

FCC Part 1 Subpart I FCC Part 2 Subpart J

CERTIFICATION TEST REPORT

FOR

SMART PHONE

MODEL NO: A2632 (Parent Model, Full Test) A2885, A2886, A2887, A2888 (Variant Models)

FCC ID: BCG-E8139A (Parent Model)
FCC ID: BCG-E8146A, BCG-E8147A, BCG-E8148A (Variant Models)

REPORT NUMBER: 14040868-E15V1

ISSUE DATE: JULY 13, 2022

Prepared for APPLE INC.
1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A

Prepared by

UL LLC.

47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	7/13/2022	Initial Issue	T. Chan

TABLE OF CONTENTS

1.	AT [*]	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	6
۷.			
3.	FA	CILITIES AND ACCREDITATION	6
4.	DE	CISION RULES AND MEASUREMENT UNCERTAINTY	6
	4.1.	METROLOGICAL TRACEABILITY	6
	4.2.	DECISION RULES	6
	4.3.	MEASUREMENT UNCERTAINTY	
5.	KD	B 680106 D01 SECTION 5b EQUIPMENT APPROVAL CONSIDERATIONS	7
6.	EQ	UIPMENT UNDER TEST	8
	6.1.	DESCRIPTION OF EUT	8
	6.2.	WORST-CASE CONFIGURATION AND MODE	8
	6.3.	DESCRIPTION OF TEST SETUP	9
7.	TE	ST AND MEASUREMENT EQUIPMENT	12
8.	DU	TY CYCLE	13
9.	MA	XIMUM PERMISSIBLE RF EXPOSURE	14
	9.1.	FCC LIMITS AND SUMMARY	
	9.1		
	9.1		
	9.1 9.1		
40	٠ ,	PETUD DUOTO	22

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE INC.

1 APPLE PARK WAY

CUPERTINO, CA 95014, U.S.A

EUT DESCRIPTION: SMARTPHONE

EUT DESCRIPTION: SMARTPHONE

MODEL: A2632 (Parent Model)

A2885, A2886, A2887, A2888 (Variant Models)

BRAND: APPLE

FCC ID: BCG-E8139A (Parent Model)

BCG-E8146A, BCG-E8147A, BCG-E8148A (Variant Models)

IC: 579C-E8139A (Parent Model)

579C-E8146A, 579C-E8147A, 579C-E8148A (Variant Models)

SERIAL NUMBER: JQFPC761YX (Parent Model, Full Test)

V2V6DW6HH0, PH3QM54K07, VNJD292GQG (Variant Models)

SAMPLE RECEIPT DATE JULY 11, 2022

DATE TESTED: JULY 11-12, 2022

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J Complies

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government

Chin Pany

Reviewed By:

Prepared By:

Chin Pang Senior Lab Engineer

UL LLC.

Alejandro Martinez Test Engineer UL LLC.

alejandro Martinez

2. TEST METHODOLOGY

All measurements made in accordance with KDB 680106 and manufacturer KDB inquiry.

3. FACILITIES AND ACCREDITATION

UL LLC is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building 1: 47173 Benicia Street, Fremont, CA 94538	US0104	2324A	550739
\boxtimes	Building 2: 47266 Benicia Street, Fremont, CA 94538	US0104	22541	550739
	Building 4: 47658 Kato Rd, Fremont, CA 94538	US0104	2324B	550739

4. DECISION RULES AND MEASUREMENT UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

4.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Magnetic Field Reading (A/m)	+/-0.04284 (A/m)
Electric Field Reading (V/m)	+/-0.03682 (V/m)

Uncertainty figures are valid to a confidence level of 95.45%.

