Measurement of RF Interference from a Model No. CDMRAA0101E3 (ARQ2-UGDO) Automotive Transceiver for Garage Door Control Transceiver

For

P.O. Number Date Received Date Tested Test Personnel Specification The Chamberlain Group, Inc. 300 Windsor Dr. Oak Brook, IL 60523

4900067654 November 16, 2020 November 17 – December 1, 2020 Tylar Jozefczyk FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Sections 15.207 and 15.247 for Frequency Hopping Spread Spectrum Intentional Radiators within the band 902-928MHz FCC "Code of Federal Regulations" Title 47, Part15, Subpart 15B, Section 15.107 and 15.109 for Receivers Industry Canada RSS-247 Industry Canada RSS-GEN

Test Report By:

Requested By:

Approved By:

Tylar John M

Tylar Jozefczyk EMC Engineer

Andrew Marks The Chamberlain Group, Inc.

Raymond J Klouda

Raymond J. Klouda Registered Professional Engineer of Illinois - 44894

Elite Electronic Engineering Inc. 1516 CENTRE CIRCLE <u>DOWNERS GR</u>OVE, IL 60515

Flite

TEL: 630 - 495 - 9770 FAX: 630 - 495 - 9785

www.elitetest.com

TABLE OF CONTENTS

PARAGRAPH	DESCRIPTION OF CONTENTS	PAGE NO.
1. INTRODUCTION		5
	s and Exclusions	
	ntification	
, , , , , , , , , , , , , , , , , , ,	ns	
,	ITS	
	ATION	
	nent	
	les	
4. TEST FACILITY AND TE	ST INSTRUMENTATION	7
	۱	
	lity	
4.4 Measurement Unce	rtainty	7
5. TEST PROCEDURES		8
-	cted Emissions	
	ıts	
	ements	
5.1.2.1 Requiremer	ıts	8
5.1.2.2 Procedures		8
5.1.2.1 Results		9
	cted Emissions	9
	its	
	ts	
	-	
	y Separation	
	its	
	ng Frequencies	
	its	
· · · · · · · · · · · · · · · · · · ·	cy its	
	lis	
	er	
	SHALL NOT BE REPRODUCED, EXCEPT IN FULL, WITHOUT THE	□
	ROVAL OF FLITE FLECTRONIC ENGINEERING INCORPORATED	

	5.2.6.1	Requirements	.11
	5.2.6.2	Procedures	. 11
	5.2.6.3	Results	. 11
	5.2.7 Duty	/ Cycle Factor Measurements	. 12
	5.2.7.1	Procedures	
	5.2.7.2	Results	
	5.2.8 Rad	iated Spurious Emissions Measurements	
	5.2.8.1	Requirements	
	5.2.8.2	Procedures	. 12
	5.2.8.3	Results	
		d Edge Compliance	
	5.2.9.1	Requirements	
	5.2.9.2	Procedures	
		.1 Low Band Edge	
		2 High Band Edge	
	5.2.9.3	Results	. 15
6.	CONCLUSI	ONS	. 15
7.	CERTIFICA	TION	. 15
8.	ENDORSEN	IENT DISCLAIMER	. 15
9.	EQUIPMEN	T LIST	. 16
Tabl	e 9-1 Equipr	nent List	. 16

REVISION HISTORY

Revision	Date	Description
-	19 JAN 2021	Initial release
А	25 JAN 2021 By TMJ	 Report number updated from 2004380-02 to 2004380-02 Rev. A throughout test report. Section 3.1: updated ISED UPN from "266A-9757" to "2666A-9757".
В	01 FEB 2021 By TMJ	 Report number updated from 2004380-02 Rev. A to 2004380-02 Rev. B throughout test report. Section 3.1: updated and edited "EUT Identification" table with the following: Corrected value in "Conducted Output Power" row from
с	02 FEB 2021 By TMJ	 Report number updated from 2004380-02 Rev. B to 2004380-02 Rev. C throughout test report. Revision History Table: Updated second row for Revision A (showed incorrectly as "Report number updated from 2004380-02 to 2004380-02 Rev. B throughout test report"; has been updated to the correct "Report number updated from 2004380-02 to 2004380-02 Rev. A throughout test report").

Measurement of RF Emissions from an Automotive Transceiver for Garage Door Control, Model No. CDMRAA0101E3 (ARQ2-UGDO) Transceiver

1. INTRODUCTION

1.1 Scope of Tests

This document represents the results of the series of radio interference measurements performed on The Chamberlain Group, Inc. Automotive Transceiver for Garage Door Control, Model No. CDMRAA0101E3 (ARQ2-UGDO), transceiver (hereinafter referred to as the EUT). The EUT is a frequency hopping spread spectrum transceiver. The transceiver was designed to transmit and receive in the 902-928MHz band using an integral antenna. The EUT was manufactured and submitted for testing by The Chamberlain Group, Inc. located in Oak Brook, IL.

1.2 Purpose

The test series was performed to determine if the EUT meets the conducted RF emission requirements, radiated RF emissions requirements, and additional provisions of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, Section 15.109, for receivers and Subpart C, Section 15.247 for Intentional Radiators Operating within the 902-928MHz band.

The test series was also performed to determine if the EUT meets the conducted RF emission requirements, radiated RF emissions requirements, and additional provisions of the Industry Canada Radio Standards Specification RSS-Gen Section 5 and 7 for receivers and Industry Canada Radio Standards Specification RSS-Gen Section 8 and Industry Canada Radio Standards Specification RSS-247 for Transmitters.

Testing was performed in accordance with ANSI C63.4-2014.

1.3 Deviations, Additions and Exclusions

No deviations, additions, or exclusions were implemented during this test series.

1.4 EMC Laboratory Identification

This series of tests was performed by Elite Electronic Engineering Incorporated of Downers Grove, Illinois. The laboratory is accredited by the American Association for Laboratory Accreditation (A2LA), A2LA Lab Code: 1786-01.

1.5 Laboratory Conditions

The temperature at the time of the test was 21.3°C and the relative humidity was 15%.

2. APPLICABLE DOCUMENTS

The following documents of the exact issue designated form part of this document to the extent specified herein:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subparts B and C
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
- ANSI C63.10-2014, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- FCC Public Notice, DA 00-705, "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems", Released March 30, 2000
- Industry Canada RSS-247, Issue 2, February 2017, "Digital Transmission Systems (DTSs),

Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices"

 Industry Canada RSS-GEN, Issue 5, March 2019, "General Requirements for Compliance of Radio Apparatus"

3. EUT SETUP AND OPERATION

3.1 General Description

The EUT was identified as follows:

	EUT Identification
Product Description	ARQ2 Automotive Transceiver for Garage Door Control
Model Number	CDMRAA0101E3 (ARQ2-UGDO)
Serial Number	SMP-77482
Device Type	Frequency Hopping Spread Spectrum Device
Band of Operation	902 – 928MHz
Firmware Version	0.26
Conducted Output Power	16.77dBm (0.0475W)
Rated Output Power	17.30dBm (0.0537W)
Antenna Type	Copper trace monopole; Chip
Antenna Gain (dBi)	0.5dBi
20dB Bandwidth	209.8kHz
Occupied Bandwidth (99% CBW)	681.4kHz
Size of EUT	1.75" x 1.5"
Droduct ECC ID and ISED LIDN	FCC ID: HBW9757
Product FCC ID and ISED UPN	ISED UPN: 2666A-9757

3.1.1 Power Input

The EUT obtained 12VDC power via a 2-wire, 1m, wire harness.

3.1.2 Peripheral Equipment

The following peripheral equipment was submitted with the EUT:

Item	Description		
Elite Laptop	Used to place the EUT in test mode.		

3.1.3 Interconnect Cables

The following interconnect cables were submitted with the EUT:

Item	Description		
Wire Harness	1 meter		
USB to Serial Cable	Used to connect EUT to test laptop to control modes.		

3.1.4 Grounding

The EUT was not grounded.

3.2 Operational Mode

The EUT and all peripheral equipment were energized. The cables were manually maximized during the preliminary emissions sweeps. The cable arrangement which resulted in the worst-case emissions was utilized.

Mode	Description
Tx	The EUT was powered on and set to transmit at one of the following frequencies: - 902.25MHz - 914.75MHz - 926.75MHz
Rx	The EUT was powered on and set to receive at one of the following frequencies: - 902.25MHz - 914.75MHz - 926.75MHz
FHSS	The EUT was powered on and set to transmit in a frequency hopping mode across the 902 – 928MHz band.

3.3 EUT Modifications

No modifications were required for compliance.

4. TEST FACILITY AND TEST INSTRUMENTATION

4.1 Shielded Enclosure

All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. With the exception of the floor, the reflective surfaces of the shielded chamber are lined with ferrite tiles on the walls and ceiling. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation.

4.2 Test Instrumentation

The test instrumentation and auxiliary equipment used during the tests are listed in Table 9-1. All equipment was calibrated per the instruction manuals supplied by the manufacturer.

Conducted and radiated emission tests were performed with an EMI receiver utilizing the bandwidths and detectors specified by the FCC.

4.3 Calibration Traceability

Test equipment is maintained and calibrated on a regular basis. All calibrations are traceable to the National Institute of Standards and Technology (NIST).

4.4 Measurement Uncertainty

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Values of Expanded Measurement Uncertainty (95% Confidence) are presented below:

Measurement Type	Expanded Measurement Uncertainty
Conducted disturbance (mains port) (150 kHz – 30 MHz)	2.7
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2

5. TEST PROCEDURES

- 5.1 Receiver
 - 5.1.1 Powerline Conducted Emissions

5.1.1.1 Requirements

Since the EUT is DC powered and has no provisions for AC power, no conducted emissions tests are required.

5.1.2 Radiated Measurements

5.1.2.1 Requirements

Per the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, Section 15.109(a), all radio frequency emissions from a receiver shall be below the limits shown in the following table:

Frequency	Distance between EUT	Field Strength	Field Strength			
(MHz)	And Antenna in Meters	(µV/m)	(dBµV/m)			
30-88	3	100	40			
88-216	3	150	43.5			
216-960	3	200	46			
Above 960	3	500	54			

RADIATION LIMITS FOR A RECEIVER

Note: The tighter limit shall apply at the edge between the two frequency bands.

5.1.2.2 Procedures

Testing was performed separately on a low, middle, and high channel. The emissions in the frequency range of 30MHz to 10GHz were measured and plotted using a 'screen-dump' utility. Testing was performed with the antenna of the EUT in place.

All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation.

The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Since a quasi-peak detector and an average detector require long integration times, it is not practical to automatically sweep through the quasi-peak and average levels. Therefore, radiated emissions from the EUT were first scanned using a peak detector and automatically plotted. The frequencies where significant emission levels were noted were then remeasured using the quasi-peak detector or average detector.

The broadband measuring antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. The frequency range from 30MHz to 1GHz was investigated using a peak detector function with the bilog antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The frequency range from 1GHz to 10GHz was investigated using a peak detector function with the double ridged waveguide antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The frequency is to the antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The maximum levels for each antenna polarization were plotted.

Final radiated emissions were performed on all significant broadband and narrowband emissions found in the preliminary sweeps using the following methods:

- 1) Measurements from 30MHz to 1GHz were made using a quasi-peak detector and a broadband bilog antenna. Measurements above 1GHz were made using an average detector and a broadband double ridged waveguide antenna.
- 2) To ensure that maximum or worst case, emission levels were measured, the following steps were taken:
 - a) The EUT was rotated so that all its sides were exposed to the receiving antenna.
 - b) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - c) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
 - d) For hand-held or body-worn devices, the EUT was rotated through three orthogonal axes to determine which orientation produces the highest emission relative to the limit.

5.1.2.1 Results

Radiated emissions plots are shown on pages 22 through 39. As can be seen from the data, all emissions measured from the EUT were within the specification limits. Photographs of the test configuration which yielded the highest or worst case, radiated emission levels are shown in Figures 4 and 5.

5.2 Transmitter

5.2.1 Powerline Conducted Emissions

5.2.1.1 Requirements

Since the EUT was DC powered and has no provisions for AC power, no conducted emissions tests are required.

5.2.2 20dB Bandwidth

5.2.2.1 Requirements

Per 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Per section 15.247(a)(1)(i), for frequency hopping systems operating in the 902-928MHz band, the 20dB bandwidth shall be measured for determination of the carrier frequency separation limits and must not exceed 500 kHz. If the 20dB bandwidth of the hopping channel is less than 250kHz, the system shall use at least 50 hopping channels. If the 20dB bandwidth of the hopping channel is 250kHz or greater (but not greater than 500kHz), the system shall use at least 25 hopping channels.

5.2.2.2 Procedures

The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation.

With the hopping function disabled, the EUT was allowed to transmit continuously. The frequency hopping channel was set separately to low, middle, and high hopping channels. The resolution bandwidth (RBW) was set to $\geq 1\%$ of the 20dB BW. The span was set to approximately 2 to 3 times the 20dB bandwidth.

The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was plotted using a 'screen dump' utility.

5.2.2.3 Results

The plots on pages 40 through 45 show that the maximum 20dB bandwidth was 209.8kHz. The 99% bandwidth was measured to be 681.4kHz.

Therefore, since the 20dB bandwidth of the hopping channel is less than 250kHz, the system shall use at least 50 hopping channels.

5.2.3 Carrier Frequency Separation

5.2.3.1 Requirements

Per section 15.247 (a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

5.2.3.2 Procedures

The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously.

The resolution bandwidth (RBW) was set to > 1% of the span. The peak detector and 'Max-Hold' function were engaged. The span was set wide enough to capture the peaks of at least two adjacent channels. When the trace had stabilized after multiple scans, the marker-delta function was used to determine the separation between the peaks of the adjacent channels. The analyzer's display was plotted using a 'screen dump' utility.

5.2.3.3 Results

Page 46 shows the carrier frequency separation. As can be seen from this plot, the carrier frequency separation is 500.5kHz, which is greater than the 20dB bandwidth (209.8kHz).

