

TEST REPORT

Report Reference No	CHTEW19070033	Report verification:	
Project No:	SHT1906061401EW		
FCC ID:	QRP-SP-009		
Applicant's name:	Azumi S.A		
Address:	Avenida Aquilino de la Guardi Piso 16 of. 16-01, Marbella, C	a con Calle 47, PH Ocean Plaza, Ciudad de Panama, Panama.	
Manufacturer	AZUMI HK LTD		
Address:	FLAT/RM 18 BLK 1 14/F GOL 26 KWAI TAK STREET KWAI	DEN INDUSTRIAL BUILDING 16 CHUNG,HK	
Test item description	Mobile Phone		
Trade Mark	AZUMI		
Model/Type reference:	A4+		
Listed Model(s)	-		
Standard:	FCC CFR Title 47 Part 15 Su	bpart C Section 15.247	
Date of receipt of test sample:	Jun 24,2019		
Date of testing	Jun 25,2019- Jul 09,2019		
Date of issue	Jul 10,2019		
Result:	PASS		
Compiled by (position+printedname+signature):	File administrators Silvia Li	Silvia Li	
Supervised by (position+printedname+signature):	Project Engineer Xiaodong Zh	nao Xiaodong Zheo	
Approved by (position+printedname+signature):	RF Manager Hans Hu	Homsty	
Testing Laboratory Name:	Shenzhen Huatongwei Inter	national Inspection Co., Ltd.	
Address:	1/F, Bldg 3, Hongfa Hi-tech In Tianliao, Gongming, Shenzhe		
Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.			
This publication may be reproduced in v Shenzhen Huatongwei International Ins of the material. Shenzhen Huatongwei I not assume liability for damages resultin to its placement and context.	pection Co., Ltd. is acknowledge nternational Inspection Co., Ltd	ed as copyright owner and sourc . takes no responsibility for and v	

The test report merely correspond to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	77
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	20
5.6.	Restricted band	24
5.7.	Band edge and Spurious Emissions (conducted)	28
5.8.	Spurious Emissions (radiated)	41
<u>6.</u>	TEST SETUP PHOTOS	47
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	48

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard forTesting Unlicensed Wireless Devices

<u>KDB 558074 D01 15.247 Meas Guidance v05:</u> Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2019-07-10	Original

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer	
Antenna requirement	15.203/15.247(c)	PASS	Jiongsheng Feng	
Line Conducted Emissions (AC Main)	15.207	PASS	Jiongsheng Feng	
Conducted Peak Output Power	15.247(b)(3) PASS		Bruce Wong	
Power Spectral Density	15.247(e)	PASS	Bruce Wong	
6dB Bandwidth	15.247(a)(2)	PASS	Bruce Wong	
Restricted band	15.247(d)/15.205	PASS	Bruce Wong	
Spurious Emissions	15.247(d)/15.209	PASS	Bruce Wong	

Note: The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	Azumi S.A
Address:	Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama.
Manufacturer:	AZUMI HK LTD
Address:	FLAT/RM 18 BLK 1 14/F GOLDEN INDUSTRIAL BUILDING 16-26 KWAI TAK STREET KWAI CHUNG,HK

3.2. Product Description

Name of EUT:	Mobile Phone	
Trade Mark:	AZUMI	
Model No.:	A4+	
Listed Model(s):	-	
IMEI:	Conducted: 352378094043621 Radiated: 352378094043688	
Power supply:	DC 3.7V	
Adapter information:	Input:100-240Va.c., 50/60Hz, 0.15A Output:5.0Vd.c., 500mA	
Hardware version:	SC2161FC PCB V00	
Software version:	AZUMI_A4+_CLREC_V001	
WIFI		
Supported type:	802.11b/802.11g/802.11n(HT20)	
Modulation: DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)		
Operation frequency:	2412MHz~2462MHz	
Channel number:	11	
Channel separation:	5MHz	
Antenna type:	PIFA Antenna	
Antenna gain:	1.0dBi	

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

802.11b/g/n(HT20)			
Channel	Frequency (MHz)		
01	2412		
02	2417		
06	2437		
10	2457		
11	2462		

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

0	 supplied by the lab 	

0 /	/	Manufacturer:	/
	Model No.:	/	
	Manufacturer:	/	
0	7	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377A-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377A-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.51 dB	(1)
Conducted spurious emissions 9kHz~40GHz	0.51 dB	(1)
Conducted Disturbance 150kHz~30MHz	3.02 dB	(1)
Radiated Emissions below 1GHz	4.90 dB	(1)
Radiated Emissions above 1GHz	4.96 dB	(1)
Occupied Bandwidth	70 Hz	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

•	Conducted Emission					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	ESCI	101247	2018/10/27	2019/10/26
•	Artificial Mains	SCHWARZBECK	NNLK 8121	573	2018/10/27	2019/10/26
•	Pulse Limiter	R&S	ESH3-Z2	100499	2018/10/27	2019/10/26
•	RF Connection Cable	HUBER+SUHNER	EF400	N/A	2018/11/15	2019/11/14
•	Test Software	R&S	ES-K1	N/A	N/A	N/A
0	Single Balanced Telecom Pair ISN	FCC	FCC-TLISN-T2-02	20371	2018/10/28	2019/10/27
0	Two Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T4-02	20373	2018/10/28	2019/10/27
0	Four Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T8-02	20375	2018/10/28	2019/10/27
0	V-Network	R&S	ESH3-Z6	100211	2018/10/27	2019/10/26
0	V-Network	R&S	ESH3-Z6	100210	2018/10/27	2019/10/26
0	2-Line V-Network	R&S	ESH3-Z5	100049	2018/10/27	2019/10/26

•	Radiated Emission-6th test site										
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-02	N/A	2018/09/30	2021/09/29					
•	EMI Test Receiver	R&S	ESCI	100900	2018/10/28	2019/10/27					
•	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19					
•	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	546	2017/04/05	2020/04/04					
•	Pre-Amplifer	SCHWARZBECK	BBV 9742	N/A	2018/11/15	2019/11/14					
•	RF Connection Cable	HUBER+SUHNER	N/A	N/A	2018/09/28	2019/09/27					
•	RF Connection Cable	HUBER+SUHNER	SUCOFLEX104	501184/4	2018/09/28	2019/09/27					
•	Test Software	R&S	ES-K1	N/A	N/A	N/A					
•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A					
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A					

•	Radiated emission-7th test site										
Used	Test Equipment Manufacturer		Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29					
•	Spectrum Analyzer	R&S	FSP40	100597	2018/10/27	2019/10/26					
•	Horn Antenna	SCHWARZBECK	9120D	1011	2017/03/27	2020/03/26					
•	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13					
•	Pre-amplifier	CD	PAP-0102	12004	2018/11/14	2019/11/13					
•	Broadband Pre- amplifier	SCHWARZBECK	BBV 9718	9718-248	2019/04/26	2020/04/25					
•	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14					
•	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14					
•	Test Software	Audix	E3	N/A	N/A	N/A					

Shenzhen Huatongwei International Inspection Co., Ltd.

Page: 10 of 48

Issued: 2019-07-10

•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

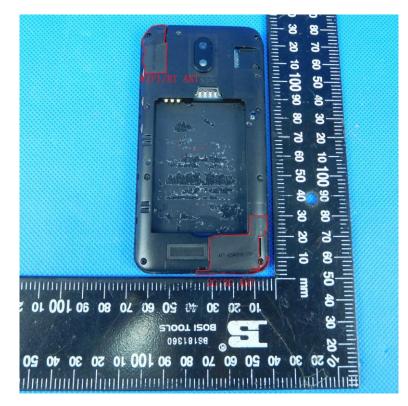
•	RF Conducted Method											
Used	Test Equipment	Manufacturer	Model No.	Model No. Serial No.		Next Cal. Date (YY-MM-DD)						
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2018/10/28	2019/10/27						
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2018/09/29	2019/09/28						
•	OSP	R&S	OSP120	101317	N/A	N/A						
0	Radio communication tester	R&S	CMW500	137688-Lv	2018/09/29	2019/09/28						
0	Test software	Tonscend	JS1120-1(LTE)	N/A	N/A	N/A						
0	Test software	Tonscend	JS1120-2(WIFI)	N/A	N/A	N/A						
0	Test software	Tonscend	JS1120-3(WCDMA)	N/A	N/A	N/A						
0	Test software	Tonscend	JS1120-4(GSM)	N/A	N/A	N/A						