5. KDB 680106 D01 SECTION 5b EQUIPMENT APPROVAL **CONSIDERATIONS**

Requirement	Device
(1) Power transfer frequency is less than 1 MHz.	Yes. Operating Frequency is 360 kHz
(2) Output power from each primary coil is less than or equal to 15 watts.	Yes. The maximum power is 5 Watts
(3) The transfer system includes only single primary and secondary coils. This includes charging systems that may have multiple primary coils and clients that are able to detect and allow coupling only between individual pairs of coils.	Yes. Yes. The system includes one single primary and secondary coil and the device is designed to charge a single client
(4) Client device is placed directly in contact with the transmitter.	Yes. The client device is placed directly in contact with the transmitter.
(5) Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion).	No. It is a portable device.
(6) The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.	No. The measurement is based on KDB inquiry which 0mm distance is set for all positions testing.

6. EQUIPMENT UNDER TEST

6.1. DESCRIPTION OF EUT

The Apple iPhone is a smartphone with multimedia functions (music, application support, and video),cellular GSM, GPRS, EGPRS, UMTS, LTE, 5G, IEEE 802.11a/b/g/n/ac/ax, Bluetooth, Ultra-Wideband, GPS, NFC and MSS. All models except reference model support at least one UICC based SIM. The second SIM is either an UICC based p-SIM (physical SIM) or e-SIM (electronic SIM). The device supports a built-in inductive charging transmitter and receiver. The rechargeable battery is not user accessible.

Model A2887 and A2888 have the same FCC ID, Spot check was performed only for Model A2891, difference between these models are on the SIM only.

The Model and FCC IDs covered by this report includes:

Parent Model: A2632, FCC ID: BCG-E8139A

Variant Models: A2885, BCG-E8146A

A2886; BCG-E8147A

A2887 & A2888, BCG-E8148A

6.2. WORST-CASE CONFIGURATION AND MODE

The EUT is a smartphone which connected to the AC/DC adapter via USB-C cable, and the inductive charging coil to charge WPT Client. For the entire radiated emissions test, the EUT was investigated on the following configuration during the test at its natural orientation. Full test, configuration 1 & 2, was investigated on Parent model, and the worst case was configuration 2 at 25-70% power charging 2mm shift to the top, therefore, config 2, worst case was investigated only on variant models. For worst case at H field on configuration 2 at 2cm increment, please see SAR simulation report.

Model A2650

Config	Mode	Descriptions
1	Operating	Direct contact charging between the EUT & WPT Client, and the EUT is powered by AC/DC adapter via USB-C cable.
2	Operating	2mm airgap charging between the EUT & WPT Client + 2mm offset shift to Top or Bottom, and the EUT is powered by AC/DC adapter via USB-C cable.

A2889, A2890, A2891, A2892 (Variant Model, Spot Check Worst Case)

Config	Mode	Descriptions
2	Operating	2mm airgap charging between the EUT & WPT Client + 2mm offset shift to Top or Bottom@ 25 ~ 70% power charging, and the EUT is powered by AC/DC adapter via USB-C cable.