5.2.4 Number of Hopping Frequencies

5.2.4.1 Requirements

Per section 15.247(a)(1)(i), for frequency hopping systems operating in the 902-928MHz band, the 20dB bandwidth shall be measured for determination of the carrier frequency separation limits and must not exceed 500 kHz. If the 20dB bandwidth of the hopping channel is less than 250kHz, the system shall use at least 50 hopping channels. If the 20dB bandwidth of the hopping channel is 250kHz or greater (but not greater than 500kHz), the system shall use at least 25 hopping channels.

5.2.4.2 Procedures

The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously.

The resolution bandwidth (RBW) was set to \geq 1% of the span. The peak detector and 'Max-Hold' function were engaged. The span was set wide enough to capture the entire frequency band of operation.

The EUT's signal was allowed to stabilize after multiple scans. The number of hopping frequencies was counted. The analyzer's display was plotted using a 'screen dump' utility.

5.2.4.3 Results

Page 47 shows the number of hopping frequencies. As can be seen from this plot, the number of hopping frequencies is 50, which is equal to the minimum number of required hopping frequencies for systems with a 20dB bandwidth less than 250kHz.

5.2.5 Time of Occupancy

5.2.5.1 Requirements

Per section 15.247(a)(1)(i), for frequency hopping systems operating in the 902-928MHz band, if the 20dB bandwidth of the hopping channel is less than 250kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

5.2.5.2 Procedures

The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. With the

hopping function enabled, the EUT was allowed to transmit continuously.

The resolution bandwidth (RBW) was set to 1MHz. The peak detector and 'Max-Hold' function were engaged. With the span set to 0Hz, the sweep time was adjusted to capture a single event in order to measure the dwell time per hop. The analyzer's display was plotted using a 'screen dump' utility. Then, the sweep time was expanded to 20 seconds to capture the number of hops in the appropriate sweep time. A single sweep was made. The analyzer's display was plotted using a 'screen dump' utility.

The dwell time in the specified time period was then calculated from dwell time per hop multiplied by the number of hops in the specified time period.

5.2.5.3 Results

Pages 48 and 49 show the plots for the time of occupancy (dwell time). As can be seen from the plots, the time of occupancy can be determined by 1.27ms multiplied by 22 and further multiplied by 10. This calculated value is equal to 0.279s seconds, which is less than the 0.4 seconds maximum allowed.

5.2.6 Peak Output Power

5.2.6.1 Requirements

Per section 15.247(b)(2), for frequency hopping systems operating in the 902-928MHz band and employing at least 50 hopping channels, the maximum peak output conducted power shall not be greater than 1W (30dBm). Per section 15.247(b)(4), this limit is based on the use of antennas with directional gains that do not exceed 6dBi. Since the limit allows for a 6dBi antenna gain, the maximum EIRP can be increased by 6dB to 4 Watt (36dBm).

If transmitting antennas of directional gain greater than 6dBi are used, the conducted output power from the intentional radiator shall be reduced below 30dBm by the amount in dB that the directional gain of the antenna exceeds 6dBi.

5.2.6.2 Procedures

For the antenna conducted emissions method, the antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. With the hopping function disabled, the EUT was allowed to transmit continuously. The frequency hopping channel was set separately to low, middle, and high hopping channels. The resolution bandwidth (RBW) was set to greater than the 20dB bandwidth. The span was set to approximately 5 times the 20 dB bandwidth. The 'Max-Hold' function was engaged. The maximum meter reading was recorded. The peak power output was calculated for the low, middle, and high hopping frequencies.

For the radiated emissions method, the EUT was placed on the non-conductive stand and set to transmit. A bilog antenna was placed at a test distance of 3 meters from the EUT. The resolution bandwidth (RBW) of the spectrum analyzer was set to greater than the 20dB bandwidth. The span was set to approximately 5 times the 20 dB bandwidth. The EUT was maximized for worst case emissions (or maximum output power) at the measuring antenna. The maximum meter reading was recorded. The peak power output was measured for the low, middle, and high hopping frequencies.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, a dipole antenna was then set in place of the EUT and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was then corrected to compensate for cable loss, as required. The peak power output was calculated for low, middle, and high hopping frequencies.

5.2.6.3 Results

For the antenna conducted emissions method, the results are presented on pages 50 through 52. The maximum peak conducted output power from the transmitter was 0.047W (16.77dBm), which is below the 1W limit.

For the radiated emissions method, the results are presented on page 53. The maximum EIRP measured from the transmitter was 0.053W (17.30dBm), which is below the 4W limit.

5.2.7 Duty Cycle Factor Measurements

5.2.7.1 Procedures

The duty cycle factor is used to convert peak detected readings to average readings. This factor is computed from the time domain trace of the pulse modulation signal.

With the transmitter set up to transmit for maximum pulse density, the time domain trace is displayed on the spectrum analyzer. This trace is obtained by tuning center frequency to the transmitter frequency and then setting a zero span width with 1msec/div. The amplitude settings are adjusted so that the on/off transitions clear the 4th division from the bottom of the display. The markers are set at the beginning and end of the "on-time". The trace is recorded.

Next the spectrum analyzer center frequency is set to the transmitter frequency with a zero span width and 10msec/div. This shows if the word is longer than 100msec or shorter than 100msec. If the word period is less than 100msec, the display is set to show at least one word. The on-time and off-time are then measured. The on-time is total time signal level exceeds the 4th division. Off-time is time under for the word period. The duty cycle is then computed as the (On-time/ word period) where the word period = (On-time + Off-time).

5.2.7.2 Results

The plots of the duty cycle are shown on data pages 54 and 55. The EUT transmits a 3.02ms pulse. Since a word is greater than 100ms long, the duty cycle factor was computed over a 100msec interval. The duty cycle correction factor was calculated to be -9.57dB (see page 55 for calculation).

5.2.8 Radiated Spurious Emissions Measurements

5.2.8.1 Requirements

Per section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated emissions measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must comply with the radiated emission limits specified in §15.209(a).

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30.0-88.0	100	3
88.0-216.0	150	3
216.0-960.0	200	3
Above 960	500	3

Paragraph 15.209(a) has the following radiated emission limits:

5.2.8.2 Procedures

Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3-meter distance from the EUT. The entire frequency range from 30MHz to 10GHz was investigated using a peak detector function.

The final open field emission tests were then manually performed over the frequency range of 30MHz to 10GHz.

- 1) For all harmonics not in the restricted bands, the following procedure was used:
 - a) The field strength of the fundamental was measured using a bilog antenna. The bilog antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all the harmonics not in the restricted band were then measured using a doubleridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst-case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
 - i) The EUT was rotated so that all its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer. The measuring antenna was not raised or lowered to ensure maximized readings, instead the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
 - d) All harmonics not in the restricted bands must be at least 20dB below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required.
- 2) For all emissions in the restricted bands, the following procedure was used:
 - a) The field strengths of all emissions below 1GHz were measured using a bi-log antenna. The bi-log antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all emissions above 1GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter high non-conductive stand. A peak detector with a resolution bandwidth of 1 MHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst-case emission levels were measured, the following steps were taken when taking all measurements:
 - i) The EUT was rotated so that all its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - d) For all radiated emissions measurements below 1GHz, if the peak reading is below the limits listed in 15.209(a), no further measurements are required. If, however, the peak readings exceed the limits listed in 15.209(a), then the emissions are remeasured using a quasi-peak detector.
 - e) For all radiated emissions measurements above 1GHz, the peak readings must comply with the 15.35(b) limits. 15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20dB

above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1GHz must be no greater than 20dB above the limits specified in 15.209(a).

f) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector. An average reading was taken.

If the dwell time per channel of the hopping signal is less than 100msec, then the reading obtained with the 10Hz video bandwidth may be further adjusted by a "duty cycle correction factor", derived from 20*log(dwell time/100msec). These readings must be no greater than the limits specified in 15.209(a).

5.2.8.3 Results

Preliminary radiated emissions plots with the EUT transmitting are shown on pages 56 through 67. Final radiated emissions data are presented on data pages 68 through 76. As can be seen from the data, all emissions measured from the EUT were within the specification limits. The emissions level closest to the limit (worst case) occurred at 3609MHz. The emissions level at this frequency was 17.13dB within the limit.

Photographs of the test configuration which yielded the highest or worst case radiated emission levels are shown in Figures 4 and 6.

5.2.9 Band Edge Compliance

5.2.9.1 Requirements

Per section 15.247(d), the emissions at the band-edges must be at least 20dB below the highest level measured within the band but attenuation below the general limits listed in 15.209(a) is not required.

5.2.9.2 Procedures

5.2.9.2.1 Low Band Edge

- 1) The EUT was set up inside the test chamber on a non-conductive stand.
- 2) A broadband measuring antenna was placed at a test distance of 3 meters from the EUT.
- 3) The EUT was set to transmit continuously at the channel closest to the low band-edge hopping function disabled.
- 4) The EUT was maximized for worst case emissions at the measuring antenna. The maximum meter reading was recorded.
- 5) To determine the band edge compliance, the following spectrum analyzer settings were used:
 - a) Center frequency = low band-edge frequency.
 - b) Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - c) Resolution bandwidth (RBW) \geq 1% of the span.
 - d) The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.
 - e) The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the left of the center frequency (band-edge) must be below the display line.)
 - f) The analyzer's display was plotted using a 'screen dump' utility.
- 6) Step (5) was repeated with the frequency hopping function enabled.

5.2.9.2.2 High Band Edge

- 1) The EUT was set up inside the test chamber on a non-conductive stand.
- 2) A broadband measuring antenna was placed at a test distance of 3 meters from the EUT.
- 3) The EUT was set to transmit continuously at the channel closest to the high band-edge hopping

function disabled.

- 4) The EUT was maximized for worst case emissions at the measuring antenna.
- 5) To determine the band edge compliance, the following spectrum analyzer settings were used:
 - a) Center frequency = high band-edge frequency.
 - b) Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - c) Resolution bandwidth (RBW) \ge 1% of the span.
 - d) The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.
 - e) The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the right of the center frequency (band-edge) must be below the display line.)
 - f) The analyzer's display was plotted using a 'screen dump' utility.
- 6) Step (5) was repeated with the frequency hopping function enabled.

5.2.9.3 Results

Pages 77 through 80 show the radiated band-edge compliance results. As can be seen from these plots, the emissions at the low end band-edge and the high end band-edge are within the 20dB down limits.

6. CONCLUSIONS

It was determined that The Chamberlain Group, Inc. Automotive Transceiver for Garage Door Control, Model No. CDMRAA0101E3 (ARQ2-UGDO) frequency hopping spread spectrum transceiver did fully meet the conducted and radiated emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, Sections 15.107 and 15.109 for receivers and Subpart C, Sections 15.207 and 15.247 for Intentional Radiators Operating within the 902-928MHz band, when tested per ANSI C63.4-2014.

It was also determined that The Chamberlain Group, Inc. Automotive Transceiver for Garage Door Control, Model No. CDMRAA0101E3 (ARQ2-UGDO) frequency hopping spread spectrum transceiver did fully meet the conducted and radiated RF emission requirements of the Industry Canada Radio Standards Specification, RSS-Gen, Section 8.8 and Section 7.1.2 for receivers and the Industry Canada Radio Standards Specification RSS-Gen Section 8.8 and Radio Standards Specification RSS-247 for transmitters, when tested per ANSI C63.4-2014.

7. CERTIFICATION

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications.

The data presented in this test report pertains to the EUT at the test date. Any electrical or mechanical modification made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

8. ENDORSEMENT DISCLAIMER

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST or any agency of the Federal Government.

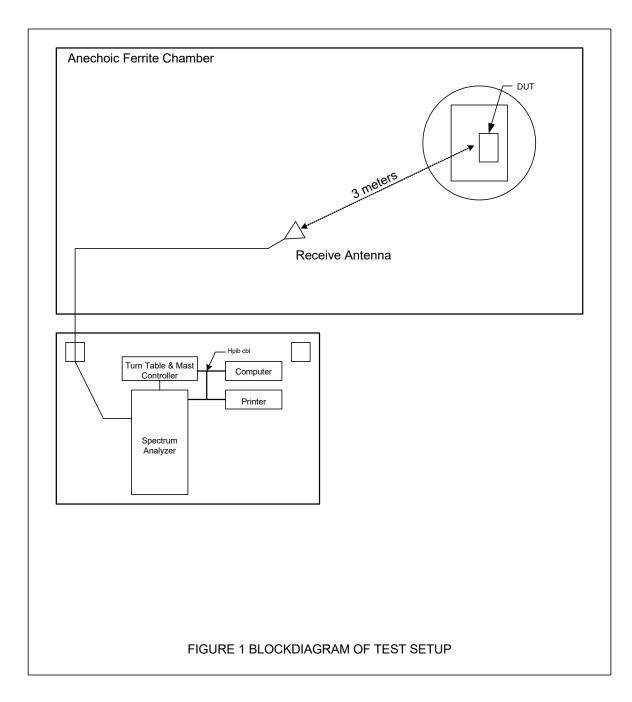
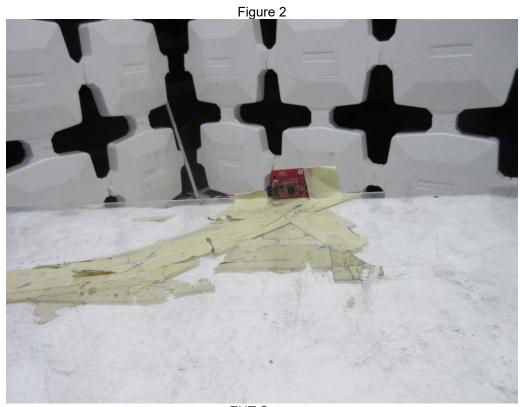

