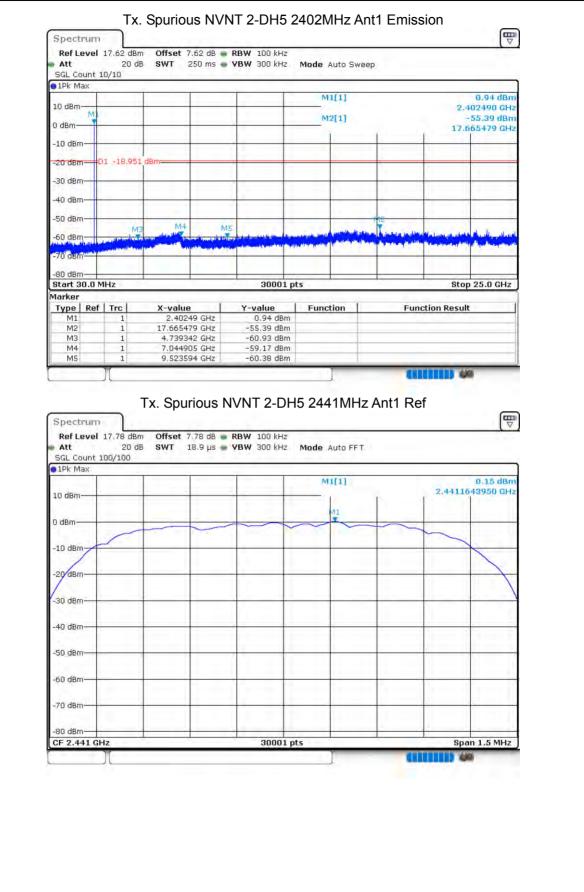


								Specti
		Assault to assault	RBW 100 kHz			7.60 dBm	evel 27	
		Mode Auto FFT	VBW 300 kHz	27.5 µs 🌚	SWT 22	40 dB		Att
						000/1000		1Pk Ma
1.65 dBm		M1[1]	1 1			-	nas	I IPK Me
2.47605000 GHz		WILL				_		20 dBm-
-44.12 dBm		M2[1]						so abili
2.48350000 GHz		1112[1]				_	n	10 dBm-
	10 11							
						_		D dBm-
1 1 1 1 1	1.							
	1			+			m	-10 cBm
					dBm	1 -17.588	- D	
· · · · · · · · ·							m	20 cBm
12	1 1 1						-	30 dBm
						Acres 1		30 upm
					MB	M4	mi2	40 dem
							(🖉 🖓 🖉	100
having maketion while and a second and	under a manufacture of the second	allow maker the	manunary	prosta Phillipson	menulydreway	mountilities	the Andrews	141
have a grow by the second and a second and	webserversepterment	nitemiquetications	and manufand	grata	munitydiana	when his an	ALC: NO	50 dBm
have a management of the second second	hallow he have a second	nismunnaduations	and many many dame	protect	mandinan	ritinghave	m	
have a market with a factor of a second	Vellansererererererererererererererererererer	and the stand for a start of the start of th	and the second second	poter	nandi mene	notion to the providence of th	m	
harman marked and a second and a second	Hellow hard a gran with	nderrigenproductions	and many more thank	poter	anna an ann an an an an an an an an an a	-rimilatypeyn	m	60 dBm
	historian and an annumber			provide a second	anna an ann an an an an an an an an an a		m	-60 dBm -70 dBm
Stop 2.576 GHz	ilden herten an der soller		1001 pts		ana ana ang ang ang ang ang ang ang ang		m m 2.476 (1.1.61.6.19
Stop 2.576 GHz		5	1001 pts			GHz	m m 2.476 (-60 dBm -70 dBm Start 2. 1arker
			1001 pts Y-value	2	X-value	GHz Trc	m m 2.476 (r Ref	60 dBm 70 dBm Start 2. Iarker Type
Stop 2.576 GHz		5	1001 pts Y-value 1.65 dBm	e DS. GHz	X-value 2.4761	GHz Trc	mm m2.476 (r Ref	60 dBm 70 dBm Start 2. Iarker Type M1
Stop 2.576 GHz		5	1001 pts Y-value	2	X-value 2.476l 2.48:	GHz Trc	m m 2.476 (r Ref	-60 dBm -70 dBm Start 2. 1arker Type

