ITS Intertek Testing Services

FCC Part 15.247 Test Report for Symbol Technologies on the Spread Spectrum Radio Model: DM4046 FCC ID: H9PDM4046

Test Report #: J20029320 Date of Report: November 17, 2000

Job #: J20029320 Date of Test: October 29-31, 2000

Total No. of Pages Contained in this Report: 23 + data pages

David Chemomordia

Barry Smith. Test Engineer

David Chernomordik, Ph.D., EMC Site Manager

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services. NA line. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government.

FCC Part 15 DSSS Cert, Rev 9 99

Date of Test: October 29-3 1. 2000

Symbol Technologies. FCC ID: H9PDM4046

Table of Contents

1.0	Summa	ry of Tests	2
2.0	General	Description	3
	2.1	Product Description	3
	2.2	Related Submittal(s) Grants	3
	2.3	Test Methodology · · · · · · · · · · · · · · · · · · ·	. 4
	2.4	Test Facility	4
3.0	System	Test Configuration	5
	3. I	Support Equipment and description	i
	3.2	Block Diagram of Test Setup	. 5
	3.3	Justification	6
	3.4	Software Exercisc Program	6
	3.5	Mode of Operation During Test	0
	3.6	Modifications Required for Compliance	. 7
	3.7	Additions. deviations and exclusions from standards	. 7
4.0	Measur	rement Results	8
	4.1	Conducted Output Power at Antenna Terminals	8
	4.2	6 dB RF Bandwidth	,
	4.3	Pow er Density Reading	10
	4.4	Out-of-Band Conducted Emissions	11
	4.5	Out-of-Band Radiated Emissions	12
	4.6	Transmitter Rndintcd Emissions in Restricted Bands	13
	4.7	AC Line Conducted Elmission	16
	4.x	Radiated Emissions from Digital Section of Transceiver	17
	4.0	Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation)	19
	4.10	Processing Gain	20
	4.1 I	Transmitter Duty Cycle Calculation and Measurements	2 1
5.0	List of	test equipment	19
6.0	Docum	nent History	20

Symbol Technologies. FCC ID: H9PDM4046 Date of Test: October 29-31, 2000

Summary of Tests 1.0

MODEL: DM4046 FCC ID: H9PDM4046

TEST	REFERENCE	RESULTS
Conducted Output Power.	15.247(b)	Pass
6 dB Bandwidth	15.247(a)(2)	Pass
Power Density	15.247(d)	Pass
Out-of-Band Antenna Conducted Emission	15.247(c)	Pass
Out-of-Band Radiated Emission	15.247(c)	N/A. EUT pass out-of-band antenna conducted emission
Radiated Emission in Restricted Bands	15.247(c)	Pass
AC Conducted Emission	15.207	Pass
Radiated Emission from Digital Part	15.109	Pass
Radiated Emission from Receiver L.O.	15,109	N/A. Receiver operating frequency is above 960 MHz.
Processing Gain	15.247(e)	Pass
Antenna Requirement	15.203	Pass
RF Exposure Requirement	2.1093	N/A. Source-based averaged RF power is below 100 mW

Test Engineer:

Reviewer:

File: 20029320

David Chernomordia Date: 11/20/00 David Chernomordik, Ph.D.

EMC Site Manager

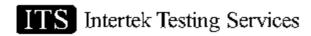
FCC ID: H9PDM4046

2.0 General Description

2.1 Product Description

This EUT is used in two configurations. The DP4046 is the EUT mounted in an integrated Voice Communication device with bar code scanner and two antennas for spatial diversity.

The NP4046 is a Voice Communication device with a single antenna driven by the EUT.


A pre-production version of the sample was received on October 28, 2000 in good condition.

Overview of the Model No. DM4046

Applicant	Symbol Technologies
Trade Name & Model No.	Symbol Technologies/DM4046
FCC Identifier	H9PDM4046
Use of Product	Wireless voice communication
Manufacturer & Model of	Symbol Technologies
Spread Spectrum Module	
Type of Transmission	Direct Sequence Spread Spectrum
Rated RF Output	145 mW
Frequency Range (MHz)	2412 - 2462
Number of Channel(s)	11
Data transfer rate	11 Mbps
Antenna(s) & Gain, dBi	Screw-in antenna, 0 dBi
	Stick-on antenna, 2 dBi
	PCB board antenna, 2 dBi
Processing Gain	More than 10 dB
Antenna Requirement	[] The EUT uses a permanently connected antenna.
	[X] The antenna is affixed to the EUT using a unique connector, which
	allows for replacement of a broken antenna, but DOES NOT use a standard
	antenna jack or electrical connector.
	[] The EUT requires professional installation (attach supporting
	documentation if using this option).
Manufacturer name & address	Symbol Technologies
	2145 Hamilton Avenue
	San Jose, CA 95125

2.2 Related Submittal(s) Grants

The radio topology is identical to the FCC ID H9PLA4121. The difference between the two is that this radio is mechanically changed to fit inside a family of Voice over IP Communication devices. The H9PLA4121 is in a PC Card configuration.

Symbol Technologies, Date of Test: October 29-31, 2000 FCC ID: H9PDM4046

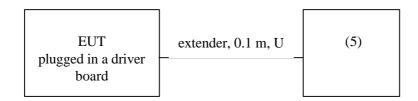
2.3 Test Methodology

Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Data Sheet**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

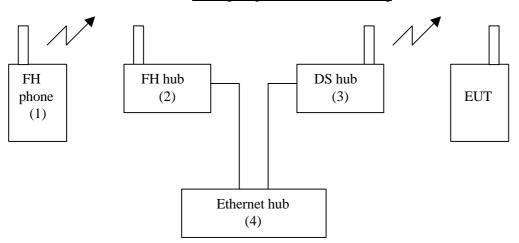
2.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is site 2. This test facility and site measurement data have been fully placed on file with the FCC and NVLAP accredited.

FCC ID: H9PDM4046


3.0 System Test Configuration

3.1 Support Equipment and description


Item #	Description	Model No.	Serial No.
1	FH phone	ND3010	F574876
2	FH hub	AP-302C	P886389
3	DS hub	AP-4111	00A0F88B4367
4	Ethernet hub	EN104	SB15A94004450
5	Dell laptop	PPL	ZHWTD

3.2 Block Diagram of Test Setup

For transmitter testing

For digital part and receiver testing

* = EUT	S = Shielded;	$\mathbf{F} = \mathbf{With} \ \mathbf{Ferrite}$
** = No ferrites on video cable	U = Unshielded	

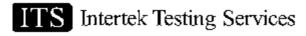
Symbol Technologies, Date of Test: October 29-31, 2000 FCC ID: H9PDM4046

3.3 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

For radiated emission measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.


Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent 3-meter reading using inverse scaling with distance.

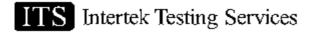
3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. For emissions testing, the units were setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

3.5 Mode of Operation during Test

For emissions testing, the EUT was setup to transmit continuouisly to simplify the measurement methodology. The transmitting signal was set to low, middle, and high frequencies.

FCC ID: H9PDM4046


3.6 Modifications Required for Compliance

The following modifications were installed during compliance testing in order to bring the product into compliance (Please note that this list does not include changes made specifically by Glenayre Western Multiplex prior to compliance testing):

No modifications were made by Intertek Testing Services

3.7 Additions, deviations and exclusions from standards

No additions, deviations, or exclusions were made to the standard.

FCC ID: H9PDM4046

4.0 Measurement Results

4.1 Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)

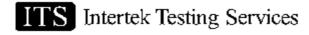
Requirements:

For antennas with gains of 6 dBi or less, maximum allowed transmitter output power is 1 watt (+30 dBm). For antennas with gains greater than 6 dBi, transmitter output level must be decreased by an amount equal to (GAIN - 6) dB.

Procedure:

- [X] The antenna port of the EUT was connected to the input of a peak power meter. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals.
- [] The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for maximum RES BW and power was read directly in dBm. External attenuation and cable loss were compensated for using the OFFSET function of the analyzer.