6.3. DESCRIPTION OF TEST SETUP

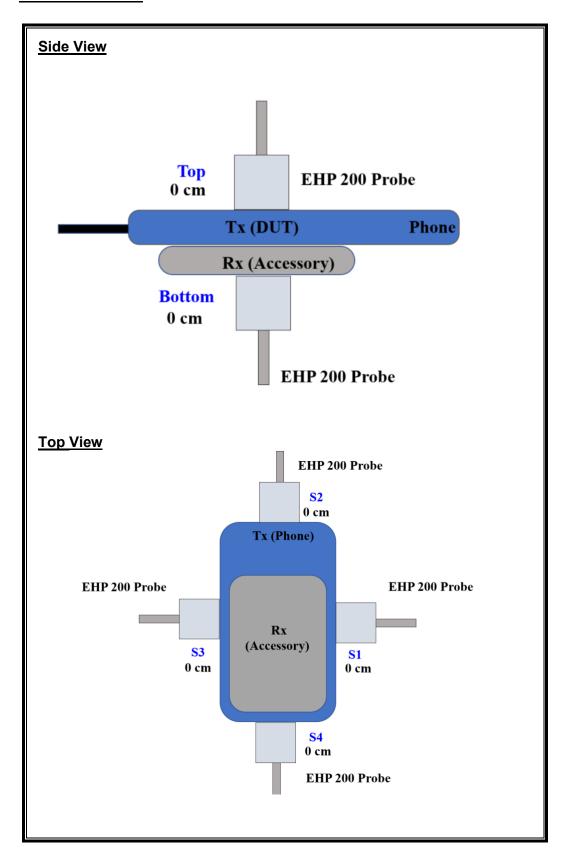
SUPPORT EQUIPMENT

SUPPORT EQUIPMENT & PERIPHERALS LIST							
Description Manufacturer Model Serial Number							
WPT battery Pack	Apple	A2384	DL5HC1X30NLJ				
AC/DC Adapter	Apple	A2305	N/A				

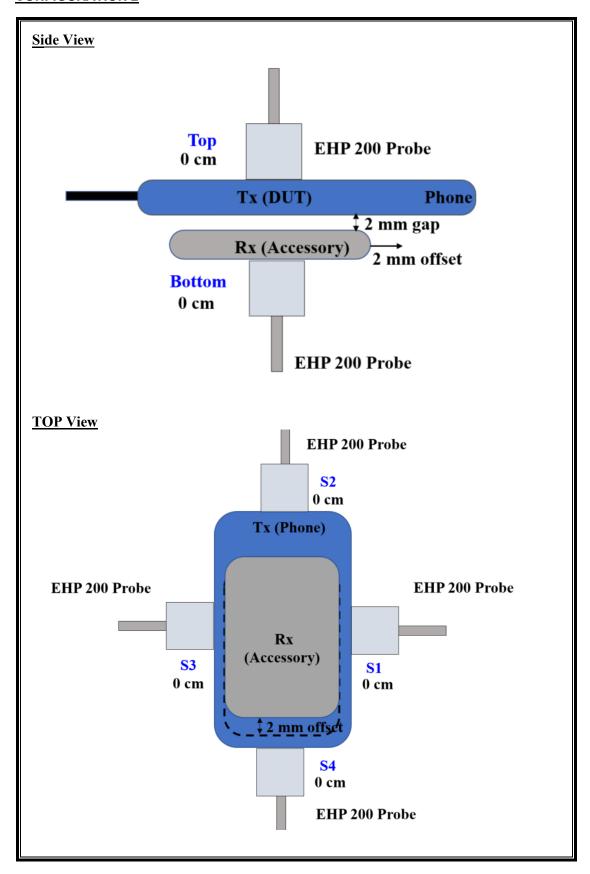
I/O CABLES

The EUT with lightning to USB-C cable powered by AC/DC Adapter.

TEST SETUP


The following configurations are tested:

Configuration	Mode	Descriptions	
1	Operating		
(Direct	(WPT Client, ~25% Power Charging)	EUT with lightning to USB-C cable	
Contact)	Operating	powered by AC/DC Adapter &	
	(WPT Client, 25%~70% Power Charging)	Wireless Charging to WPT Client	
	Operating		
	(WPT Client >75% Power Charging)		
2	Operating		
(2mm Airgap +	(WPT Client, ~25% Power Charging)	EUT with lightning to USB-C cable	
2mm Shift to	Operating	powered by AC/DC Adapter &	
Top or Bottom)	(WPT Client, 25%~70% Power Charging)	Wireless Charging to WPT Client	
	Operating		
	(WPT Client >75% Power Charging)		


MEASUREMENT SETUP

The measurement was taken using a probe placed 0 mm surrounding the device. Measurements were taken from the top and all sides of the EUT per KDB680106 D01 v03 and the manufacturer KDB inquiry.