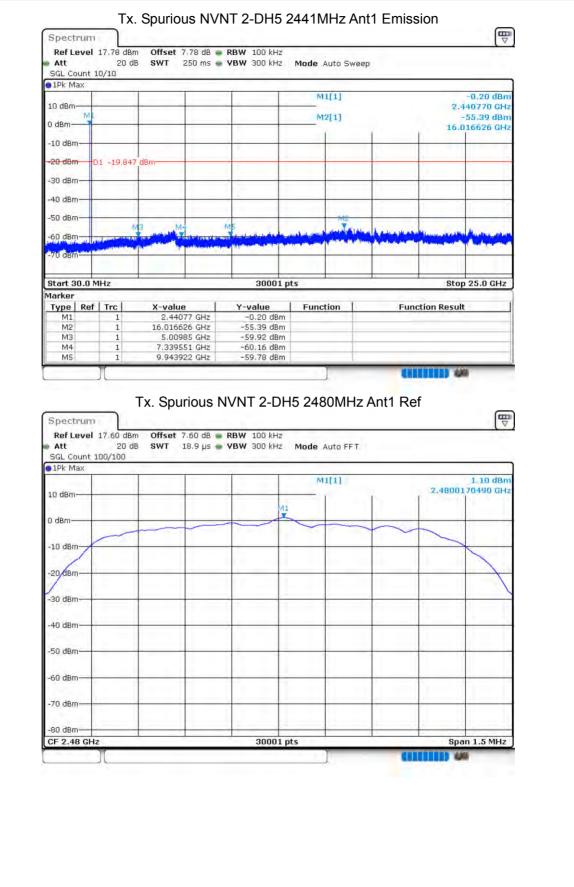

8.7 CONDUCTED RF SPURIOUS EMISSION

• ••	••••		••••			
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-59.55	-20	Pass
NVNT	1-DH5	2441	Ant 1	-57.77	-20	Pass
NVNT	1-DH5	2480	Ant 1	-42.46	-20	Pass
NVNT	2-DH5	2402	Ant 1	-56.44	-20	Pass
NVNT	2-DH5	2441	Ant 1	-55.54	-20	Pass
NVNT	2-DH5	2480	Ant 1	-56.04	-20	Pass
NVNT	3-DH5	2402	Ant 1	-56.46	-20	Pass
NVNT	3-DH5	2441	Ant 1	-57.97	-20	Pass
NVNT	3-DH5	2480	Ant 1	-56.8	-20	Pass

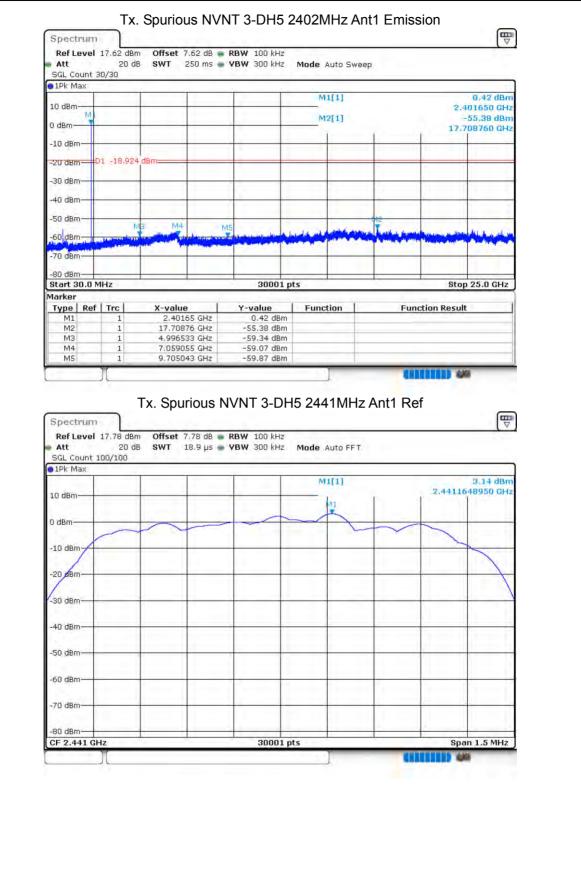
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