Test Result:


Frequency (MHz)	Output in dBm	Output in mWatt
Low Channel: 2412.0	20.4	109.6
Mid Channel: 2437.0	21.3	134.9
High Channel: 2462.0	21.6	144.5

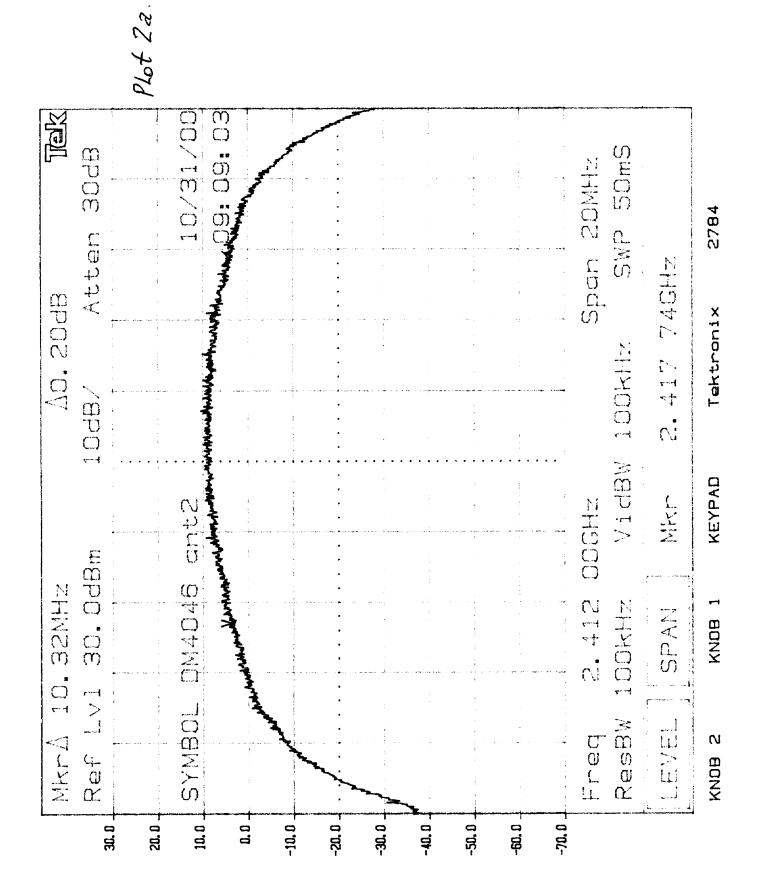
Cable loss: <u>0.3</u> dB External Attenuation: <u>10.0</u> dB

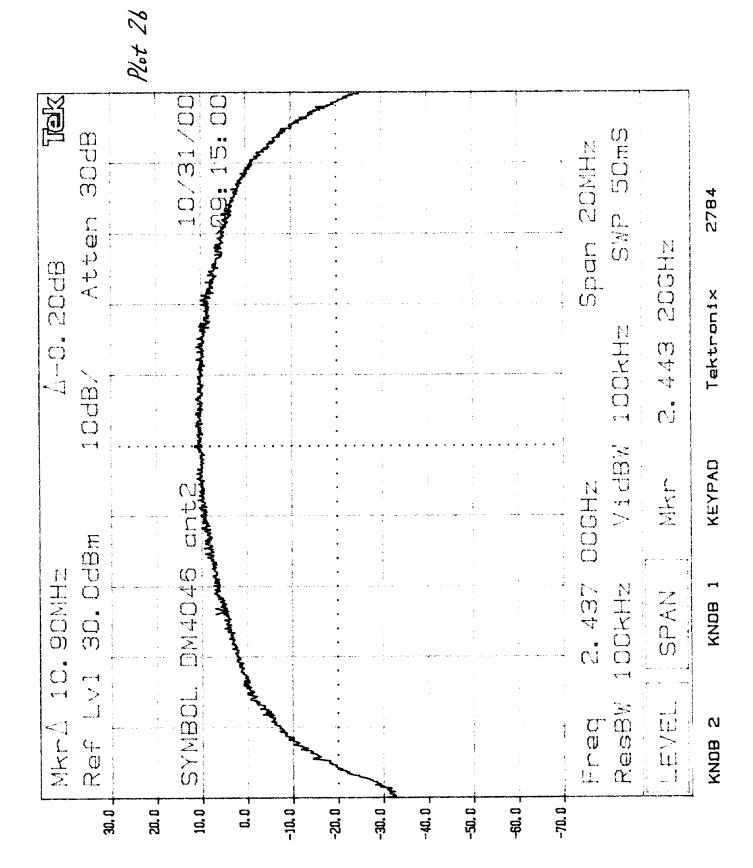
Cable loss, external attenuation: [X] included in OFFSET function

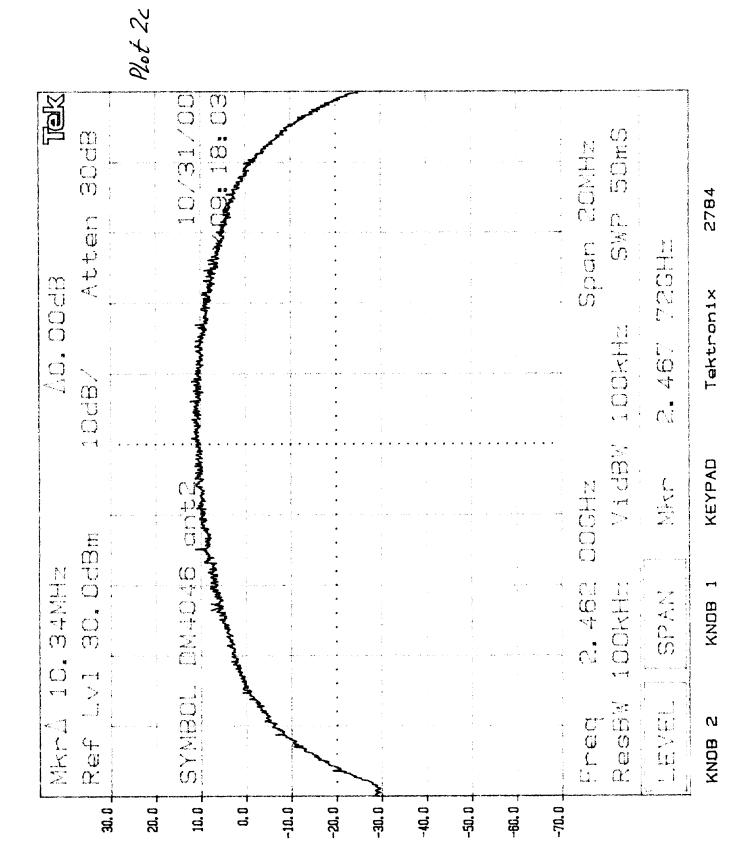
[]added to SA raw reading

The maximum antenna gain is 2 dBi, therefore the maximum allowed peak output power equal 30 dBm

FCC ID: H9PDM4046


4.2 6 dB RF Bandwidth, FCC Rule 15.247(a)(2)


The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 6 dB lower than PEAK level. The 6 dB bandwidth was determined from where the channel output spectrum intersected the display line.


Frequency (MHz)	Min. 6 dB Bandwidth (MHz)
2412	10.3

Refer to the following plots for 6 dB bandwidth sharp:

Plot 2a: Low Channel 6 dB RF Bandwidth Plot 2b: Mid Channel 6 dB RF Bandwidth Plot 2c: High Channel 6 dB RF Bandwidth

FCC ID: H9PDM4046

4.3 Power Density, FCC Rule 15.247(d)

The spectrum analyzer RES BW was set to 3 kHz. The START and STOP frequencies were set to the band edges of the maximum output passband. If there is no clear maximum amplitude in any given portion of the band, it may be necessary to make measurements at a number of bands defined by several START and STOP frequency pairs. The specification calls for a 1 second interval at each 3 kHz bandwidth; total SWEEP TIME is calculated as follows:

Antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function.

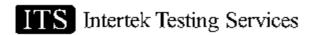
Frequency	Maximum Power Density	Power Density Limit
2437 MHz	-3.0 dBm	8.0 dBm

Frequency Span = 600 kHz

Sweep Time = Frequency Span/3 kHz

= 200 seconds

Refer to the following plots for power density data:


Plot 3.a: Low Channel Power Density Plot 3.b: Mid Channel Power Density Plot 3.c: High Channel Power Density

