

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Headphone

MODEL NUMBER: SOCL500TWS

FCC ID: 2ARUDSOCL500TWSR IC: 24579-SOCL500TWSR

REPORT NUMBER: 4789100653-4

ISSUE DATE: September 24, 2019

Prepared for

TCL Entertainment Solutions Limited 7/F, building 22E, 22 science park east avenue, Hong Kong science park, SHATIN, N.T. ,Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	9/24/2019	Initial Issue	

Summary of Test Results					
Clause	Test Items	FCC/ISED Rules	Test Results		
1	20dB Bandwidth and 99% Occupied Bandwidth	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a) RSS-Gen Clause 6.7	Pass		
2	Conducted Output Power	FCC 15.247 (b) (1) RSS-247 Clause 5.1 (b)	Pass		
3	Carrier Hopping Channel Separation	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Pass		
4	Number of Hopping Frequency	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass		
5	Time of Occupancy (Dwell Time)	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass		
6	Conducted Bandedge	FCC 15.247 (d) RSS-247 Clause 5.5	Pass		
7	Radiated Bandedge and Spurious	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass		
8	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	Pass		
9	Antenna Requirement	FCC 15.203 RSS-GEN Clause 6.8	Pass		

Note: This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

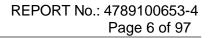


TABLE OF CONTENTS

1.	Α	TTE	STATION OF TEST RESULTS	6
2.	Т	EST	METHODOLOGY	7
3.	E,		LITIES AND ACCREDITATION	7
4.			BRATION AND UNCERTAINTY	
4.	4.1.		MEASURING INSTRUMENT CALIBRATION	
	4.2.		IEASUREMENT UNCERTAINTY	
5.	E		PMENT UNDER TEST	
	5.1.		DESCRIPTION OF EUT	
	5.2.	N	IAXIMUM OUTPUT POWER	9
	5.3.	F	PACKET TYPE CONFIGURATION	9
	5.4.	C	CHANNEL LIST 1	0
	5.5.	T	EST CHANNEL CONFIGURATION 1	0
	5.6.	T	THE WORSE CASE POWER SETTING PARAMETER 1	0
	5.7.	Ľ	DESCRIPTION OF AVAILABLE ANTENNAS 1	1
	5.8.	V	VORST-CASE CONFIGURATIONS1	1
	5.9.	T	EST ENVIRONMENT1	1
	5.10	0. C	DESCRIPTION OF TEST SETUP1	2
	5.11	1. N	IEASURING INSTRUMENT AND SOFTWARE USED	3
6.	A	NTE	NNA PORT TEST RESULTS	5
	6.1.	C	ON TIME AND DUTY CYCLE	5
	6.2.	2	0dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH1	7
	6.3.		CONDUCTED OUTPUT POWER1	
			GFSK MODE	
	-	.3.2.		
		с .4.1.	2 ARRIER HOPPING CHANNEL SEPARATION	
	-		8DPSK MODE	
	6.5.	Λ	IUMBER OF HOPPING FREQUENCY2	4
	6.6.	. 7	TIME OF OCCUPANCY (DWELL TIME)	6
	-	.6.1. .6.2.		
	ю. 6.7.	-	3 SONDUCTED SPURIOUS EMISSION	
7.	R		ATED TEST RESULTS	4

	7.1. LIMITS AND PROCEDURE	. 34
	7.2. RESTRICTED BANDEDGE	. 39
	7.2.1. GFSK MODE	. 39
	7.2.2. 8DPSK MODE	. 43
	7.3. SPURIOUS EMISSIONS (1~3GHz)	. 47
	7.3.1. GFSK MODE	
	7.3.2. 8DPSK MODE	. 53
	7.4. SPURIOUS EMISSIONS (3~18GHz)	. 59
	7.4.1. GFSK MODE	
	7.4.2. 8DPSK MODE	. 65
	7.5. SPURIOUS EMISSIONS 18G ~ 26GHz	. 71
	7.5.1. 8DPSK MODE	. 71
	7.6. SPURIOUS EMISSIONS 30M ~ 1 GHz	. 73
	7.6.1. 8DPSK MODE	. 73
	7.7. SPURIOUS EMISSIONS BELOW 30M	. 75
	7.7.1. 8DPSK MODE	
8.	AC POWER LINE CONDUCTED EMISSIONS	. 78
	8.1.2. CHARGING MODE	. 79
9.	ANTENNA REQUIREMENTS	81
Э.	Appendix A): 20dB Bandwidth and 99% Occupied Bandwidth	
	Appendix A). 2000 Bandwidth and 99% Occupied Bandwidth	
	Appendix D): Hopping Granner Number	
	Appendix D): RF Conducted Spurious Emissions	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	TCL Entertainment Solutions Limited
Address:	7/F, building 22E, 22 science park east avenue, Hong Kong science park, SHATIN, N.T. ,Hong Kong
Manufacturer Information	1 / / / 5 5
Company Name:	TCL Entertainment Solutions Limited
Address:	7/F, building 22E, 22 science park east avenue, Hong Kong science park, SHATIN, N.T. ,Hong Kong
EUT Description	
EUT Name:	Headphone
Model Name:	SOCL500TWS
Brand:	TCL
Sample Status:	Normal
Sample ID:	2544188
Sample Received Date:	September 12, 2019
Date of Tested:	September 16 - 24, 2019

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
CFR 47 FCC PART 15 SUBPART C	PASS				
ISED RSS-247 Issue 2	PASS				
ISED RSS-GEN Issue 5	PASS				

Prepared By:

Kebo. zhonz.

Checked By:

Shawn Wen

Laboratory Leader

Sherry lies

Kebo Zhang **Engineer Project Associate**

Approved By:

AephenGuo

Stephen Guo Laboratory Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject
Accreditation Certificate	to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note:

- 1. All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China.
- The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test	5.78dB (1GHz-18Gz)		
(1GHz to 26GHz)(include Fundamental emission)	5.23dB (18GHz-26Gz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	Headphone			
Model	SOCL500TWS			
	Operation Frequency 2402 MH		lz ~ 2480 MHz	
Product	Modulation Type		Data Rate	
Description	GFSK		1Mbps	
(Bluetooth)	∏/4-DQPSK		2Mbps	
	8DPSK		3Mbps	
Power Supply	DC 3.7V			

5.2. MAXIMUM OUTPUT POWER

Bluetooth Mode	Frequency (MHz)	Channel Number	Max Output Power (dBm)	EIRP (dBm)
GFSK	2402-2480	0-78[79]	5.038	3.538
8DPSK	2402-2480	0-78[79]	5.059	3.559

5.3. PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting(Packet Length)		
	DH1	27		
GFSK	DH3	183		
	DH5	339		
	2-DH1	54		
∏/4-DQPSK	2-DH3	367		
	2-DH5	679		
	3-DH1	83		
8DPSK	3-DH3	552		
	3-DH5	1021		

5.4. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0, CH 39, CH 78/ Low, Middle, High	2402MHz, 2441MHz, 2480MHz
∏/4-DQPSK	CH 0, CH 39, CH 78/ Low, Middle, High	2402MHz, 2441MHz, 2480MHz
8DPSK	CH 0, CH 39, CH 78/ Low, Middle, High	2402MHz, 2441MHz, 2480MHz

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Wor	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test So	oftware	BQB				
Modulation Type	Transmit Antenna	Test software setting value				
	Number	CH 00	CH 39	CH 78		
GFSK	1	1 1 1				
8DPSK	1	1 1 1				

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	Loop Antenna	-1.50

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
∏/4-DQPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.8. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8-DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

5.9. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests			
Relative Humidity	45 ~ 70%			
Atmospheric Pressure:	1025Pa			
Temperature	TN	22 ~ 28 °C		
	VL	N/A		
Voltage :	VN	DC 3.7V		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage VN= Nominal Voltage. VH= Upper Extreme Test Voltage TN= Normal Temperature

5.10. DESCRIPTION OF TEST SETUP

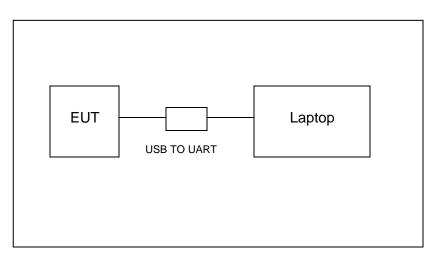
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	PC	Dell	Vostro 3902	8KNDDB2
2	USB TO UART	/	/	/
3	Adapter	XIAOMI	MDY-08-EF	12120026342

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	Note1&3
2	USB	/	/	0.1	Note2&3

Note1: For radiated emission above 1G Note2: For radiated emission below 1G Note3: For debug only.


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	/		/	/

TEST SETUP

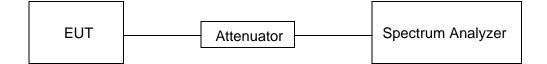
The EUT can work in an engineer mode with software through a Laptop.

SETUP DIAGRAM FOR TESTS

5.11. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions							
			Instru	ment				
Used	Equipment	Manufacturer	Mod	el No.	Seria	al No.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S	E	SR3	101	961	Dec.10,2018	Dec.10,2019
V	Two-Line V- Network	R&S	EN	V216	101	983	Dec.10,2018	Dec.10,2019
V	Artificial Mains Networks	Schwarzbeck	NSL	< 8126	8120	6465	Dec.10,2018	Dec.10,2019
	Software							
Used	Des	cription		Manu	ufactu	rer	Name	Version
\checkmark	Test Software for C	Conducted distu	rbance	F	arad		EZ-EMC	Ver. UL-3A1
	Radiated Emissions							
Instrument								
Used	Equipment	Manufacturer	Mod	el No.	Seria	al No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N9(038A		6400 36	Dec.10,2018	Dec.10,2019
V	Hybrid Log Periodic Antenna	TDK	HLP-	3003C	130	960	Sep.17, 2018	Sep.17, 2021
V	Preamplifier	HP	8447D			A090 9	Dec.10,2018	Dec.10,2019
V	EMI Measurement Receiver	R&S	ES	ESR26		377	Dec.10,2018	Dec.10,2019
\checkmark	Horn Antenna	TDK	HRN	I-0118	130	939	Sep.17, 2018	Sep.17, 2021
V	High Gain Horn Antenna	Schwarzbeck	BBH/	A-9170	69	91	Aug.11, 2018	Aug.11, 2021
V	Preamplifier	TDK	PA-02	2-0118		-305- 066	Dec.10,2018	Dec.10,2019
V	Preamplifier	TDK	PA	-02-2	-	-307- 003	Dec.10,2018	Dec.10,2019
\checkmark	Loop antenna	Schwarzbeck	15	19B	000	800	Jan.07,2019	Jan.07,2022
V	Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS			4	Dec.10,2018	Dec.10,2019
V	High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS		2	23	Dec.10,2018	Dec.10,2019
			Soft	ware				
Used	Descr	iption	N	lanufact	urer		Name	Version
\checkmark	Test Software for R	adiated disturba	ince	Farac	k		EZ-EMC	Ver. UL-3A1

	Other instruments							
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.		
\checkmark	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.10,2018	Dec.10,2019		
\checkmark	Power Meter	Keysight	N1911A	MY55416024	Dec.10,2018	Dec.10,2019		
\checkmark	Power Sensor	Keysight	U2021XA	MY5100022	Dec.10,2018	Dec.10,2019		


6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE

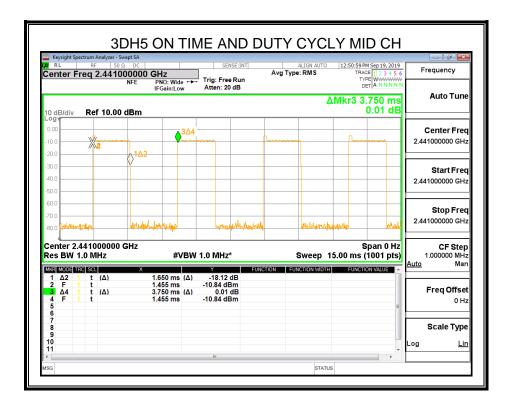
LIMITS

None; for reporting purposes only

TEST SETUP

TEST ENVIRONMENT

Temperature	25.2°C	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V


RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
GFSK	1.635	3.750	0.436	43.6%	3.61	0.61	1.0
8DPSK	1.650	3.750	0.440	44.0%	3.57	0.61	1.0

Note:

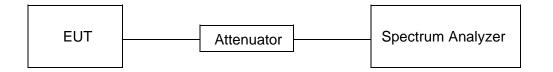
Duty Cycle Correction Factor=10log (1/x). Where: x is Duty Cycle (Linear) Where: T is On Time If that calculated VBW is not available on the analyzer then the next higher value should be used.

Keysight Spectrum A	nalyzer - Swept SA 50 Ω DC		SENSE:INT	ALIGN AUTO	12:49:18 PM Sep 19, 2019	
Center Freq 2	.441000000 NFE	PNO: Wide 🕶	Trig: Free Run	Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET A N N N N N	Frequency
		IFGain:Low	Atten: 20 dB		Mkr3 3.750 ms	Auto Tune
	10.00 dBm			4	-0.02 dB	1
0.00	140	3/\4				Center Free
-10.0			η [[[[[[[[[[[[[[[[[[[2.441000000 GH
-20.0						
-30.0						Start Free
40.0						2.441000000 GH
60.0						
70.0						Stop Free
-80.0 marti	Magauhauk	yehr	aller dependent of the	dillese marter and	printapoliphiss	2.441000000 GH
Center 2.4410		<i>4</i> 9 (5)4	/ 4 0 BALL-*	0	Span 0 Hz	CF Step
Res BW 1.0 MI	HZ	#VBV	/ 1.0 MHz*	Sweep 1: JNCTION FUNCTION WIDTH	5.00 ms (1001 pts)	1.000000 MH <u>Auto</u> Mar
1 Δ2 1 t	(Δ)	1.635 ms (Δ)	-1.84 dB -9.01 dBm	JACTION FUNCTION WIDTH	PONCTION VALUE	
3 Δ4 1 t	(Δ)	765.0 μs 3.750 ms (Δ)	-0.02 dB			Freq Offse
4 F 1 t 5 6		765.0 µs	-9.01 dBm			0 H
7 8						Scale Type
9 10						Log Lir
11			m		*	

6.2. 20dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20dB Occupied Bandwidth	/	2400-2483.5	
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	/	2400-2483.5	


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
	For 20dB Occupied Bandwidth:1% to 5% of the 20 dB bandwidth For 99% Occupied Bandwidth: 1% to 5% of the occupied bandwidth
VBW	approximately three times RBW
Span	For 20dB: between 2 times and 5 times the OBW.
	For 99dB: between 1.5 times and 5.0 times the OBW.
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.2°C	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

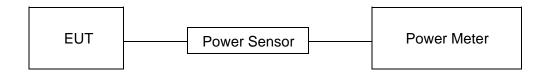
RESULTS

Please refer to appendix A.