9. EQUIPMENT LIST

Table 9-1 Equipment List


Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW3	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-35-120-5R0- 10-12	PL2924	1GHZ-20GHZ	3/23/2020	3/23/2021
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
NDQ0	TUNED DIPOLE ANTENNA	EMCO	3121C-DB4	311	400-1000MHZ	5/8/2020	5/8/2022
NSDS1	UNIVERSAL SPHERICAL DIPOLE SOURCE	AET	USDS-H	AET-1116		NOTE 1	
NTA3	BILOG ANTENNA	TESEQ	6112D	32853	25-1000MHz	10/20/2020	10/20/2021
NWQ0	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66657	1GHZ-18GHZ	5/13/2020	5/13/2022
RBG0	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101533	10HZ-44GHZ	2/19/2020	2/19/2021
RBG2	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101591	2HZ-44GHZ	3/23/2020	3/23/2021
SES0	24VDC POWER SUPPLY	P-TRANS	FS-32024-1M	001	18-27VDC	NOTE 1	
SMAW	DC POWER SUPPLY	VOLTEQ	HY3020EX	02177910	30VDC/20A	NOTE 1	
VBV2	CISPR EN FCC ICES RE.EXE	ELITE	CISPR EN FCC ICES RE.EXE			N/A	
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1		I/O	
XPQ2	HIGH PASS FILTER	K&L MICROWAVE	4IH30- 1804/T10000-0	3	1.8-10GHZ	9/6/2019	9/6/2021

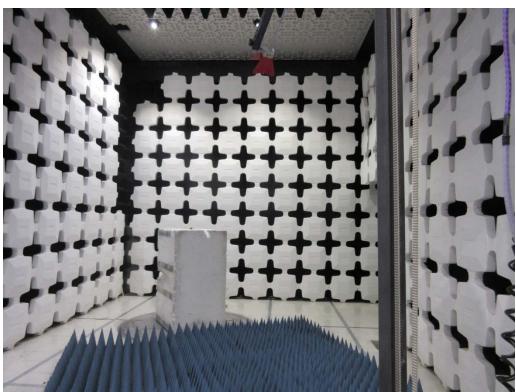
I/O: Initial Only N/A: Not Applicable CNR: Calibration Not Required Note 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

EUT Setup

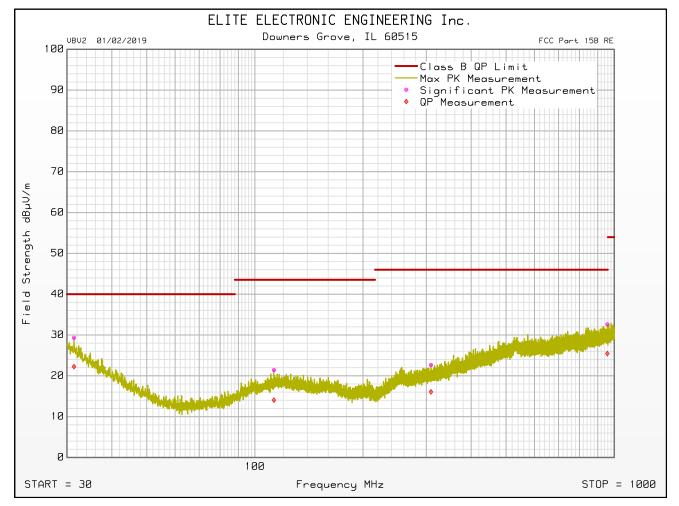
Test Setup for Radiated Emissions - 30MHz to 1GHz, Horizontal Polarization

Test Setup for Radiated Emissions - 30MHz to 1GHz, Vertical Polarization

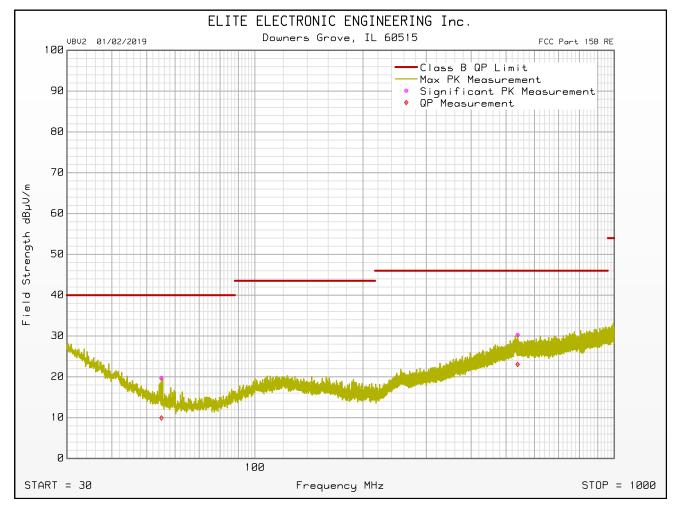
Test Setup for Radiated Emissions (Receiver) – 1 to 10GHz, Horizontal Polarization



Test Setup for Radiated Emissions (Receiver) – 1 to 10GHz, Vertical Polarization

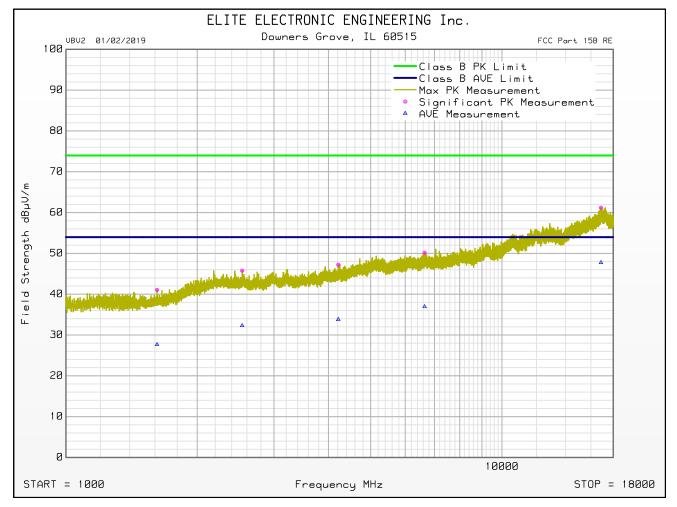

Test Setup for Radiated Emissions (Transmitter) - 1 to 10GHz, Horizontal Polarization

Test Setup for Radiated Emissions (Transmitter) – 1 to 10GHz, Vertical Polarization



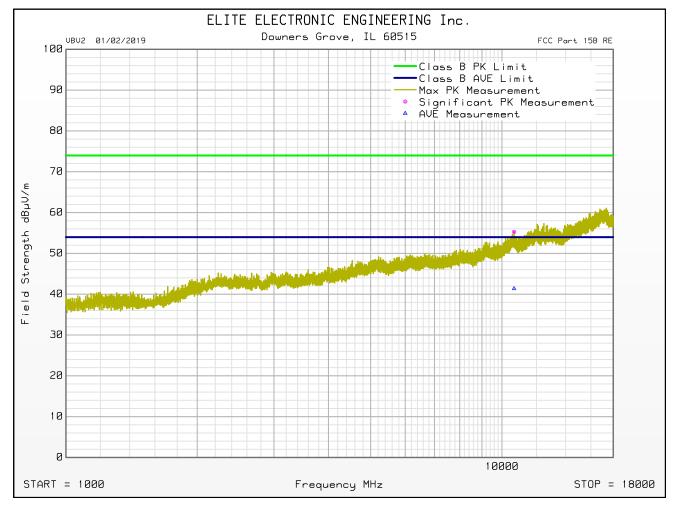
	-	CHAMBERLAIN SMP-77750
Serial Number	:	SMF -77750
		RX @ 902.25MHZ
Turntable Step Angle (°)		45
		120, 200, 340
Ant. Polarization(s)	:	Н
Scan Type	:	Stepped Scan
Test RBW	:	120 kHz
Prelim Dwell Time (s)	:	0.0001
Notes	:	
Test Engineer	:	T. Jozefczyk
Test Date	:	Nov 19, 2020 04:26:07 PM

	•	CHAMBERLAIN SMP-77750
	•	SMP-77750
Serial Number	:	
DUT Mode	:	RX @ 902.25MHZ
Turntable Step Angle (°)	:	45
Mast Positions (cm)	:	120, 200, 340
Ant. Polarization(s)	:	V
Scan Type	:	Stepped Scan
Test RBW	:	120 kHz
Prelim Dwell Time (s)	:	0.0001
Notes	:	
Test Engineer	:	T. Jozefczyk
5		Nov 19, 2020 04:26:07 PM



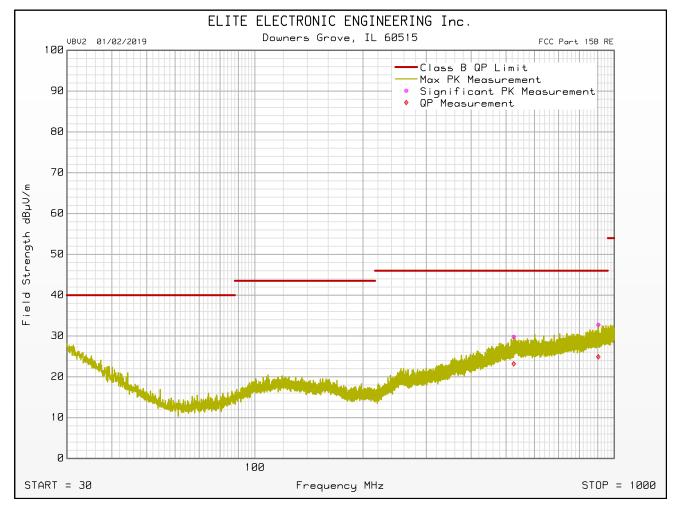
Manufacturer :	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 902.25MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	120 kHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Nov 19, 2020 04:26:07 PM

Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	QP Total dBµV/m	QP Limit dBµV/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
31.380	4.8	-2.2	24.1	0.0	0.4	0.0	29.3	22.3	40.0	-17.7	Н	120	90
54.960	5.9	-3.9	13.3	0.0	0.5	0.0	19.7	9.9	40.0	-30.1	V	120	135
112.960	2.9	-4.5	17.9	0.0	0.7	0.0	21.4	14.1	43.5	-29.5	Н	340	225
309.000	2.3	-4.3	19.3	0.0	1.1	0.0	22.7	16.1	46.0	-29.9	Н	200	45
538.440	4.0	-3.2	24.8	0.0	1.5	0.0	30.2	23.0	46.0	-23.0	V	120	315
957.180	3.6	-3.6	27.1	0.0	1.9	0.0	32.6	25.5	46.0	-20.5	H	120	180



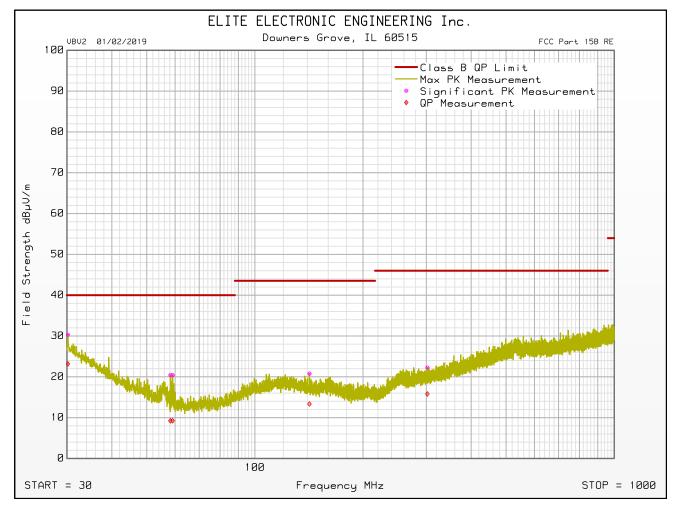
	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 902.25MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Ant. Polarization(s) :	Н
Scan Type :	Stepped Scan
Test RBW :	1 MHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Nov 30, 2020 04:10:27 PM

	-	CHAMBERLAIN SMP-77750
Serial Number	÷	
DUT Mode	:	RX @ 902.25MHZ
Turntable Step Angle (°)	:	45
Mast Positions (cm)	:	120, 200, 340
Ant. Polarization(s)	:	V
Scan Type	:	Stepped Scan
Test RBW	:	1 MHz
Prelim Dwell Time (s)	:	0.0001
Notes	:	
Test Engineer	:	T. Jozefczyk
Test Date	:	Nov 30, 2020 04:10:27 PM



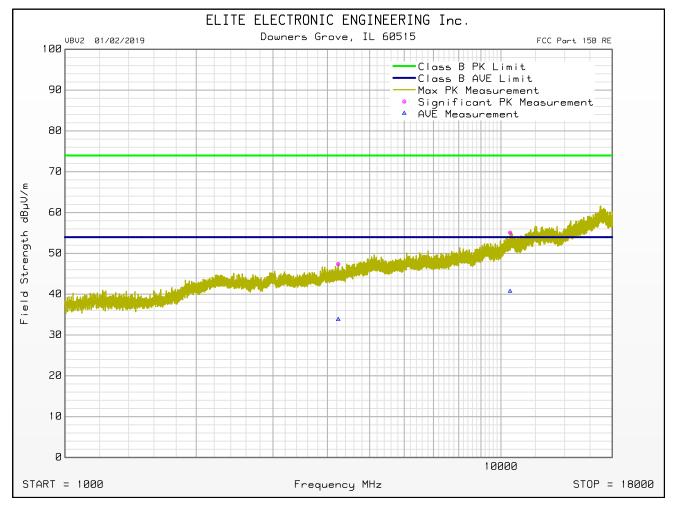
Manufacturer :	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 902.25MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	1 MHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Nov 30, 2020 04:10:27 PM

Freq GHz	Peak Mtr Rdg dBuV	Ave. Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	Peak Limit dBµV/m	Peak Lim Mrg dB	Ave. Total dBµV/m	Ave. Limit dBµV/m	Ave. Lim Mrg dB	Ant Pol	Mast Ht cm	Azim
1.6175	50.2	36.8	29.4	-41.1	2.5	0.0	41.0	74.0	-32.9	27.6	54.0	-26.3	Н	120	315
2.536	50.0	36.6	33.9	-41.3	3.1	0.0	45.8	74.0	-28.2	32.3	54.0	-21.7	Н	120	45
4.2135	48.2	34.8	35.4	-40.3	3.9	0.0	47.2	74.0	-26.8	33.8	54.0	-20.2	Н	200	0
6.6475	47.5	34.3	38.6	-40.7	4.8	0.0	50.2	74.0	-23.8	36.9	54.0	-17.0	Н	340	270