Taktronix

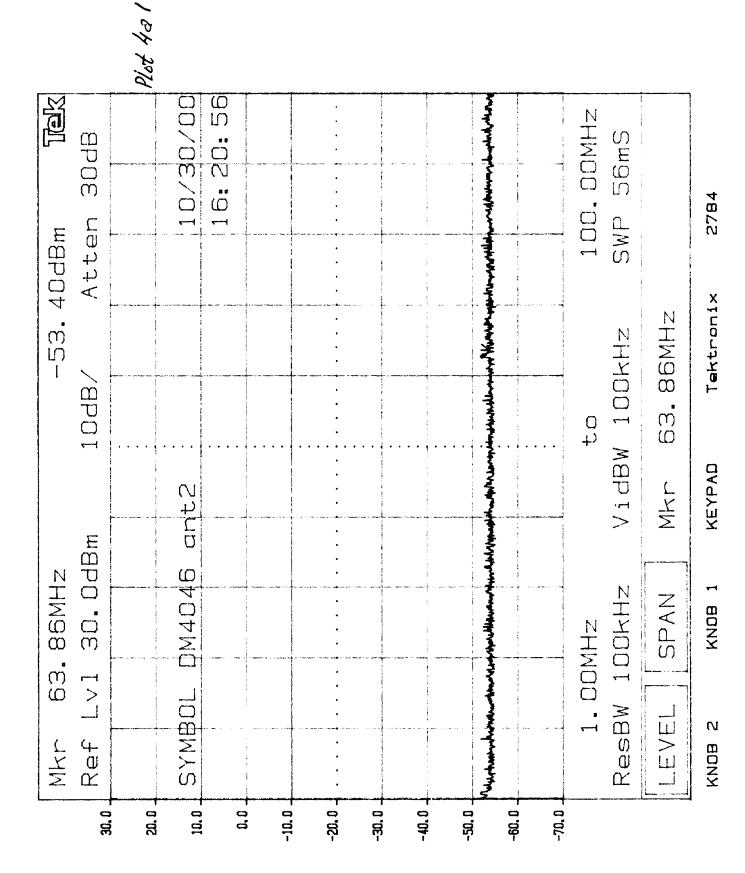
2784

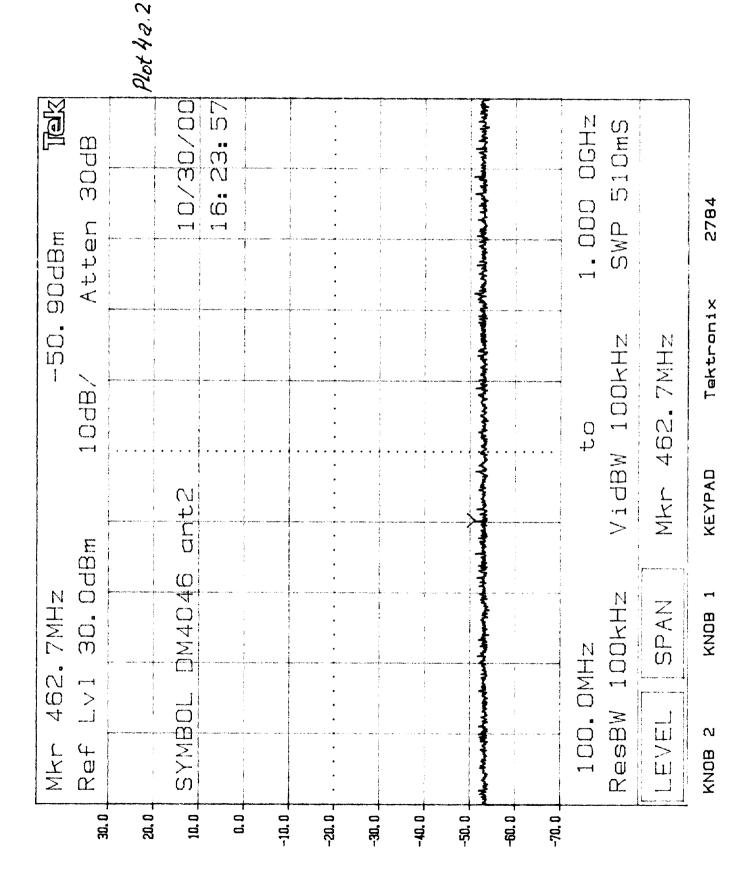
		Plot 36														
	Atten 30db		10/31/00	09: 36: 26	an annial and a section of the secti								Span 600kHz	SWP 2008	3 8CH2	2784
0	I Uda/				and the second s									NYTY P	2.437 056	Tektronix
	. ממש		046 ant2		を 日本ののでは、日本のでは、日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日								36 920 OGHz	Wabiy	X Y	B 1 KEYPAD
NKr 2. 497	Ket LVI 30.		SYMBOL DM40		大学であるからないのであるながらないのであるないです。 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								Freq 2.43	ResBW 3KHI	SPAN	KNOB 2 KNOB
	30.06	20.0	10.0	<u> </u>		-10.0	-20.02-	-30.0	 1 2 3	G.	0.02	-70.0	LL	L. [;		X

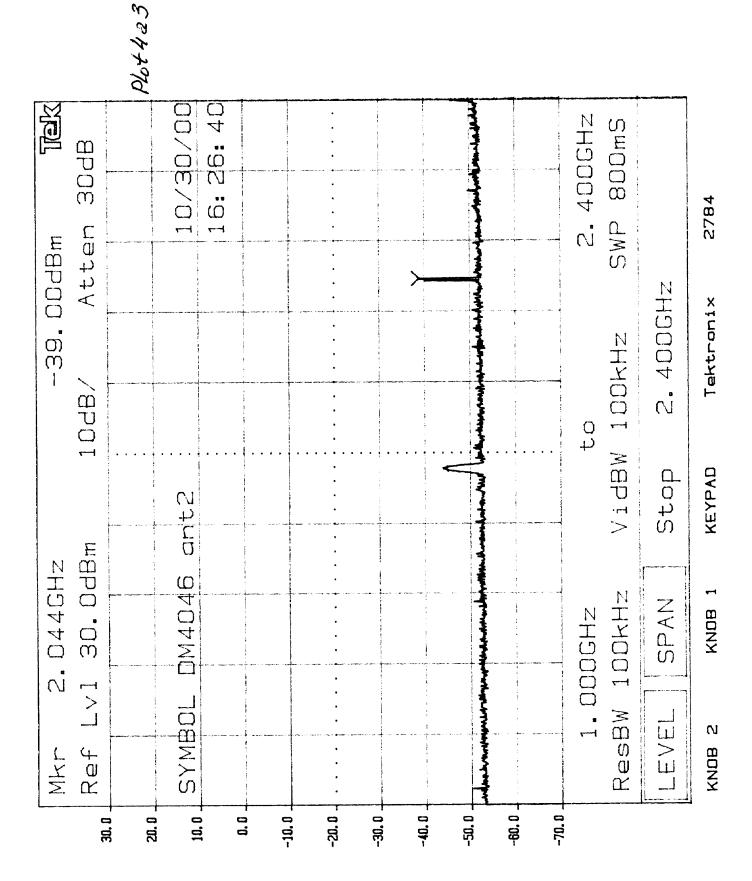
[M	PLot 3c			3									
Jen Jens	Atten goda	• •	09. 41: 31	refileration of the providence of the separate of the second						Span 600kHz	SWP 200S	3 6GHz	2784
-3.3C	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			ومقياط والايام المقاومة الماقيمة المهيد والماقة	•						3¥ 3KIN	2, 462 213] Taktron1x
213 6GHz	E n u	46 ant2		Handelly State Ship All Alphanes	•					2 000 0GHz	VidBW	NK L	1 KEYPAD
2. 462		SYMBOL DM40		المجيد راحه بروسيدة الريازيار ليطيفون ريدوراه	•					q 2.462	BW SKHN	SPA	Z KNOB
N S C	大 () ()	SYME SYME	0.0	Attended to the Control of the Contr	· · · · · · · · · · · · · · · · · · ·	7 n.	-40.0	-50.0	-60.0	77	ResBW		KNOB