6.3. CONDUCTED OUTPUT POWER

LIMITS

	CFR 47 FCC Part15 (15.247) , Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC 15.247 (b) (1) ISED RSS-247 Clause 5.4 (b)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel : 1 watt or 30dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel : 125 mW or 21dBm	2400-2483.5		


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power of each channel.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.2°C	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

RESULTS

6.3.1. GFSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK)	EIRP	Limit	Result
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	2402	4.451	2.951	30	Pass
Middle	2441	4.855	3.355	30	Pass
High	2480	5.038	3.538	30	Pass

Note: EIRP= Maximum Conducted Output Power + Antenna Gain

Note: The channel separation is 1MHz and the 20dB Bandwidth is less than 1MHz.

6.3.2. 8DPSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK)	EIRP	Limit	Result
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	2402	4.635	3.135	21	Pass
Middle	2441	4.856	3.356	21	Pass
High	2480	5.059	3.559	21	Pass

Note: EIRP= Maximum Conducted Output Power + Antenna Gain

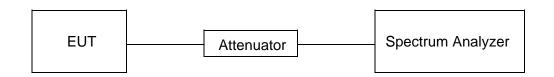
Note: The channel separation is 1MHz and the 20dB Bandwidth is bigger than 1MHz.

6.4. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

	CFR 47 FCC Part15 (15.247) , Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1) ISED RSS-247 Clause 5.1 (b)	Carrier Hopping Channel Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5	

TEST PROCEDURE

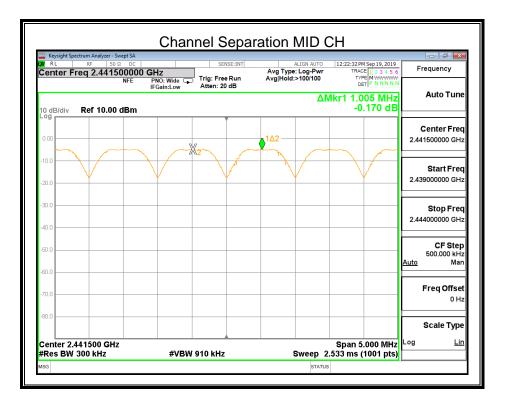

Connect the UUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test		
Span	wide enough to capture the peaks of two adjacent channels		
Detector	Peak		
	Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.		
VBW	≥RBW		
Trace	Max hold		
Sweep time	Auto couple		

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

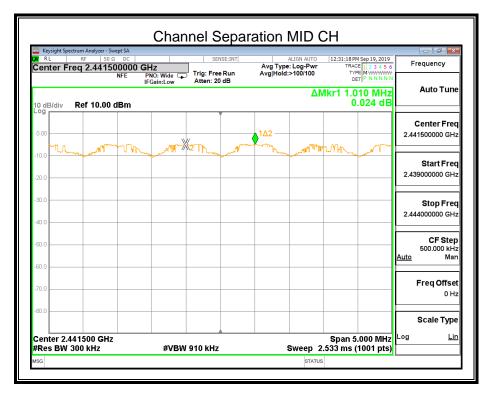
TEST SETUP


TEST ENVIRONMENT

Temperature	25.2°C	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

RESULTS

6.4.1. GFSK MODE


Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Middle	1.0	≥ 20 dB Bandwidth Of The Hopping Channel	PASS

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 6.2.

6.4.2. 8DPSK MODE

Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Middle	1.0	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 6.2.

6.5. NUMBER OF HOPPING FREQUENCY

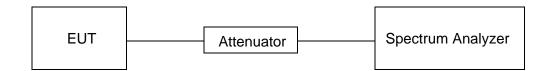
<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) , Subpart C ISED RSS-247 ISSUE 2							
Section Test Item Limit							
CFR 47 15.247 (a) (1) IIINumber of Hoppingat least 15 hopping channelsISED RSS-247 Clause 5.1 (d)FrequencyFrequency							

TEST PROCEDURE

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation
Trace	Max hold
Sweep time	Auto couple


Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer.

Count the quantity of peaks to get the number of hopping channels.

FHSS Mode: 79 Channels observed.

AFHSS Mode: 20 Channels declared.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.2°C	Relative Humidity	61%	
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V	

<u>RESULTS</u>

Please refer to appendix B.

6.6. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247) , Subpart C ISED RSS-247 ISSUE 2						
Section	Test Item	Limit				
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.				

TEST PROCEDURE

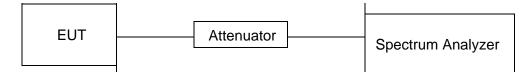
Connect the UUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	zero span
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel

a. The transmitter output (antenna port) was connected to the spectrum analyzer

- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse. A Period Time = (channel number)*0.4

For FHSS Mode (79 Channel):

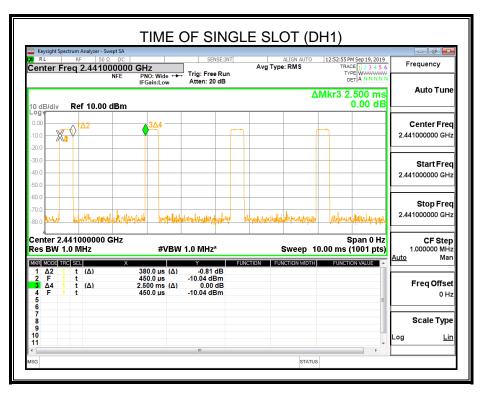

DH1 Time Slot: Reading * (1600/2)*31.6/(channel number) DH3 Time Slot: Reading * (1600/4)*31.6/(channel number) DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

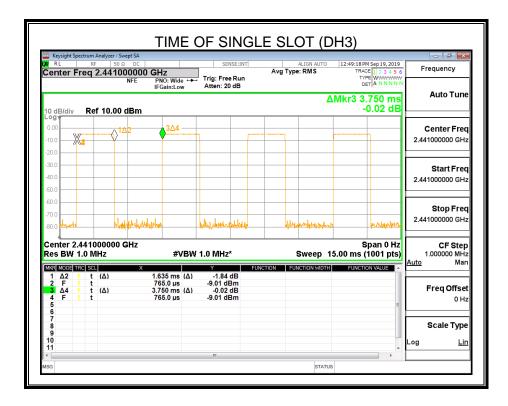
For AFHSS Mode (20 Channel):

DH1 Time Slot: Reading * (800/2)*8/(channel number) DH3 Time Slot: Reading * (800/4)*8/(channel number) DH5 Time Slot: Reading * (800/6)*8/(channel number)

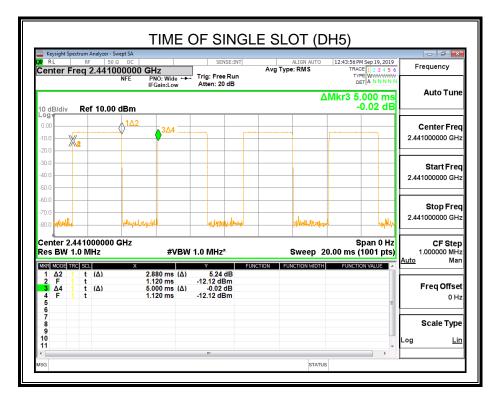
TEST SETUP

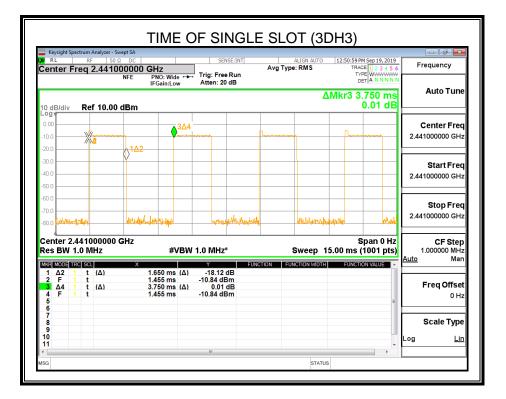
TEST ENVIRONMENT

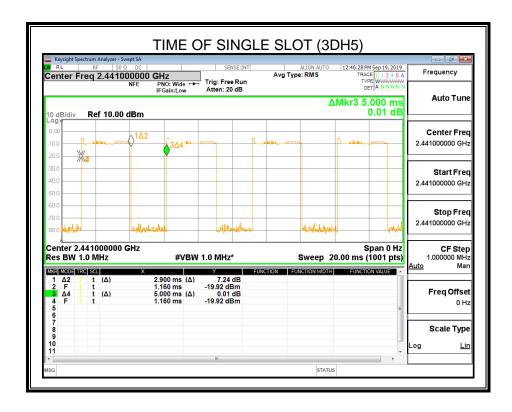

Temperature	25.2°C	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V


RESULTS

6.6.1. GFSK MODE


FHSS Mode							
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [s]	Results			
DH1	MCH	0.380	0.1216	PASS			
DH3	MCH	1.635	0.2616	PASS			
DH5	MCH	2.880	0.3072	PASS			
		AFHSS Mode					
DH1	MCH	0.380	0.0608	PASS			
DH3	MCH	1.635	0.1308	PASS			
DH5	MCH	2.880	0.1536	PASS			




6.6.2. 8DPSK MODE

FHSS Mode							
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [s]	Results			
3DH1	MCH	0.400	0.1280	PASS			
3DH3	MCH	1.650	0.2640	PASS			
3DH5	MCH	2.900	0.3093	PASS			
		AFHSS Mode					
3DH1	MCH	0.400	0.0640	PASS			
3DH3	MCH	1.650	0.1320	PASS			
3DH5	MCH	2.900	0.1547	PASS			

Test Graph

K R	L	1	RF	Analyzer - Swe 50 Ω 2.44100	DC 0000 GH	z		1	SE:INT	Avg Typ	ALIGN AUTO	TF	5 PM Sep 19, 20 RACE 1 2 3 4	5 6	Frequency
10 di	Bídi	v	Rei	f 10.00 c	IFG	0: Wid ain:Lo		Trig: Free Atten: 20			Δ		2.500 n 0.04 d	ns	Auto Tune
0.00 -10.0			1) ^{1∆2}			4		, m					2.4	Center Free 441000000 GH
-30.0 -40.0 -50.0			2											2.4	Start Fre 441000000 GH
-60.0 -70.0 -80.0	1.4M	yawa		hladadhad	hypertheterthy	<u>, </u>	eyul	wayayaladarida	npraph	surve Martial	Manuflations	yu Uhu	phylelowant	2.4	Stop Fre 441000000 GH
Cen Res	BV	V 1.0	M		iHz ×	#\	вw	1.0 MHz*			Sweep 1		Span 0 I 6 (1001 pt 1100 VALUE		CF Stej 1.000000 MH Ma
1 2	Δ2 F Δ4 F	1 1 1		(Δ) (Δ)	40 68 2.5	0.0 µs 0.0 µs 00 ms 0.0 µs		12.58 (-29.30 dE 0.04 (-29.30 dE	dB Im dB						Freq Offse 0 H
7 8 9 10 11														Log	Scale Type

6.7. CONDUCTED SPURIOUS EMISSION

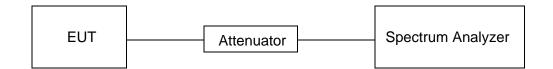
LIMITS

CFR 47 FCC Part15 (15.247) , Subpart C ISED RSS-247 ISSUE 2							
Section Test Item Limit							
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power					

TEST PROCEDURE

Please refer to the ANSI C63.10 section 6.10.

For Bandedge use the following settings:


Detector	Peak
RBW	100kHz
VBW	300kHz
Span	wide enough to fully capture the emission being measured
Trace	Max hold
Sweep time	Auto couple.

For Spurious Emission use the following settings:

Detector	Peak
RBW	100kHz
VBW	300kHz
Span	wide enough to fully capture the emission being measured
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.2°C	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

RESULTS

Please refer to appendix C and D.

7. RADIATED TEST RESULTS 7.1. LIMITS AND PROCEDURE

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

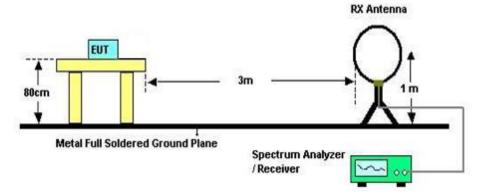
Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10

Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance forfield strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.