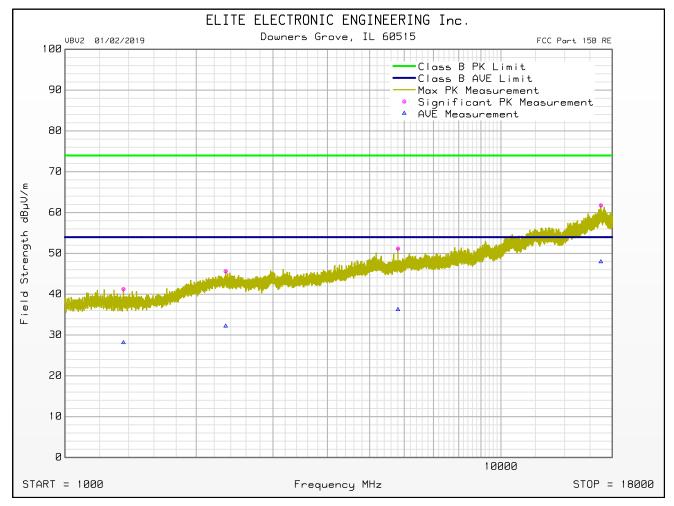
	CHAMBERLAIN SMP-77750
Serial Number :	Sim -77750
DUT Mode :	RX @ 914.75MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Ant. Polarization(s) :	Н
Scan Type :	Stepped Scan
Test RBW :	120 kHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Nov 20, 2020 01:36:41 PM

	-	CHAMBERLAIN SMP-77750
Serial Number		SIMI -77750
DUT Mode		RX @ 914.75MHZ
Turntable Step Angle (°):	:	45
Mast Positions (cm)	:	120, 200, 340
Ant. Polarization(s)	:	V
Scan Type	:	Stepped Scan
Test RBW	:	120 kHz
Prelim Dwell Time (s)	:	0.0001
Notes	:	
Test Engineer	:	T. Jozefczyk
Test Date	:	Nov 20, 2020 01:36:41 PM



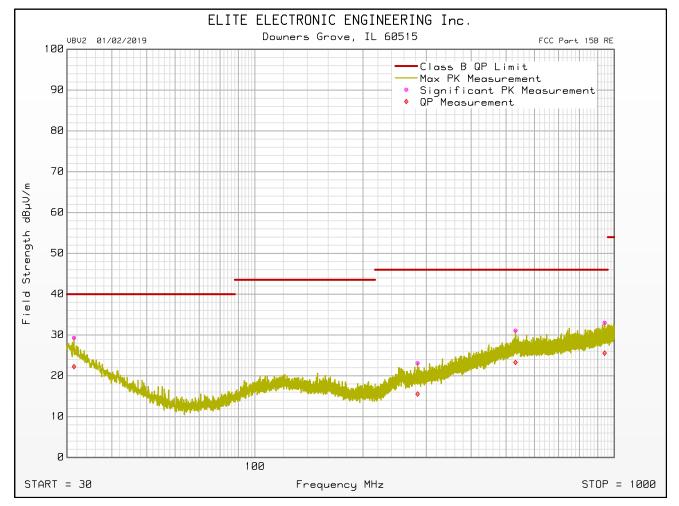
Manufacturer :	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 914.75MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	120 kHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Nov 20, 2020 01:36:41 PM

Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	QP Total dBµV/m	QP Limit dBµV/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
30.180	5.1	-2.1	24.9	0.0	0.3	0.0	30.3	23.2	40.0	-16.8	V	340	90
58.200	7.2	-4.0	12.7	0.0	0.5	0.0	20.4	9.2	40.0	-30.8	V	120	270
59.040	7.3	-3.8	12.6	0.0	0.5	0.0	20.4	9.2	40.0	-30.8	V	120	270
141.880	2.9	-4.5	17.1	0.0	0.8	0.0	20.8	13.4	43.5	-30.2	V	340	0
302.040	2.0	-4.4	19.2	0.0	1.1	0.0	22.3	15.8	46.0	-30.2	V	200	225
525.120	3.6	-3.0	24.7	0.0	1.5	0.0	29.8	23.2	46.0	-22.8	Н	340	225
903.060	4.4	-3.5	26.5	0.0	1.9	0.0	32.8	24.9	46.0	-21.1	Н	340	0



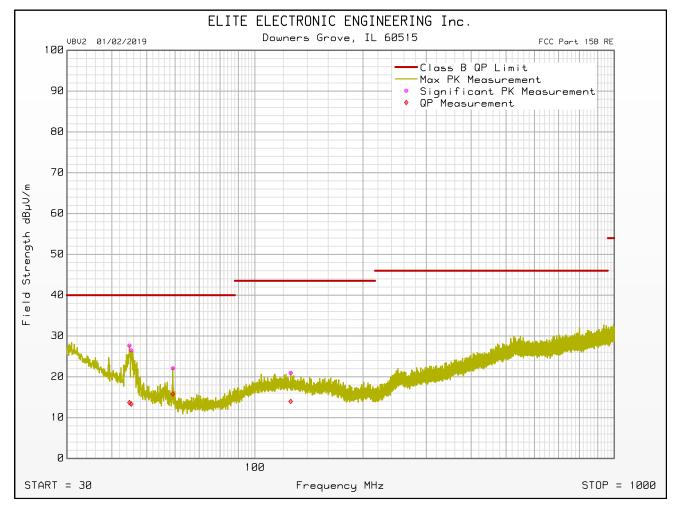
Manufacturer :	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 914.75MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Ant. Polarization(s) :	Н
Scan Type :	Stepped Scan
Test RBW :	1 MHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Nov 30, 2020 04:52:23 PM

Manufacturer :	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 914.75MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Ant. Polarization(s) :	V
Scan Type :	Stepped Scan
Test RBW :	1 MHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Nov 30, 2020 04:52:23 PM



Manufacturer :	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 914.75MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	1 MHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Nov 30, 2020 04:52:23 PM

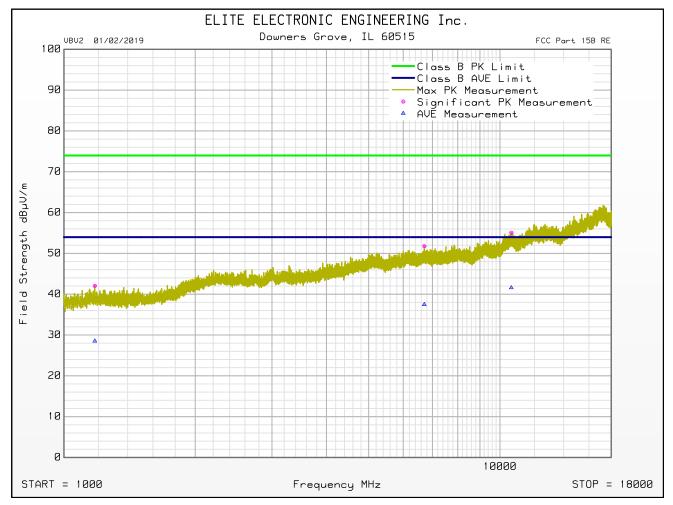
Freq GHz	Peak Mtr Rdg dBuV	Ave. Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	Peak Limit dBµV/m	Peak Lim Mrg dB	Ave. Total dBµV/m	Ave. Limit dBµV/m	Ave. Lim Mrg dB	Ant Pol	Mast Ht cm	Azim
1.362	50.8	37.7	29.7	-41.5	2.3	0.0	41.2	74.0	-32.7	28.1	54.0	-25.9	V	340	180
2.337	49.8	36.4	33.8	-41.0	3.0	0.0	45.6	74.0	-28.4	32.2	54.0	-21.8	V	120	45
4.234	48.3	34.7	35.4	-40.2	3.9	0.0	47.4	74.0	-26.6	33.8	54.0	-20.2	Н	120	90
5.8045	49.4	34.5	37.8	-40.5	4.5	0.0	51.2	74.0	-22.8	36.2	54.0	-17.7	V	120	0



	-	CHAMBERLAIN SMP-77750
Serial Number :		
DUT Mode :	:	RX @ 926.75MHZ
Turntable Step Angle (°):	:	45
Mast Positions (cm) :	:	120, 200, 340
Ant. Polarization(s) :	:	Н
Scan Type :	:	Stepped Scan
Test RBW :	:	120 kHz
Prelim Dwell Time (s)	:	0.0001
Notes :	:	
Test Engineer :	:	T. Jozefczyk
Test Date :	:	Nov 20, 2020 02:15:53 PM

	•	CHAMBERLAIN
	÷	SMP-77750
Serial Number	2	
DUT Mode	:	RX @ 926.75MHZ
Turntable Step Angle (°)	1	45
Mast Positions (cm)	:	120, 200, 340
Ant. Polarization(s)	:	V
Scan Type	:	Stepped Scan
Test RBW	:	120 kHz
Prelim Dwell Time (s)	:	0.0001
Notes	:	
Test Engineer	:	T. Jozefczyk
5		Nov 20, 2020 02:15:53 PM

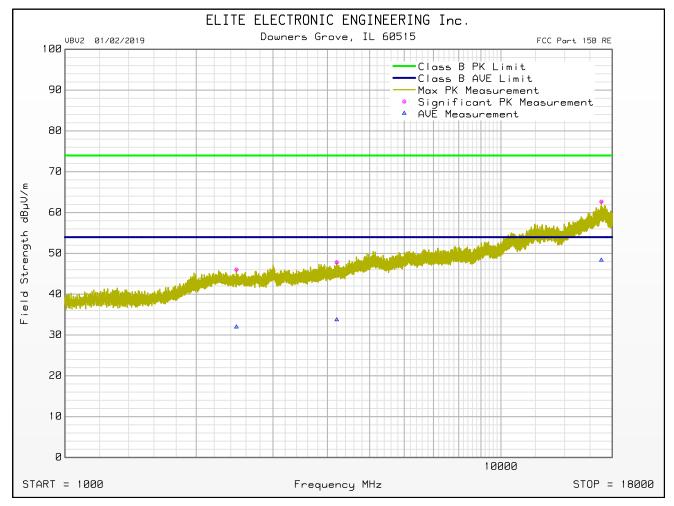
Manufacturer :	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 926.75MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	120 kHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Nov 20, 2020 02:15:53 PM


Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	QP Total dBµV/m	QP Limit dBµV/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °
31.380	4.8	-2.2	24.1	0.0	0.4	0.0	29.3	22.2	40.0	-17.8	Н	120	315
44.760	10.1	-3.9	17.1	0.0	0.4	0.0	27.7	13.7	40.0	-26.3	V	120	270
45.300	9.1	-4.0	16.9	0.0	0.4	0.0	26.5	13.3	40.0	-26.7	V	200	270
59.100	9.0	2.8	12.5	0.0	0.5	0.0	22.1	15.8	40.0	-24.2	V	120	135
125.800	2.2	-4.8	18.1	0.0	0.7	0.0	21.0	14.0	43.5	-29.6	V	200	45
283.740	3.3	-4.3	18.8	0.0	1.0	0.0	23.1	15.5	46.0	-30.5	Н	340	0
531.120	4.8	-3.0	24.8	0.0	1.5	0.0	31.1	23.3	46.0	-22.7	Н	120	225
940.260	4.1	-3.3	27.0	0.0	1.9	0.0	33.0	25.6	46.0	-20.4	Н	120	135

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019

Manufacturer :	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 926.75MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Ant. Polarization(s) :	Н
Scan Type :	Stepped Scan
Test RBW :	1 MHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Dec 01, 2020 08:55:16 AM



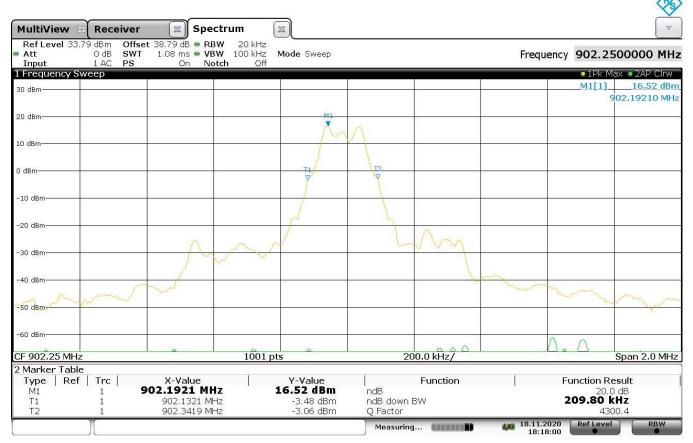
FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019

Manufacturer :	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 926.75MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Ant. Polarization(s) :	V
Scan Type :	Stepped Scan
Test RBW :	1 MHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Dec 01, 2020 08:55:16 AM

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 01/02/2019


Manufacturer :	CHAMBERLAIN
Model :	SMP-77750
Serial Number :	
DUT Mode :	RX @ 926.75MHZ
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	1 MHz
Prelim Dwell Time (s) :	0.0001
Notes :	
Test Engineer :	T. Jozefczyk
Test Date :	Dec 01, 2020 08:55:16 AM

Freq GHz	Peak Mtr Rdg dBuV	Ave. Mtr Rdg dBuV	Ant Fac dB	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	Peak Limit dBµV/m	Peak Lim Mrg dB	Ave. Total dBµV/m	Ave. Limit dBµV/m	Ave. Lim Mrg dB	Ant Pol	Mast Ht cm	Azim
1.177	52.3	38.8	29.8	-42.2	2.1	0.0	42.0	74.0	-31.9	28.5	54.0	-25.5	Н	120	0
2.4735	50.5	36.5	33.6	-41.2	3.1	0.0	46.0	74.0	-27.9	32.0	54.0	-22.0	V	200	135
4.2005	48.8	34.7	35.4	-40.3	3.9	0.0	47.8	74.0	-26.2	33.7	54.0	-20.2	V	200	0
6.7075	49.0	34.7	38.5	-40.5	4.8	0.0	51.8	74.0	-22.2	37.5	54.0	-16.5	Н	120	45