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement <u>REQUIREMENT:</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

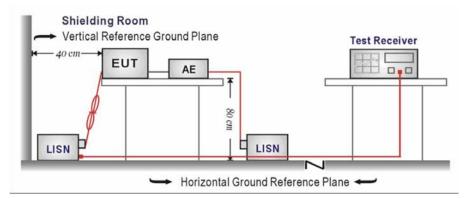
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

☑ Passed □ Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Main)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

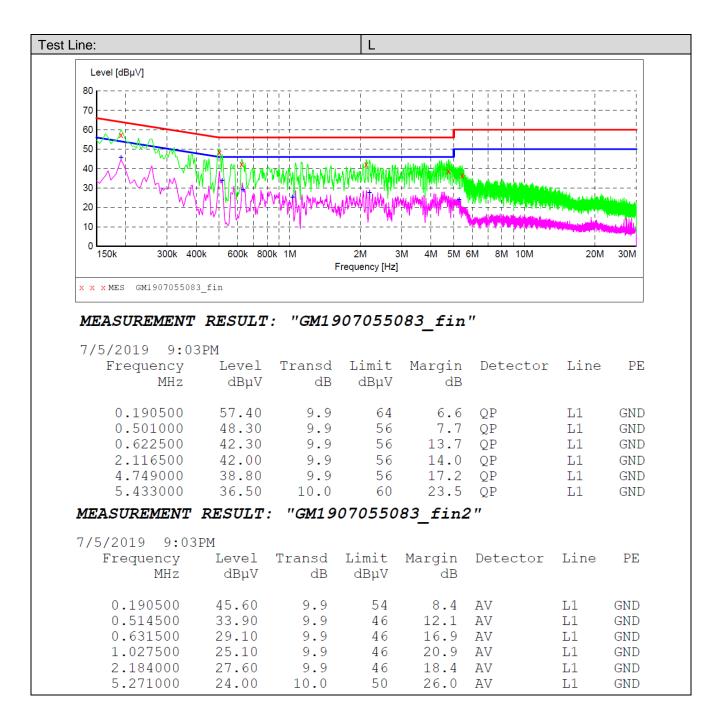
* Decreases with the logarithm of the frequency.

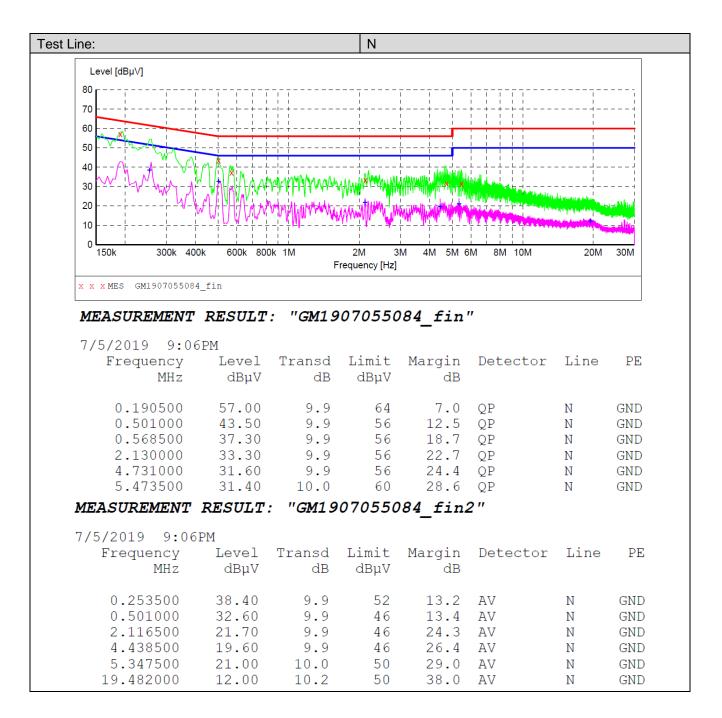
TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

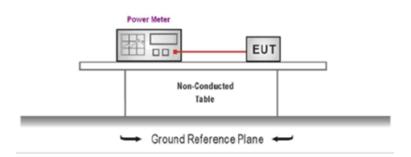

Please refer to the clause 3.3


TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level



5.3. Conducted Peak Output Power LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector
- 4. Record the measurement data.

TEST MODE:

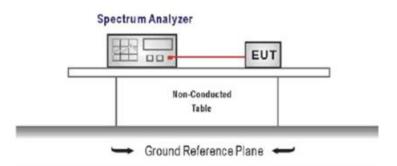
Please refer to the clause 3.3

TEST RESULTS

🛛 Passed

Not Applicable

Туре	Channel	Output power (dBm)	Average Output power (dBm)	Limit (dBm)	Result
	01	13.29	11.05		
802.11b	06	12.81	10.64	≤30.00	Pass
	11	12.48	10.29		
	01	14.98	10.93		
802.11g	06	15.37	11.32	≤30.00	Pass
	11	16.34	11.32		
	01	14.55	10.86		
802.11n(HT20)	2.11n(HT20) 06 15.13		11.36	≤30.00	Pass
	11	14.82	11.11		


5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

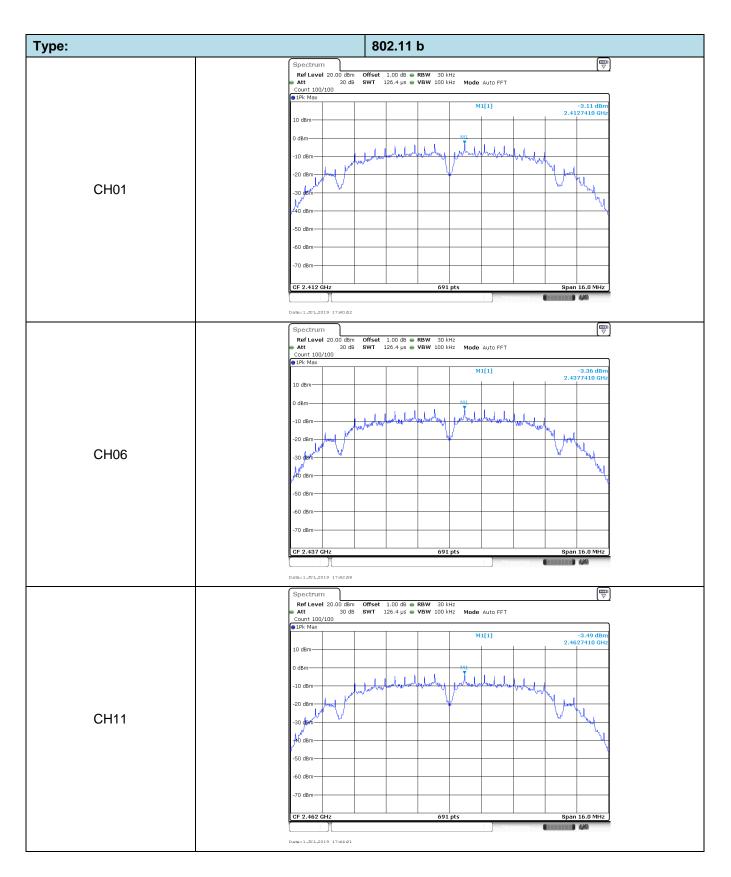
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:


Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

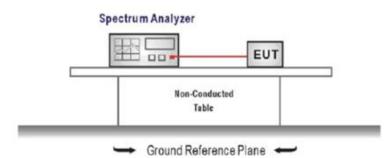
Туре	Channel	Power Spectral Density (dBm/30KHz)	Limit (dBm/3KHz)	Result	
	01	-3.11			
802.11b	06	-3.36	≤8.00	Pass	
	11	-3.49			
	01	-11.59			
802.11g	06	-8.60	≤8.00	Pass	
	11	-7.73			
	01	-10.22			
802.11n(HT20)	06	-9.66	≤8.00	Pass	
	11	-10.04			

Test plot as follows:

Type: 802.11 g ₿ Spectrum Ref Level 20.00 dBm Att 30 dB Count 100/100 1Pk Max Offset 1.00 dB ● RBW 30 kHz SWT 189.6 µs ● VBW 100 kHz Mode Auto FFT -11.59 df 2.4194890 G M1[1] LO dBm) dBrr 10 dBmher manufacture and been and the second and the second sec -20 dBm CH01 30 dBm 40 dBm mar Adudah-60 dBm 70 dBm 691 pts CF 2.412 GH Sp 25.0 MHz Date:1.JUL.2019 17:46:0 Spectrum RefLevel 20.00 dBm Offset 1.00 dB ● RBW 30 kHz Att 30 dB SWT 189.6 µs ● VBW 100 kHz Mode Auto FFT Count 100/100 M1[1] -8.60 dE 2.4394960 G 10 dBm 0 dBm--10 dBm when when the second provident when the second seco -20 dBm Ń ٩, CH06 -30 dBm 40 dBm Entry March ∆lan--60 dBm 70 dBm-CF 2.437 GH 691 pts Span 25.0 MHz 1 14 Date:1_JUL_2019 17:48:58 Spectrum
 Ref Level
 20.00 dBm
 Offset
 1.00 dB
 RBW
 30 kHz

 Att
 30 dB
 SWT
 189.6 µs
 VBW
 100 kHz
 Mode
 Auto FFT
 Count 100/100 M1[1] -7.73 dB 2.4644960 GF 10 dBm-0 dBm -10 dBm and the second provided was a second the second of the sec 20 dBr ų, CH11 30 dBm -40 dBm what! -50 dBm -60 dBm 70 dBm 691 pts Span 25.0 MHz CF 2.462 GH 110 AM Date:1.JUL.2019 17:52:13

Туре:	802.11n(HT20)
	Spectrum RefLevel 20.00 dBm Offset 1.00 dB ● RBW 30 kHz
	Att 30 dB SWT 189.6 μs VBW 100 kHz Mode Auto FFT Count 100/100
	●1Pk Max M1[1] -10.22 dBm 2.4107340 GHz
	10 dBm
	0 dBm
	-10 dBm / WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
01107	-20 dBm-
CH01	-30 dBm
	No kom
	-60 dBm
	-70 dBm
	CF 2.412 GHz 691 pts Span 25.0 MHz
	Data:1.JUL2019 17:44:06
	Spectrum 🕎
	RefLevel 20.00 d8m Offset 1.00 d8 ● RBW 30 kHz ● Att 30 d8 SWT 189.6 µs ● VBW 100 kHz Mode Auto FFT Count 100 / 100
	IPk Max
	10 dBm
	0 dBm
	-10 dBm
	-20 dBm
CH06	-30 dBm
	-40 dBmg-
	All
	-60 dBm
	-70 dBm
	CF 2.437 GHz 691 pts Span 25.0 MHz
	Date:1.JUL2019 175544
	Spectrum 🕎
	RefLevel 20.00 dBm Offset 1.00 dB RBW 30 kHz Att 30 dB SWT 189.6 µs VBW 100 kHz Mode Auto FFT
	Count 100/100
	10 dBm
	0 d8m
	-10 dBm WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
CH11	-30 dBm
	-40 dBm
	-60 dBm
	-70 dBm-
	CF 2.462 GHz 691 pts Span 25.0 MHz
	Newsuring 🗰 BEBER 🊧
	Dam:1.JUL2019 175759


5.5. 6dB bandwidth

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

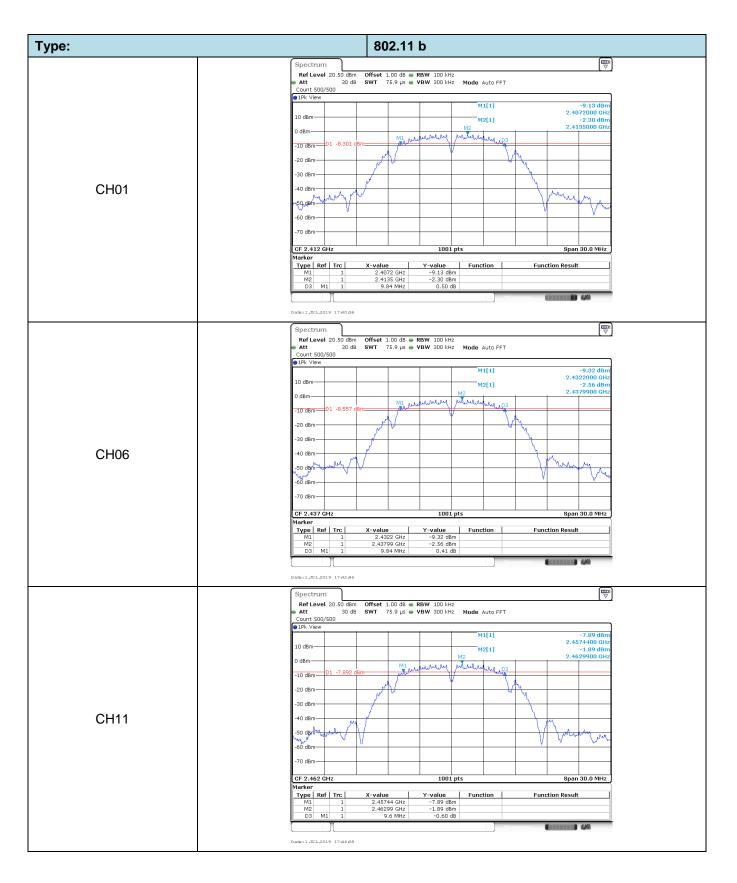
TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency Span=2 x DTS bandwidth RBW = 100 kHz, VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.


TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

⊠ Passed	Not Applicable				
Туре	Channel	6dB Bandwidth (MHz)	Limit (kHz)	Result	
	01	9.84			
802.11b	06	9.84	≥500	Pass	
	11	9.60			
	01	16.62			
802.11g	06	16.41	≥500	Pass	
	11	16.38			
	01	17.64			
802.11n(HT20)	06	17.64	≥500	Pass	
	11	17.64			

Test plot as follows:

802.11 g Type: ₿ Spectrum Ref Level 20.50 dBm Att 30 dB Count 500/500 1Pk View Offset 1.00 dB ● RBW 100 kHz SWT 75.9 µs ● VBW 300 kHz Mode Auto FFT -15.42 dE 2.4036900 G -9.24 dE 2.4195300 G M1[1] LO dBm M2[1]) dBm 10 dBm and. - www 1 -15.24 20 dBm -30 dBm CH01 -40 dem A, A-50 dBm 60 dBm 70 dBm CF 2.412 GHz 1001 pts Span 30.0 MHz X-value 2.40369 GHz 2.41953 GHz 16.62 MHz Type Ref Trc Function Function Result Y-value -15.42 dBr -15.42 dBm -9.24 dBm -1.25 dB M2 M1 Date:1.JUL.2019 17:45:55 Spectrum RefLevel 20.50 dBm Att 30 dB
 Offset
 1.00 dB ●
 RBW
 100 kHz

 SWT
 75.9 μs
 • VBW
 300 kHz
 Mode Auto FFT Count 500/500 -10.88 dB 2.4288100 GF -4.82 dB 2.4394900 GF M1[1] 10 dBm-M2[1] 0 dBm Ĭ. 10 dBm -10.8 20 dBm 30 dBm -40 dBm 5 \mathcal{M} CH06 50 dBm 60 dBm 70 dBm CF 2.437 GH 1001 pt: Span 30.0 MHz larke Type Ref Trc M1 1 X-value 2.42881 GHz 2.43949 GHz 16.41 MHz Y-value -10.88 dBm -4.82 dBm -0.65 dB Function Function Result M2 D3 М1 440 Date:1_JUL_2019 17:48:46 ♥ Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 ■ RBW
 100 kHz

 Att
 30 dB
 SWT
 75.9 µs
 ■ VBW
 300 kHz
 Mode Auto FFT Count 500/500 M1[1] 9.46 dB 2.4538100 GF 10 dBm M2[1] -3.07 dB 2.4644900 GI 0 dBm Y. M1 A., ٨. -10 dBm -20 dBm 30 dB unpromon CH11 Add dBm-50 dBm 60 dBm 70 dBm Span 30.0 M CF 2.46 larke X-value 2.45381 GHz 2.46449 GHz 16.38 MHz
 Y-value
 Function

 -9.46 dBm
 -3.07 dBm

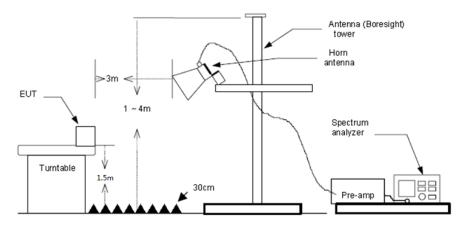
 -3.07 dBm
 0.04 dB
 Type Ref Trc Function Result М1 Date:1.JUL.2019 17:51:59