Frequency (MHz)	dB(uV/m) (at 3 meters)	
	Peak	Average
Above 1000	74	54

Radiation Disturbance Test Limit for FCC (Above 1G)

About Restricted bands of operation please refer to RSS-Gen section 8.10 and FCC §15.205 (a)

TEST SETUP AND PROCEDURE Below 30MHz

The setting of the spectrum Analyzer

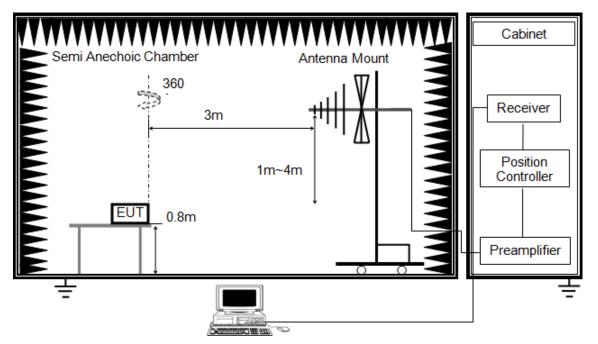
RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

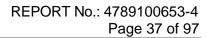
6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m OFS. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

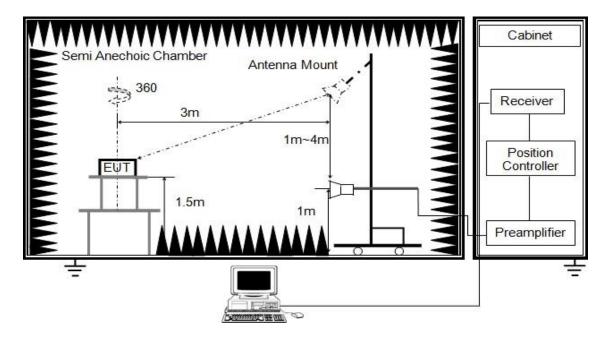
Below 1G and above 30MHz

The setting of the spectrum Analyzer

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold


1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

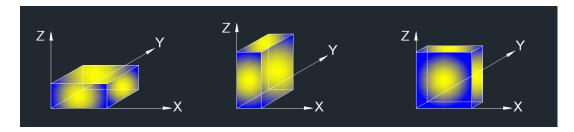
Above 1G

RBW	1M
	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 150cm above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

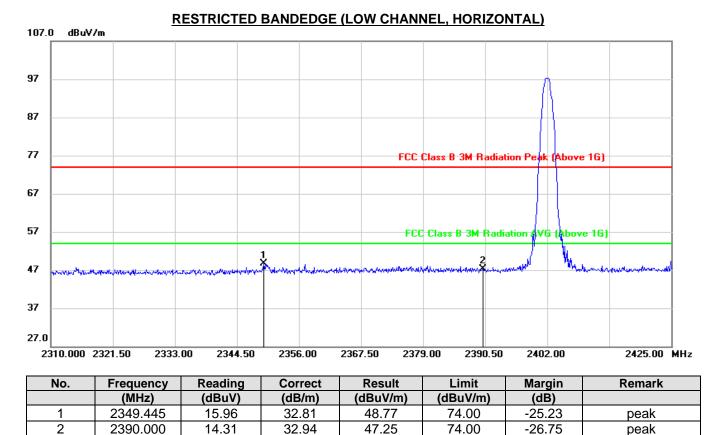
5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector. For the Duty Cycle please refer to clause 6.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

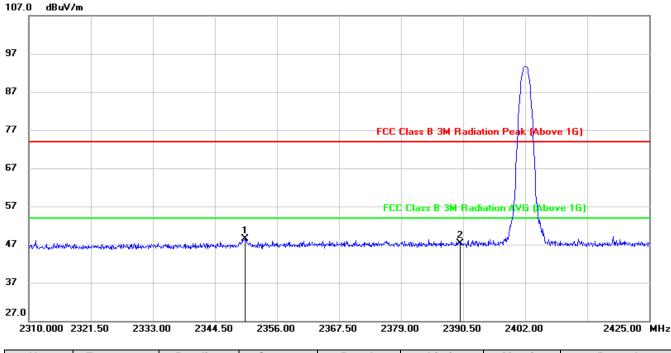
Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.


TEST ENVIRONMENT

Temperature	24.2°C	Relative Humidity	47%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V

7.2. RESTRICTED BANDEDGE

7.2.1. GFSK MODE

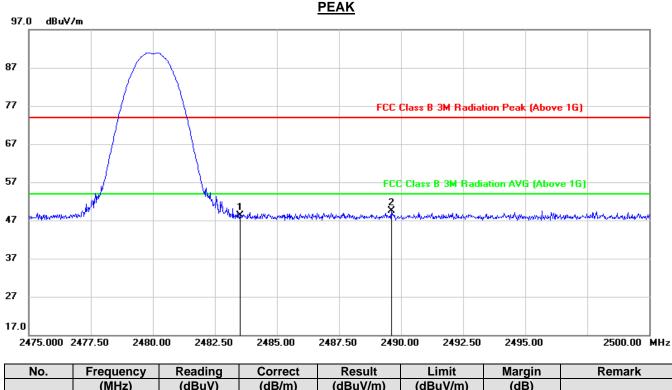

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2350.020	15.64	32.81	48.45	74.00	-25.55	peak
2	2390.000	14.31	32.94	47.25	74.00	-26.75	peak


Note: 1. Measurement = Reading Level + Correct Factor.

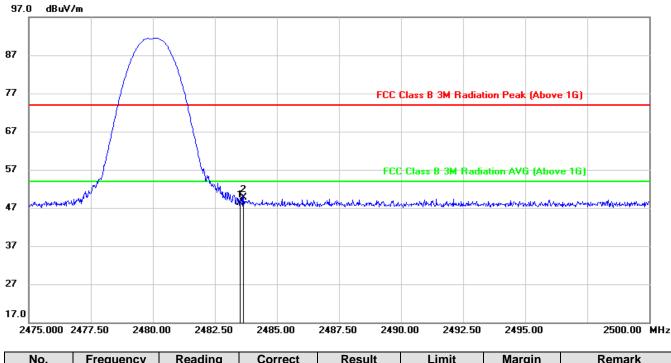
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.78	33.58	48.36	74.00	-25.64	peak
2	2489.600	15.92	33.62	49.54	74.00	-24.46	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

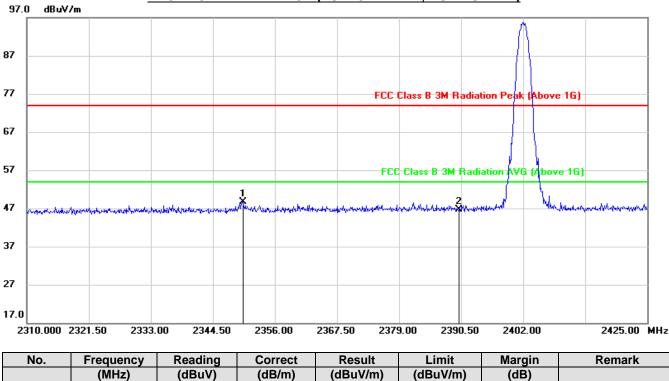
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.67	33.58	48.25	74.00	-25.75	peak
2	2483.650	16.21	33.58	49.79	74.00	-24.21	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

1

2

7.2.2. 8DPSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

15.96

13.84

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

48.77

46.78

74.00

74.00

-25.23

-27.22

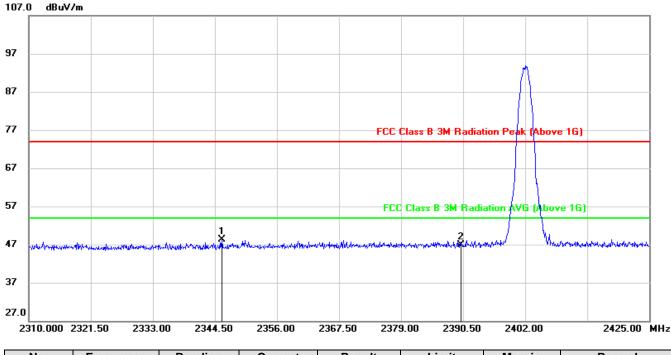
peak

peak

3. Peak: Peak detector.

2350.020

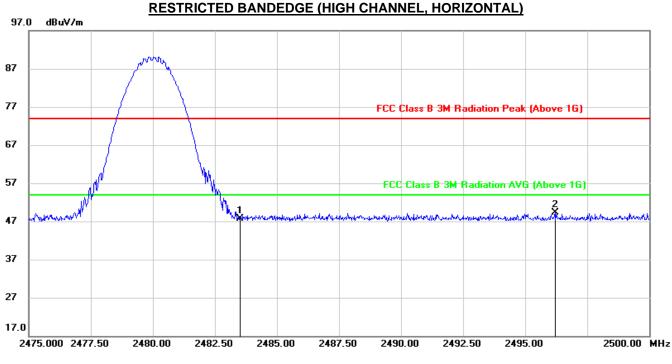
2390.000


4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

32.81

32.94

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

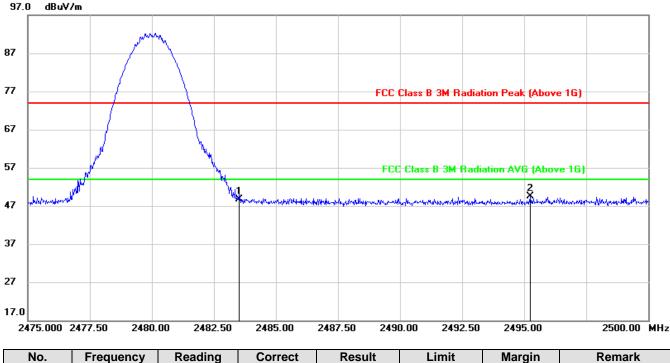

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2345.765	15.55	32.79	48.34	74.00	-25.66	peak
2	2390.000	13.94	32.94	46.88	74.00	-27.12	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.11	33.58	47.69	74.00	-26.31	peak
2	2496.200	15.65	33.67	49.32	74.00	-24.68	peak


Note: 1. Measurement = Reading Level + Correct Factor.

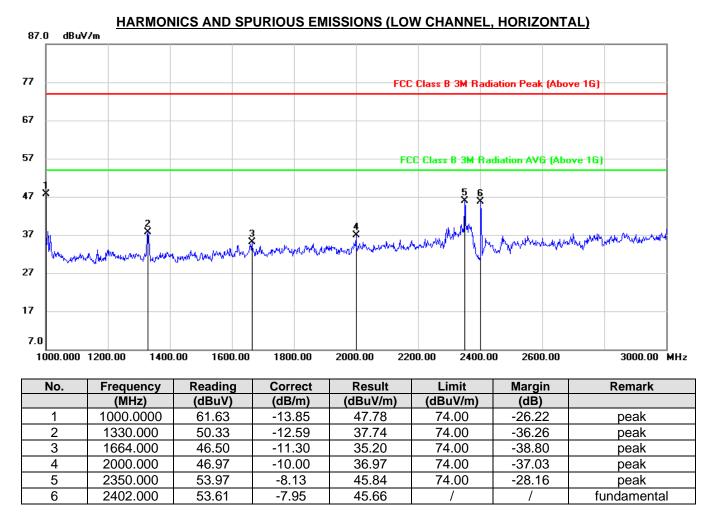
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.19	33.58	48.77	74.00	-25.23	peak
2	2495.250	15.90	33.66	49.56	74.00	-24.44	peak

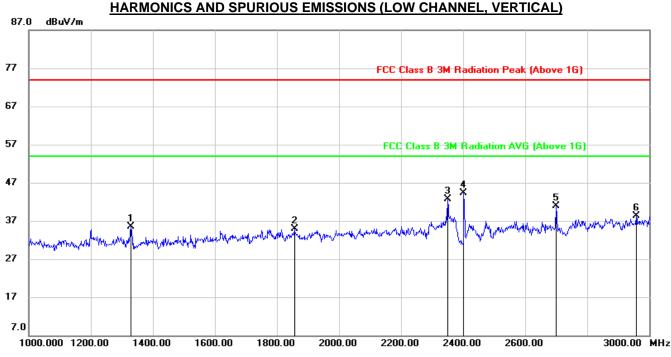
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

7.3. SPURIOUS EMISSIONS (1~3GHz)

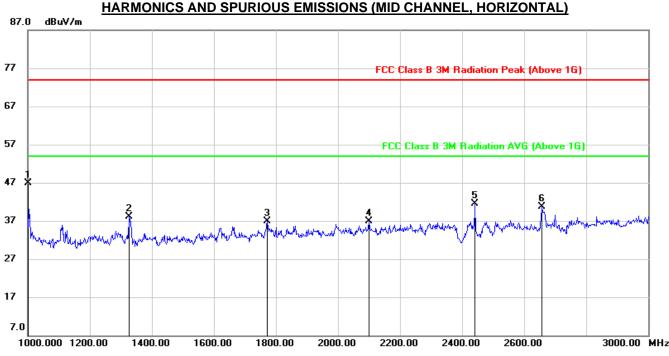
7.3.1. GFSK MODE



Note: 1. Peak Result = Reading Level + Correct Factor.

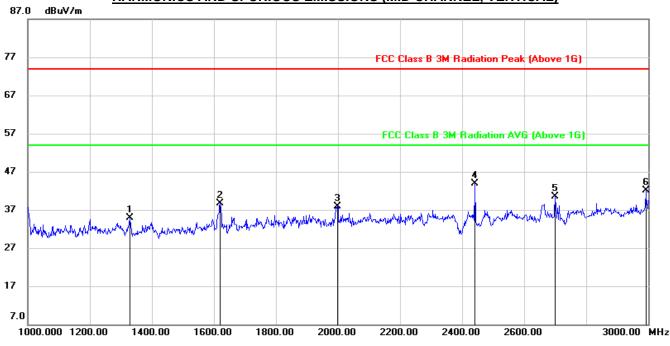
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



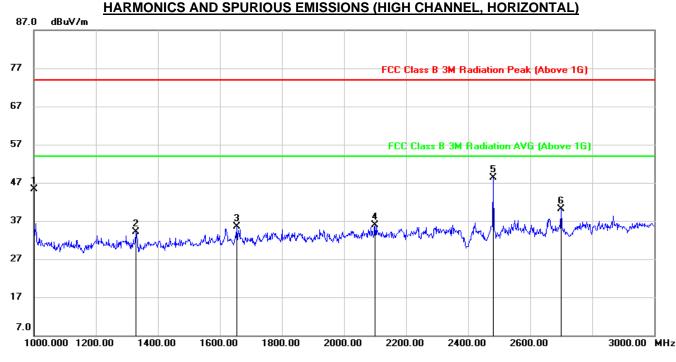
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	48.07	-12.59	35.48	74.00	-38.52	peak
2	1856.000	45.05	-10.13	34.92	74.00	-39.08	peak
3	2350.000	50.80	-8.13	42.67	74.00	-31.33	peak
4	2402.000	52.23	-7.95	44.28	/	/	fundamental
5	2700.000	47.98	-7.17	40.81	74.00	-33.19	peak
6	2958.000	43.67	-5.38	38.29	74.00	-35.71	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