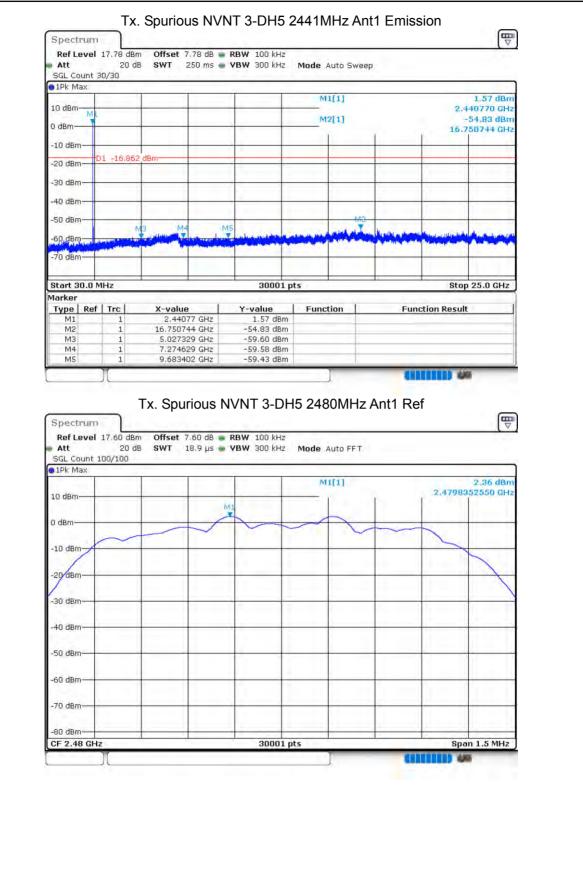


9 1Pk Max	- 11	1	-	M1[1]		_	2.64 dBm
10 dBm ML							40770 GHz
0 dBm				M2[1]	2.		55.29 dBm 44333 GHz
-10 dBm	-						
-20 dBm-01 -1	7.515 dBm				-		
-30 dBm	-	-					
-40 dBm	-		-		-	1	
-50 dBm	M3 M	4 M5		142			
-60 dBm	Ma M		Contraction of the		the Apple Autom	Provide Sector	Automation
-70 dBm							
Start 30.0 MHz	-		30001 p	its		Stor	25.0 GHz
Marker	1						
Type Ref Tro M1		e	Y-value 2.64 dBm	Function	Fun	ction Result	
	1 15.8443 1 5.059	333 GHz 979 GHz	-55.29 dBm -59.01 dBm				
M4	1 7.2937	73 GHz 342 GHz	-58.86 dBm -59.57 dBm				
	T 210240		55151 dbii	· · · ·			
Spectrum Ref Level 17.6 Att SGL Count 100/1	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz	Mode Auto FFT			(₩ 2.84 dBm
Spectrum Ref Level 17.6 Att SGL Count 100/1	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			
Spectrum Ref Level 17.6 Att SGL Count 100/1 1Pk Max	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6 Att SGL Count 100/1 IPk Max 10 dBm-	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6' Att SGL Count 100/1 1Pk Max 10 dBm -10 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6' Att SGL Count 100/1 1Pk Max 10 dBm -10 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6' Att SGL Count 100/1 IPk Max 10 dBm -10 dBm -20 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6' Att SGL Count 10D/1 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6 Att SGL Count 100/1 PIPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -50 dBm -60 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT.			2.84 dBm
Spectrum Ref Level 17.6 Att SGL Count 100/1 IPk Max 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT		2.47996	2.84 dBm 93510 GHz
Spectrum Ref Level 17.6 Att SGL Count 10D/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT		2.47996	2.84 dBm 93510 GHz
Spectrum Ref Level 17.6 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm	0 dBm Offset 20 dB SWT	7.60 dB 🖷 R	BW 100 kHz BW 300 kHz	Mode Auto FFT		2.4799c	2.84 dBm 93510 GHz