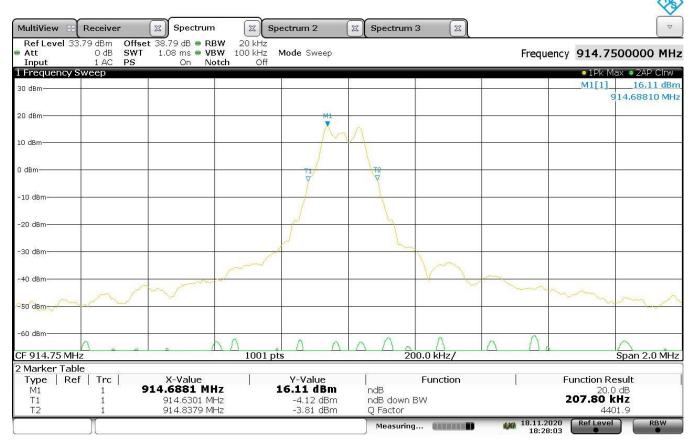
DATA PAGE						
MANUFACTURER The Chamberlain Group, Inc.						
EUT Automotive Transceiver for Garage Door Control						
MODEL NO. CDMRAA0101E3 (ARQ2-UGDO)						
TEST FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted						
MODE	Tx – 902.25MHz					
DATE TESTED	November 18, 2020					
TEST PERFORMED BY	Tylar Jozefczyk					
NOTES	20dB BW = 209.8kHz					

OCCUPIED BANDWIDTH – 20DB BW

18:18:00 18.11.2020

DATA PAGE					
MANUFACTURER	The Chamberlain Group, Inc.				
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO. CDMRAA0101E3 (ARQ2-UGDO)					
TEST FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted					
MODE	Tx – 902.25MHz				
DATE TESTED	November 18, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES	99% BW = 681.4kHz				

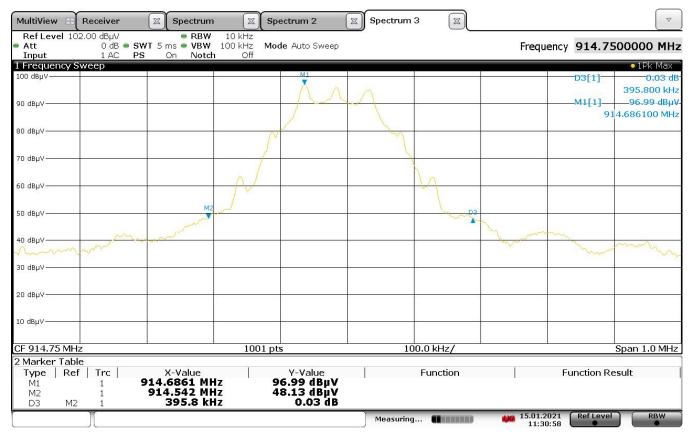
OCCUPIED BANDWIDTH – 99% BW


MultiView 88	Receiver	Spectrum	Sp.	ectrum 2 🛛 🔆	Spectrum	3 🕅			▽
Ref Level 10		• RBW	10 kHz				Farmer	002.2	500000 MUL-
 Att Input 		WT5ms = VBW S On Notch		le Auto Sweep			Freque	ency 902.2	500000 MHz
1 Frequency S			011						●1Pk Max
100 dBµV				Mi	5			D3[1]	9.83 dB
300				A ~	-				681.400 kHz
90 dBµV								M1[1]	96.03 dBµV
90 ubpv					\rightarrow				02.197100 MHz
				1					21137 100 1012
80 dBµV			r	1	Ly.	2			
70 dBµV					1.4	<u></u>			3
						No.			
60 dBµV			\neg			In			
Λ		\sim						$\langle \Lambda \rangle$	
50 dBµV	M2 0	MAZ	1	-		This		~ {	3
	∇	VV						L	
40 dBµV			(2		5				
001									hum
30 dBµV						(c			
oo app :									
20 dBµV			1		0	2) (1)			3
10 dBµ∨			-						
CF 902.25 MH	z		1001 pt	S	10	0.0 kHz/	â		Span 1.0 MHz
2 Marker Tab	le								
Type Re	f Trc	X-Value		Y-Value		Function		Function R	esult
M1	1	902.1971 MH	z 9	6.03 dBµV 6.43 dBµV					
M2	1	901.8653 MH 681.4 kH	IZ 4	6.43 dBµV 9.83 dB					
D3 M2	1	001.4 KN	12	7.03 u D			-		
					Measuring	(ARAMAN I)	# 15.01.20 11:33	121 Ref Leve	RBW

11:33:14 15.01.2021

DATA PAGE					
MANUFACTURER	The Chamberlain Group, Inc.				
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO. CDMRAA0101E3 (ARQ2-UGDO)					
TEST	FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted				
MODE	Tx – 914.75MHz				
DATE TESTED	November 18, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES	20dB BW = 207.8kHz				

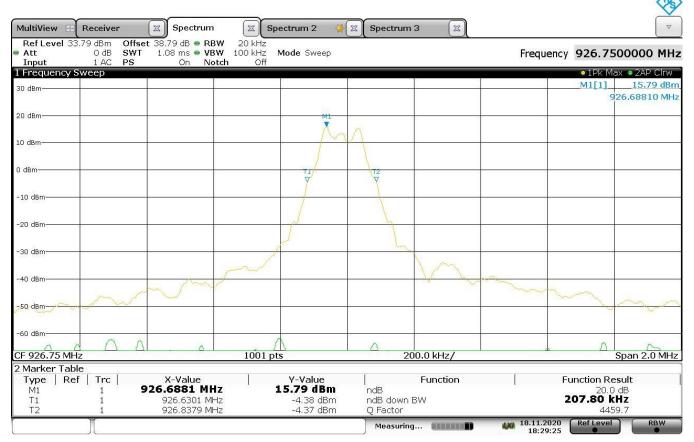
OCCUPIED BANDWIDTH – 20DB BW



18:28:04 18.11.2020

DATA PAGE						
MANUFACTURER The Chamberlain Group, Inc.						
EUT Automotive Transceiver for Garage Door Control						
MODEL NO. CDMRAA0101E3 (ARQ2-UGDO)						
TEST FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted						
MODE	Tx – 914.75MHz					
DATE TESTED	November 18, 2020					
TEST PERFORMED BY	Tylar Jozefczyk					
NOTES	99% BW = 395.8kHz					

OCCUPIED BANDWIDTH – 99% BW



11:30:59 15.01.2021

DATA PAGE					
MANUFACTURER	The Chamberlain Group, Inc.				
EUT Automotive Transceiver for Garage Door Control					
MODEL NO. CDMRAA0101E3 (ARQ2-UGDO)					
TEST FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted					
MODE	Tx – 926.75MHz				
DATE TESTED	November 18, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES	20dB BW = 207.8kHz				

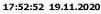
OCCUPIED BANDWIDTH – 20DB BW

18:29:26 18.11.2020

DATA PAGE					
MANUFACTURER	The Chamberlain Group, Inc.				
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO. CDMRAA0101E3 (ARQ2-UGDO)					
TEST FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted					
MODE	Tx – 926.75MHz				
DATE TESTED	November 18, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES	99% BW = 390.0kHz				

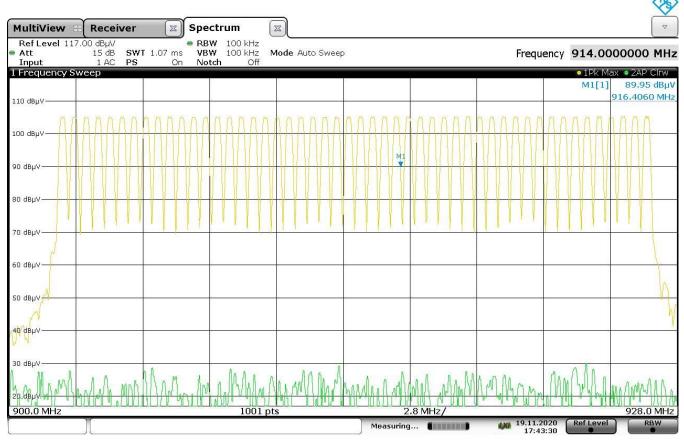
OCCUPIED BANDWIDTH – 99% BW

MultiView 88	Receiver	Spectrum	🗶 🛛 S	pectrum 2	Spectrum	3 🕱			
Ref Level 10 Att		● RBW VT 5 ms ● VBW	10 kHz 100 kHz M	ode Auto Sweep			Frequ	ency 926 7	500000 MHz
Input	1 AC PS						riequ	Silcy 920.70	00000 Miliz
1 Frequency 8	Sweep								⊙1Pk Max
100 dBμV			1					D3[1]	-1.07 dB
				M1					390.000 kHz
90 dBµV			-	A A				M1[1]	92.09 dBµV
				101	$\sim $				6.687100 MHz
80 dBµV			1		1	2			
801			1		N				
70 dBµV			/		1				
60 dBµV						N			
10			N			N			
50 dBµV		M	2						
40 dBµV		mon				D3	5		
	home	~					m	- how	min
30 dBµV						· · · · · · · · · · · · · · · · · · ·			<u> </u>
00 40-41									
20 dBµV			1						
10 dBµV									
CF 926.75 MH	z		1001 p	ots	10	0.0 kHz/			Span 1.0 MHz
2 Marker Tab									
Type Re		X-Value		Y-Value		Function		Function Re	esult
M1	1 9	926.6871 MH	z	92.09 dBµV 44.64 dBµV					
M2 D3 M2	1	926.551 MH 390.0 kH	7	44.64 авру -1.07 dB					
	T	55010 KI	12	-1.07 dD)		444 15.01.2	021 (Ref Level	RBW
					Measuring		10:12		KBW


10:12:56 15.01.2021

DATA PAGE					
MANUFACTURER The Chamberlain Group, Inc.					
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)				
TEST	FCC §15.247, RSS-247 – Carrier Frequency Separation				
MODE	FHSS				
DATE TESTED	November 19, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES	Separation = 500.5kHz				

CARRIER FREQUENCY SEPARATION



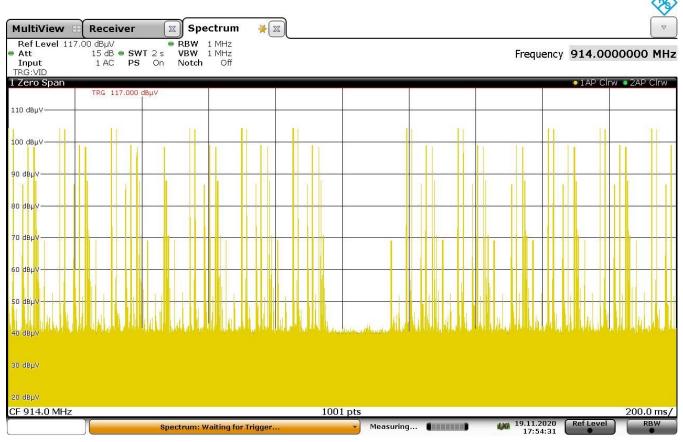
DATA PAGE					
MANUFACTURER The Chamberlain Group, Inc.					
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)				
TEST	FCC §15.247, RSS-247 – Number of Hopping Channels				
MODE	FHSS				
DATE TESTED	November 19, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES	# of Hopping Channels = 50				

NUMBER OF HOPPING CHANNELS

17:43:31 19.11.2020

DATA PAGE				
MANUFACTURER	The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.247, RSS-247 – Time of Occupancy			
MODE	FHSS			
DATE TESTED	November 19, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES	Burst = 1.272ms			

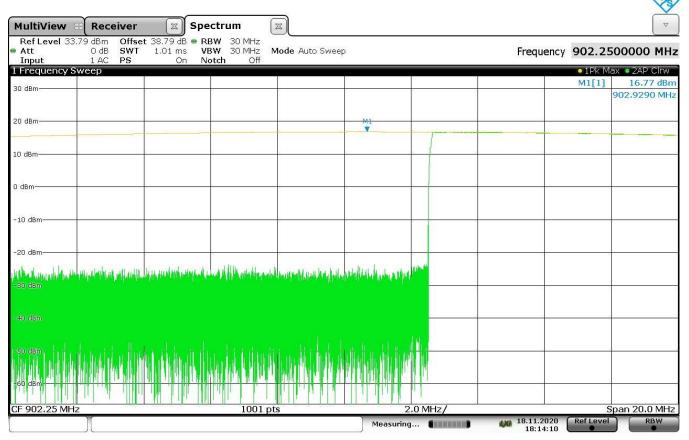
TIME OF OCCUPANCY


MultiView 😁	Receiver	Spectrur	n 🔌 🖾					
Ref Level 117. Att Input TRG:VID	00 dBµV 15 dB ● SWT 2 1 AC PS					Frequenc	y 914.00	00000 MHz
1 Zero Span				_			⊙1AP Clr	w 🔍 2AP Clrw
110 dBµV		-	с. С	55			D2[1]	0.04 dB
	— TRG 107.000 dBµV				D2		M1[1]	103.63 dBµV
100 dBµV								-0.00000000 s-
90 dBµV								
80 dBµV								
70 dBµV				rs				
60 dвµV		2				8	5	
50 dBµV								
40 dBµV					A A . I. A IS . I		elle al de la la	which must not be assored to
30 dBµV								a fail fáilt an
20 dBµV					I'de a de	NIN ALA ANG ENDINE.		
CF 914.0 MHz				l001 pts				200.0 µs/
2 Marker Table				32				
Type Ref M1 1 D1 M1 D2 M1	1	X-Value 0.0 s 0.0 s .272 ms	Y-Value 103.63 dB 0.00 0.04	dB	Function		Function Re	sult
		Spectrum: Waiting	for Trigger	-	Measuring	19.11.2020 17:55:27	Ref Level	RBW

17:55:28 19.11.2020

DATA PAGE					
MANUFACTURER	The Chamberlain Group, Inc.				
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)				
TEST	FCC §15.247, RSS-247 – Time of Occupancy				
MODE	FHSS				
DATE TESTED	November 19, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES	Time of Occupancy = # of bursts × burst duration × 10 where: (x 10 is needed to convert from 2 seconds to 20 seconds) = $(22) \times (1.27) \times (10)$ = 279.4ms = 0.279s				