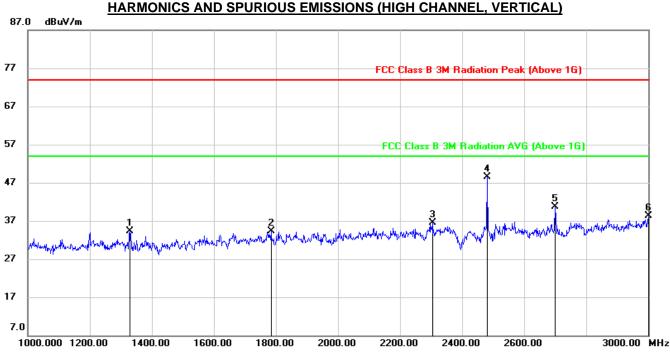
1000.000	1200.00 1400.	00 1600.00	1000.00	2000.00 220	0.00 2400.00	2600.00	3000.00 MH2
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.0000	60.75	-13.85	46.90	74.00	-27.10	peak
2	1326.000	50.69	-12.58	38.11	74.00	-35.89	peak
3	1772.000	47.34	-10.40	36.94	74.00	-37.06	peak
4	2100.000	46.14	-9.32	36.82	74.00	-37.18	peak
5	2441.000	49.21	-7.66	41.55	/	/	fundamental
6	2658.000	48.19	-7.42	40.77	74.00	-33.23	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

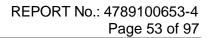


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	47.41	-12.59	34.82	74.00	-39.18	peak
2	1620.000	50.23	-11.50	38.73	74.00	-35.27	peak
3	1998.000	48.01	-10.01	38.00	74.00	-36.00	peak
4	2441.000	51.54	-7.66	43.88	/	/	fundamental
5	2700.000	47.72	-7.17	40.55	74.00	-33.45	peak
6	2992.000	47.47	-5.30	42.17	74.00	-31.83	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.0000	59.10	-13.85	45.25	74.00	-28.75	peak
2	1328.000	46.68	-12.59	34.09	74.00	-39.91	peak
3	1654.000	46.93	-11.34	35.59	74.00	-38.41	peak
4	2100.000	45.16	-9.32	35.84	74.00	-38.16	peak
5	2480.000	55.75	-7.39	48.36	/	/	fundamental
6	2700.000	47.18	-7.17	40.01	74.00	-33.99	peak

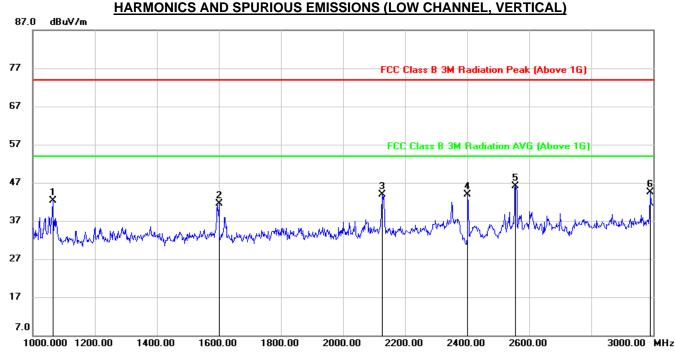

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	46.85	-12.59	34.26	74.00	-39.74	peak
2	1784.000	44.58	-10.27	34.31	74.00	-39.69	peak
3	2304.000	44.87	-8.30	36.57	74.00	-37.43	peak
4	2480.000	55.97	-7.39	48.58	/	/	fundamental
5	2700.000	47.87	-7.17	40.70	74.00	-33.30	peak
6	3000.000	43.52	-5.28	38.24	74.00	-35.76	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

7.3.2. 8DPSK MODE

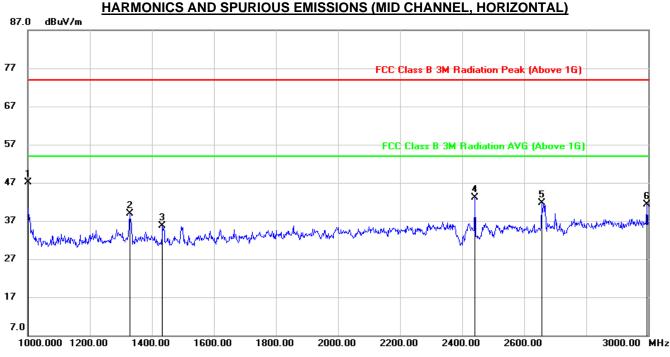
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.0000	61.82	-13.85	47.97	74.00	-26.03	peak
2	1328.000	52.65	-12.59	40.06	74.00	-33.94	peak
3	1754.000	50.00	-10.57	39.43	74.00	-34.57	peak
4	2350.000	49.82	-8.13	41.69	74.00	-32.31	peak
5	2402.000	49.69	-7.95	41.74	/	/	fundamental
6	2658.000	48.69	-7.42	41.27	74.00	-32.73	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

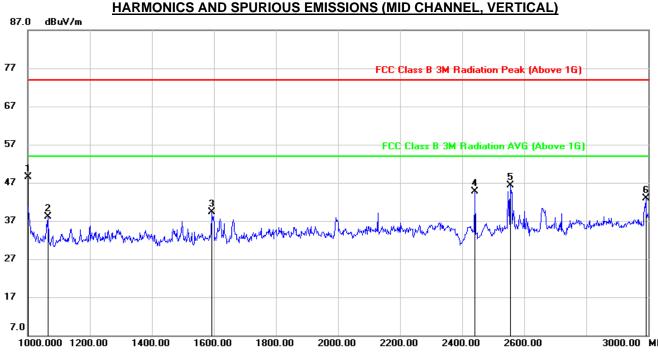
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	56.03	-13.80	42.23	74.00	-31.77	peak
2	1600.000	53.05	-11.61	41.44	74.00	-32.56	peak
3	2126.000	53.06	-9.18	43.88	74.00	-30.12	peak
4	2402.000	51.79	-7.95	43.84	/	/	fundamental
5	2556.000	53.56	-7.53	46.03	74.00	-27.97	peak
6	2990.000	49.87	-5.31	44.56	74.00	-29.44	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.0000	60.94	-13.85	47.09	74.00	-26.91	peak
2	1328.000	51.45	-12.59	38.86	74.00	-35.14	peak
3	1434.000	48.34	-12.55	35.79	74.00	-38.21	peak
4	2441.000	50.78	-7.66	43.12	/	/	fundamental
5	2656.000	49.08	-7.43	41.65	74.00	-32.35	peak
6	2996.000	46.55	-5.28	41.27	74.00	-32.73	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

fundamental

peak

peak

7.0	1200.00 1400.	00 1600.00	1800.00	2000.00 220	0.00 2400.00	2600.00	3000.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.0000	62.33	-13.85	48.48	74.00	-25.52	peak
2	1066.000	51.96	-13.80	38.16	74.00	-35.84	peak
3	1594.000	50.91	-11.66	39.25	74.00	-34.75	peak

-7.66

-7.53

-5.30

Note: 1. Peak Result = Reading Level + Correct Factor.

52.32

53.88

48.23

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

2441.000

2556.000

2992.000

4

5

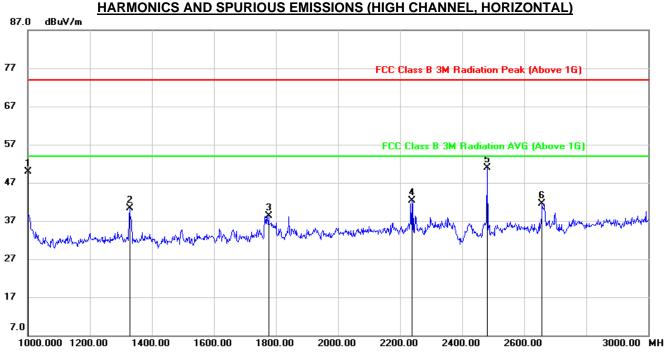
6

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses

44.66

46.35

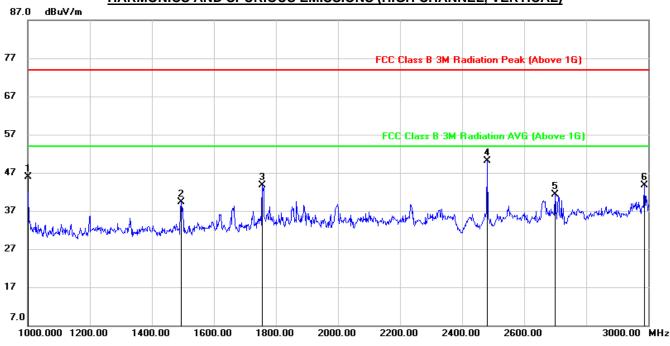
42.93


74.00

74.00

-27.65

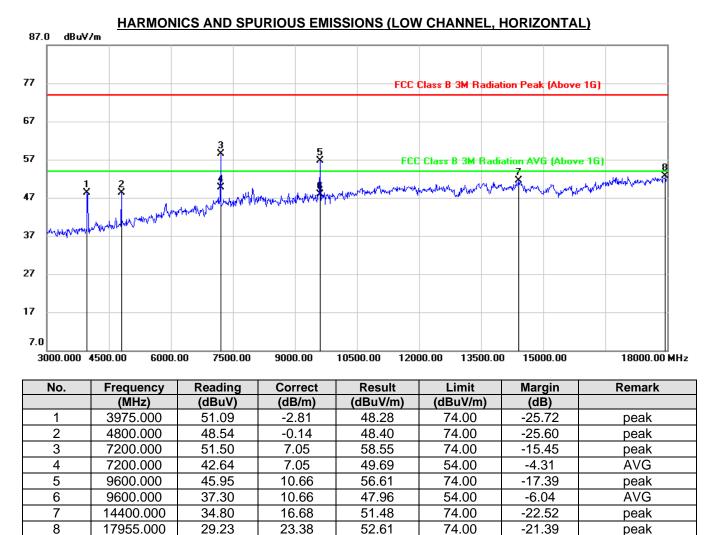
-31.07



1000.000	1200.00 1400.	UU 16UU.UU	1800.00	2000.00 220	0.00 2400.00	2600.00	3000.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.0000	63.70	-13.85	49.85	74.00	-24.15	peak
2	1328.000	52.97	-12.59	40.38	74.00	-33.62	peak
3	1776.000	48.65	-10.35	38.30	74.00	-35.70	peak
4	2238.000	50.98	-8.62	42.36	74.00	-31.64	peak
5	2480.000	58.27	-7.39	50.88	/	/	fundamental
6	2658.000	48.90	-7.42	41.48	74.00	-32.52	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.0000	59.78	-13.85	45.93	74.00	-28.07	peak
2	1494.000	51.84	-12.44	39.40	74.00	-34.60	peak
3	1756.000	54.26	-10.56	43.70	74.00	-30.30	peak
4	2480.000	57.42	-7.39	50.03	/	/	fundamental
5	2700.000	48.57	-7.17	41.40	74.00	-32.60	peak
6	2988.000	48.98	-5.31	43.67	74.00	-30.33	peak

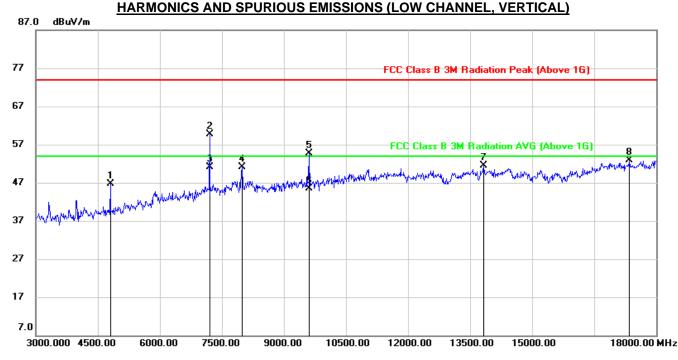
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for BPF losses
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

7.4. SPURIOUS EMISSIONS (3~18GHz)

7.4.1. GFSK MODE

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

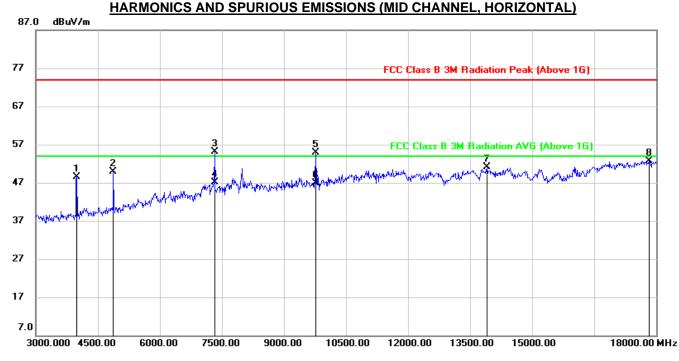
4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	46.78	-0.14	46.64	74.00	-27.36	peak
2	7200.000	52.68	7.05	59.73	74.00	-14.27	peak
3	7200.000	44.01	7.05	51.06	54.00	-2.94	AVG
4	7995.000	42.68	8.45	51.13	74.00	-22.87	peak
5	9600.000	44.00	10.66	54.66	74.00	-19.34	peak
6	9600.000	34.89	10.66	45.55	54.00	-8.45	AVG
7	13830.000	34.21	17.36	51.57	74.00	-22.43	peak
8	17355.000	30.98	21.83	52.81	74.00	-21.19	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

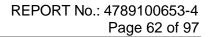

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

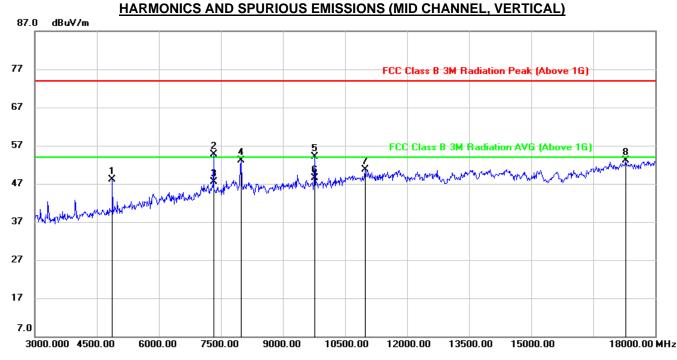
5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	51.29	-2.80	48.49	74.00	-25.51	peak
2	4875.000	49.75	0.10	49.85	74.00	-24.15	peak
3	7320.000	47.61	7.42	55.03	74.00	-18.97	peak
4	7320.000	39.63	7.42	47.05	54.00	-6.95	AVG
5	9765.000	44.31	10.60	54.91	74.00	-19.09	peak
6	9765.000	36.31	10.60	46.91	54.00	-7.09	AVG
7	13905.000	34.26	16.76	51.02	74.00	-22.98	peak
8	17835.000	29.29	23.34	52.63	74.00	-21.37	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