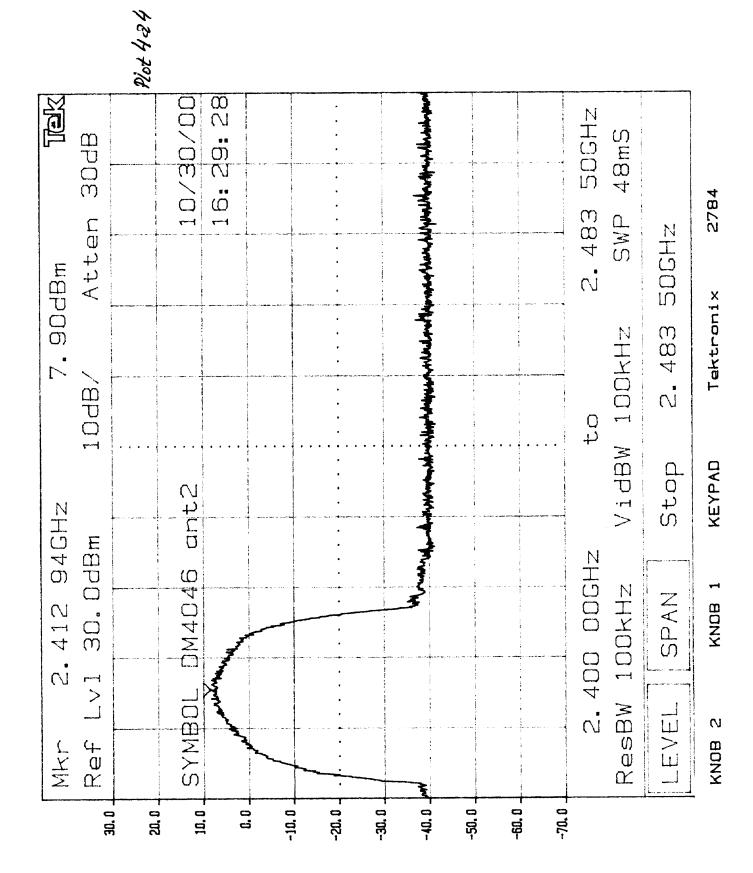
FCC ID: H9PDM4046

4.4 Out-of-Band Conducted Emissions, FCC Rule 15.247(c)

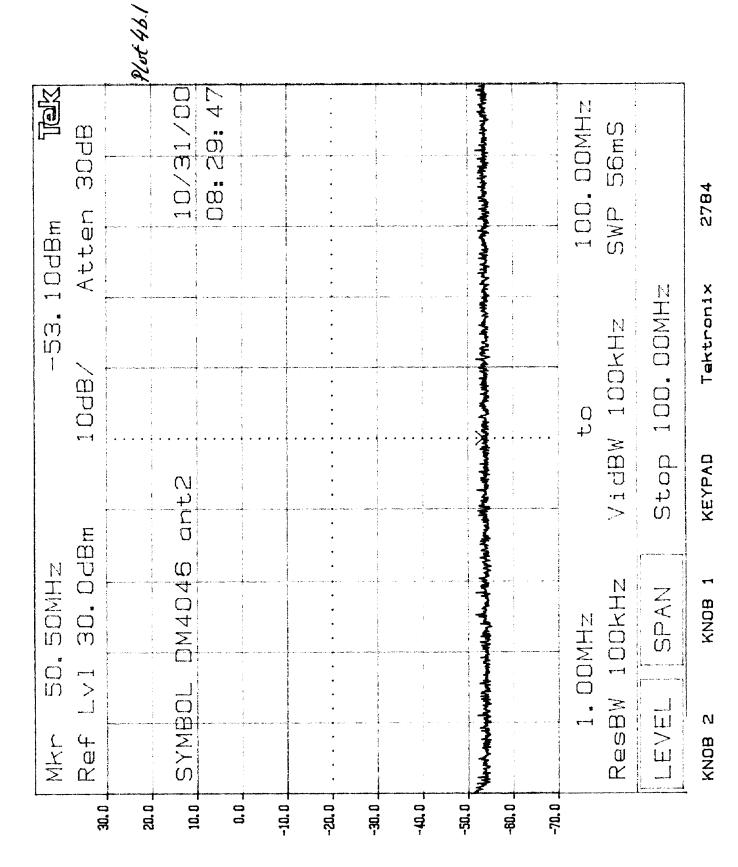

Requirements:


In any 100 kHz bandwidth outside the EUT passband, the RF power shall be at least 20 dB below that of the maximum in-band 100 kHz emission.

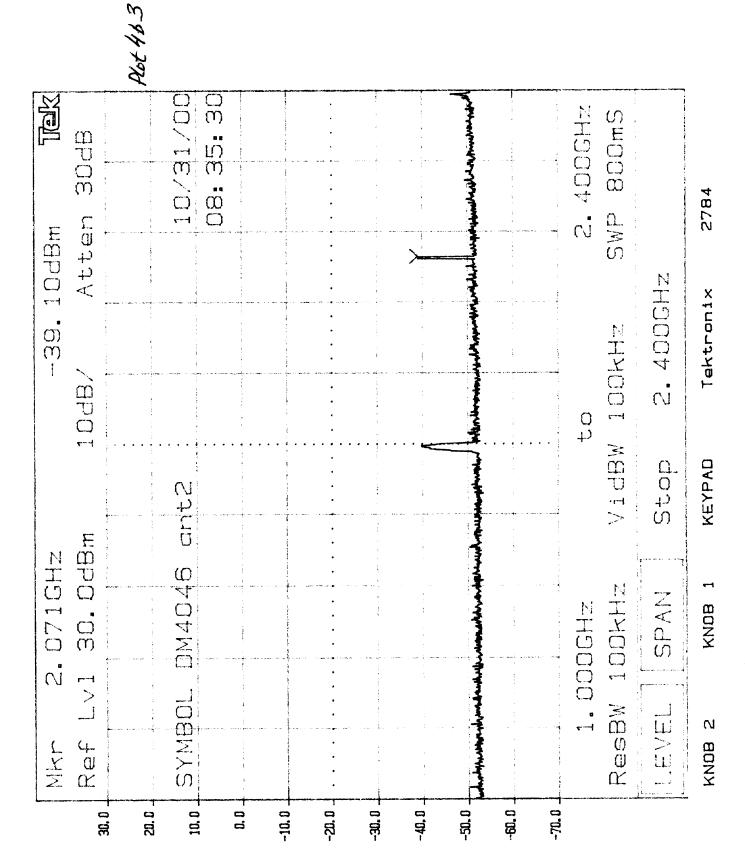

Test Result:

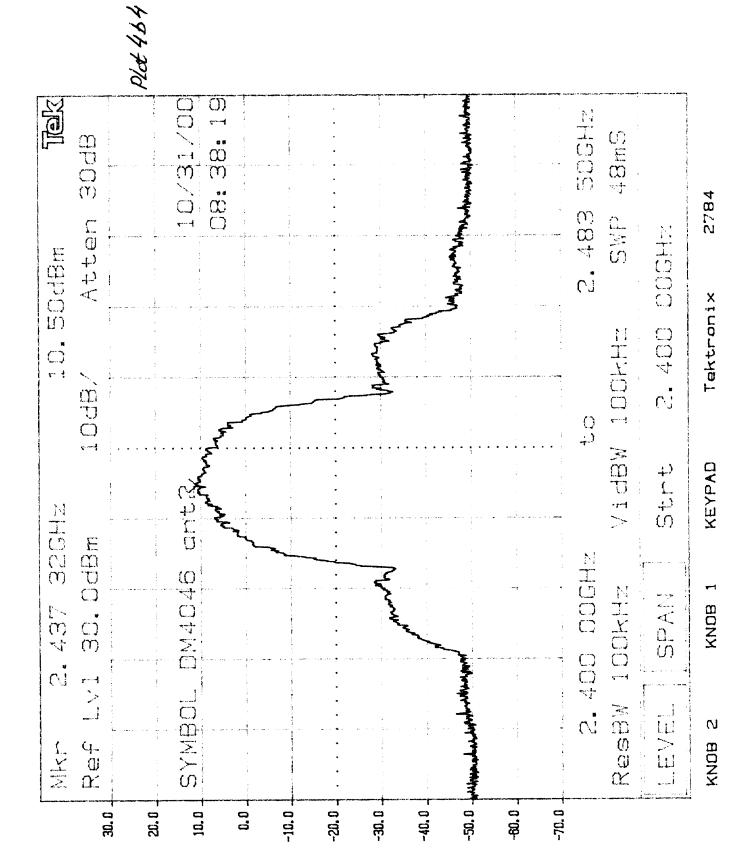

Refer to the following plots for out-of-band conducted emissions data:

Plot 4.a.1 – 4.a.6: Low Channel Emissions Plot 4.b.1 – 4.b.6: Mid Channel Emissions Plot 4.c.1 – 4.c.6: High Channel Emissions