10 dBm M1[1] 3-36 dBm 0 dBm M2[1] 3-39,60 dBm -10 dBm M2[1] 879,812 MHz -20 dBm 0 10 -30 dBm 10 10 -40 dBm 10 10 -30 dBm 10 10 -30 dBm 10 10 -40 dBm 10 10 -30 dBm 10 10 -40 dBm 11 2.47999 GHz -30 dBm 11 2.47999 GHz -30 dBm 11 2.47999 GHz -30 dBm 10 10.010509 GHz -59.30 dBm 10 10.010509 GHz -59.30 dBm 10 10.010509 GHz -59.40 dBm 11 2.47999 GHz -59.40 dBm 10 10.010509 GHz -59.40 dBm 10 10.010509 GHz -59.40 d
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -80
-10 dBm -20 dBm -30 dBm -40
30 dBm
40 40 <td< td=""></td<>
40 dBm
-00 dBm M3 M5 M4 M5 -00 dBm -01 dBm -01 dBm -01 dBm -01 dBm -00 dBm -01 dBm -01 dBm -01 dBm -01 dBm -00 dBm -01 dBm -01 dBm -01 dBm -01 dBm -00 dBm -01 dBm -01 dBm -01 dBm -01 dBm -00 dBm -01 dBm -01 dBm -01 dBm -01 dBm -00 dBm -01 dBm -01 dBm -01 dBm -01 dBm -00 dBm -01 dBm -01 dBm -01 dBm -01 dBm -00 dBm -01 dBm -01 dBm -01 dBm -01 dBm -00 dBm -01 dBm -01 dBm -01 dBm -01 dBm -00 dBm -01 dBm -01 dBm -01 dBm -01 dBm -01 dBm -00 dBm -01 dBm<
c00 dBm marker and a method and method and a method and method and a method
B0 dBm 30001 pts Stop 25.0 GHz Marker Yvolue Function Function Result M1 1 2.47989 GHz 3.46 dBm Function Result M2 1 879.812 MHz -39.63 dBm Function Result M3 1 5.019838 GHz -59.64 dBm Function Result M4 1 7.39156 GHz -59.30 dBm Function Result M5 1 10.010509 GHz -59.48 dBm Function Result M5 1 10.010509 GHz -59.48 dBm Function Result Function Result M6 1 10.010509 GHz -59.48 dBm Function Result Function Result Function Result M8 1 10.010509 GHz -59.48 dBm Function Result <
Start 30.0 MHz 30001 pts Stop 25.0 GHz Marker Function Function Result M1 1 2.47989 GHz 3.46 dBm M2 1 879.812 MHz -39.63 dBm M3 1 5.019838 GHz -59.64 dBm M4 1 7.39156 GHz -59.9.64 dBm M4 1 7.39156 GHz -59.9.43 dBm M5 1 10.010509 GHz -59.48 dBm M5 1 10.010509 GHz -59.48 dBm M5 1 10.010509 GHz -59.48 dBm Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dBm Offset 7.62 dB RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 100/100 0 0 M1 2.4020284990 GHz -10 dBm M1 -28 dBm
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.47989 GHz 3.46 dBm
M1 1 2.47989 GHz 3.46 dBm M2 1 879.812 MHz -39.63 dBm M3 1 5.01983 GHz -59.63 dBm M4 1 7.391156 GHz -59.30 dBm M5 1 10.010509 GHz -59.48 dBm Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dB Offset 7.62 dB RBW 100 kHz Att 20 dB SWT 18.9 μs VBW 300 kHz Mode Auto FFT SGL Count 100/100 M1[1] 1.05 dBm 0 dBm
M2 1 879.812 MHz -39.63 dBm M3 1 5.019838 GHz -59.64 dBm M4 1 7.391156 GHz -59.30 dBm M5 1 10.010509 GHz -59.48 dBm Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dBm Offset 7.62 dB RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT GC count 100/100 •1Pk Max 1 1.05 dBm 10 dBm 0 M1 1.05 dBm -28 dBm 0 M1 1.05 dBm
M4 1 7.391156 GHz -59.30 dBm M5 1 10.010509 GHz -59.48 dBm Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dBm Offset 7.62 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 • IPk Max MI[1] 1.05 dBm 10 dBm MI[1] 2.4020284990 GHz -10 dBm MI -28 dBm
Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref Spectrum Image: Colspan="2">Image: Colspan="2" Transport Sectors and Sectors
Spectrum Image: Constraint of the sector of th
0 dBm -10 dBm -20 dBm
-10 dBm -28 dBm
-28 dBm
-30 dBm
-40 dBm
-50 dBm
-50 dBm
-60 dBm
-60 dBm
40 dBm
-40 dBm
-40 dBm
-50 dBm
-50 dBm
50 dBm
50 dBm
40 dBm + + + + + + + + + + + + + + + + + + +
-40 dBm
40 d8m
-40 dBm
-40 dBm
-40 dBm
-40 dBm
-40 dBm-
-40 dBm
-40 dBm
30 dBm
30 dBm
-30 dBm
-28 dBm-
-28 dBm
28 dBm
28 dBm
-10 dBm
-10 dBm -28 dBm
-10 dBm -28 dBm
-10 dBm -28 dBm
-10 dBm -28 dBm
-10 dBm -28 dBm
-10 dBm -28 dBm
-10 dBm -28 dBm
0 dBm -10 dBm -28 dBm
0 dBm -10 dBm -28 dBm
0 dBm -10 dBm -20 dBm
0 dBm 2.4020284990 GHz dBm 41 10 dBm 20 dB
0 dBm
0 dBm M1[1] 1.05 dBm 2.4020284990 GHz M1 105 dBm 2.4020284990 GHz M1 M1 A M1 A M1 A M1 A M1 A M1 AA
1Pk Max M1[1] 1.05 dBm 0 dBm 2.4020284990 GHz 0 dBm M1 10 dBm 7 20 dBm 0
SGL Count 100/100 10 dBm M1[1] 1.05 dBm 0 dBm M1 2.4020284990 GHz 10 dBm M1 0