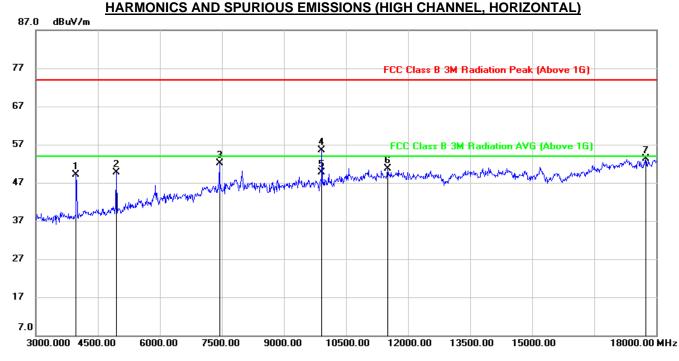
5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No. Frequency Reading Correct Result Limit Margin Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 4875.000 48.08 0.10 48.18 74.00 1 -25.82 peak -19.20 7320.000 47.38 7.42 54.80 74.00 2 peak 3 7320.000 40.15 7.42 47.57 54.00 -6.43 AVG 74.00 4 7995.000 44.75 8.45 53.20 -20.80 peak 5 9765.000 43.55 10.60 74.00 -19.85 peak 54.15 6 9765.000 37.92 10.60 48.52 54.00 -5.48 AVG 7 10980.000 37.19 13.47 50.66 74.00 -23.34 peak 17295.000 74.00 8 31.04 22.01 53.05 -20.95 peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

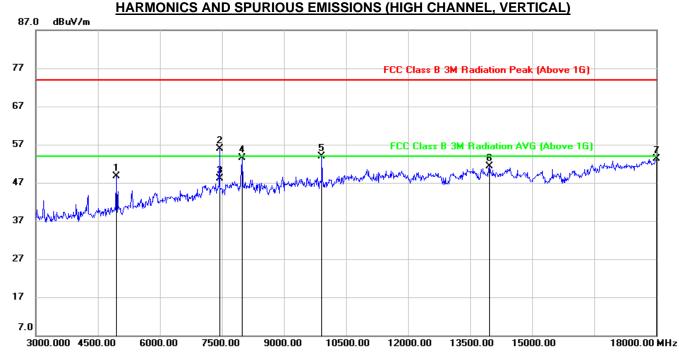
4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	51.86	-2.81	49.05	74.00	-24.95	peak
2	4950.000	49.38	0.40	49.78	74.00	-24.22	peak
3	7440.000	44.50	7.65	52.15	74.00	-21.85	peak
4	9915.000	44.50	10.95	55.45	74.00	-18.55	peak
5	9915.000	38.69	10.95	49.64	54.00	-4.36	AVG
6	11505.000	36.18	14.50	50.68	74.00	-23.32	peak
7	17745.000	30.41	22.89	53.30	74.00	-20.70	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

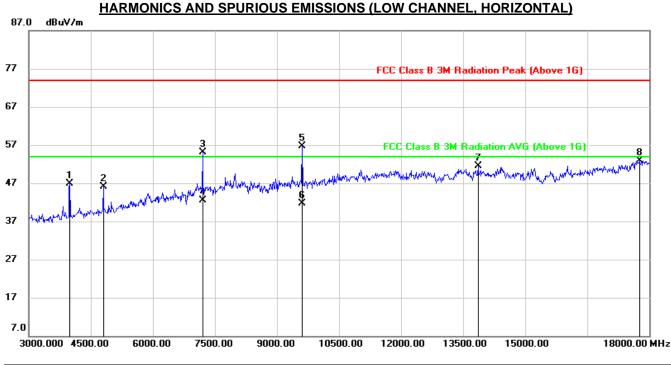
5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	48.23	0.40	48.63	74.00	-25.37	peak
2	7440.000	48.23	7.65	55.88	74.00	-18.12	peak
3	7440.000	40.38	7.65	48.03	54.00	-5.97	AVG
4	7995.000	45.11	8.45	53.56	74.00	-20.44	peak
5	9915.000	42.94	10.95	53.89	74.00	-20.11	peak
6	13965.000	34.56	16.68	51.24	74.00	-22.76	peak
7	18000.000	29.87	23.40	53.27	74.00	-20.73	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

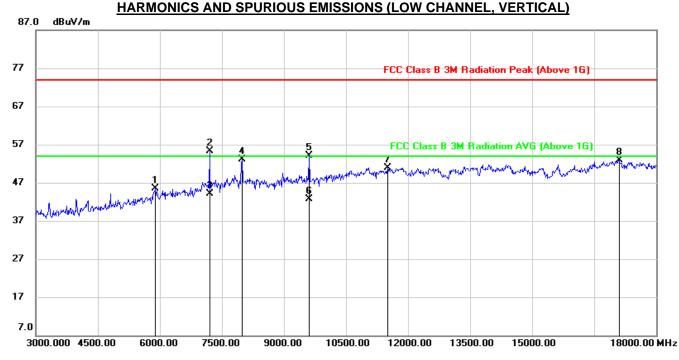
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

7.4.2. 8DPSK MODE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.75	-2.80	46.95	74.00	-27.05	peak
2	4800.000	46.15	-0.14	46.01	74.00	-27.99	peak
3	7200.000	48.03	7.05	55.08	74.00	-18.92	peak
4	7200.000	35.44	7.06	42.50	54.00	-11.50	AVG
5	9600.000	46.06	10.66	56.72	74.00	-17.28	peak
6	9600.000	31.05	10.66	41.71	54.00	-12.29	AVG
7	13860.000	34.33	17.10	51.43	74.00	-22.57	peak
8	17760.000	29.95	23.01	52.96	74.00	-21.04	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

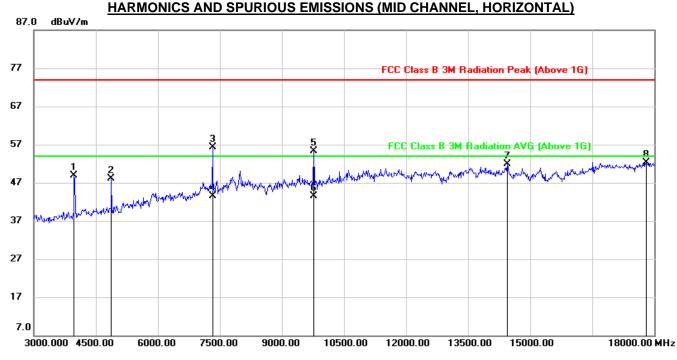
4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5895.000	40.19	5.40	45.59	74.00	-28.41	peak
2	7200.000	48.27	7.05	55.32	74.00	-18.68	peak
3	7200.000	37.00	7.05	44.05	54.00	-9.95	AVG
4	7995.000	44.60	8.45	53.05	74.00	-20.95	peak
5	9615.000	43.53	10.64	54.17	74.00	-19.83	peak
6	9615.000	32.11	10.64	42.75	54.00	-11.25	AVG
7	11505.000	36.46	14.50	50.96	74.00	-23.04	peak
8	17100.000	31.93	21.04	52.97	74.00	-21.03	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

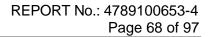

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

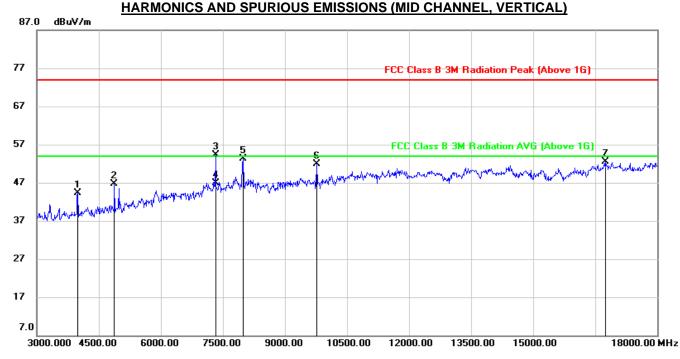
5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	51.64	-2.81	48.83	74.00	-25.17	peak
2	4875.000	47.97	0.10	48.07	74.00	-25.93	peak
3	7320.000	48.85	7.42	56.27	74.00	-17.73	peak
4	7320.000	36.13	7.42	43.55	54.00	-10.45	AVG
5	9765.000	44.67	10.60	55.27	74.00	-18.73	peak
6	9765.000	32.83	10.60	43.43	54.00	-10.57	AVG
7	14445.000	35.21	16.66	51.87	74.00	-22.13	peak
8	17805.000	28.92	23.34	52.26	74.00	-21.74	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

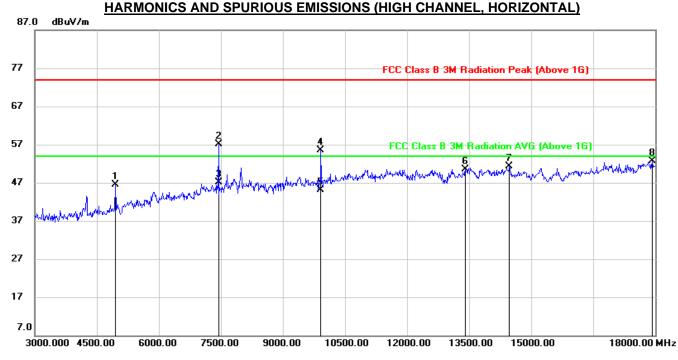

4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	47.03	-2.80	44.23	74.00	-29.77	peak
2	4875.000	46.55	0.10	46.65	74.00	-27.35	peak
3	7320.000	46.93	7.42	54.35	74.00	-19.65	peak
4	7320.000	39.50	7.42	46.92	54.00	-7.08	AVG
5	7995.000	44.95	8.45	53.40	74.00	-20.60	peak
6	9765.000	41.31	10.60	51.91	74.00	-22.09	peak
7	16755.000	32.26	20.26	52.52	74.00	-21.48	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

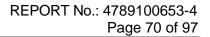

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

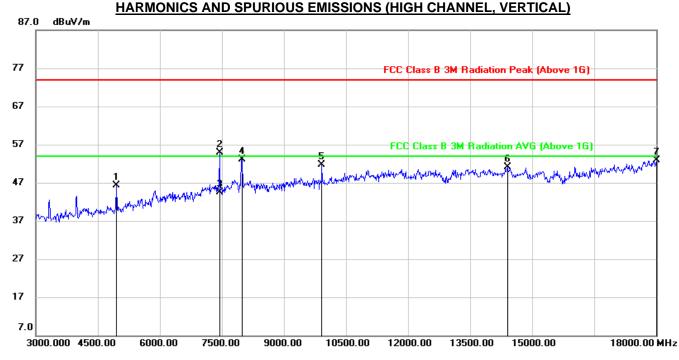
5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	46.20	0.40	46.60	74.00	-27.40	peak
2	7440.000	49.52	7.65	57.17	74.00	-16.83	peak
3	7440.000	39.52	7.65	47.17	54.00	-6.83	AVG
4	9915.000	44.58	10.95	55.53	74.00	-18.47	peak
5	9915.000	34.07	10.95	45.02	54.00	-8.98	AVG
6	13410.000	34.25	16.35	50.60	74.00	-23.40	peak
7	14475.000	34.63	16.64	51.27	74.00	-22.73	peak
8	17925.000	29.42	23.34	52.76	74.00	-21.24	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	45.84	0.40	46.24	74.00	-27.76	peak
2	7440.000	47.20	7.65	54.85	74.00	-19.15	peak
3	7440.000	36.82	7.65	44.47	54.00	-9.53	AVG
4	7980.000	44.63	8.49	53.12	74.00	-20.88	peak
5	9915.000	40.68	10.95	51.63	74.00	-22.37	peak
6	14400.000	34.38	16.68	51.06	74.00	-22.94	peak
7	18000.000	29.46	23.40	52.86	74.00	-21.14	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

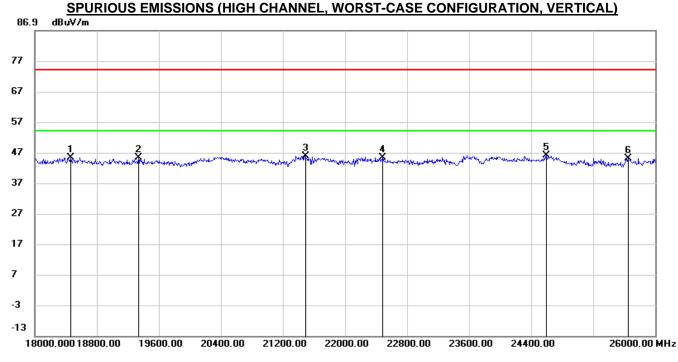
5. For transmit duration, please refer to clause 8.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

7.5. SPURIOUS EMISSIONS 18G ~ 26GHz

7.5.1. 8DPSK MODE

86.9 dBu	URIOUS EMIS	SIONS (HIGH	CHANNEL,	WORST-CAS		ATION, HOR	IZONTAL)
77							
57							
7							
7	2		3	more an an an and the state	4	man strammen	6
7	- Martin Carlos	an a		eneration and the second s			
7							
,							
3							
18000.000	18800.00 19600	0.00 20400.00	21200.00	22000.00 228	00.00 23600.00	0 24400.00	26000.00 M
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18032.000	50.26	-3.93	46.33	74.00	-27.67	peak
2	19392.000	49.61	-4.91	44.70	74.00	-29.30	peak
3	21024.000	51.12	-5.30	45.82	74.00	-28.18	peak
4	23104.000	51.35	-5.47	45.88	74.00	-28.12	peak
5	24312.000	50.10	-3.35	46.75	74.00	-27.25	peak
6	25560.000	48.27	-1.70	46.57	74.00	-27.43	peak


Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

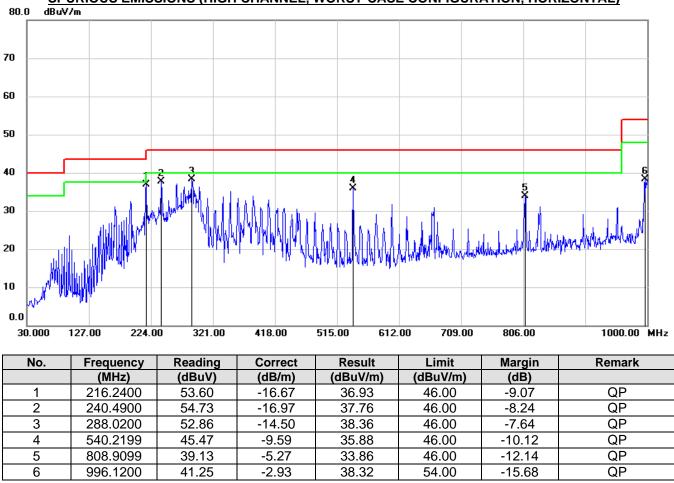
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18464.000	49.70	-4.39	45.31	74.00	-28.69	peak
2	19336.000	50.20	-4.97	45.23	74.00	-28.77	peak
3	21488.000	51.60	-5.76	45.84	74.00	-28.16	peak
4	22488.000	51.10	-5.81	45.29	74.00	-28.71	peak
5	24592.000	48.32	-2.36	45.96	74.00	-28.04	peak
6	25648.000	46.62	-1.53	45.09	74.00	-28.91	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

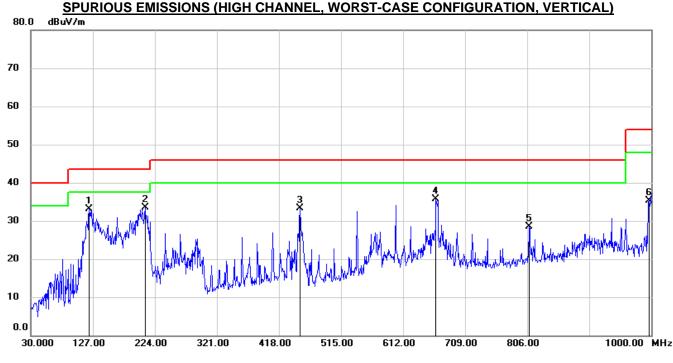
3. Peak: Peak detector.


4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses

Note: All test mode has been tested, only the worst data record in the report.

7.6. SPURIOUS EMISSIONS 30M ~ 1 GHz

7.6.1. 8DPSK MODE


SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

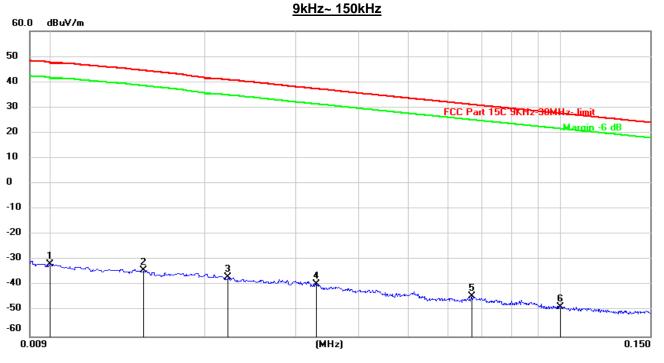
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	121.1800	53.59	-20.52	33.07	43.50	-10.43	QP
2	208.4800	49.66	-16.24	33.42	43.50	-10.08	QP
3	450.9800	44.70	-11.41	33.29	46.00	-12.71	QP
4	663.4099	42.95	-7.27	35.68	46.00	-10.32	QP
5	808.9099	33.80	-5.27	28.53	46.00	-17.47	QP
6	997.0900	38.29	-2.90	35.39	54.00	-18.61	QP

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

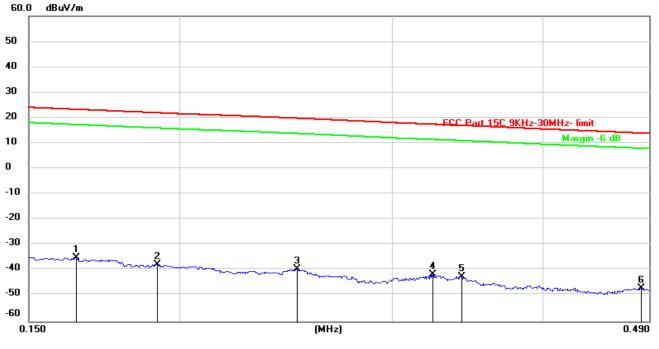

Note: All test mode has been tested, only the worst data record in the report.

7.7. SPURIOUS EMISSIONS BELOW 30M

7.7.1. 8DPSK MODE

SPURIOUS EMISSIONS (HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

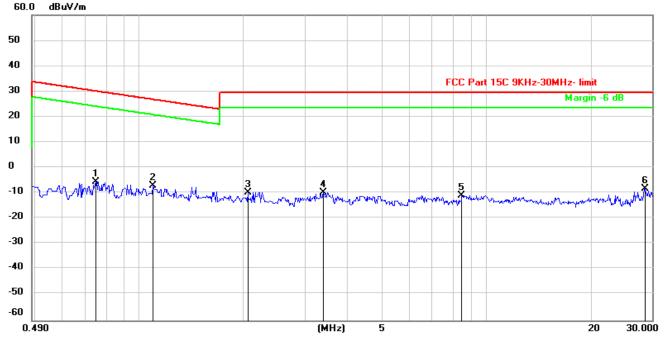
Frequency Reading Correct Result Margin Remark No. Limit (dBuV/m) (MHz) (dBuV) (dB/m) (dBuV/m) (dB) 0.0100 69.72 -101.40 -31.68 47.60 -79.28 1 peak 2 67.21 -101.37 0.0151 -34.16 44.53 -78.69 peak -101.35 3 0.0221 64.63 -36.72 40.84 -77.56 peak 61.98 -101.40 -39.42 37.31 -76.73 4 0.0330 peak -101.55 -44.12 -75.28 5 0.0666 57.43 31.16 peak -101.80 -48.37 27.60 -75.97 6 0.1000 53.43 peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150kHz ~ 0.49MHz</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1643	66.67	-101.65	-34.98	23.30	-58.28	peak
2	0.1917	64.04	-101.70	-37.66	21.95	-59.61	peak
3	0.2503	62.36	-101.80	-39.44	19.81	-59.25	peak
4	0.3243	60.30	-101.88	-41.58	17.45	-59.03	peak
5	0.3427	59.58	-101.90	-42.32	16.99	-59.31	peak
6	0.4823	55.19	-102.04	-46.85	13.95	-60.80	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna hadbeen tested, but only the worst data recorded in the report.

<u>0.49MHz ~ 30MHz</u>

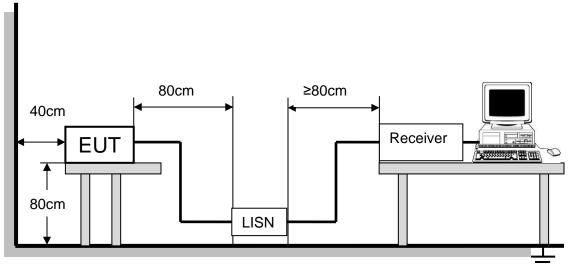
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.7486	56.58	-62.11	-5.53	30.14	-35.67	peak
2	1.0927	55.28	-62.22	-6.94	26.84	-33.78	peak
3	2.0539	52.20	-61.81	-9.61	29.54	-39.15	peak
4	3.3887	51.74	-61.48	-9.74	29.54	-39.28	peak
5	8.4870	50.10	-61.01	-10.91	29.54	-40.45	peak
6	28.6128	51.87	-60.10	-8.23	29.54	-37.77	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna hadbeen tested, but only the worst data recorded in the report.

Note: All test mode has been tested, only the worst data record in the report.


8. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

Please refer to CFR 47 FCC §15.207 (a).

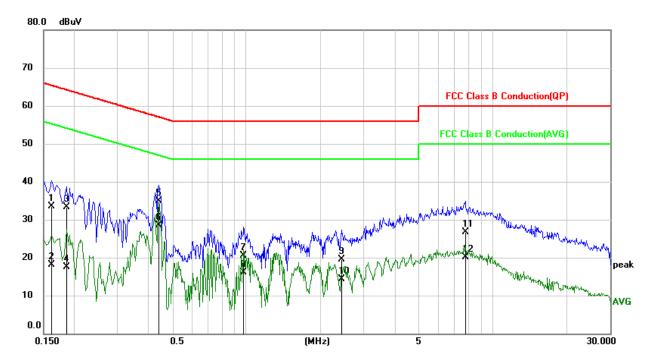
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.7 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT

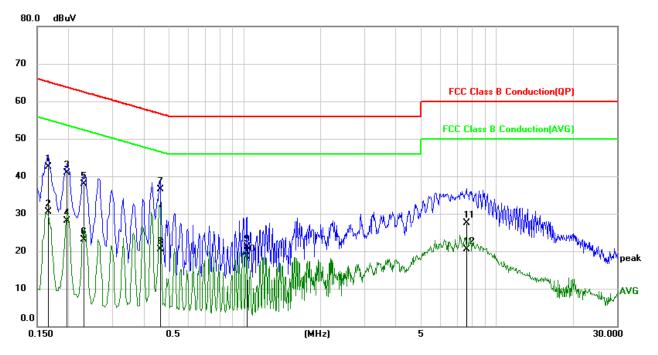

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.1.2. CHARGING MODE

TEST RESULTS (WORST-CASE CONFIGURATION)

LINE N RESULTS


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1620	23.88	9.60	33.48	65.36	-31.88	QP
2	0.1620	8.43	9.60	18.03	55.36	-37.33	AVG
3	0.1859	23.68	9.60	33.28	64.22	-30.94	QP
4	0.1859	7.89	9.60	17.49	54.22	-36.73	AVG
5	0.4420	25.29	9.60	34.89	57.02	-22.13	QP
6	0.4420	18.89	9.60	28.49	47.02	-18.53	AVG
7	0.9778	10.87	9.61	20.48	56.00	-35.52	QP
8	0.9778	6.47	9.61	16.08	46.00	-29.92	AVG
9	2.4380	9.85	9.63	19.48	56.00	-36.52	QP
10	2.4380	4.65	9.63	14.28	46.00	-31.72	AVG
11	7.7339	17.04	9.72	26.76	60.00	-33.24	QP
12	7.7339	10.36	9.72	20.08	50.00	-29.92	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

LINE L RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1660	32.98	9.61	42.59	65.16	-22.57	QP
2	0.1660	20.86	9.61	30.47	55.16	-24.69	AVG
3	0.1965	31.25	9.60	40.85	63.76	-22.91	QP
4	0.1965	18.59	9.60	28.19	53.76	-25.57	AVG
5	0.2300	28.34	9.60	37.94	62.45	-24.51	QP
6	0.2300	13.57	9.60	23.17	52.45	-29.28	AVG
7	0.4620	26.88	9.60	36.48	56.66	-20.18	QP
8	0.4620	10.87	9.60	20.47	46.66	-26.19	AVG
9	1.0220	11.56	9.61	21.17	56.00	-34.83	QP
10	1.0220	8.96	9.61	18.57	46.00	-27.43	AVG
11	7.5659	17.87	9.71	27.58	60.00	-32.42	QP
12	7.5659	10.75	9.71	20.46	50.00	-29.54	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All test mode has been tested, only the worst data record in the report

5. ANTENNA REGUIREMEN

APPLICABLE REQUIREMENTS

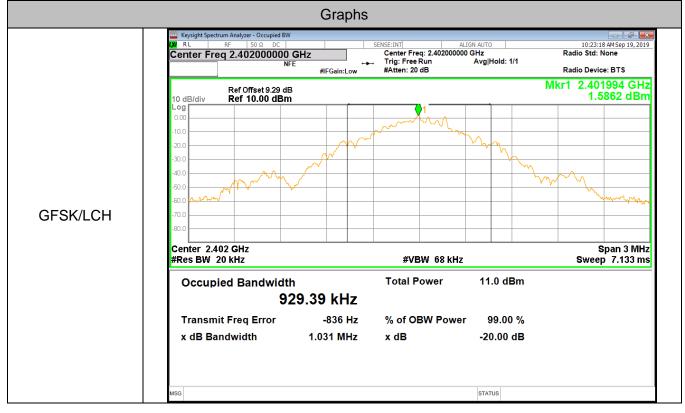
Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

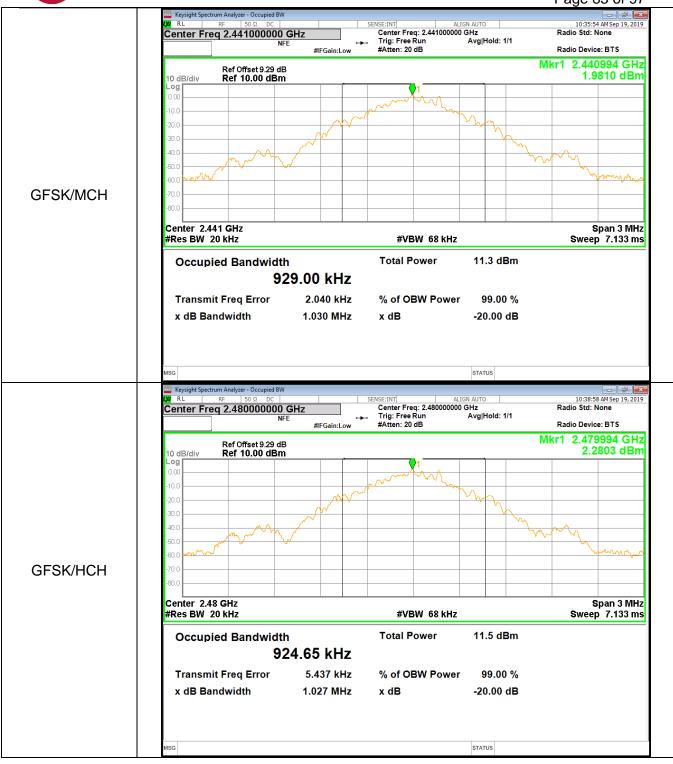
Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