802.11n(HT20) Type: Spectrum Ref Level 20.50 dBm Att 30 dB Count 500/500 1Pk View Offset 1.00 dB ● RBW 100 kHz SWT 75.9 µs ● VBW 300 kHz Mode Auto FFT -12.32 dE 2.4031800 G -6.01 dE 2.4057300 G M1[1] LO dBm M2[1]) dBm The deal of America 10 dBm-01 -12 01 -20 dBm -30 dBm CH01 -40 dBm Month -50 dBm 60 dBm 70 dBm CF 2.412 GHz 1001 pts Span 30.0 MHz X-value 2.40318 GHz 2.40573 GHz 17.64 MHz Y-value -12.32 dBm -6.01 dBm -0.49 dB Type Ref Trc Function Function Result M2 M1 Date:1.JUL.2019 17:53:54 Spectrum RefLevel 20.50 dBm Att 30 dB Offset 1.00 dB ● RBW 100 kHz SWT 75.9 µs ● VBW 300 kHz Mode Auto FFT Count 500/500 M1[1] -11.25 dB 2.4281800 GF -4.47 dB 2.4394900 GF 10 dBm-M2[1] 0 dBm Ĭ. 10 dBm 1 -10.4 20 dBm 30 dBm CH06 -40 dBm-50 dBm 60 dBm 70 dBm CF 2.437 GH 1001 pt: Span 30.0 MHz larke Type Ref Trc M1 1 X-value 2.42818 GHz 2.43949 GHz 17.64 MHz Y-value -11.25 dBm -4.47 dBm -0.17 dB Function Function Result M2 D3 М1 **.....** 498 Date:1_JUL_2019 17:5624 ♥ Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 ■ RBW
 100 kHz

 Att
 30 dB
 SWT
 75.9 µs
 ■ VBW
 300 kHz
 Mode Auto FFT Count 500/500 M1[1] -11.47 dB 10 dBm M2[1] -5.42 dB 2.4557300 GI 0 dBm Y A. -10 dBm 1 -11.43 -20 dBm 30 dBr CH11 -40 dBm--50 dBm 60 dBm 70 dBm CF 2.463 Span 30.0 larke X-value 2.45318 GHz 2.45573 GHz 17.64 MHz
 Y-value
 Function

 -11.47 dBm
 -5.42 dBm

 -0.44 dB
 -0.44 dB
 Type Ref Trc Function Result М1 Date:1.JUL.2019 17:57:47


5.6. Restricted band

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2) The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3) The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4) The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Note:

1) Final level= Read level + Factor

Report No.: CHTEW19070033

802.11b			CH01				
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
2310.00	16.00	35.82	51.82	74.00	22.18	Vertical	Peak
2390.00	15.21	35.50	50.71	74.00	23.29	Vertical	Peak
2310.00	15.74	35.82	51.56	74.00	22.44	Horizontal	Peak
2390.00	14.79	35.50	50.29	74.00	23.71	Horizontal	Peak
2310.00	12.09	35.82	47.91	54.00	6.09	Vertical	Average
2390.00	14.23	35.50	49.73	54.00	4.27	Vertical	Average
2310.00	13.88	35.82	49.70	54.00	4.30	Horizontal	Average
2390.00	14.06	35.50	49.56	54.00	4.44	Horizontal	Average

802.11b			CH11				
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
2483.50	16.28	35.31	51.59	74.00	22.41	Vertical	Peak
2500.00	17.00	35.28	52.28	74.00	21.72	Vertical	Peak
2483.50	15.57	35.31	50.88	74.00	23.12	Horizontal	Peak
2500.00	16.50	35.28	51.78	74.00	22.22	Horizontal	Peak
2483.50	14.33	35.31	49.64	54.00	4.36	Vertical	Average
2500.00	14.96	35.28	50.24	54.00	3.76	Vertical	Average
2483.50	14.05	35.31	49.36	54.00	4.64	Horizontal	Average
2500.00	14.76	35.28	50.04	54.00	3.96	Horizontal	Average

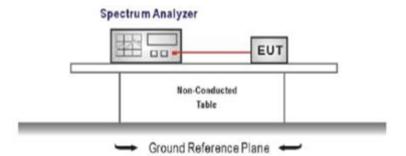
Report No.: CHTEW19070033

802.11g			CH01					
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value	
2310.00	15.98	35.82	51.80	74.00	22.20	Vertical	Peak	
2390.00	15.25	35.50	50.75	74.00	23.25	Vertical	Peak	
2310.00	14.93	35.82	50.75	74.00	23.25	Horizontal	Peak	
2390.00	15.09	35.50	50.59	74.00	23.41	Horizontal	Peak	
2310.00	15.52	35.82	51.34	54.00	2.66	Vertical	Average	
2390.00	14.70	35.50	50.20	54.00	3.80	Vertical	Average	
2310.00	13.96	35.82	49.78	54.00	4.22	Horizontal	Average	
2390.00	14.97	35.50	50.47	54.00	3.53	Horizontal	Average	

802.11g			CH11				
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
2483.50	14.67	35.31	49.98	74.00	24.02	Vertical	Peak
2500.00	15.12	35.28	50.40	74.00	23.60	Vertical	Peak
2483.50	15.67	35.31	50.98	74.00	23.02	Horizontal	Peak
2500.00	17.20	35.28	52.48	74.00	21.52	Horizontal	Peak
2483.50	13.89	35.31	49.20	54.00	4.80	Vertical	Average
2500.00	13.58	35.28	48.86	54.00	5.14	Vertical	Average
2483.50	15.18	35.31	50.49	54.00	3.51	Horizontal	Average
2500.00	14.78	35.28	50.06	54.00	3.94	Horizontal	Average

Report No.: CHTEW19070033

802.11n(HT20)			CH01					
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value	
2310.00	15.39	35.82	51.21	74.00	22.79	Vertical	Peak	
2390.00	15.27	35.50	50.77	74.00	23.23	Vertical	Peak	
2310.00	16.44	35.82	52.26	74.00	21.74	Horizontal	Peak	
2390.00	15.81	35.50	51.31	74.00	22.69	Horizontal	Peak	
2310.00	13.98	35.82	49.80	54.00	4.20	Vertical	Average	
2390.00	10.55	35.50	46.05	54.00	7.95	Vertical	Average	
2310.00	15.05	35.82	50.87	54.00	3.13	Horizontal	Average	
2390.00	15.44	35.50	50.94	54.00	3.06	Horizontal	Average	


802.11n(HT20)			CH11					
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value	
2483.50	16.01	35.31	51.32	74.00	22.68	Vertical	Peak	
2500.00	15.17	35.28	50.45	74.00	23.55	Vertical	Peak	
2483.50	15.62	35.31	50.93	74.00	23.07	Horizontal	Peak	
2500.00	12.61	35.28	47.89	74.00	26.11	Horizontal	Peak	
2483.50	14.52	35.31	49.83	54.00	4.17	Vertical	Average	
2500.00	14.09	35.28	49.37	54.00	4.63	Vertical	Average	
2483.50	14.46	35.31	49.77	54.00	4.23	Horizontal	Average	
2500.00	11.67	35.28	46.95	54.00	7.05	Horizontal	Average	

5.7. Band edge and Spurious Emissions (conducted)

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Establish a reference level by using the following procedure

Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level. Emission level measurement