2784

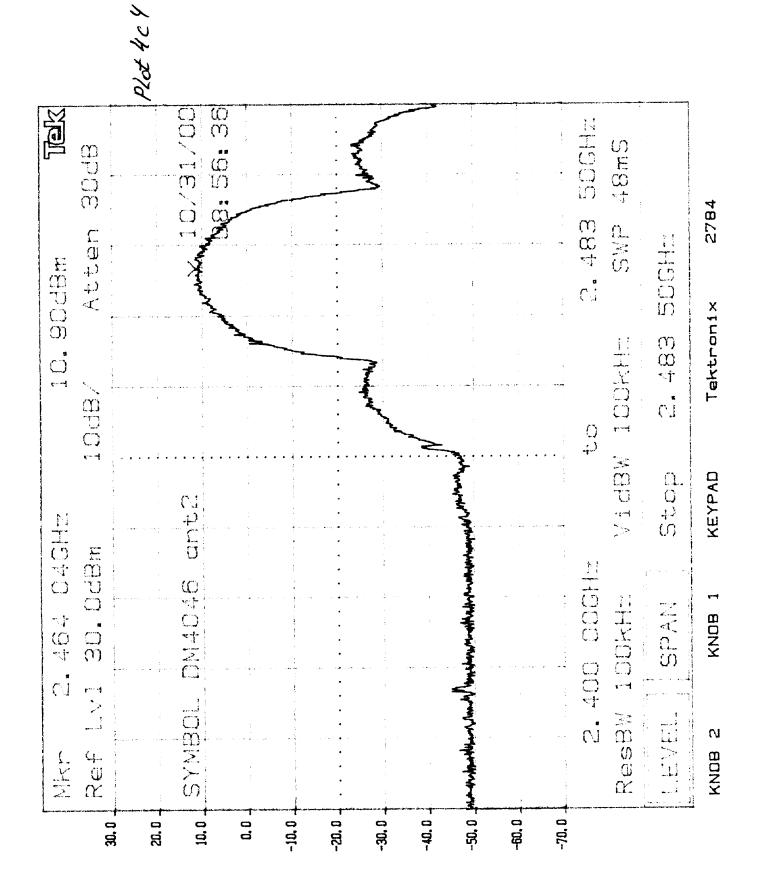
Taktronix


KEYPAD


KNOB 1

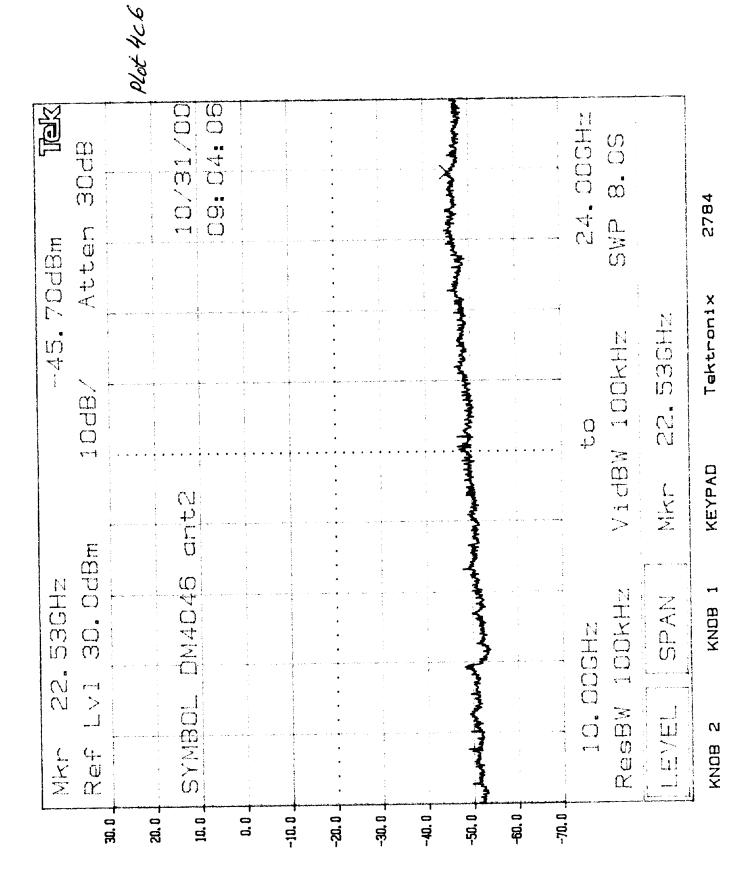
KNOB 2

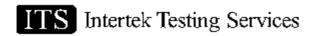
2784 Tektronix KEYPAD KNOB 1


2784 Taktronix KEYPAD KNOB 1

2784 Taktronix KEYPAD KNDB 1 KNOB 2

		Roth													
dBm Telk	Atten 30dB		10/31/00	08: 48: 07		•			をなっていまりないというないというないというかんないという			100.00MHN	SWP 56mS		2784
-52, DOdBm	10dB/ At								A STATE OF THE PROPERTY OF THE PARTY OF THE			(+ O	VidBW 100KHz	67. 53MHz	Tektronix
A CANANA AND AND AND AND AND AND AND AND AN			ロ た い						indept and when the sales	,		·	VidBW	∑ X L	KEYPAD
7. 53MHz	1 30.0dBm		DM4046			•			Mwaist Arachormate pasteria			1. OOMIN	100KH4	SPAN	KNOB 1
MKr 67	Ref Lv]		SYMBOL			•			Market Arterist Agreemen			Ö	ResBW	一一二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	KNOB 2
2	£ E	20.0			70.00		a.	-40.0	-50.0	-60,0	-70.0		R		


		Pict	nongogista _{transp} olite _s inistente s		and williage stages when it should be staged by the stage of the stage	ayının ayın gündü dündü oyun alı adı dılı	and the second s	المنافظة والمتاب والأن والمانوية	-		*****				
HBM New	Atten 30dB		10/31/00	08: 30: 52					the production of the second				SWP 510mS		2784
-45.10dBm	Od8/								Constitute de sales constitues de la constitue	\$		t 0	Vidbw 100kHz	752. SMHz	Tektronix
	F		07 t2						وبمأله بهراه وريده خاطاوها	· · · · ·		*	VidBW	MKr 7	KEYPAD
2. SMHz	(1)		DM4046			•			And described by the state of t			MHZ	ResBW 100kHz	SPAN	KNOB 1
MKr 752.			SYMBOL	1		•			Maringhabethaganate		A plant of the pla	100.0MHZ	ResBw	三 田 入 田 二	KNOB 2
Σ	<u> </u>	0.00		1	10 01-		ء ج	a 9		-80.0	-70.0		LK.		X


		Plot 4c3													
HBm Nek	Atten 30dB		10/31/00	08:53:45						and the last designation of the second		2. 4006Hz	SWP 800mS		2784
-38,70dBm	10dB/ At						•			Windowsky and Company of the Company		0	, 00 1	2. 400GHz	Taktron1×
1. 7225Hz	30.0den		 ant2							Laborate de la		. +	% GP ! ∧	Ston	KEYPAD
			SYMBOL DM4048	\$ 100 min 1	‡					oren general and and and an		1. 000CH _N	N T T N T T	SPAN	KNDB 1
N X Y	Ref LV1	20.0	-	<u> </u>		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-50.0-	-30.0	-40.0	-50, 0 Aurenthamolecanories	-60.0	-70.0 <u> </u>	Resbw		KNOB 2

KNOB 1 KEYPAD Tektronix 2784

KNOB 2

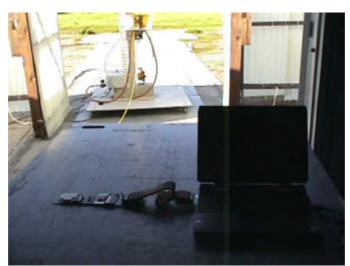
FCC ID: H9PDM4046

4.5 Out-of-Band Radiated Emissions, FCC Rule 15.247(c)

For out-of-band emissions that are close to the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the 20 dB attenuation requirement.

Not required. Out-of-band conducted emissions are more than 20 dB below the emission at the fundamental frequency

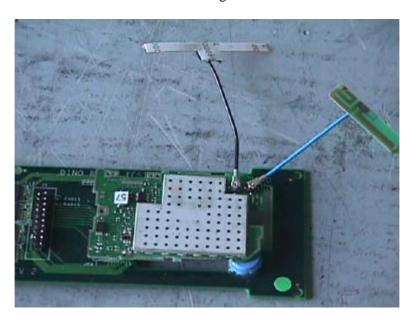
File: 20029320 Version 1.0 Page 12 of 23


FCC ID: H9PDM4046

4.6 Transmitter Radiated Emissions in Restricted Bands, FCC Rule 15.35(b), (c)

Radiated emission measurements were performed from 30 MHz to 25000 MHz. Spectrum analyzer resolution bandwidth is 100 kHz or greater for frequencies from 30 MHz to 1000 MHz, and 1 MHz for frequencies above 1000 MHz. The EUT was positioned on a non-conductive turntable, 0.8m above the ground plane on an open test site. The radiated emission was measured at 3 m distance. To maximize emissions, the system was rotated through 360°, the antenna height was varied from 1m to 4 m, and the antenna polarization was changed. Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak and average detectors unless otherwise specified.

Configuration Photograph:



Symbol Technologies, FCC ID: H9PDM4046

Date of Test: October 29-31, 2000

DP4046 Configuration

NP4046 Configuration

FCC ID: H9PDM4046

Test Result:

The data on the following pages (data sheets ## 1 to 3) list the significant emission frequencies, the limit and the margin of compliance.

In addition, the field strength in the restricted bands: 2483.5 MHz to 2500 MHz and 2310 MHz to 2390 MHz was calculated as follows:

$$E_f = E_0 - delta - DC$$

where E₀ is the field strength at the fundamental frequency (high or low channels) in dB(uV/m);

"delta" is the difference in conducted emissions between the level at the fundamental frequency and the highest level in the restricted band in dB;

DC is the Duty Cycle correction factor in dB

The results are presented in the Table 2.