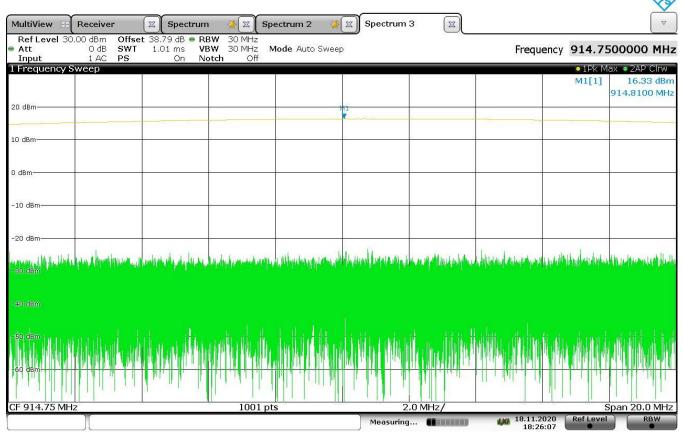
TIME OF OCCUPANCY



17:54:31 19.11.2020

DATA PAGE					
MANUFACTURER The Chamberlain Group, Inc.					
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO.	DMRAA0101E3 (ARQ2-UGDO)				
TEST	FCC §15.247, RSS-247 – RF Output Power - Conducted				
MODE	Tx – 902.25MHz				
DATE TESTED	November 18, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES	RF Output Power = 16.77dBm				

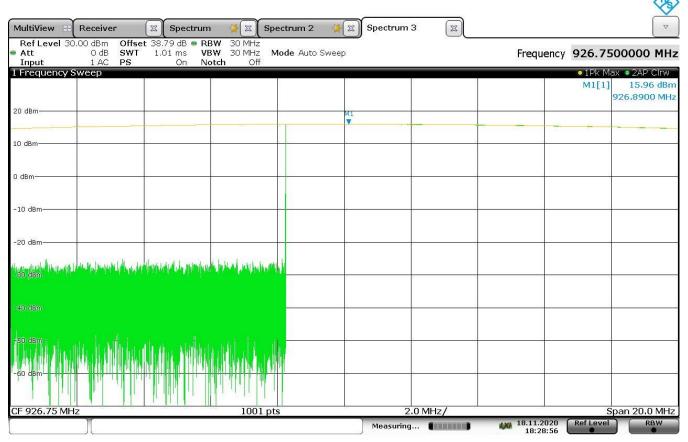
RF OUTPUT POWER - CONDUCTED



18:14:10 18.11.2020

DATA PAGE					
MANUFACTURER	The Chamberlain Group, Inc.				
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO.	DMRAA0101E3 (ARQ2-UGDO)				
TEST	FCC §15.247, RSS-247 – RF Output Power - Conducted				
MODE	Tx – 914.75MHz				
DATE TESTED	November 18, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES	RF Output Power = 16.33dBm				

RF OUTPUT POWER - CONDUCTED



18:26:07 18.11.2020

DATA PAGE					
MANUFACTURER The Chamberlain Group, Inc.					
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO.	DMRAA0101E3 (ARQ2-UGDO)				
TEST	FCC §15.247, RSS-247 – RF Output Power - Conducted				
MODE	Tx – 926.75MHz				
DATE TESTED	November 18, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES	RF Output Power = 15.936Bm				

RF OUTPUT POWER - CONDUCTED

^{18:28:57 18.11.2020}

DATA PAGE						
MANUFACTURER	The Chamberlain Group, Inc.					
EUT	Automotive Transceiver for Garage Door Control					
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)					
TEST	ST FCC §15.247, RSS-247 – RF Output Power - Radiated					
MODE	Tx					
DATE TESTED	November 19, 2020					
TEST PERFORMED BY	Tylar Jozefczyk					
NOTES						

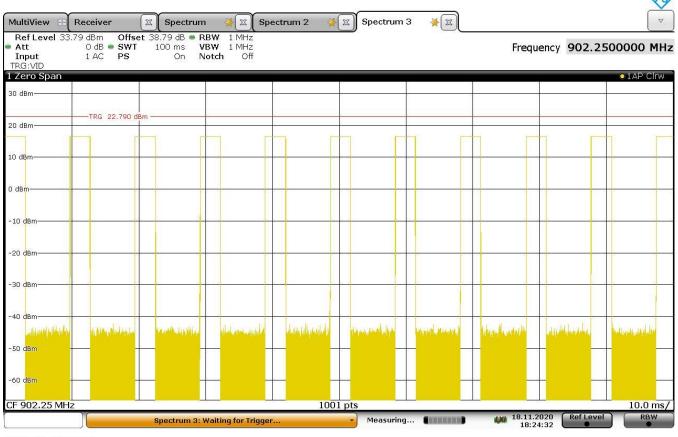
Freq. (MHz)	Ant Pol	Wide BW Meter Reading (dBµV)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP Total (dBm)	Limit (dBm)	Margin (dB)
902.25	Н	84.90	14.76	2.15	1.63	15.28	36.00	-20.72
902.25	V	85.25	16.78	2.15	1.63	17.30	36.00	-18.70
914.75	Н	84.09	14.08	2.15	1.64	14.59	36.00	-21.41
914.75	V	82.74	13.60	2.15	1.64	14.11	36.00	-21.89
926.75	Н	82.61	12.44	2.15	1.65	12.94	36.00	-23.06
926.75	V	81.66	12.26	2.15	1.65	12.76	36.00	-23.24

RF OUTPUT POWER

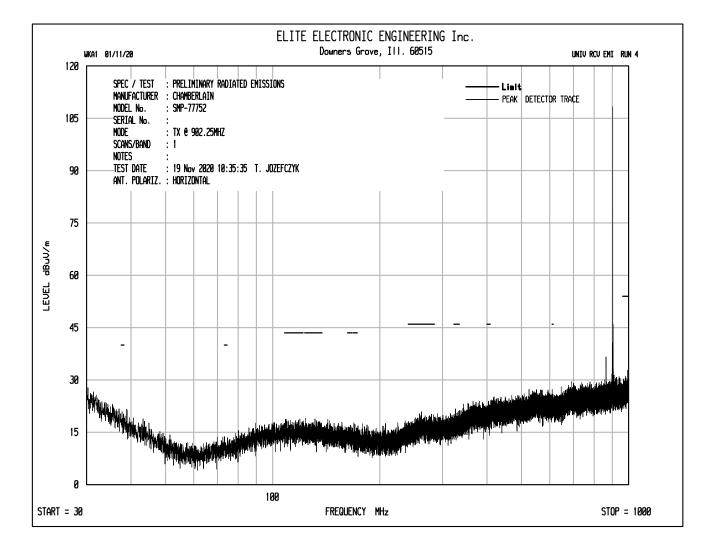
EIRP = Calculated Signal (dBm) + Antenna Gain (dB) – Cable Loss (dB)

DATA PAGE				
MANUFACTURER	The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.247, RSS-247 – Duty Cycle			
MODE	Tx			
DATE TESTED	November 18, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES	Burst Duration = 3.02ms			

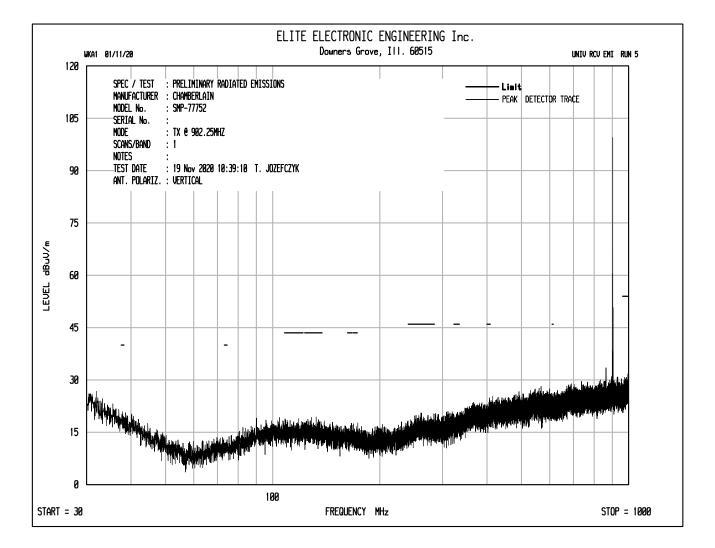
DUTY CYCLE - BURST


MultiView 🔠	Receiver	🕱 Spectrum 🕌	Spectrum 2 👹 🕅	Spectrum 3 🛛 🔆 🕱	
Ref Level 33 Att Input TRG:VID	.79 dBm Offs 0 dB ● SW 1 AC PS		MHz MHz Off		Frequency 902.2500000 M
l Zero Span		7 7			O1AP CIn
30 dBm	5				D2[1]0.04
					3.02000 1
20 dBm	TRG 21.790	dBm			M1[1]16.46 dE
17				D2	0.0000000
10 dBm					
20 0011					
0 dBm					
o ubm					
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
				The second se	and the second second second second second
-50 dBm				diam of markets to be been dealed	e and a loss of the last of the loss of the black of the
-30 dbiii				 All how we have 	an all a second source of the states of
1010 1011-1				1. 11. 1	
-60 dBm		1		ALC BURNER BURNER	l tha sa dha na bha an ta an ta dha an ta
CF 902.25 MH	7		1001 pts		500.0 μ
2 Marker Tabl			1001 pts		μ 0.000
Type Ref		X-Value	Y-Value	Function	Function Result
M1	1	0.0 s	16.46 dBm	rancaon	rancion result
D1 M1	1	0.0 s	0.00 dB		
D2 M1	1	3.02 ms	0.04 dB		
		Spectrum 3: Waiting	Name and Addition of the Addit	Measuring 🚺 🚺 🖗	18.11.2020 Ref Level RBW

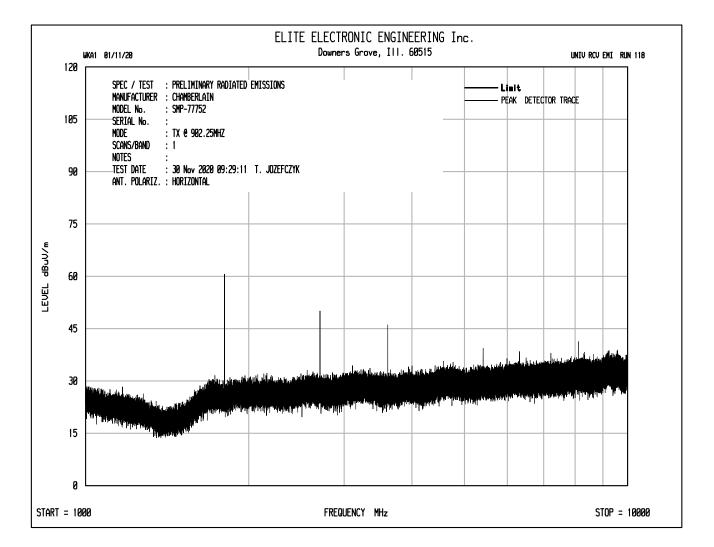
18:24:01 18.11.2020

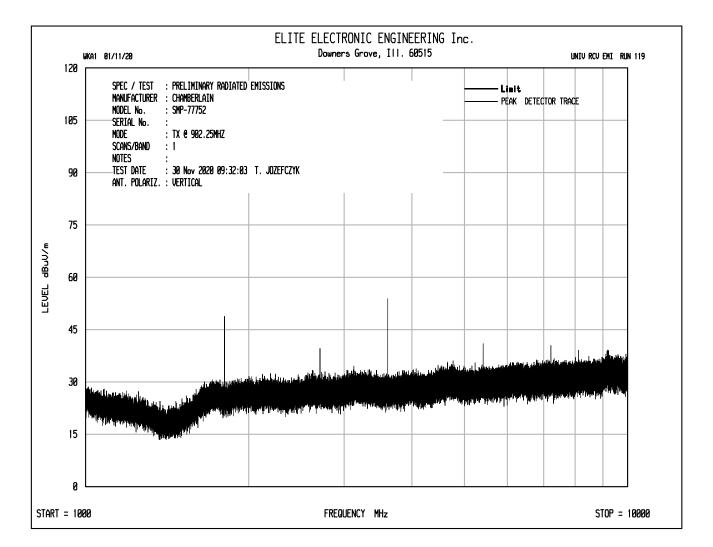

DATA PAGE								
MANUFACTURER The Chamberlain Group, Inc.								
EUT	Automotive Transceiver for Garage Door Control							
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)							
TEST	FCC §15.247, RSS-247 – Duty Cycle							
MODE	Tx							
DATE TESTED	November 18, 2020							
TEST PERFORMED BY	Tylar Jozefczyk							
NOTES	Duty Cycle = $20\log\left(\frac{(\# of \ bursts) \times (burst \ duration)}{100ms}\right)$ = $20\log\left(\frac{(11) \times (3.02ms)}{100ms}\right)$ = $20(-0.4786)$ = -9.57dB							