• 1Pk Max		1	1			
10 dBm				M1[1]		1.02 dBm 2.479890 GHz
0 dBm	_	-		M2[1]		-54,95 dBm 1.886936 GHz
-10 dBm				1 1	ĺ.	
-20 dBm-01 -	18.896 dBm					_
-30 dBm				1		
-40 dBm		1 1 2				
-50 dBm					·	
-60 dBm	M3	M4 MS		a second and a second of	and a stand of the second	and the and the second
-70 dBm	and the second	and and the second s			etaba da babababa taga jana	
-80 dBm						
Start 30.0 MHz	3 - Sterrer		30001 pts	, <u>,</u>	2	Stop 25.0 GHz
Marker Type Ref Ti	rc X-valı	ue I Y-	value Fun	ction	Function R	esult 1
M1 M2	1 2.47	989 GHz	1.02 dBm 4.95 dBm			
M3	1 5.023	168 GHz -5	9.61 dBm			
M4 M5			9.71 dBm 9.74 dBm			
][]	CHARGE OF COMPANY	100
Spectrum Ref Level 17. Att SGL Count 100/ 1Pk Max	20 dB SWT	7.62 dB RBW 18.9 µs VBW	300 kHz Mode	Auto FFT		.08 dBm
Ref Level 17. Att SGL Count 100/	20 dB SWT		300 kHz Mode	Auto FFT.	2.4	
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm-	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ 1Pk Max	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm-	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20 dB SWT		300 kHz Mode		2.4	1,08 dBm
Ref Level 17. Att SGL Count 100/ • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20 dB SWT		300 kHz Mode		2.4	1.08 dBm

		A	7.00	RBW 100 kHz			7.60 dBm	trum evel 1	Ref L
		uto Sweep	Mode	VBW 300 kHz	250 ms 🎃	SWT	20 dB	ount 30	Att
						_	/30		1Pk M
0.13 dBm		[1]	M				1		
2.479890 GHz								-	10 dBm
-54,45 dBm		[1]	M					MIL	dBm-
16.750744 GHz		1		1					s upm
								n 🚽	10 dBm
						dBm	-17.638	D	
				1				n	20 dBm
					-			n	30 dBm
					-				
		-						n	40 dBm
		6.072			•				50 dBm
	Chan II.	T		M5	M4	3 1	M	"	SD UBI
and the same of the second second second second	And Andrews		a Deplete Di	and an all the state of the state of	Tarman and the second	and the second second	CALIFORNIA STAT	n	60 dBm
	10000				and the second second		a design of the second second second		and have
	1							n	70 dBr
								n	80 dBm
Stop 25.0 GHz			ts	30001 pt	<u>.</u>		Ηz	30.0 M	Start 3
	A	V				in the second		-	larker
nction Result	Function	ion	Func	Y-value	в	X-value	Trc	Ref	Type
				0.13 dBm	89 GHz		1		M1
				-54.45 dBm		16.7507	1		M2
				-59.89 dBm -60.00 dBm	a construction of the second second	5.0456	1		M3 M4

END OF REPORT