Table 2

Frequency,	Antenna	Field Strength,	delta,	Duty Cycle,	Field Strength,	Limit (average),	Margin,
MHz		$E_0 dB(uV/m) *$	dB	dB	$E_f dB(uV/m)$	dB(uV/m)	dB
2390.0	Screw-in	106.0	64.2 **	19.4	22.4	54.0	-31.6
		at 2412 MHz					
2390.0	Stick-on	117.2	64.2 **	19.4	33.6	54.0	-20.4
		at 2412 MHz					
2390.0	PCB board	111.6	64.2 **	19.4	28.0	54.0	-26.0
		at 2412 MHz					
2483.5	Screw-in	109.5	59.2 ***	19.4	30.9	54.0	-23.1
		at 2462 MHz					
2483.5	Stick-on	117.4	59.2 ***	19.4	38.8	54.0	-15.2
		at 2462 MHz					
2483.5	PCB board	114.7	59.2 ***	19.4	36.1	54.0	-17.9
		at 2462 MHz					

^{*} see data sheets on the next pages

^{**} from Plot 6.1

^{***} from Plot 6.2

ITS Intertek Testing Services

Radiated Emissions Test Data

/

Company:	Symbol					Model #:	NP4046	W. C. F.	Standa	ırd_	FCC § 15. (R.B.)	247
EUT:	Screw in A	Antenna				S/N #:	50-21900-	043	Limits		11	·····
Project #:	J2002932	0				Test Date:	Oct 31, 200	00		stance	3	meters
Test Mode:					, , , , , , , , , , , , , , , , , , , ,	Engineer:	Barry S.		Duty Relaxa	_	0	d8
Frequency	Reading		Ant	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	insert. Loss	D.C.	Net	Limit @3m	Margin
MHz	dB(µV)	PIAIQ	#	#	H/V	dB(1/m)	dB	dB	dB	dB(µV/m	dB(µV/m)	dB
2412	70.0	Dool	4 4		.,	00.4)		
4824	73.6	Peak	14		V	30.1	0.0	2.3	0.0	106.0		
	23.0	Peak	14	8	V	33.9	28.1	3.2	0.0	32.0	74.0	-42.0
4824	17.0	Ave.	14	8	V	33.9	28.1	3.2	0.0	26.0	54.0	-28.0
7236	36.6	Peak	14	8	V	38.0	28.0	4.3	0.0	50.9	74.0	-23.1
7236	29.3	Ave.	14	8	V	38.0	28.0	4.3	0.0	43.6	54.0	-10.4
12060	51.2	Peak	14	10	V	42.3	39.1	5.9	0.0	60.3	74.0	-13.7
12060	47.6	Ave.	14	10	V	42.3	39.1	5.9	0.0	56.7	54.0	2.7
14472	38.2	Peak	14	10	V	40.7	37.8	6.5	0.0	47.6	74.0	-26.4
14472	30.6	Ave.	14	10	V	40.7	37.8	6.5	0.0	40.0	54.0	-14.0
19296*	37.0	Peak	21	13	V	40.2	23.3	7.7	-9.5	52.1	74.0	-21.9
19296*	24.7	Ave.	21	13	V	40.2	23.3	7.7	-9.5	39.8	54.0	-14.2
2437	73.6	Peak	14		Н	28.8	0.0	2.3	0.0	104.7		
4874	24.9	Peak	14	8	V	33.9	28.1	3.2	0.0	33.9	74.0	-40.1
4874	16.3	Ave.	14	8	V	33.9	28.1	3.2	0.0	25.3	54.0	-28.7
7311	36.3	Peak	14	8	V	38.0	28.0	4.3	0.0	50.6	74.0	-23.4
7311	30.5	Ave.	14	8	V	38.0	28.0	4.3	0.0	44.8	54.0	-9.2
12185	53.5	Peak	14	10	V	42.3	39.1	5.9	0.0	62.6	74.0	-11.4
12185	47.3	Ave.	14	10	V	42.3	39.1	5.9	0.0	56.4	54.0	2.4
19496*	39.5	Peak	21	13	V	40.2	23.3	7.7	-9.5	54.6	74.0	-19.4
19496*	22.2	Ave.	21	13	٧	40.2	23.3	7.7	-9.5	37.3	54.0	-16.7
2462	78.4	Peak	14		Н	28.8	0.0	2.3	0.0	109.5		
4924	25.0	Peak	14	8	V	33.9	28.1	3.2	0.0	34.0	74.0	-40.0
4924	16.0	Ave.	14	8	V	33.9	28.1	3.2	0.0	25.0	54.0	-29.0
7386	39.5	Peak	14	8	V	38.0	28.0	4.3	0.0	53.8	74.0	-20.2
7386	33.4	Ave.	14	8	V	38.0	28.0	4.3	0.0	47.7	54.0	-6.3
12310	54.9	Peak	14	10	V	42.3	39.1	5.9	0.0	64.0	74.0	-10.0
12310	48.1	Ave.	14	10	V	42.3	39.1	5.9	0.0	57.2	54.0	3.2
19696*	45.0	Peak	21	13	V	40.3	23.3	7.7	-9.5	60.2	74.0	-13.8
19696*	31.3	Ave.	21	13	V	40.3	23.3	7.7	-9.5	46.5	54.0	-7.5
22158*	41.4	Peak	21	13	V	40.3	23.3	7.9	-9.5	56.8	74.0	-17.2
22158*	30.0	Peak	21	13	V	40.3	23.3	7.9	-9.5	45.4	74.0	-28.6

 ^{*}Readings taken at 1 meter with RBW 300KHz

[•] Symbol Technologies declares a duty cycle factor of 19.37 dB. This amount may be subtracted from the margin column.