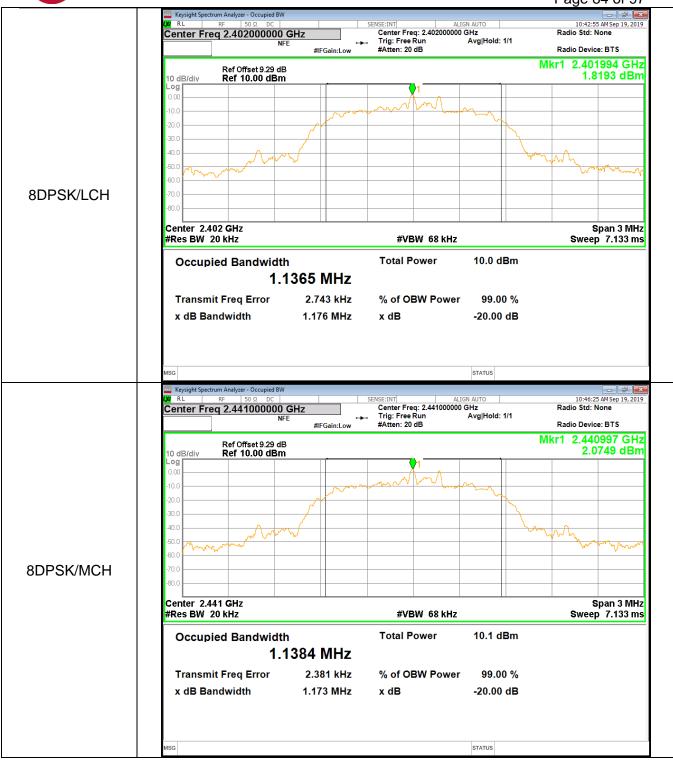
RESULTS

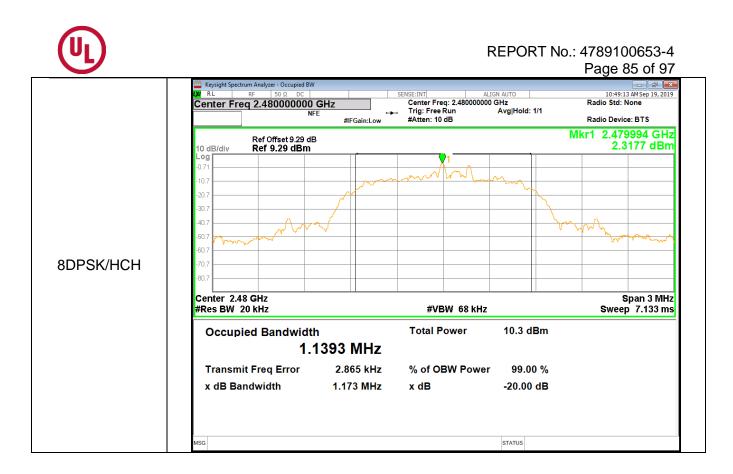

Complies

Appendix A): 20dB Bandwidth and 99% Occupied Bandwidth


Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	1.031	0.929	PASS
GFSK	MCH	1.030	0.929	PASS
GFSK	HCH	1.027	0.925	PASS
8DPSK	LCH	1.176	1.137	PASS
8DPSK	MCH	1.173	1.138	PASS
8DPSK	HCH	1.173	1.139	PASS


Test Graph



REPORT No.: 4789100653-4 Page 83 of 97

REPORT No.: 4789100653-4 Page 84 of 97

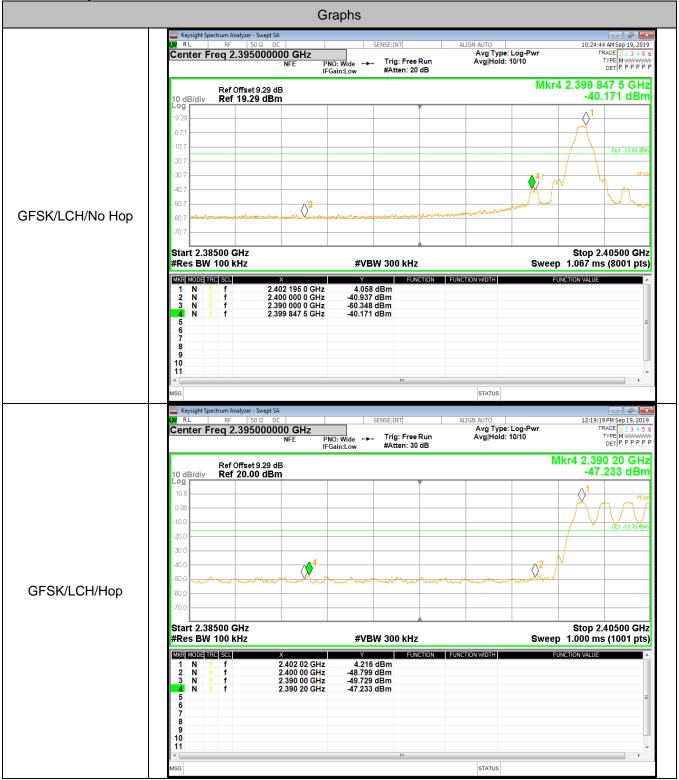
Appendix B): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
8DPSK	Нор	79	PASS

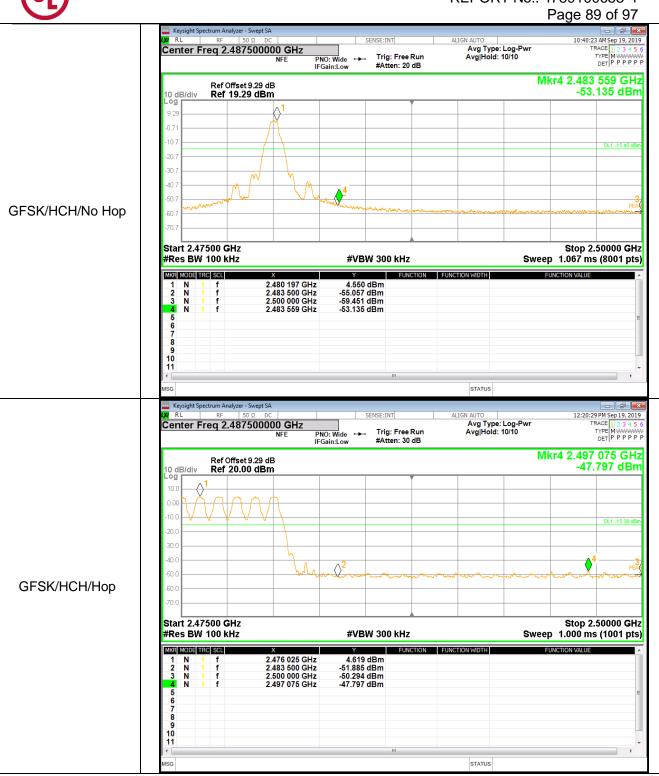
Test Graph

	Graphs	
	X RL RF 50 Ω DC SENSE:INT ALIGN AUTO 12:18:09P Center Freq. 2.114750000 GHz Avg Type: Log-Pwr TRAC	Sep 19, 201 1 2 3 4 5 M WWW T P P P P P
	Ref Offset 9.29 dB	0 MH 753 dE
GFSK/Hop		
	Start 2.40000 GHz Stop 2.48 #Res BW 100 kHz #VBW 300 kHz #Sweep 1.000 ms (*	350 GH 1001 pts
	MRE Model FRG SQL X Y FUNCTION FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 Δ2 1 f (Δ) 77.989 0 MHz (Δ) 0.753 dB 2 F 1 f 2.402 087 5 GHz 3.939 dBm 3.939 dBm 4 5 6 7 6 7 6 7 8 9 10 11 <t< td=""><td></td></t<>	
	MSG STATUS	


REPORT No.: 4789100653-4 Page 87 of 97

				raye or ul 9
	Keysight Spectrum Analyzer - Swept SA			
	LX RL RF 50 Ω DC	SENSE:INT	ALIGN AUTO	12:32:51 PM Sep 19, 20
	Center Freq 2.441750000 GHz		Avg Type: Log-Pwr Avg Hold:>10/10	TRACE 1 2 3 4 5 TYPE MWWW
	NFE	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	A Shire are to to	TYPE M WWW DET P P P P
			Δ.M.	kr1 77.822 0 MH
	Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm		2 m	0.314 d
	Log			
	10.0			PE PE
	᠐᠄᠐᠆᠆ᠰ᠈ᢅᡷᡶᡧᠰᡘᡳᡗᠴᡭᡧᡘ᠆᠐᠐᠄᠐	MMMMMMMM	ᢉᢦᢣ᠋ᡰᠺᡧᡀᡧᡘᡊᡘᡊᡊᡧᡧᡀᠺ	$\gamma \gamma $
	-10.0			
	-20.0			
	-30.0			
	-40.0			
	-50.0			শ
DPSK/Hop	-60.0			
Di Oltriop				
	-70.0			
	Start 2.40000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep	Stop 2.48350 GH 1.000 ms (1001 pt
	MKR MODE TRC SCL X	Y FUNCTION	FUNCTION WIDTH FU	NCTION VALUE
	1 Δ2 1 f (Δ) 77.822 0 2 F 1 f 2.402 254 5	MHz (Δ) 0.314 dB GHz 4.348 dBm		
	3	GH2 4.346 0BIII		
	4			
	5			
	7			
	8			
	10			
	11			
	4	III		F