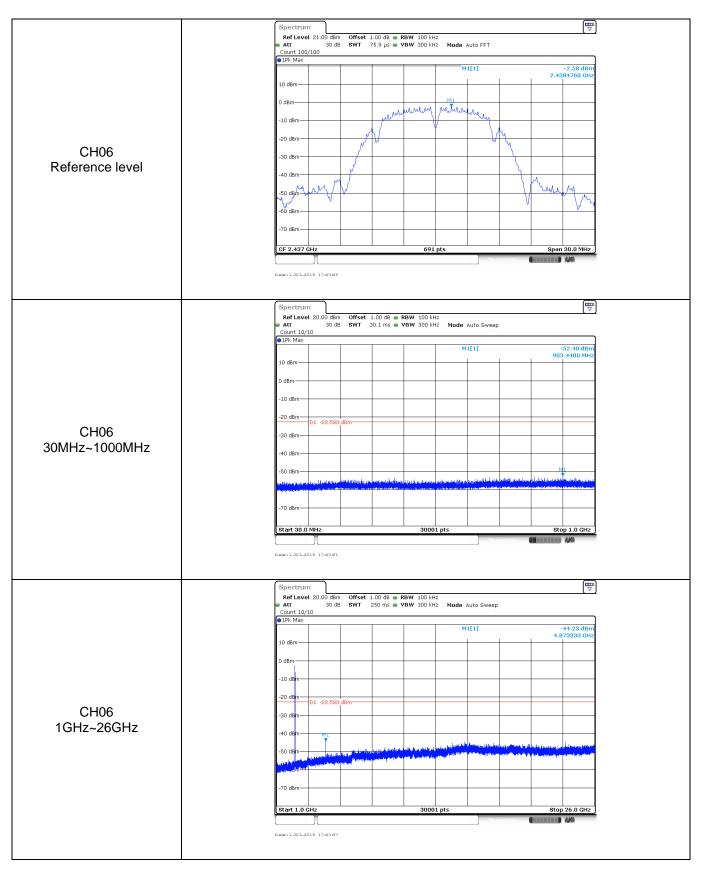
 Emission level measurement Set the center frequency and span to encompass frequency range to be measured RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum amplitude level.
 Place the radio in continuous transmit mode, allow the trace to stabilize view the transmit

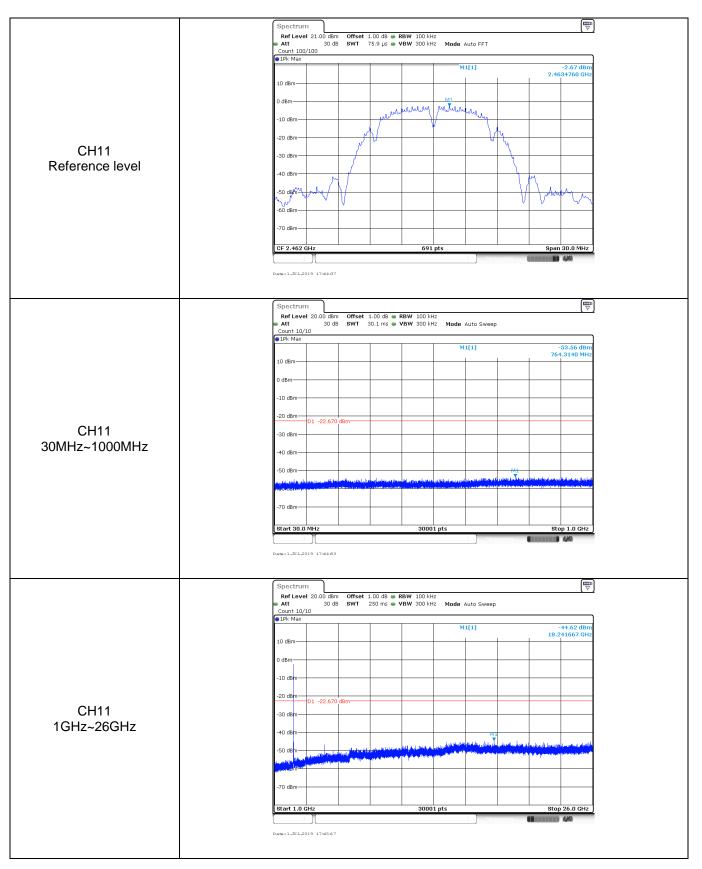
- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