Radiated Emissions Test Data

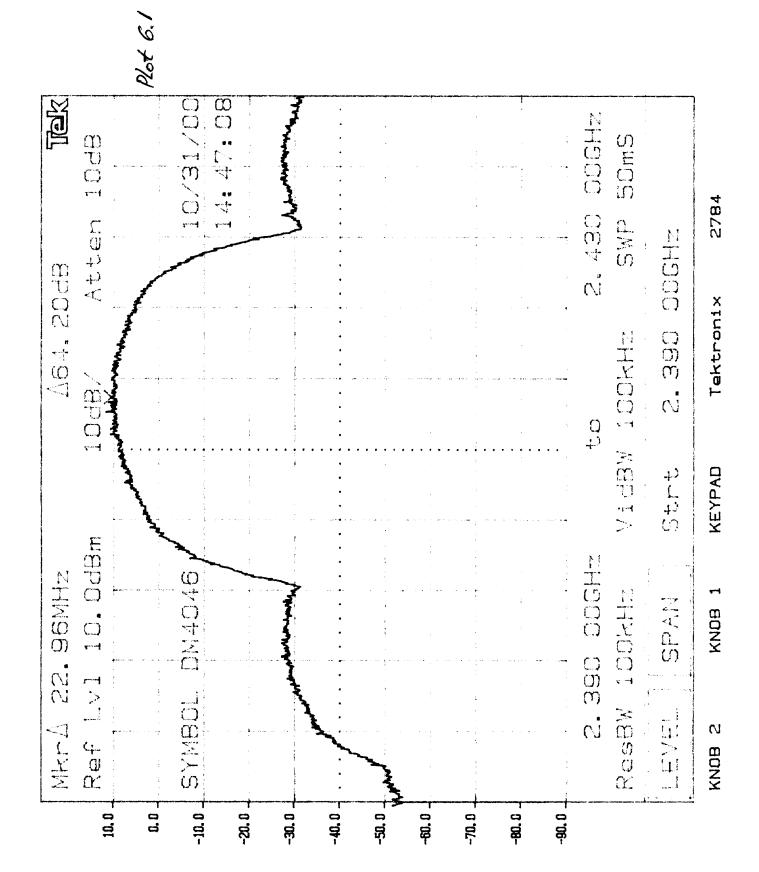
2

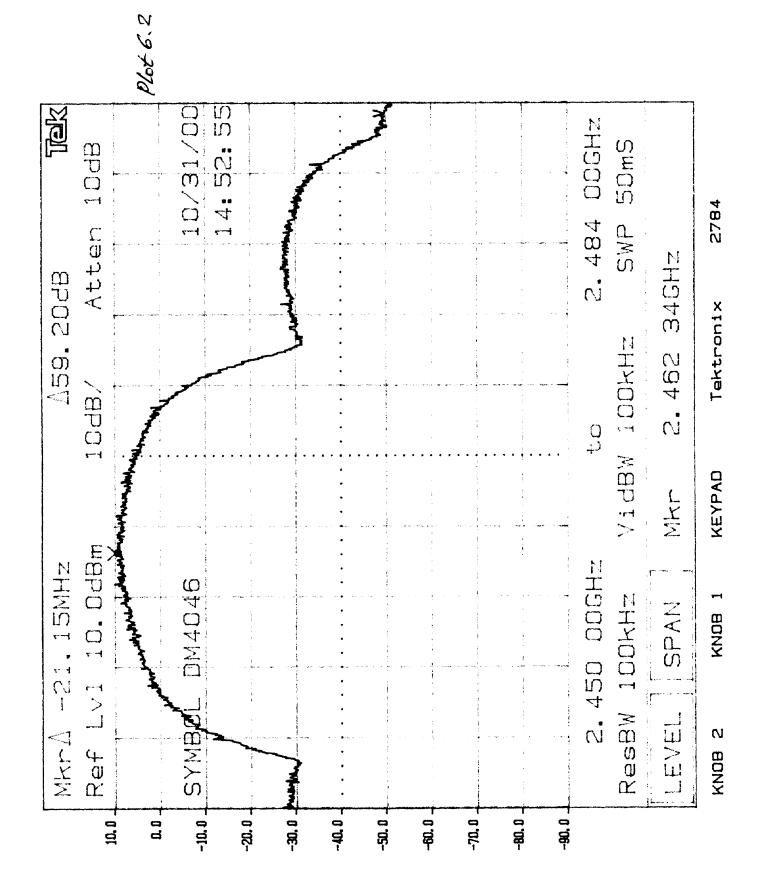
Company:	Symbol					Model #:	DP4046		Standa	nd_	FCC § 15 (R.B.)	.247
EUT:	Stick on A	Antenna				S/N #:	50-21900-	-044	Limits	•••••	11	
Project #:	J2002932	20				Test Date:				stance	3	meters
Test Mode:	calling an	other phor	ne thr	u hub		Engineer:	Barry S.			elaxation	0	dB
Frequency	Reading	Detector	Ant	Amp.	Ant. Pol.		Pre-Amp	Insert. Loss	D.C. F.	Net	Limit @3m	Margin
MHz	d8(µV)	P/A/Q	#	#	H/V	d8(1/m)	dB	dB	dB	dΒ(μV/m)	dB(μV/m)	dB
2412	84.8	Peak	14		V	30.1	0.0	2.3	0.0	117.2		
4824	35.6	Peak	14	8	V	33.9	28.1	3.2	0.0	44.6	74.0	-29.4
4824	27.9	Ave.	14	8	V	33.9	28.1	3.2	0.0	36.9	54.0	-17.1
7236	37.5	Peak	14	8	V	38.0	28.0	4.3	0.0	51.8	74.0	-22.2
7236	33.3	Ave.	14	8	V	38.0	28.0	4.3	0.0	47.6	54.0	-6.4
12060	36.0	Peak	14	10	V	42.3	39.1	5.9	0.0	45.1	74.0	-28.9
12060	28.9	Ave.	14	10	V	42.3	39.1	5.9	0.0	38.0	54.0	-16.0
14472	37.9	Peak	14	10	V	40.7	37.8	6.5	0.0	47.3	74.0	-26.7
14472	30.9	Ave.	14	10	V	40.7	37.8	6.5	0.0	40.3	54.0	-13.7
19296*	41.0	Peak	21	13	V	40.2	23.3	7.7	-9.5	56.1	74.0	-17.9
19296*	24.0	Ave.	21	13	V	40.2	23.3	7.7	-9.5	39.1	54.0	-14.9
2437	85.5	Peak	14		V	30.1	0.0	2.3	0.0	117.9		1
4874	25.3	Peak	14	8	V	33.9	28.1	3.2	0.0	34.3	74.0	-39.7
4874	17.7	Ave.	14	8	V	33.9	28.1	3.2	0.0	26.7	54.0	-27.3
7311	40.9	Peak	14	8	V	38.0	28.0	4.3	0.0	55.2	74.0	-18.8
7311	38.4	Ave.	14	8	V	38.0	28.0	4.3	0.0	52.7	54.0	-1.3
12185	37.7	Peak	14	10	V	42.3	39.1	5.9	0.0	46.8	74.0	-27.2
12185	31.8	Ave.	14	10	V	42.3	39.1	5.9	0.0	40.9	54.0	-13.1
19496*	33.7	Peak	21	13	V	40.2	23.3	7.7	-9.5	48.8	74.0	-25.2
19496*	22.0	Ave.	21	13	V	40.2	23.3	7.7	-9.5	37.1	54.0	-16.9
2462	85.0	Peak	14		V	30.1	0.0	2.3	0.0	117.4		
4924	25.4	Peak	14	8	V	33.9	28.1	3.2	0.0	34.4	74.0	-39.6
4924	18.5	Ave.	14	8	V	33.9	28.1	3.2	0.0	27.5	54.0	-26.5
7386	44.1	Peak	14	8	V	38.0	28.0	4.3	0.0	58.4	74.0	-15.6
7386	43.1	Ave.	14	8	V	38.0	28.0	4.3	0.0	57.4	54.0	3.4
12310	37.8	Peak	14	10	V	42.3	39.1	5.9	0.0	46.9	74.0	-27.1
12310	32.1	Ave.	14	10	V	42.3	39.1	5.9	0.0	41.2	54.0	-12.8
19696*	44.0	Peak	21	13	V	40.3	23.3	7.7	-9.5	59.2	74.0	-14.8
19696*	34.3	Ave.	21	13	V	40.3	23.3	7.7	-9.5	49.5	54.0	-4.5
22158*	41.1	Peak	1	2	V	23.0	0.0	7.9	-9.5	62.5	74.0	-11.5
22158*	29.8	Peak	1	2	V	23.0	0.0	7.9	-9.5	51.2	74.0	-22.8

^{• *}Readings taken at 1 meter with RBW 300KHz

[•] Symbol Technologies declares a duty cycle factor of 19.37 dB. This amount may be subtracted from the margin column.

ITS Intertek Testing Services


Radiated Emissions Test Data


3

Company:	Symbol					Model #:	DP4046		Standa	ird_	FGC § 15 (R.B.)	.247
EUT:	PCB Ant	enna				S/N #:	50-21900	-045	Limits	•••••	11	••••••
Project #:	J200293	20				Test Date:			00000000000000000	stance_	3	meters
Test Mode:	calling ar	nother pho	ne thr	u hub		Engineer:	Barry S.			elaxation	0	dB
Frequency	Reading	Detecto	r Ant	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	insert.	D.C.	Net	Limit	Margi
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	dB(pV/m)	@3m dB(µV/m)	dB
2412	79.2	Peak	14		V	30.1	0.0	2.3	0.0	111.6		
4824	25.8	Peak	14	8	V	33.9	28.1	3.2	0.0	34.8	74.0	20.0
4824	17.3	Ave.	14	8	V	33.9	28.1	3.2	0.0	26.3		-39.2
7236	34.8	Peak	14	8	V	38.0	28.0	4.3	0.0	49.1	54.0 74.0	-27.7
7236	28.6	Ave.	14	8	V	38.0	28.0	4.3	0.0	49.1	54.0	-24.9
12060	36.1	Peak	14	10	V	42.3	39.1	5.9	0.0	45.2	74.0	-11.1
12060	28.7	Ave.	14	10	V	42.3	39.1	5.9	0.0	37.8		-28.8
14472	38.5	Peak	14	10	V	40.7	37.8	6.5	0.0	47.9	54.0	-16.2
14472	30.9	Ave.	14	10	V	40.7	37.8	6.5	0.0		74.0	-26.1
19296*	39.0	Peak	21	13	V	40.2	23.3	7.7	+	40.3	54.0	-13.7
19296*	26.1	Ave.	21	13	V	40.2	23.3	7.7	-9.5	54.1	74.0	-19.9
2437	81.4	Peak	14		V	30.1	0.0		-9.5	41.2	54.0	-12.8
4874	25.0	Peak	14	8	V	33.9	28.1	2.3 3.2	0.0	113.8		
4874	17.5	Ave.	14	8	V	33.9	28.1	3.2	0.0	34.0	74.0	-40.0
7311	34.7	Peak	14	8	V	38.0	28.0	4.3	0.0	26.5	54.0	-27.5
7311	28.3	Ave.	14	8	V	38.0	28.0	4.3		49.0	74.0	-25.0
12185	35.6	Peak	14	10	V	42.3	39.1	5.9	0.0	42.6	54.0	-11.4
12185	28.5	Ave.	14	10	V	42.3	39.1	5.9		44.7	74.0	-29.3
19496*	33.7	Peak	21	13	V	40.2	23.3	7.7	0.0	37.6	54.0	-16.4
19496*	22.0	Ave.	21	13	V	40.2	23.3	7.7	-9.5	48.8	74.0	-25.2
2462	82.3	Peak	14		v	30.1	0.0	2.3	-9.5 0.0	37.1	54.0	-16.9
4924	25.4	Peak	14	8	v	33.9	28.1	3.2		114.7	74.0	
4924	17.7	Ave.	14	8	v	33.9	28.1		0.0	34.4	74.0	-39.6
7386	34.9	Peak	14	8	V	38.0	28.0	3.2	0.0	26.7	54.0	-27.3
7386	28.6	Ave.	14	8	V	38.0	28.0	4.3	0.0	49.2	74.0	-24.8
12310	36.3	Peak	14	10	V	42.3	39.1	4.3 5.9	0.0	42.9	54.0	-11.1
12310	29.9	Ave.	14	10	V	42.3	39.1		0.0	45.4	74.0	-28.6
19696*	43.5	Peak	21	13	V	40.3	23.3	5.9	0.0	39.0	54.0	-15.0
19696*	34.5	Ave.	21	13	V	40.3		7.7	-9.5	58.7	74.0	-15.3
22158*	41.1	Peak	21	13	V	40.3	23.3	7.7	-9.5	49.7	54.0	-4.3
22158*	29.9	Peak	21	13	V		23.3	7.9	-9.5	56.5	74.0	-17.5
		l motor viii				40.3	23.3	7.9	-9.5	45.3	74.0	-28.7

^{• *}Readings taken at 1 meter with RBW 300KHz

Symbol Technologies declares a duty cycle factor of 19.37 dB. This amount may be subtracted from the margin column.