CONFIGURATION 1

CONFIGURATION 2

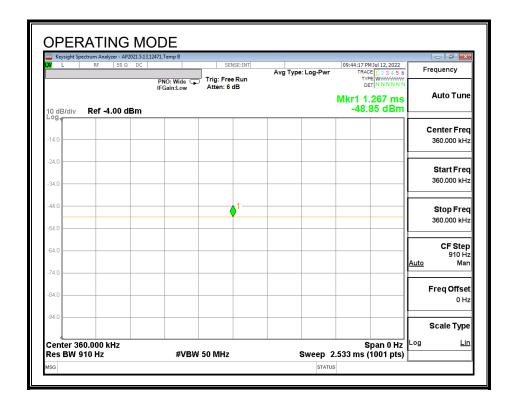
7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was used for the tests documented in this report:

Test Equipment List								
Description	Manufacturer	Model	S/N	Label ID	Cal Due	Cal Date		
Electric and Magnetic Field Probe	Narda	EHP-200A	160WX41008	PRE0191851	02/17/2023	02/17/2022		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	MY55410147	125179	02/01/2023	02/01/2022		

8. DUTY CYCLE

LIMITS


None; for reporting purposes only.

PROCEDURE

Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle
	В		х	Cycle	Correction Factor
	(msec)	(msec)	(linear)	(%)	(dB)
Operating	100.00	100.00	1.00	100.00%	0.00

9. MAXIMUM PERMISSIBLE RF EXPOSURE

FCC LIMITS AND SUMMARY 9.1.

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
(A) Lin	(A) Limits for Occupational/Controlled Exposures							
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6				
(B) Limits for General Population/Uncontrolled Exposure								
0.3–1.34	614 824 <i>f</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30				

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

pational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Configuration # 2 Summary Table									
	Model No.	E-Field (V/m)	H-Field (A/m)						
Parent Model	A2632	8.951	0.993						
	A2885	7.453	0.942						
Variant Model	A2886	6.998	0.921						
	A2887/AA2888	7.782	0.940						

^{* =} Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-

9.1.1. MODEL A2632

RESULTS

ID: 12471 Date: 7/11/2022	ID:	12471	Date:	
---------------------------	-----	-------	-------	--

FCC RF Exposure Summary of Results

Configuration #1:

	Electric Field Limit			Magnetic Field Limit	
FCC RF Exposure Limit	Maximum Average (V/m)	Percentage (%)	FCC RF Exposure	Maximum Average (A/m)	Percentage (%)
614	8.178	1.33%	1.63	0.286	17.55%

Configuration #2:

	Electric Field Limit			Magnetic Field Limit	
FCC RF Exposure Limit	Maximum Average (V/m)	Percentage (%)	FCC RF Exposure	Maximum Average (A/m)	Percentage (%)
614	8.951	1.46%	1.63	0.993	60.92%

E-FIELD AND H-FIELD MEASUREMENTS

Note: Peak measurements were performed. RMS values were calculated from the peak measurement. Please refer to the formula for calculating the RMS values: [Field Strength x √Duty Cycle].

Configuration #1

CC Limit			Electric Field Limit		Elec	ctric Field Reading		Magnetic Field Limit		Mag	netic Field Reading																																															
Configuration	Test Mode	Mode Measuring Distance (cm)	(V/m)			(V/m)		(A/m)			(A/m)																																															
			FCC	Location	Peak	Duty Cycle %	FCC Average	FCC	Location	Peak	Duty Cycle %	FCC Average																																														
				S1	0.403		0.403		S1	0.060		0.060																																														
				S2	0.524		0.524		S2	0.049		0.049																																														
	Operating Real Product			S3	0.473		0.473		S3	0.077		0.077																																														
	(Power <25% Charging)			S4	0.450	100	0.450		S4	0.051	100	0.051																																														
	,			Bottom	8.010		8.010		Bottom	0.073		0.073																																														
				Тор	3.049		3.049		Тор	0.049		0.049																																														
				Max S1	8.010 0.441		8.010 0.441		Max S1	0.077		0.077 0.286																																														
				S1 S2	0.441		0.441		S1 S2	0.286	f '	0.286																																														
				ì	I																	I		I																											S3	0.485	•	0.485		S3	0.239	+
1	Operating Real Product		614	S4	0.447	100	0.447	1.63 S4		0.055	100	0.055																																														
-	(Power ~ 25% -70% Charging)	· ·	014	Bottom	8.178	100	8.178	1.03	Bottom	0.128	100	0.128																																														
				Тор	3,541		3,541		Тор	0.056		0.056																																														
				Max	8.178		8.178		Max	0.128		0.128																																														
				S1	0.418		0.418		S1	0.240		0.240																																														
				S2	0.485		0.485		S2	0.047	İ	0.047																																														
	Operating Real Product			S3	0.388		0.388		S3	0.185		0.185																																														
	(Power >75% Charging)			S4	0.391	100	0.391		S4	0.065	100	0.065																																														
	(1 OHCL - 13/0 CHaighig)			Bottom	7.591		7.591		Bottom	0.242		0.242																																														
				Тор	2.793		2.793		Тор	0.056		0.056																																														
				Max	7.591		7.591		Max	0.242		0.242																																														