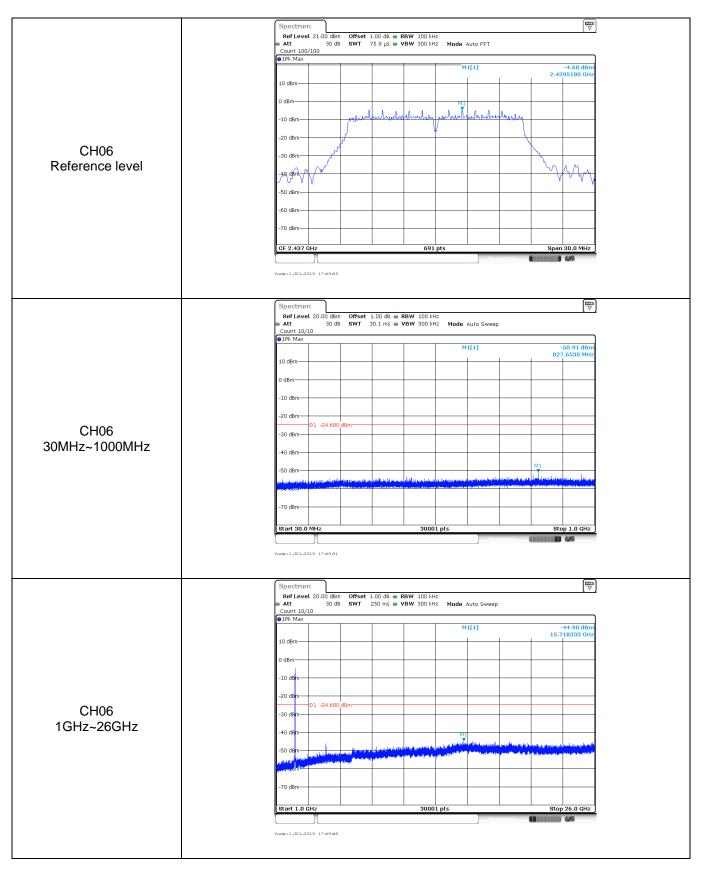
Please refer to the clause 3.3

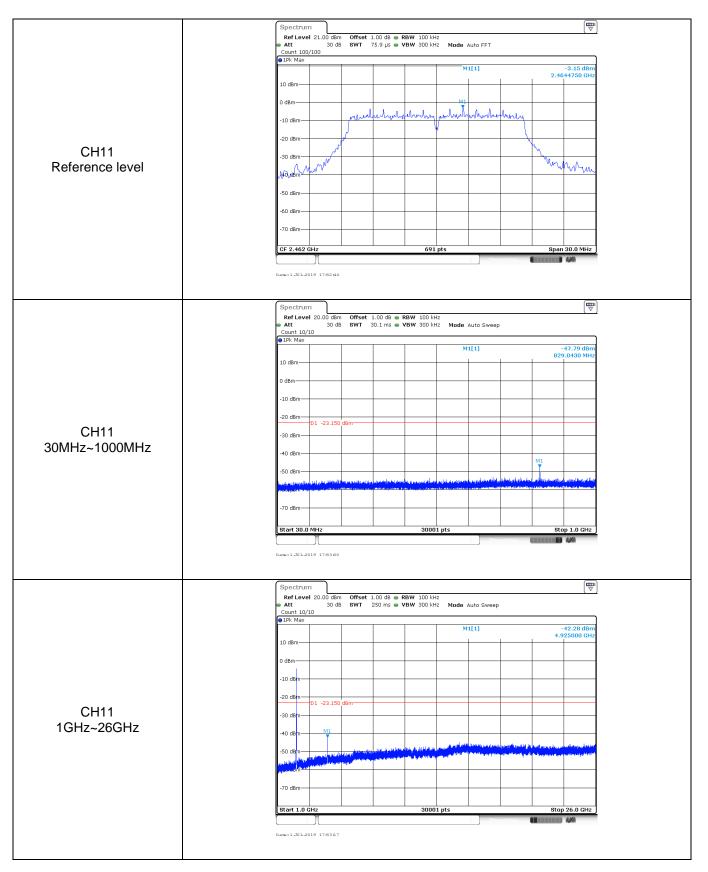
TEST RESULTS

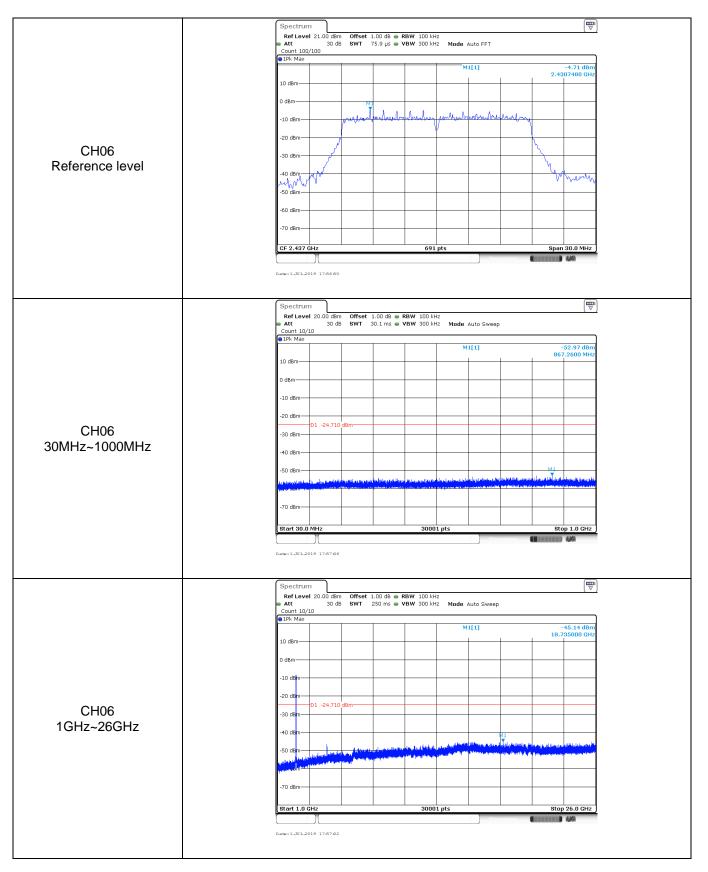

☑ Passed □ Not Applicable

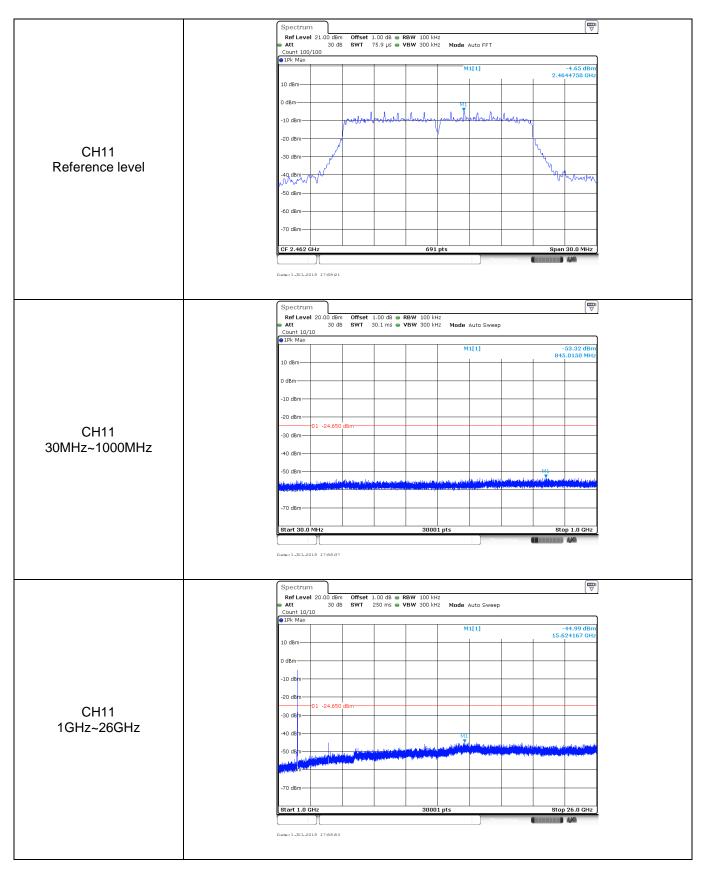

Test Item:	Bandedge	Туре:	802.11 b
	 Att 30 Count 300/300 	dBm Offset 1.00 dB	(₩)
CH01		M1[1] M2[1]	-2.42 dBm 2.413000 GHz -45.95 dBm 2.40(b00 GHz 2.40(b00 GHz
	-20 dBm 01 -22. -30 dBm	420 dBm	
	4 -70 dBm -71 dBm Start 2.31 GHz	مری مراجع میں	Stop 2.422 GHz
	Marker Type Ref Trc M1 1 M2 M3 1 M3 1 M4 1 M5	2.413 GHz -2.42 dBm 2.4 GHz -46.95 dBm 2.39 GHz -58.45 dBm 2.31 GHz -60.14 dBm	Function Result
	Dam: 1.201.2019 17941 Spectrum Ref Level 20.00 Att 33		
	Count 300/300 PIP: Max 10 dBm 0 dBm	M1(1) M2(1)	-2.77 dBm 2.4609960 GHz -77.50 dBm 2.4835000 GHz
CH11	-10 dBm		
	-50 dBm	691 pts	Stop 2.5 GHz
	Marker Type Ref Tcl M1 1 1 M2 1 1 M3 1 1 M4 1 1	2.5 GHz -60.75 dBm	Function Result
	Date:1.JUL2019 17:44	1.30	

Test Item:	Bandedge	Туре:	802.11 g
		Spectrum Ref Level 20.00 dBm Offset 1.00 dB m RBW 100 kHz att 30 dB SWT 246.5 µs YBW 300 kHz Mode Auto FFT Count 300/200 Count 300/200 SWT 246.5 µs YBW SUD kHz	("
CH01			-6.99 dBm 2.414460 GHz -39.50 dBm 2.400000 GHz 4.400000 GHz 4.40000 GHz 4.400000 GHz 4.40000 GHz 4.4000 GHz 4.40000 GHz 4.4000 GHz 4.40000 GHz 4.40000 GHz 4.40000 GHz 4.4000 GHz 4.4000 GHZ 4.40000 GHZ 4.40000 GHZ 4.4000 GHZ 4.40000 GHZ 4.40000 GHZ
CH11		aw11.01.2019 179462 Spectrum Ref Level 20.00 dbm Offset 1.00 db @ RBW 100 kHz Att 30/300 PIP Max I0 dbm M1[1] 0 dbm M2[1] -00 dbm M	-3.55 dBm 2.4644690 GHz -45.10 dBm 2.4835000 GHz 2.4835000 GHz 5.4835000 GHz 5.5 GHz Function Result

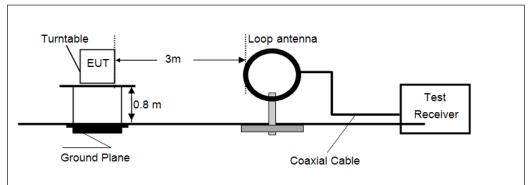

Test Item:	Bandedge	Ту	pe:		802.11	n(HT20)
	Spectr Ref Le Att	vel 20.00 dBm Offset	1.00 dB ● RBW 100 kH 46.5 µs ● VBW 300 kH			
		100/300		M1[1] 	2.414	4.98 dBm 4460 GHz 3.97 dBm
	0 dBm -10 dBm -20 dBm				2.400	1000 GH2
CH01	-30 dBm -40 dBm -50 dBm			Ma	NB	
	4 Matordah -70 dBm		yhanna hanna an	www.www.www.		
	Marker	1 2	Y-value 46 GHz -4.98 dBi .4 GHz -39.97 dBi .99 GHz -48.91 dBi 11 GHz -58.44 dBi	Function n n n n	Stop 2.4	422 GHZ
	Date: 1.20	1 2.3999:		m Measurin	- () A	
	Spectr Ref Le Att Count : PIR Mi	vel 20.00 dBm Offset 30 dB SWT 1 100/300	1.00 dB 👄 RBW 100 kH 13.8 µs 👄 VBW 300 kH			
	10 dBm- 0 dBm-	<u>M1</u>		M1[1] M2[1]	2.4644 -46	4.80 dBm 4690 GHz 5.97 dBm 5000 GHz
	-19-dem -20 dBm -30 dBm	D1 -24.800_dBm	doubsday			
CH11	-40 dBm -50 dBm -60 dBm		- bayer	M2M4	and marker the Weller	wanter of
	-70 dBm Start 2		691	pts	Stop	2.5 GHz
	Marker Type M1 M2 M3 M4		59 GHz -4.80 dBr 35 GHz -46.97 dBr .5 GHz -57.92 dBr	n	Function Result	
	Date:1.00	L_2019 17:58:13		Measurin	(1 11111) 4	<i>3</i> 4