Symbol Technologies, FCC ID: H9PDM4046

Date of Test: October 29-31, 2000

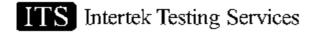
- 4.7 AC Line Conducted Emission, FCC Rule 15.207
- [X] Not required; battery operation only
- [] Test data attached

FCC ID: H9PDM4046

4.8 Radiated Emissions from Digital Section of Transceiver (Transmitter), FCC Rule 15.109

Radiated emission measurements were performed from 30 MHz to 1000 MHz.

The EUT was positioned on a non-conductive turntable, 0.8m above the ground plane on an open test site. The radiated emission was measured at 3 m distance. To maximize emissions, the system was rotated through 360° , the antenna height was varied from 1m to 4 m, and the antenna polarization was changed. Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detectors unless otherwise specified.


Configuration Photograph

NP4046 Configuration

Symbol Technologies, FCC ID: H9PDM4046

Date of Test: October 29-31, 2000

Test Result:

The data on the following pages (data sheets ## 1 to 2) list the significant emission frequencies, the limit and the margin of compliance.

Radiated Emissions Test Data

Company:	Symbol	Model #:	DP4046	Standard	FCC § 15	JB
EUT:		S/N #:		Limits Test Distance	2	
Project #:	J20029320	Test Date:	Oct 26, 2000	Test Distance	3	meters
Test Mode:	calling another phone thru hub	Engineer:	Barry Smith	Duty Relaxation	0	dΘ

Antenna	Used	Pre-Ai	np Used		Cable (ised		Transducer	Used
Number: 1	0	2	0	0	3	0	0	0	
Model: EMCO 3143	None None		None		Site 3 10m	None	<u> </u>	None	

Frequency	Reading	Detector	Ant	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	insert. Loss	D.C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	HΛ	dB(1/m)	dB	dB	αÐ	dθ(μV/m)	dB(μV/m)	dB
40.00E+0	41.7	Peak	1	2	V	6.5	32.0	1.9	0.0	18.1	40.0	-21.9
46.70E+0	48.3	Peak	1	2	V	6.7	32.0	1.9	0.0	24.9	40.0	-15.1
53.10E+0	44.8	Peak	1	2	V	5.2	32.0	2.1	0.0	20.1	40.0	-19.9
40.90E+0	45.2	Peak	1	2	V	7.2	32.0	1.9	0.0	22.3	40.0	-17.7
60.00E+0	48.6	Peak	1	2	V	5.0	32.0	2.3	0.0	23.9	40.0	-16.1
80.00E+0	41.4	Peak	1	2	V	6.8	32.0	2.4	0.0	18.6	40.0	-21.4
									-			
									-			
									1			
									-			
											· · · · · · · · · · · · · · · · · · ·	
								7. 4				-

Notes:

- a) D.C.F.:Distance Correction Factor
- b) Insert. Loss (dB) = Cable A + Cable B + Cable C .
- c) Net (dB) = Reading + Antenna Factor Pre-amp + Insert. Loss. Transducer Loss Duty Relaxation (transmitter only).
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

Radiated Emissions Test Data

Company:	Symbol	Model #:	NP4046	Standard_	FCC § 15B	
EUT:		S/N #:		Limits	2	
Project #:	J20029320	Test Date:	Oct 26, 2000	Test Distance_	3 mete	
Test Mode:	calling another phone thru hub	Engineer:	Barry S.	Outy Relaxation		

Antenna U	sed	Pre-A	rip Used		Cable t	lsed		Transducer Used
Number: 1	0	2	0	0	3	0	0	0
Model: EMCO ↑	lone None	HP 8447D	None		Site 3 10m	None		None

Frequency	Reading	Detector	Ant	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	insert. Loss	D.C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	d₿	αB(μV/m)	dΒ(μV/m)	d₿
40.00	41.0	Peak	1	2	V	7.3	32.0	1.9	0.0	18.2	40.0	-21.8
59.80	59.7	Peak	1	2	V	5.0	32.0	2.1	0.0	34.8	40.0	-5.2
67.36	59.0	Peak	1	2	V	6.7	32.0	2.3	0.0	36.0	40.0	-4.0
81.80	33.7	Peak	1	2	V	6.8	32.0	2.4	0.0	10.9	40.0	-29.1
396.00	36.9	Peak	1	2	V	15.3	32.0	4.6	0.0	24.8	46.0	-21.2
			ļ									
			-									
The state of the s												

Notes:

- a) D.C.F.:Distance Correction Factor
- b) Insert. Loss (dB) = Cable A + Cable B + Cable C .
- c) Net (dB) = Reading + Antenna Factor Pre-amp + Insert. Loss. Transducer Loss Duty Relaxation (transmitter only).
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

Symbol Technologies,

Date of Test: October 29-31, 2000

FCC ID: H9PDM4046

- 4.9 Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation), FCC Rules 15.109, 15.111
- [X] Not required EUT operation above 960 MHz only
- [] Not required EUT is transmitter only
- [] Test results are attached

FCC ID: H9PDM4046

4.10 Processing Gain, FCC Rule 15.247(e)

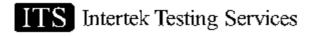
The processing gain shall be determined from the ratio in dB of the signal to noise ratio with the system spreading code turned OFF, to the signal to noise ratio with the system spreading code turned ON, as measured at the demodulated output of the receiver. The processing gain shall be at least 10 dB for a direct sequence spread spectrum system.

	Refer to attached test procedure and data sheets.
	Refer to circuit analysis and processing gain calculations provided by manufacturer.
X	Refer to Processing Gain Attachment of FCC Application H9PLA4121

File: 20029320 Version 1.0 Page 20 of 23

FCC ID: H9PDM4046

4.11 Transmitter Duty Cycle Calculation and Measurements, FCC Rule 15.35(b), (c)


The EUT antenna output port was connected to the input of the spectrum analyzer. The analyzer center frequency was set to EUT RF channel carrier. The SWEEP function on the analyzer was set to ZERO SPAN. The transmitter ON time was determined from the resultant time-amplitude display:

Duty Cycle = Maximum ON time in 100 msec/100

Duty Cycle correction, dB = 20 * log(DC)=19.4 dB

	See attached spectrum analyzer chart(s) for transmitter timing
X	See transmitter Duty Cycle Exibit
	No duty cycle was applied

File: 20029320 Version 1.0 Page 21 of 23

FCC ID: H9PDM4046

5.0 List of test equipment

Equipment	Manufacturer	Model	Serial #	Cal. Int.	Cal. Due	Used
Biconical Antenna	EMCO	3104	3789	12	4/10/01	X
Log Periodic Antenna	EMCO	EM LPA-25	1079	12	4/10/01	X
Double-ridged Horn Antenna	EMCO	3115	8812-3049	12	2/5/01	X
Horn Antenna	EMCO	3160-9	N/A	#	#	X
Pre-amplifier	ComPower	CPPA-102	1256	12	4/28/01	X
Pre-amplifier	CDI	P1000	N/A	12	10/14/00	X
Pre-amplifier	Avantek	AFT18855	8723H705	12	10/14/00	X
Pre-amplifier	CTT	ACO/400	47526	12	10/14/00	X
Spectrum Analyzer	Hewlett Packard	HP 8566B	2416A00317	6	2/03/01	X
w/8650 QP Adapter			2521A01021			
Spectrum Analyzer	Tektronix	2784	B3020108	12	8/4/01	X
Peak Power Meter	Hewlett Packard	8900D	3607U00673	12	7/31/01	X
Peak Power Sensor	Hewlett Packard	84811A	3318A05091	12	12/7/99	X

[#] Calibration is not required

1365 Adams Ct. Menlo Park, CA 94025

Symbol Technologies, Date of Test: October 29-31, 2000

FCC ID: H9PDM4046

6.0 Document History

Revision/Job Number	Date	Change	
1.0 / J20029320	11/17/2000	Original document	

File: 20029320 Version 1.0 Page 23 of 23