Configuration #2

C Limit								Magnetic Field																																		
			Electric Field Limit		Elec	tric Field Reading		Limit		Mag	netic Field Reading																															
Configuration	Test Mode	Measuring Distance (cm)	(V/m)			(V/m)		(A/m)			(A/m)																															
			FCC	Location	Peak	Duty Cycle %	FCC Average	FCC	Location	Peak	Duty Cycle %	FCC Averaç																														
				\$1	0.403		0.403		S1	0.346		0.346																														
	Operating Real Product			S2 S3	0.453 0.473		0.453 0.473		S2 S3	0.047 0.326		0.047																														
	(Power ~< 25% Charging)			54 S4	0.473	100	0.473		S4	0.065	100	0.065																														
	(2mm Airgap at Center)			Bottom	7.845		7.845		Bottom	0.284		0.284																														
				Тор	1.787		1.787		Тор	0.082		0.082																														
				Max S1	7.845 0.674		7.845 0.674		Max S1	0.346 0.353		0.346																														
	On and the Book Book at			S2	0.430		0.430		S2	0.099		0.099																														
	Operating Real Product (Power <25% Charging)			S3	0.407		0.407		S3	0.254		0.254																														
	(2mm Airgap & 2mm Shift to			S4	0.441 6.967	100	0.441 6.967		\$4 D-M	0.101 0.780	100	0.101																														
	the Top)			Bottom Top	1.877		1.877		Bottom Top	0.780		0.089																														
				Max	6.967		6.967	İ	Max	0.780		0.780																														
				S1	0.403		0.403	ļ	S1	0.352		0.352																														
	Operating Real Product			S2 S3	0.499		0.499	-	S2 S3	0.068 0.472		0.068																														
	(Power 25% Charging)			54 S4	0.391	100	0.391		S4	0.472	100	0.472																														
	(2mm Airgap & 2mm Shift to the Bottom)			Bottom	6.977		6.977	İ	Bottom	0.573		0.573																														
	tile bottomy			Тор	1.772		1.772		Тор	0.078		0.078																														
				Max S1	6.977 0.467		6.977 0.467		Max S1	0.573		0.573																														
				S2	0.466		0.466		S2	0.047		0.047																														
	Operating Real Product			S3	0.628		0.628		S3	0.222		0.222																														
	(Power ~ 25% - 70% Charging)			S4	0.410	100	0.410		S4	0.055	100	0.055																														
	(2mm Airgap at Center)			Bottom Top	8.285 2.445		8.285 2.445		Bottom Top	0.180		0.180																														
					Max	8.285		8.285		Max	0.180		0.180																													
				S1	0.833		0.833		S1	0.513		0.513																														
	Operating Real Product		0	0	0												Ĭ												0	0		0		S2	0.414		0.414		S2	0.126 0.337		0.126
2	(Power ~ 25% - 70% Charging)					614	S3 S4	0.473	100	0.473	1.63	\$3 \$4	0.337	100	0.337																											
	(2mm Airgap & 2mm Shift to the Top)			Bottom	8.951		8.951		Bottom	0.993		0.993																														
	tile ropj			Тор	2.512		2.512		Тор	0.097		0.097																														
				Max S1	8.951 0.571		8.951 0.571		Max S1	0.993 0.340		0.993																														
					S2	0.622		0.622		S2	0.090		0.090																													
	Operating Real Product (Power ~ 25% - 70% Charging)			S3	0.760	l l	0.760		\$3	0.354		0.354																														
	(2mm Airgap & 2mm Shift to			S4	0.480	100	0.480		\$4	0.080	100	0.080																														
	the Bottom)			Bottom Top	8.812 2.731		8.812 2.731		Bottom Top	0.619	-	0.619																														
				Max	8.812		8.812		Max	0.619		0.619																														
				S1	0.394		0.394		S1	0.346		0.346																														
	Operating Real Breature			S2	0.441		0.441		S2	0.047		0.047																														
	Operating Real Product (Power >75% Charging)			S3 S4	0.400	100	0.400	†	S3 S4	0.321	100	0.321																														
	(2mm Airgap at Center)			Bottom	7.194		7.194	1	Bottom	0.299		0.299																														
				Тор	1.899		1.899		Тор	0.072		0.072																														
				Max S1	7.194 0.603		7.194 0.603		Max S1	0.346 0.422		0.346																														
	0			S2	0.399		0.399	İ	S2	0.422		0.422																														
	Operating Real Product (Power >75% Charging)			S3	0.403		0.403		S3	0.265		0.265																														
	(2mm Airgap & 2mm Shift to			S4	0.387 7.206	100	0.387 7.206	ļ	\$4 D-M	0.098	100	0.098																														
	the Top)			Bottom Top	7.206 1.869		7.206 1.869	1	Bottom Top	0.961 0.114		0.961																														
				Max	7.206	·	7.206	İ	Max	0.961		0.961																														
				S1	0.437		0.437		S1	0.298		0.298																														
	Operating Real Product			S2	0.479 0.564		0.479		S2	0.103		0.103																														
	(Power >75% Charging)			S3 S4	0.564	100	0.564	ł	S3 S4	0.352	100	0.352																														
	(2mm Airgap & 2mm Shift to the Bottom)			Bottom	8.477		8.477	İ	Bottom	0.623		0.623																														
	tile bottoill)			Тор	2.140		2.140	1	Тор	0.080		0.080																														
				Max	8.477		8.477		Max	0.623		0.623																														