est Item:	SE	Туре:	802.11 b
		Spectrum	
		RefLevel 21.00 dBm Offset 1.00 dB ● RBW 100 kHz ● Att 30 dB SWT 75.9 μs ● VBW 300 kHz Mode /	uto FFT
		Count 100/100 PIPk Max	
			[1] -2.38 dBm 2.4135200 GHz
		10 dBm	
		0 dBm	Aug.
		-10 dBm	Nu la
01104		-20 dBm	
CH01		-30 dBm	
Reference level		-40 dBm	Mun m.
		N50.dBm	- Marine Marine
		-60 dBm	
		-70 dBm	
			0000000000
		CF 2.412 GHz 691 pts	Span 30.0 MHz
		Date:1.JUL.2019 17:41:37	
		Spectrum Ref Level 20.00 dBm Offset 1.00 dB RBW 100 kHz	
		Att 30 dB SWT 30.1 ms VBW 300 kHz Mode / Count 10/10	uto Sweep
		PIPK Max M	[1] -52.82 dBm 773.0110 MHz
		10 dBm	773.0110 MHz
		0 dBm	
		-10 d8m	
		-20 dBm	
CH01		-30 dBm	
30MHz~1000MHz		-40 dBm	
		-50 dBm	M1
		- construction and the second state of the sec	n te ver den til gefort i het fir skriftet i forse forset er den forset er den skriftet i den sjelse er den se
		-70 dBm	
		Start 30.0 MHz 30001 pts	Stop 1.0 GHz
		Dats:1.JUL2019 17%152	Measuring
		Spectrum	
		RefLevel 20.00 dBm Offset 1.00 dB ● RBW 100 kHz ● Att 30 dB SWT 250 ms ● VBW 300 kHz Mode A	
		Count 10/10 The test of test	
			[1] -41.61 dBm 4.823333 GHz
		10 dBm	
		0 dBm	
		-10 dBm	
		-20 dBm 01 -22.380 dBm	
CH01		-30 dEm	
1GHz~26GHz		-40 dem M1	
		-50 dem result result of a start of a line of a flag of a start of a s	an had an an a fail an had an an had an
		The second	
		-70 dBm	
		Start 1.0 GHz 30001 pts	Stop 26.0 GHz
	1		
		Date:1.JUL.2019 17:42:09	

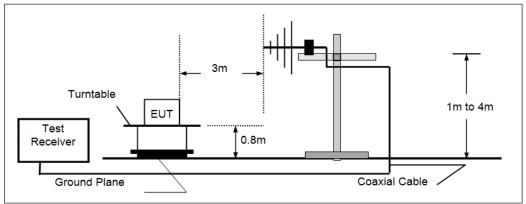



Test Item:	SE	Туре:	802.11 g
		Spectrum Ref Level 21.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 75.9 µs VBW 300 kHz Mode Auto FF' Count 100/100 Count 100/100 SWT 75.9 µs VBW 300 kHz Mode Auto FF'	
		1Pk Max 10 dBm	-7.09 dBm 2.4144750 GHz
		0 dBm - M1 -10 dBm - M2 - M2 - M2 - M2	hothery
CH01 Reference level		-20 dBm	
		-40 dBm -50 dBm -60 dBm	
		-70 dBm CF 2.412 GHz 691 pts	Span 30.0 MHz
		Data:1.2012019 17;46:69	Measuring
		Spectrum RefLevel 20.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 30.1 ms VBW 300 kHz Mode Auto Sw Count 10/10 Count 10/10 VBW VBW 300 kHz Mode Auto Sw	eep
		10 dBm	-52.88 dBm 831.5330 MHz
		0 dBm	
CH01 30MHz~1000MHz		-20 dBm	
500012 ²⁰ 100000112		-40 dBm	M3
		-70 dBm	
		Start 30.0 MHz 30001 pts Date: 1.30L2019 17%749	Stop 1.0 GHz
		Spectrum RefLevel 20.00 dbm Offset 1.00 db RBW 100 kHz Att 30 db SWT 250 ms VBW 300 kHz	(TH)
		Count 10/10	-44.27 dBm 19.355833 GHz
		0 dBm	
CH01		-20 dBm 01 -27.090 dBm 01 -27.090 dBm	
1GHz~26GHz		-50 dem	MIL
		-70 dBm	
		Start 1.0 GHz 30001 pts	Stop 26.0 GHz
		Dam:1.201.2019 17x7:54	

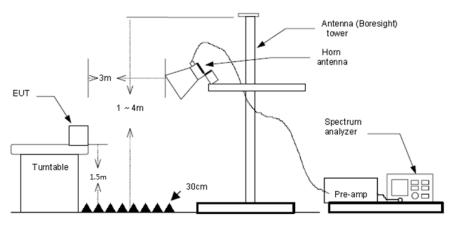
est Item:	SE		Type:				8	802.1	1 n(H1
			Offset 1.00 dB ● 1 SWT 75.9 µs ● 1			Auto FFT			
		• 1Pk Max			м	11[1]	1	2.4:	-5.05 dBm 144750 GHz
		10 dBm			M1				
		-10 dBm	underendformalis	-	medrinde	mala las	Langerry		
01104		-20 dBm			V				
CH01 Reference level		-30 dBm						h	
		-40 dBm -50 dBm						- Ju	human
		-60 dBm							
		-70 dBm							
		CF 2.412 GHz		691	pts				
		Date:1.JUL2019 17:5525				Mela	suring		-53.04 dbm 733.1130 MHz
		Spectrum							
		 Att 30 dB Count 10/10 	Offset 1.00 dB SWT 30.1 ms			Auto Sweep)		
		● 1Pk Max			м	1[1]		73	-53.04 dBm 3.1130 MHz
		10 dBm							
		-10 dBm							
		-20 dBm							
CH01		-30 dBm	m						
30MHz~1000MHz		-40 dBm							
		-50 dBm	tenificants and a state	a to the stand store	dashndaraka	daratta seintii	nd 1 allowed a Dissingue	alt godding M	alan tila yet on th basets
		-70 dBm							
		Start 30.0 MHz		3000	1 nts			Stu	on 1.0 GHz
						Mea	suring		
		Date:1.JUL.2019 17:55:41							
			Offset 1.00 dB ● 1 SWT 250 ms ● 1						
		Count 10/10	341 230 113						
		10 dBm			M	11[1]		16.0	-44.76 dBm 589167 GHz
		0 dBm							
		-10 dem							
		-20 dBm	m						
CH01 1GHz~26GHz		-30 dBm							
		-40 dBm	المراجع المراجع المراجع	the first the	ALL AND DESCRIPTION	M1 As The apple	lat, bilanakak		dan sugar bahar ba
		-su dem		andigation and date.	a de la participa de la construcción	an a	and the product of the second s	a kilo apos sijito si	and a second
		-70 dBm							
			1	1	1	1	1	1	1
		Start 1.0 GHz		3000	1 pts			Sto	p 26.0 GHz


5.8. Spurious Emissions (radiated) <u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION


> 9kHz ~30MHz

> 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

 (3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

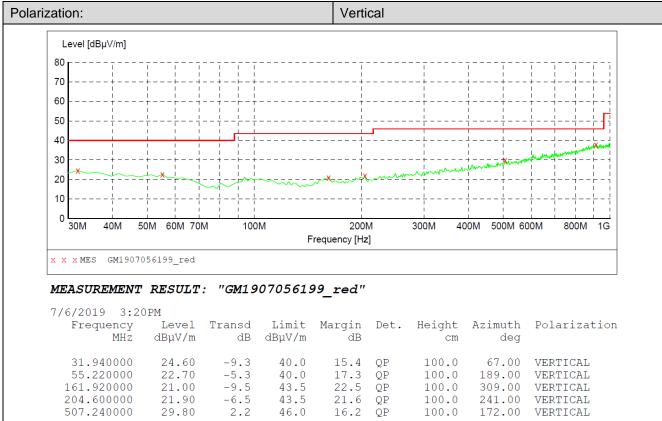
Please refer to the clause 3.3

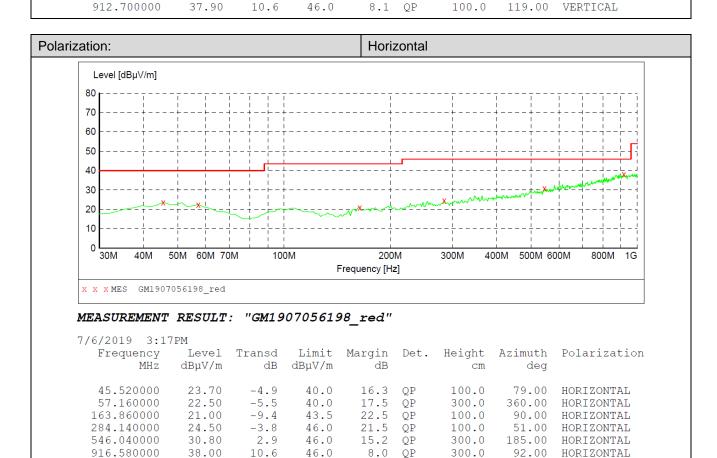
TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Final Level =Receiver Read level + Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.