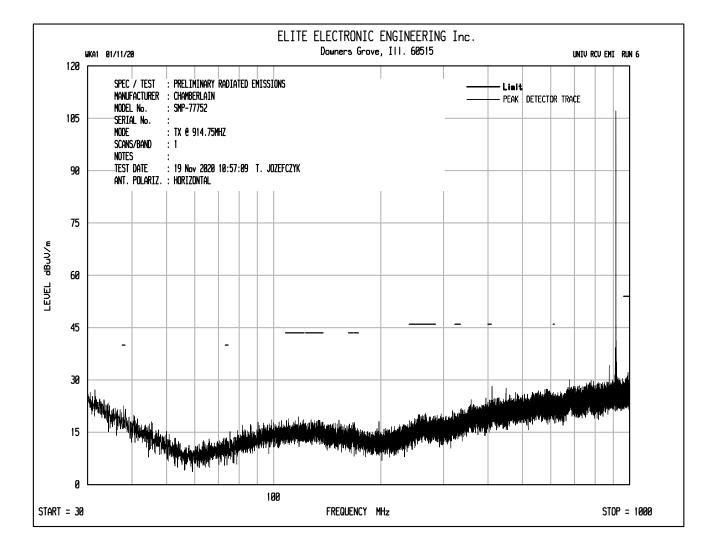
DUTY CYCLE

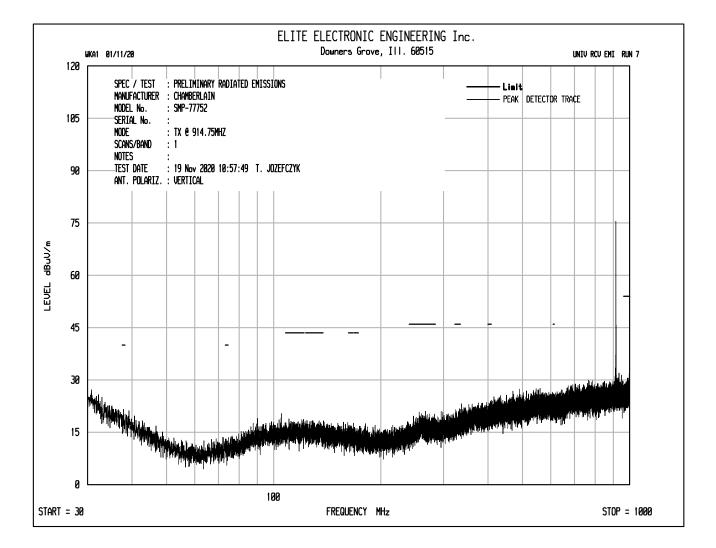


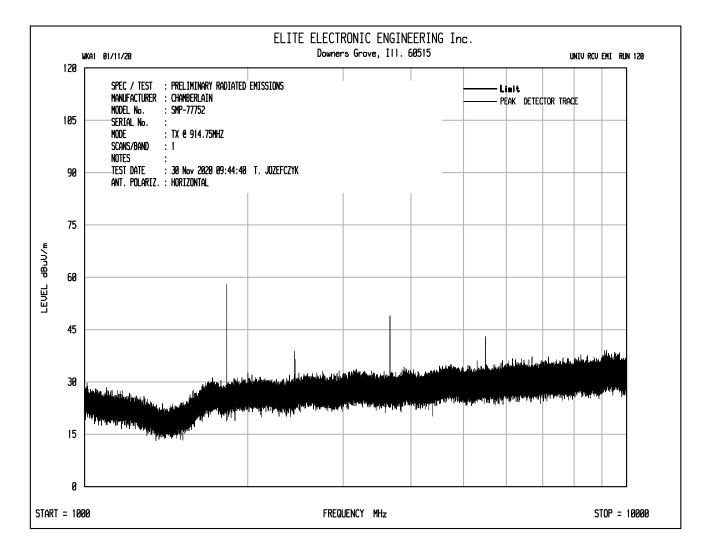
18:24:33 18.11.2020

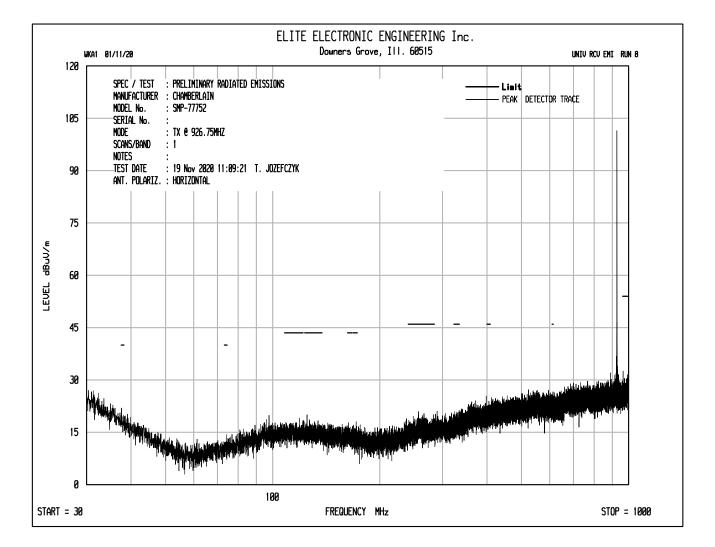


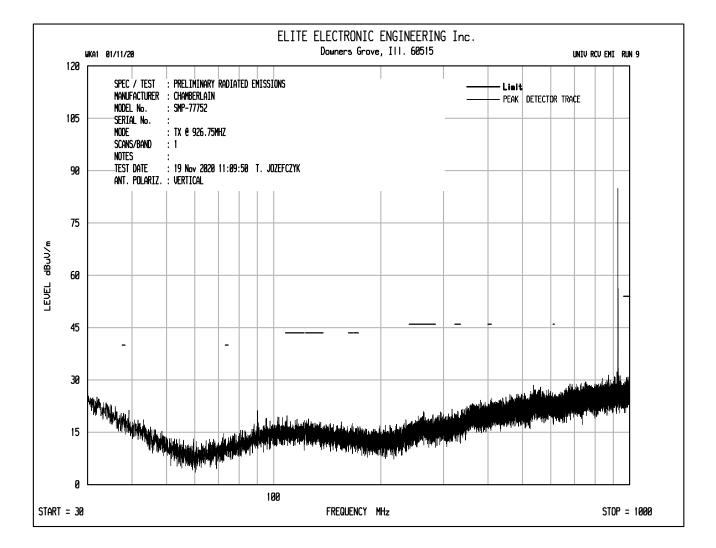


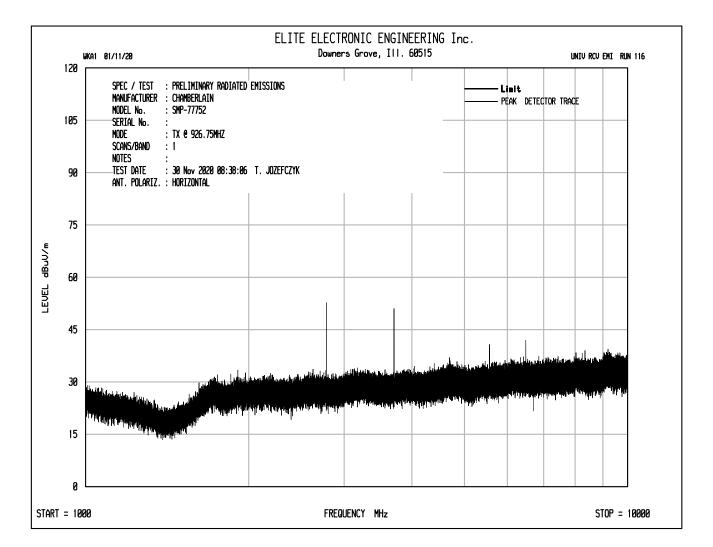


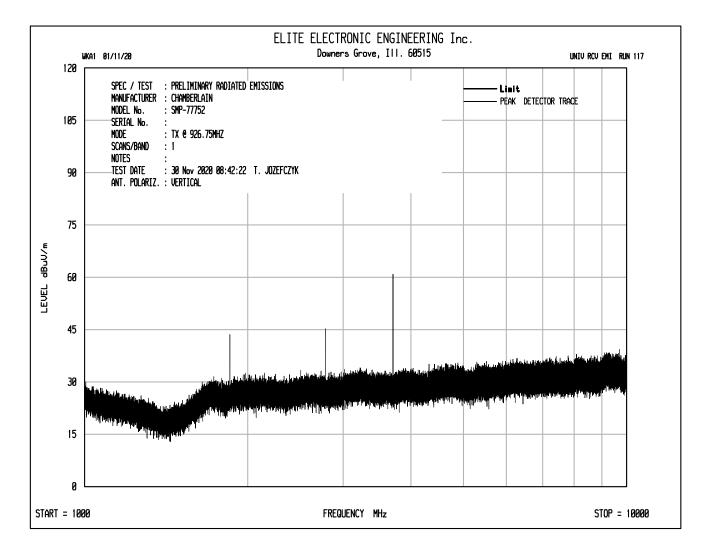












	DATA PAGE						
MANUFACTURER The Chamberlain Group, Inc.							
EUT	Automotive Transceiver for Garage Door Control						
MODEL NO.	DEL NO. CDMRAA0101E3 (ARQ2-UGDO)						
TEST	FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in Non-						
TEST	Restricted Bands						
MODE	Tx – 902.25MHz						
DATE TESTED	November 19 & 30, 2020						
TEST PERFORMED BY Tylar Jozefczyk							
NOTES							

				NATED SP						
Freq. (MHz)	Ant. Pol.	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant. Fac. (dB)	Pre Amp (dB)	Peak Total dBµV/m at 3m	Peak Total μV/m at 3m	Peak Limit µV/m at 3m	Margin (dB)
902.25	Н	85.12		2.88	26.47	0.00	114.48	529415.55		
902.25	V	85.76		2.88	26.47	0.00	115.12	569897.42		
1804.50	Н	72.41		3.25	30.91	-40.89	65.69	1924.24	56989.74	-29.43
1804.50	V	69.11		3.25	30.91	-40.89	62.39	1316.01	56989.74	-32.73
6315.75	Н	47.60		5.53	35.48	-40.15	48.46	264.83	56989.74	-46.66
6315.75	V	47.48		5.53	35.48	-40.15	48.34	261.19	56989.74	-46.78
7218.00	Н	39.09	Ambient	5.88	35.67	-40.07	40.58	106.93	56989.74	-54.53
7218.00	V	39.28	Ambient	5.88	35.67	-40.07	40.77	109.29	56989.74	-54.34

DATA PAGE								
MANUFACTURER The Chamberlain Group, Inc.								
EUT	Automotive Transceiver for Garage Door Control							
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)							
TEST	FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in							
1631	Restricted Bands							
MODE	Tx – 902.25MHz							
DATE TESTED	November 19 & 30, 2020							
TEST PERFORMED BY Tylar Jozefczyk								
NOTES								

RADIATED SPURIOUS EMISSIONS										
Freq. (MHz)	Ant. Pol.	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant. Fac. (dB)	Pre Amp (dB)	Peak Total dBµV/m at 3m	Peak Total μV/m at 3m	Peak Limit μV/m at 3m	Margin (dB)
2706.75	Н	65.26		3.68	32.57	-40.41	61.09	1133.76	5000.00	-12.89
2706.75	V	64.21		3.68	32.57	-40.41	60.04	1004.67	5000.00	-13.94
3609.00	Н	58.21		4.76	33.21	-40.31	55.88	622.11	5000.00	-18.10
3609.00	V	57.95		4.76	33.21	-40.31	55.62	603.77	5000.00	-18.36
4511.25	Н	52.33	Ambient	4.80	34.18	-40.10	51.20	363.09	5000.00	-22.78
4511.25	V	51.69	Ambient	4.80	34.18	-40.10	50.56	337.30	5000.00	-23.42
5413.50	Н	56.24		5.11	34.99	-40.25	56.09	637.79	5000.00	-17.89
5413.50	V	56.36		5.11	34.99	-40.25	56.21	646.67	5000.00	-17.77
8120.25	Н	50.51	Ambient	6.08	35.79	-39.97	52.41	417.41	5000.00	-21.57
8120.25	V	50.13	Ambient	6.08	35.79	-39.97	52.03	399.54	5000.00	-21.95
9022.50	Н	51.20	Ambient	6.30	36.28	-39.73	54.05	504.00	5000.00	-19.93
9022.50	V	51.31	Ambient	6.30	36.28	-39.73	54.16	510.42	5000.00	-19.82

	DATA PAGE						
MANUFACTURER The Chamberlain Group, Inc.							
EUT	Automotive Transceiver for Garage Door Control						
MODEL NO.	O. CDMRAA0101E3 (ARQ2-UGDO)						
TEST	FCC §15.247, RSS-247 – Radiated Spurious Emissions – Restricted Band						
IESI	Averages						
MODE	Tx – 902.25MHz						
DATE TESTED	November 19 & 30, 2020						
TEST PERFORMED BY	Tylar Jozefczyk						
NOTES							

RADIATED SPURIOUS EMISSIONS											
Freq. (MHz)	Ant. Pol.	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant. Fac. (dB)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBµV/m at 3m	Average Total μV/m at 3m	Average Limit µV/m at 3m	Margin (dB)
2706.75	Н	44.54		3.68	32.57	-40.41	0.00	40.37	104.36	500.00	-13.61
2706.75	V	44.22		3.68	32.57	-40.41	0.00	40.05	100.58	500.00	-13.93
3609.00	Н	43.43		4.76	33.21	-40.31	0.00	41.10	113.47	500.00	-12.88
3609.00	V	42.64		4.76	33.21	-40.31	0.00	40.31	103.60	500.00	-13.67
4511.25	Н	36.51	Ambient	4.80	34.18	-40.10	0.00	35.38	58.75	500.00	-18.60
4511.25	V	36.52	Ambient	4.80	34.18	-40.10	0.00	35.39	58.82	500.00	-18.59
5413.50	Н	37.88		5.11	34.99	-40.25	0.00	37.73	77.03	500.00	-16.25
5413.50	V	37.92		5.11	34.99	-40.25	0.00	37.77	77.39	500.00	-16.21
8120.25	Н	35.29	Ambient	6.08	35.79	-39.97	0.00	37.19	72.37	500.00	-16.79
8120.25	V	35.30	Ambient	6.08	35.79	-39.97	0.00	37.20	72.45	500.00	-16.78
9022.50	Н	36.12	Ambient	6.30	36.28	-39.73	0.00	38.97	88.80	500.00	-15.01
9022.50	V	36.10	Ambient	6.30	36.28	-39.73	0.00	38.95	88.60	500.00	-15.03

	DATA PAGE						
MANUFACTURER The Chamberlain Group, Inc.							
EUT	Automotive Transceiver for Garage Door Control						
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)						
TEST	FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in Non-						
1631	Restricted Bands						
MODE	Tx – 914.75MHz						
DATE TESTED	November 19 & 30, 2020						
TEST PERFORMED BY Tylar Jozefczyk							
NOTES							