Configuration #2 H Field in 2cm increment

Note: Please refers to simulation report from SAR.

9.1.2. MODEL A2885

RESULTS

FCC RF Exposure Summary of Results

Configuration #2:

	Electric Field Limit			Magnetic Field Limit	
FCC RF Exposure Limit	Maximum Average (V/m)	Percentage (%)	FCC RF Exposure	Maximum Average (A/m)	Percentage (%)
614	7.453	1.21%	1.63	0.942	57.79%

E- FIELD AND H- FIELD MEASUREMENTS

Note: Peak measurements were performed. RMS values were calculated from the peak measurement. Please refer to the formula for calculating the RMS values: [Field Strength x $\sqrt{\text{Duty Cycle}}$].

Configuration #2

Lieutic Field Limit Limit Magnetic Field Reading Limit Magnetic Field Reading	CC Limit								Manadia Field				
Composition Composition				Electric Field Limit		Elec	tric Field Reading		Magnetic Field Limit		Ma	gnetic Field Reading	
FCC Location Peak Duty Cycle % FCC Location Peak Duty Cycle % FCC Average	Configuration	Test Mode		(V/m)			(V/m)		(A/m)			(A/m)	
2 Operating Real Product (Power "25% -70% Charging) (2mm Airgap & 2mm Shift to the Top) 614 S4 0.466 100 0.406 1.63 S4 0.109 100 0.109 100 0.109 100 0.109 100 0.097 1.668			(,	FCC	Location	Peak	Duty Cycle %		FCC	Location	Peak	Duty Cycle %	
Operating Real Product S3 0.420 0.420 S3 0.358 0.358					S1	0.628		0.628		S1	0.462		0.462
2 (Power ~ 25% - 70% Charging) (2mm Airgap & 2mm Shift to the Top) (164		Onesetina Deal Dead.cat			S2	0.437		0.437	Ī	S2	0.117		0.117
2 (2mm Airgap & 2mm Shift to the Top)									[100	
the Top) Bottom 7.453 Bottom 0.942 0	2		0	0 614			100		Bottom				
Top 1.668 1.668 Top 0.097 0.097													
Max 7.453 7.453 Max 0.942 0.942		.,							1				
					Max	7.453		7.453		Max	0.942		0.942