> 9kHz ~ 30MHz


The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

➢ 30MHz ~1000MHz

Have pre-scan all modulation mode, found the 802.11b mode CH01 which it was worst case, so only the worst case's data on the test report.

> 30MHz ~ 1GHz

> 1 GHz ~ 25 GHz

802.11b			СН	01			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
1252.63	33.90	-5.69	28.21	74.00	45.79	Vertical	Peak
1671.22	33.11	-6.15	26.96	74.00	47.04	Vertical	Peak
5547.25	29.95	9.00	38.95	74.00	35.05	Vertical	Peak
8387.81	30.25	18.14	48.39	74.00	25.61	Vertical	Peak
1581.63	32.41	-6.16	26.25	74.00	47.75	Horizontal	Peak
3184.03	33.12	0.76	33.88	74.00	40.12	Horizontal	Peak
5136.00	30.89	8.86	39.75	74.00	34.25	Horizontal	Peak
7875.22	30.45	17.30	47.75	74.00	26.25	Horizontal	Peak

802.11b			СН	06			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
1402.44	33.21	-5.58	27.63	74.00	46.37	Vertical	Peak
1803.41	33.51	-5.80	27.71	74.00	46.29	Vertical	Peak
4768.81	31.26	6.84	38.10	74.00	35.90	Vertical	Peak
6728.13	30.38	13.39	43.77	74.00	30.23	Vertical	Peak
1142.47	34.31	-6.44	27.87	74.00	46.13	Horizontal	Peak
1638.91	32.72	-6.21	26.51	74.00	47.49	Horizontal	Peak
4666.00	31.37	6.17	37.54	74.00	36.46	Horizontal	Peak
7449.28	30.09	16.39	46.48	74.00	27.52	Horizontal	Peak

802.11b			СН	11			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
1254.09	33.80	-5.69	28.11	74.00	45.89	Vertical	Peak
1759.34	32.69	-5.92	26.77	74.00	47.23	Vertical	Peak
4867.22	30.12	7.14	37.26	74.00	36.74	Vertical	Peak
7436.06	30.05	16.38	46.43	74.00	27.57	Vertical	Peak
1186.53	33.75	-5.97	27.78	74.00	46.22	Horizontal	Peak
1669.75	33.69	-6.15	27.54	74.00	46.46	Horizontal	Peak
3846.44	32.14	2.31	34.45	74.00	39.55	Horizontal	Peak
5796.94	30.65	9.53	40.18	74.00	33.82	Horizontal	Peak

Remark:

1. Final Level =Receiver Read level + Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

Report No.: CHTEW19070033

802.11g			СН	01			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
1715.28	33.47	-6.05	27.42	74.00	46.58	Vertical	Peak
3683.41	33.54	1.57	35.11	74.00	38.89	Vertical	Peak
5453.25	31.39	8.90	40.29	74.00	33.71	Vertical	Peak
5954.09	31.27	10.24	41.51	74.00	32.49	Vertical	Peak
1311.38	33.93	-5.57	28.36	74.00	45.64	Horizontal	Peak
4401.63	30.18	4.93	35.11	74.00	38.89	Horizontal	Peak
6450.53	29.49	11.91	41.40	74.00	32.60	Horizontal	Peak
8525.88	30.70	18.59	49.29	74.00	24.71	Horizontal	Peak

802.11g			СН	06			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
1606.59	33.00	-6.27	26.73	74.00	47.27	Vertical	Peak
2038.41	31.18	-4.43	26.75	74.00	47.25	Vertical	Peak
4035.91	32.72	3.10	35.82	74.00	38.18	Vertical	Peak
6440.25	30.93	11.78	42.71	74.00	31.29	Vertical	Peak
1340.75	33.80	-5.57	28.23	74.00	45.77	Horizontal	Peak
2157.38	32.74	-3.41	29.33	74.00	44.67	Horizontal	Peak
6371.22	30.29	11.20	41.49	74.00	32.51	Horizontal	Peak
8509.72	31.30	18.55	49.85	74.00	24.15	Horizontal	Peak

802.11g			СН	11			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
1304.03	33.91	-5.57	28.34	74.00	45.66	Vertical	Peak
1782.84	32.76	-5.85	26.91	74.00	47.09	Vertical	Peak
3792.09	32.59	1.96	34.55	74.00	39.45	Vertical	Peak
5761.69	30.09	9.27	39.36	74.00	34.64	Vertical	Peak
1352.50	32.96	-5.58	27.38	74.00	46.62	Horizontal	Peak
2026.66	30.94	-4.52	26.42	74.00	47.58	Horizontal	Peak
5171.25	30.88	8.93	39.81	74.00	34.19	Horizontal	Peak
8116.09	30.05	18.29	48.34	74.00	25.66	Horizontal	Peak

Remark:

1. Final Level = Receiver Read level + Factor

- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

802.11n(HT	20)		СН	01			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
1467.06	32.28	-5.61	26.67	74.00	47.33	Vertical	Peak
3589.41	34.43	1.41	35.84	74.00	38.16	Vertical	Peak
5400.38	30.79	8.62	39.41	74.00	34.59	Vertical	Peak
6578.31	30.58	13.01	43.59	74.00	30.41	Vertical	Peak
1724.09	32.76	-6.03	26.73	74.00	47.27	Horizontal	Peak
3956.59	32.17	2.87	35.04	74.00	38.96	Horizontal	Peak
6153.84	30.54	10.81	41.35	74.00	32.65	Horizontal	Peak
7738.63	29.68	17.38	47.06	74.00	26.94	Horizontal	Peak

802.11n(HT	20)		СН	06			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
1722.63	35.04	-6.03	29.01	74.00	44.99	Vertical	Peak
4500.03	30.69	5.35	36.04	74.00	37.96	Vertical	Peak
5912.97	29.80	10.04	39.84	74.00	34.16	Vertical	Peak
7543.28	29.86	16.61	46.47	74.00	27.53	Vertical	Peak
1396.56	31.90	-5.58	26.32	74.00	47.68	Horizontal	Peak
3712.78	33.00	1.64	34.64	74.00	39.36	Horizontal	Peak
4893.66	30.21	7.17	37.38	74.00	36.62	Horizontal	Peak
6551.88	29.64	12.85	42.49	74.00	31.51	Horizontal	Peak

802.11n(HT	20)		СН	11			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
1201.22	34.10	-5.83	28.27	74.00	45.73	Vertical	Peak
2007.56	32.05	-4.65	27.40	74.00	46.60	Vertical	Peak
4682.16	30.88	6.27	37.15	74.00	36.85	Vertical	Peak
6650.28	29.06	13.31	42.37	74.00	31.63	Vertical	Peak
1099.88	35.76	-6.89	28.87	74.00	45.13	Horizontal	Peak
1575.75	32.96	-6.12	26.84	74.00	47.16	Horizontal	Peak
3560.03	32.55	1.29	33.84	74.00	40.16	Horizontal	Peak
7628.47	29.86	17.04	46.90	74.00	27.10	Horizontal	Peak

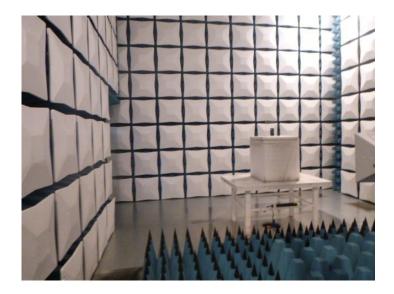
Remark:

1. Final Level = Receiver Read level + Factor

- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

6. TEST SETUP PHOTOS

Conducted Emissions (AC Mains)



Radiated Emissions

Shenzhen Huatongwei International Inspection Co., Ltd.

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No.: CHTEW19070029

-----End of Report------