	RADIATED SPURIOUS EMISSIONS									
Freq. (MHz)	Ant. Pol.	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant. Fac. (dB)	Pre Amp (dB)	Peak Total dBµV/m at 3m	Peak Total μV/m at 3m	Peak Limit µV/m at 3m	Margin (dB)
914.75	Н	83.81		2.89	26.37	0.00	113.07	450491.14		
914.75	V	82.39		2.89	26.37	0.00	111.65	382548.28		
1829.50	Н	73.40		3.25	30.94	-40.85	66.75	2174.39	45049.11	-26.33
1829.50	V	69.85		3.25	30.94	-40.85	63.20	1444.90	45049.11	-29.88
5488.50	Н	52.96		5.08	34.99	-40.24	52.79	435.93	45049.11	-40.29
5488.50	V	51.63		5.08	34.99	-40.24	51.46	374.04	45049.11	-41.62
6403.25	Н	47.68		5.56	35.54	-40.14	48.63	270.22	45049.11	-44.44
6403.25	V	47.60		5.56	35.54	-40.14	48.55	267.75	45049.11	-44.52

DATA PAGE								
MANUFACTURER The Chamberlain Group, Inc.								
EUT	Automotive Transceiver for Garage Door Control							
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)							
TEST	FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in							
1631	Restricted Bands							
MODE	Tx – 914.75MHz							
DATE TESTED	November 19 & 30, 2020							
TEST PERFORMED BY Tylar Jozefczyk								
NOTES								

RADIATED SPURIOUS EMISSIONS										
Freq. (MHz)	Ant. Pol.	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant. Fac. (dB)	Pre Amp (dB)	Peak Total dBµV/m at 3m	Peak Total μV/m at 3m	Peak Limit μV/m at 3m	Margin (dB)
2744.25	Н	65.17		3.74	32.60	-40.40	61.11	1135.93	5000.00	-12.87
2744.25	V	64.59		3.74	32.60	-40.40	60.53	1062.55	5000.00	-13.45
3659.00	Н	63.21		4.77	33.20	-40.27	60.90	1109.60	5000.00	-13.08
3659.00	V	62.78		4.77	33.20	-40.27	60.47	1056.01	5000.00	-13.51
4573.75	Н	56.48		4.80	34.32	-40.13	55.47	593.62	5000.00	-18.51
4573.75	V	55.92		4.80	34.32	-40.13	54.91	556.55	5000.00	-19.07
7318.00	Н	49.30	Ambient	5.84	35.69	-40.06	50.78	345.82	5000.00	-23.20
7318.00	V	49.73	Ambient	5.84	35.69	-40.06	51.21	363.37	5000.00	-22.77
8232.75	Н	49.90	Ambient	6.22	35.88	-39.94	52.07	401.15	5000.00	-21.91
8232.75	V	50.20	Ambient	6.22	35.88	-39.94	52.37	415.24	5000.00	-21.61
9147.50	Н	51.64	Ambient	6.31	36.32	-39.70	54.57	535.18	5000.00	-19.41
9147.50	V	51.70	Ambient	6.31	36.32	-39.70	54.63	538.89	5000.00	-19.35

	DATA PAGE						
MANUFACTURER The Chamberlain Group, Inc.							
EUT	Automotive Transceiver for Garage Door Control						
MODEL NO.	L NO. CDMRAA0101E3 (ARQ2-UGDO)						
TEST	FCC §15.247, RSS-247 – Radiated Spurious Emissions – Restricted Band						
IESI	Averages						
MODE	Tx – 914.75MHz						
DATE TESTED	November 19 & 30, 2020						
TEST PERFORMED BY	Tylar Jozefczyk						
NOTES							

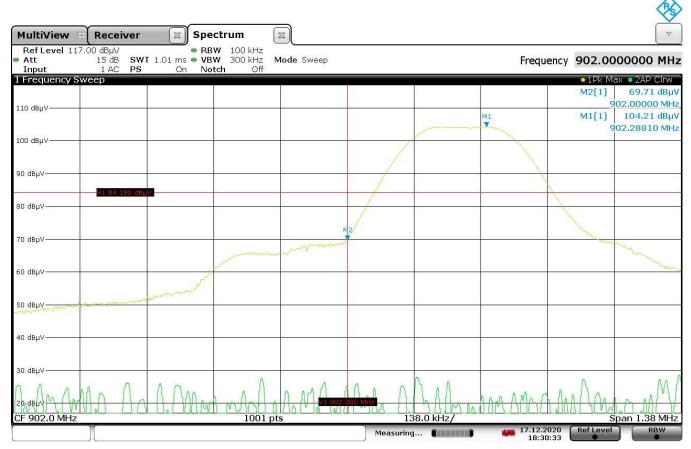
Freq. (MHz)	Ant. Pol.	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant. Fac. (dB)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBµV/m at 3m	Average Total μV/m at 3m	Average Limit µV/m at 3m	Margin (dB)
2744.25	Н	45.26		3.74	32.60	-40.40	0.00	41.20	114.78	500.00	-12.78
2744.25	V	45.19		3.74	32.60	-40.40	0.00	41.13	113.85	500.00	-12.85
3659.00	Н	42.59		4.77	33.20	-40.27	0.00	40.28	103.32	500.00	-13.70
3659.00	V	42.43		4.77	33.20	-40.27	0.00	40.12	101.43	500.00	-13.86
4573.75	Н	38.25		4.80	34.32	-40.13	0.00	37.24	72.78	500.00	-16.74
4573.75	V	38.59		4.80	34.32	-40.13	0.00	37.58	75.68	500.00	-16.40
7318.00	Н	34.43	Ambient	5.84	35.69	-40.06	0.00	35.91	62.42	500.00	-18.07
7318.00	V	34.42	Ambient	5.84	35.69	-40.06	0.00	35.90	62.35	500.00	-18.08
8232.75	Н	35.06	Ambient	6.22	35.88	-39.94	0.00	37.23	72.66	500.00	-16.75
8232.75	V	35.10	Ambient	6.22	35.88	-39.94	0.00	37.27	73.00	500.00	-16.71
9147.50	Н	36.16	Ambient	6.31	36.32	-39.70	0.00	39.09	90.05	500.00	-14.89
9147.50	V	36.14	Ambient	6.31	36.32	-39.70	0.00	39.07	89.85	500.00	-14.91

	DATA PAGE				
MANUFACTURER	The Chamberlain Group, Inc.				
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)				
TEST	FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in Non-				
1631	Restricted Bands				
MODE	Tx – 926.75MHz				
DATE TESTED	November 19 & 30, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES					

	RADIATED SPURIOUS EMISSIONS									
Freq. (MHz)	Ant. Pol.	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant. Fac. (dB)	Pre Amp (dB)	Peak Total dBµV/m at 3m	Peak Total μV/m at 3m	Peak Limit µV/m at 3m	Margin (dB)
926.75	Н	82.41		2.90	26.76	0.00	112.07	401317.50		
926.75	V	81.17		2.90	26.76	0.00	110.83	347926.97		
1853.50	Н	70.08		3.26	31.00	-40.81	63.53	1501.83	40131.75	-28.54
1853.50	V	66.63		3.26	31.00	-40.81	60.08	1009.53	40131.75	-31.99
5560.50	Н	51.40		5.11	34.96	-40.23	51.24	364.55	40131.75	-40.83
5560.50	V	46.61		5.11	34.96	-40.23	46.45	210.02	40131.75	-45.62
6487.25	Н	46.47		5.60	35.57	-40.13	47.50	237.08	40131.75	-44.57
6487.25	V	43.13		5.60	35.57	-40.13	44.16	161.40	40131.75	-47.91
9267.50	Н	40.23	Ambient	6.42	36.34	-39.67	43.31	146.42	40131.75	-48.76
9267.50	V	40.10	Ambient	6.42	36.34	-39.67	43.18	144.24	40131.75	-48.89

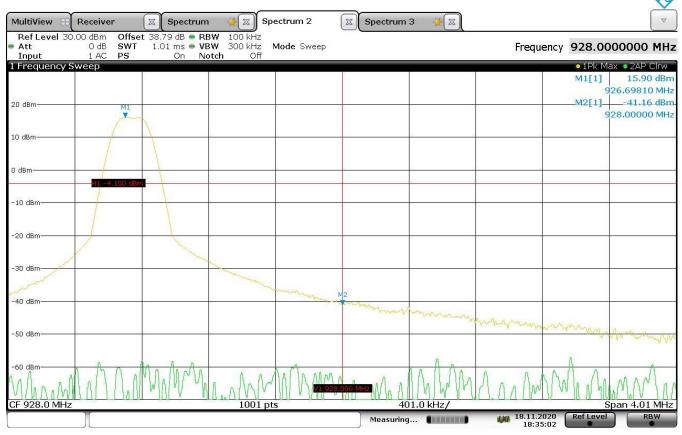
	DATA PAGE				
MANUFACTURER The Chamberlain Group, Inc.					
EUT Automotive Transceiver for Garage Door Control					
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)				
TEST	FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in				
1631	Restricted Bands				
MODE	Tx – 926.75MHz				
DATE TESTED	November 19 & 30, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES					

	RADIATED SPURIOUS EMISSIONS									
Freq. (MHz)	Ant. Pol.	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant. Fac. (dB)	Pre Amp (dB)	Peak Total dBµV/m at 3m	Peak Total μV/m at 3m	Peak Limit µV/m at 3m	Margin (dB)
2780.25	Н	67.32		3.80	32.53	-40.38	63.26	1455.45	5000.00	-10.72
2780.25	V	62.29		3.80	32.53	-40.38	58.23	815.64	5000.00	-15.75
3707.00	Н	65.15		4.77	33.19	-40.23	62.88	1393.50	5000.00	-11.10
3707.00	V	67.33		4.77	33.19	-40.23	65.06	1791.04	5000.00	-8.92
4633.75	Н	53.67		4.80	34.47	-40.16	52.79	436.07	5000.00	-21.19
4633.75	V	53.41		4.80	34.47	-40.16	52.53	423.21	5000.00	-21.45
7414.00	Н	50.28	Ambient	5.89	35.65	-40.05	51.76	387.42	5000.00	-22.22
7414.00	V	50.67	Ambient	5.89	35.65	-40.05	52.15	405.22	5000.00	-21.83
8340.75	Н	51.27	Ambient	6.18	35.91	-39.91	53.46	471.01	5000.00	-20.52
8340.75	V	50.91	Ambient	6.18	35.91	-39.91	53.10	451.89	5000.00	-20.88


	DATA PAGE
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.247, RSS-247 – Radiated Spurious Emissions – Restricted Band
1631	Averages
MODE	Tx – 926.75MHz
DATE TESTED	November 19 & 30, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	

	RADIATED SPURIOUS EMISSIONS										
Freq. (MHz)	Ant. Pol.	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant. Fac. (dB)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBµV/m at 3m	Average Total µV/m at 3m	Average Limit µV/m at 3m	Margin (dB)
2780.25	Н	47.48		3.80	32.53	-40.38	0.00	43.42	148.25	500.00	-10.56
2780.25	V	45.26		3.80	32.53	-40.38	0.00	41.20	114.81	500.00	-12.78
3707.00	Н	45.50		4.77	33.19	-40.23	0.00	43.23	145.08	500.00	-10.75
3707.00	V	46.41		4.77	33.19	-40.23	0.00	44.14	161.10	500.00	-9.84
4633.75	Н	38.95		4.80	34.47	-40.16	0.00	38.07	80.09	500.00	-15.91
4633.75	V	38.19		4.80	34.47	-40.16	0.00	37.31	73.38	500.00	-16.67
7414.00	Н	34.89	Ambient	5.89	35.65	-40.05	0.00	36.37	65.87	500.00	-17.61
7414.00	V	35.76	Ambient	5.89	35.65	-40.05	0.00	37.24	72.81	500.00	-16.74
8340.75	Н	35.96	Ambient	6.18	35.91	-39.91	0.00	38.15	80.82	500.00	-15.83
8340.75	V	35.75	Ambient	6.18	35.91	-39.91	0.00	37.94	78.89	500.00	-16.04

	DATA PAGE				
MANUFACTURER	The Chamberlain Group, Inc.				
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)				
TEST	FCC §15.247, RSS-247 – Band Edge				
MODE	Tx – 902.25MHz				
DATE TESTED	February 10 – 14, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES					



^{18:30:33 17.12.2020}

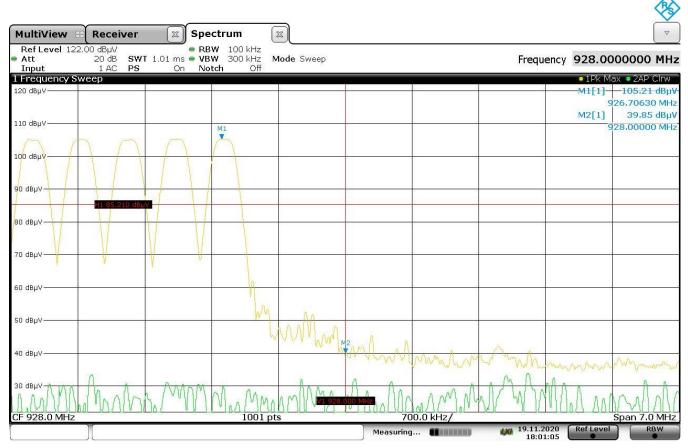
	DATA PAGE				
MANUFACTURER	The Chamberlain Group, Inc.				
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)				
SERIAL NO.	SMP-77482				
TEST	FCC §15.247, RSS-247 – Band Edge				
MODE	Tx – 926.75MHz				
DATE TESTED	November 19, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES					

BAND EDGE – HIGH

18:35:03 18.11.2020

DATA PAGE				
MANUFACTURER	The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.247, RSS-247 – Band Edge			
MODE	FHSS			
DATE TESTED	February 10 – 14, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES				

BAND EDGE – LOW



^{18:00:15 19.11.2020}

	DATA PAGE				
MANUFACTURER	The Chamberlain Group, Inc.				
EUT	Automotive Transceiver for Garage Door Control				
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)				
TEST	FCC §15.247, RSS-247 – Band Edge				
MODE	FHSS				
DATE TESTED	November 19, 2020				
TEST PERFORMED BY	Tylar Jozefczyk				
NOTES					

BAND EDGE – HIGH

^{18:01:06 19.11.2020}