9.1.3. MODEL A2886

RESULTS

ID : 12471	Date:	7/12/22
-------------------	-------	---------

FCC RF Exposure Summary of Results

Configuration #2:

	Electric Field Limit			Magnetic Field Limit	
FCC RF Exposure Limit	Maximum Average (V/m)	Percentage (%)	FCC RF Exposure	Maximum Average (A/m)	Percentage (%)
614	6.998	1.14%	1.63	0.921	56.50%

E-FIELD AND H-FIELD MEASUREMENTS

Note: Peak measurements were performed. RMS values were calculated from the peak measurement. Please refer to the formula for calculating the RMS values: [Field Strength x √Duty Cycle].

Configuration #2:

	Test Mode	Measuring Distance (cm)	Electric Field Limit				Magnetic Field Limit	Magnetic Field Reading				
Configuration			(V/m)				(A/m)	(A/m)				
		(3.1.)	FCC	Location	Peak	Duty Cycle %	FCC Average	FCC	Location	Peak	Duty Cycle %	FCC Average
2	Operating Real Product			S1	0.660		0.660		S1	0.518		0.518
				S2	0.485		0.485		S2	0.145		0.145
				S3	0.449		0.449		S3	0.272		0.272
	(Power ~< 25% Charging)	0	614	S4	0.391	100	0.391	1.63	S4	0.122	100	0.122
	(2mm Airgap at Center)			Bottom	6.998		6.998		Bottom	0.921		0.921
				Тор	2.087		2.087		Тор	0.093		0.093
				Max	6.998		6.998		Max	0.921		0.921
			,									

9.1.4. MODEL A2887/A2888

RESULTS

ID: 12471 Date: 7/12/22

FCC RF Exposure Summary of Results

Configuration #2:

	Electric Field Limit		Magnetic Field Limit					
FCC RF Exposure Limit	Maximum Average (V/m)	Percentage (%)	FCC RF Exposure	Maximum Average (A/m)	Percentage (%)			
614	7.782	1.27%	1.63	0.940	57.67%			

E- FIELD AND H- FIELD MEASUREMENTS

Note: Peak measurements were performed. RMS values were calculated from the peak measurement. Please refer to the formula for calculating the RMS values: [Field Strength x √Duty Cycle].

Configuration #2:

CC Limit												
Configuration	Test Mode	Measuring Distance (cm)	Electric Field Limit	t Electric Field Reading				Magnetic Field Limit	Magnetic Field Reading			
			(V/m) (V/m)				(A/m)		(A/m)			
		(=,	FCC	Location	Peak	Duty Cycle %	FCC Average	FCC	Location	Peak	Duty Cycle %	FCC Average
	Operating Real Product			S1	0.511		0.511		S1	0.462		0.462
				S2	0.485		0.485		S2	0.112		0.112
2	(Power ~ 25% - 70% Charging)		614	S3 S4	0.511 0.435	100	0.511	1.63	S3 S4	0.428	100	0.428
2	(2mm Airgap & 2mm Shift to	0	014	S4 Bottom	7.782	100	7.782	1.03	Bottom	0.106	100	0.106
	the Top)			Top	1.978		1.978		Top	0.094		0.094
				Max	7.782		7.782		Max	0.940		0.940

SETUP PHOTO 10.

Please see setup photo report 14040868-EP1V1

END OF REPORT