Appendix C): Band-edge for RF Conducted Emissions


Result:PASS

Test Graph

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT No.: 4789100653-4

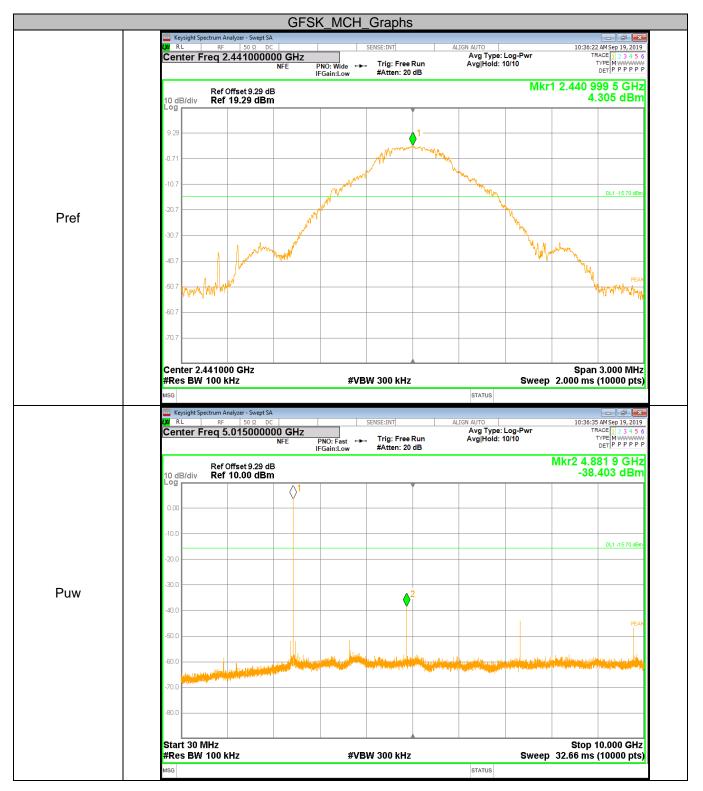
REPORT No.: 4789100653-4 Page 90 of 97

				age 90 of 97
	Keysight Spectrum Analyzer - Swept SA			
		SENSE:INT	ALIGN AUTO	10:44:22 AM Sep 19, 2019
	Center Freq 2.395000000 GHz		Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE MWWWW
	NFE	PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 20 dB		DETPPPPP
	.		Mkr4 2	.399 995 0 GHz
	Ref Offset 9.29 dB 10 dB/div Ref 19.29 dBm			-41.178 dBm
	Log			
	9.29			-0^{1}
	-0.71			M
	-10.7		1	~~~~~
				DL1 -15.76 dBm
	-20.7			
	-30.7		4	PEAK
	-40.7			hun
	-50.7	2		m.
DPSK/LCH/No Hop			An and Way was a full much	· ~
	-60.7 and a construction of the construction o	and free and a set of the set of		
	-70.7			
	Stort 2 28500 CHz			Oton 2 40500 CHz
	Start 2.38500 GHz	#\/B\M(300 kHz	Swoon 1	Stop 2.40500 GHz
	#Res BW 100 kHz	#VBW 300 kHz	-	.067 ms (8001 pts)
	MKR MODE TRC SCL X		FUNCTION WIDTH FUNCT	TION VALUE
	1 N 1 f 2.402 195 0 2 N 1 f 2.400 000 0			
	3 N 1 f 2.390 000 0	GHz -59.922 dBm		
	4 N 1 f 2.399 995 0			
	5			E
	6 7 8 9			
	8			
	10			
	11			•
		III		•
	MSG	m	STATUS	>
		II	STATUS	
	Weysight Spectrum Analyzer - Swept SA X RL RF 50 Ω DC	SENSE:INT	ALIGN AUTO	12:34:00 PM Sep 19, 2019
	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω DC Center Freq 2.395000000 GH2	Z SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	12:34:00 PM Sep 19, 2019 TRACE 1 2 3 4 5 6
	Weysight Spectrum Analyzer - Swept SA X RL RF 50 Ω DC	SENSE:INT	ALIGN AUTO	12:34:00 PM Sep 19, 2019
	Keysight Spectrum Analyzer - Swept SA W RL SD Ω DC Center Freq 2.395000000 GH2 NFE	Z PNO: Wide ↔ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P P P P P P
	Keysight Spectrum Analyzer - Swept SA IX RL RF 50 Ω DC Center Freq 2.395000000 GH; NFE Ref Offset 9.29 dB	Z PNO: Wide ↔ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P 4 2.399 94 GHZ
	Keysight Spectrum Analyzer - Swept SA W RL SD Ω DC Center Freq 2.395000000 GH2 NFE	Z PNO: Wide ↔ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P P P P P P
	Keysight Spectrum Analyzer - Swept SA Μ RL RF 50 Ω DC Center Freq 2.395000000 GH2 NFE Ref Offset 9.29 dB Ref 20.00 dBm	Z PNO: Wide ↔ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE [] 3 4 5 6 TYPE M WWWWW DET P P P P P 4 2.399 94 GHz -44.429 dBm
	Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GH2 NFE Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm Log 10.0	Z PNO: Wide ↔ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P 4 2.399 94 GHZ
	Keysight Spectrum Analyzer - Swept SA Μ RL RF 50 Ω DC Center Freq 2.395000000 GH2 NFE Ref Offset 9.29 dB Ref 20.00 dBm Log Ref 20.00 dBm 0.00 0.00 Ref 20.00 dBm	Z PNO: Wide ↔ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE [] 23 4 5 6 TYPE M WWWWW DET P P P P P 4 2.399 94 GHz -44.429 dBm
	Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GH2 NFE Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm Log 10.0	Z PNO: Wide ↔ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 1 2:34:56 TYPE M WHATHING DET P P P P P P 4 2:399 94 GHz -44.429 dBm
	Keysight Spectrum Analyzer - Swept SA Μ RL RF 50 Ω DC Center Freq 2.395000000 GH2 NFE Ref Offset 9.29 dB Ref 20.00 dBm Log Ref 20.00 dBm 0.00 0.00 Ref 20.00 dBm	Z PNO: Wide ↔ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 1 2:34:56 TYPE M WHYNWY DET P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAR
	Keysight Spectrum Analyzer - Swept SA M RL RF 50 Ω DC Center Freq 2.395000000 GH2 NFE Ref Offset 9.29 dB Ref 20.00 dBm Log 0.00 0.00 0.00 -10.0 0.00 0.00 0.00	Z PNO: Wide ↔ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 1 2:34:56 TYPE M WHYNWY DET P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAR
	Keysight Spectrum Analyzer - Swept SA R R F 50 Ω DC Center Freq 2.395000000 GH: NFE Ref Offset 9.29 dB Ref Offset 9.29 dB Odd B/div Ref 20.00 dBm Log 0 0 0 0 0 -10.0 0 0 0 0 0 -20.0 0 0 0 0 0	Z PNO: Wide FGain:Low Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 12:34 5 6 TYPE M WWWWW DET P P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAR
	Keysight Spectrum Analyzer - Swept SA R RF 50 Ω DC Center Freq 2.395000000 GH; NFE Ref Offset 9.29 dB Ref 20.00 dBm Log 0.00 </td <td>Z PNO: Wide FGain:Low Atten: 30 dB</td> <td>ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10</td> <td>12:34:00 PM Sep 19, 2019 TRACE 12:34 5 6 TYPE M WWWWW DET P P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAR</td>	Z PNO: Wide FGain:Low Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 12:34 5 6 TYPE M WWWWW DET P P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAR
	Keysight Spectrum Analyzer - Swept SA R RF 50 Ω DC Center Freq 2.395000000 GH; NFE Ref Offset 9.29 dB Ref 20.00 dBm Log 0.00 </td <td>Z PNO: Wide FGain:Low Atten: 30 dB</td> <td>ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10</td> <td>12:34:00 PM Sep 19, 2019 TRACE 1 2:34:56 TYPE M WHYNWY DET P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAR</td>	Z PNO: Wide FGain:Low Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 1 2:34:56 TYPE M WHYNWY DET P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAR
3DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA R RF 50 Ω DC Center Freq 2.395000000 GH; NFE Ref Offset 9.29 dB Ref 20.00 dBm Log 0.00 </td <td>Z PNO: Wide FGain:Low Atten: 30 dB</td> <td>ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10</td> <td>12:34:00 PM Sep 19, 2019 TRACE 23:45:6 TYPE M WHYNYWY DET P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAK</td>	Z PNO: Wide FGain:Low Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 23:45:6 TYPE M WHYNYWY DET P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAK
3DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA R RF 50 Ω DC Center Freq 2.395000000 GH; NFE Ref Offset 9.29 dB Ref 20.00 dBm Log Content of the second sec	Z PNO: Wide FGain:Low Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET IP P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAP
3DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA R RF 50 Ω DC Center Freq 2.395000000 GH; NFE Ref Offset 9.29 dB Ref 20.00 dBm Log 0.00 </td <td>Z PNO: Wide FGain:Low Atten: 30 dB</td> <td>ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10</td> <td>12:34:00 PM Sep 19, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET IP P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAP</td>	Z PNO: Wide FGain:Low Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	12:34:00 PM Sep 19, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET IP P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAP
3DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA R RF 50 Ω DC Center Freq 2.395000000 GH; NFE Ref Offset 9.29 dB Ref 20.00 dBm Log Content of the second sec	Z PNO: Wide FGain:Low Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10 Mkr	12:34:00 PM Sep 19, 2019 TRACE 1 2:34:5 TYPE M ********* DET IP P P P P P 4 2.399 94 GHz -44.429 dBm 0L1-15:66 dBm 0L1-15:66 dBm Stop 2.40500 GHz
3DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA M RL RF 50 Ω DC Center Freq 2.395000000 GHz NFE Ref Offset 9.29 dB 0 dB/div Ref 20.00 dBm Log	Z PNO: Wide FGain:Low Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10 Mkr	12:34:00 PM Sep 19, 2019 TRACE [] 2:34:56 TYPE [M WWWWW DET [P P P P P P 4 2.399 94 GHz -44.429 dBm 0L1-1566 dBm 0L1-1566 dBm
3DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA M RL RF 50 Ω DC Center Freq 2.395000000 GHz NFE Ref Offset 9.29 dB 0 dB/div Ref 20.00 dBm Log	Z PNO: Wide ↔ Trig: Free Run IFGain:Low ↔ #Atten: 30 dB 3 3 #VBW 300 kHz	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE 11 2:34:56 TYPE M WWWWW DET IP P P P P P 4 2.399 94 GHz -44.429 dBm 0L1-1566 dBm 0L1-1566 dBm Stop 2.40500 GHz .000 ms (1001 pts)
3DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GHz Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm Log	Z PNO: Wide PNO	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE 1 2:34:5 TYPE M ********* DET IP P P P P P 4 2.399 94 GHz -44.429 dBm 0L1-15:66 dBm 0L1-15:66 dBm Stop 2.40500 GHz
8DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GH; Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm Log	Z PNO: Wide IFGain:Low → Trig: Free Run #Atten: 30 dB 3 3 #VBW 300 kHz #VBW 300 kHz GHz 4.4231 dBm	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE 11 2:34:56 TYPE M WWWWW DET IP P P P P P 4 2.399 94 GHz -44.429 dBm 0L1-1566 dBm 0L1-1566 dBm Stop 2.40500 GHz .000 ms (1001 pts)
8DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GH; Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm Log	Z PNO: Wide IFGain:Low 3 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE 12:23 4:5 6 TYPE M WWWWW DET P P P P P 4 2.399 94 GHz -44.429 dBm DL1-15.66 dBm DL1-15.66 dBm Stop 2.40500 GHz .000 ms (1001 pts)
8DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GHz Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm Log Image: Construction of the second of the sec	Z PNO: Wide IFGain:Low 3 3 4 4 4 4 4 3 4 4 3 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE 12:23 4:5 6 TYPE M WWWWW DET P P P P P 4 2.399 94 GHz -44.429 dBm DL1-15.66 dBm DL1-15.66 dBm Stop 2.40500 GHz .000 ms (1001 pts)
8DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GHz Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm Log	Z PNO: Wide IFGain:Low 3 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE 12:23 4:5 6 TYPE M WWWWW DET P P P P P 4 2.399 94 GHz -44.429 dBm DL1-15.66 dBm DL1-15.66 dBm Stop 2.40500 GHz .000 ms (1001 pts)
8DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GHz Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm Log	Z PNO: Wide IFGain:Low 3 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE [1 2:3 4:5 6 TYPE [M WYWYWY DET [P P P P P P 4 2.399 94 GHz -44.429 dBm 0L1-15:66 dBm 0L1-15:66 dBm Stop 2.40500 GHz .000 ms (1001 pts)
8DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA M R S0 Ω DC Center Freq 2.395000000 GHz NFE Ref Offset 9.29 dB Ref 20.00 dBm Log Ref 20.00 dBm 0 00 000 -10.0	Z PNO: Wide IFGain:Low 3 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE 1 2:3 4:5 6 TYPE M WYWYWY DET P P P P P P 4 2.399 94 GHz -44.429 dBm 0L1-15:66 dBm 0L1-15:66 dBm Stop 2.40500 GHz .000 ms (1001 pts)
8DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GH; NFE Ref Offset 9.29 dB O dB/div Ref 20.00 dBm Log	Z PNO: Wide IFGain:Low 3 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE 1 2:3 4:5 6 TYPE M WWWWW DET P P P P P P 4 2.399 94 GHz -44.429 dBm 0L1-15:66 dBm 0L1-15:66 dBm Stop 2.40500 GHz .000 ms (1001 pts)
8DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GHz Ref Offset 9.29 dB 10 dB/div Ref 20.00 dBm Log Image: Comparison of the system of the syste	Z PNO: Wide IFGain:Low	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE 1 2:3 4:5 6 TYPE M WWWWW DET P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAK DL1-15:65 dBn DL1-15:65 dBn Stop 2.40500 GHz .000 ms (1001 pts)
8DPSK/LCH/Hop	Keysight Spectrum Analyzer - Swept SA Center Freq 2.395000000 GH; NFE Ref Offset 9.29 dB O dB/div Ref 20.00 dBm Log	Z PNO: Wide IFGain:Low 3 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	AVG Type: Log-Pwr Avg Hold: 10/10 MKr	12:34:00 PM Sep 19, 2019 TRACE 1 2:3 4:5 6 TYPE M WWWWW DET P P P P P 4 2.399 94 GHz -44.429 dBm 1 PEAK DL1-15:65 dBn DL1-15:65 dBn Stop 2.40500 GHz .000 ms (1001 pts)

REPORT No.: 4789100653-4 Page 91 of 97

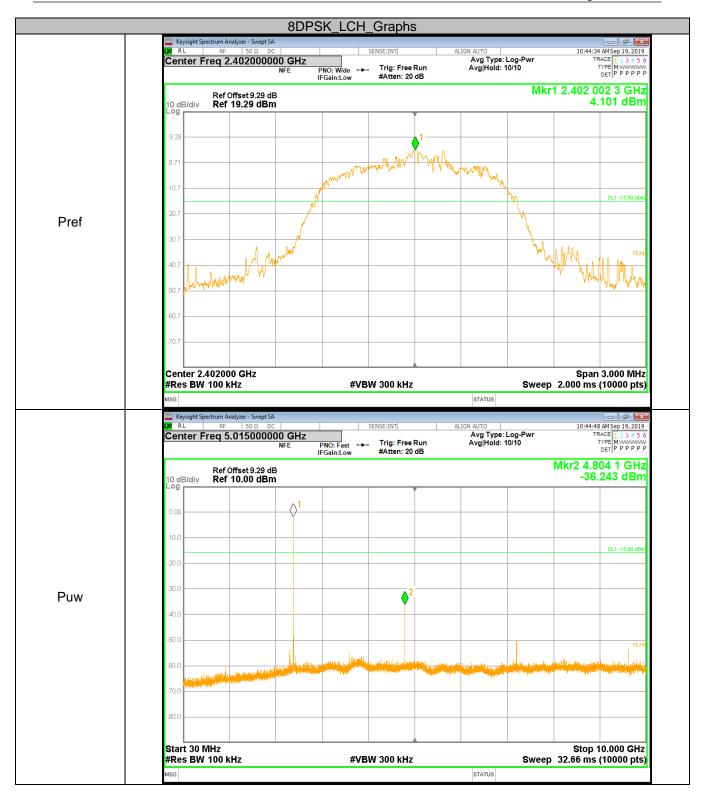

	Keysight Spectrum Analyzer - Swept SA			
	Center Freg 2.487500000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	10:50:39 AM Sep 19, 2019 TRACE 1 2 3 4 5 6
	NFE	PNO: Wide	Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P
		IFGain:Low #Atten: 20 dB		
	Ref Offset 9.29 dB		Mkr4	2.483 553 GHz -54.060 dBm
	10 dB/div Ref 19.29 dBm			-54.060 dBm
	9.29			
	-0.71			
	-10.7			DL1 -15.42 dBm
	-20.7			
	-30.7			
	-40.7			
	-50.7			3,
DPSK/HCH/No Hop	-60.7	and the second s	aman marker and a summarked with and	PEAK
	-70.7			
	Start 2.47500 GHz		· · · · · ·	Stop 2.50000 GHz
	#Res BW 100 kHz	#VBW 300 kHz	Sweep 1	l.067 ms (8001 pts)
	MKR MODE TRC SCL X	Y FUNCTION	FUNCTION WIDTH FUNCT	TION VALUE
	1 N 1 f 2.480 200 GH			
	2 N 1 f 2.483 500 GH 3 N 1 f 2.500 000 GH	iz -55.619 dBm iz -59.547 dBm		
	4 N 1 f 2.483 553 GH			
	5 6			=E
	7			
	8 9			
	10			
	11			
	MSG		STATUS	
			SIAIUS	
	Keysight Spectrum Analyzer - Swept SA			
	RL RF 50 Ω DC Center Freq 2.487500000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	12:35:10 PM Sep 19, 2019 TRACE 1 2 3 4 5 6
	NFE	PNO: Wide	Avg Hold: 10/10	TYPE MWWWW DET P P P P P
		IFGain:Low #Atten: 30 dB		
	Ref Offset 9.29 dB		MKr4	2.491 200 GHz
	10 dB/div Ref 20.00 dBm			-49.278 dBm
		Ĭ		
	0.00			
	we are the we we w			
	-10.0			DL1 -15.32 dBm
	we are the we we w			DL1 -15.32 dBm
	-10.0			DL1 -15.32 dBm
	-10.0 -20.0 -30.0 -40.0			DL1 -15.32 dBm
	-10.0 -20.0 -30.0 -40.0	\sim	4	DL1 -15.32 dBm
	-10.0 -20.0 -30.0 -40.0 -50.0		4	3/
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0			3,
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0 -50.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	3,
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		PEA
8DPSK/HCH/Hop	-100 -200 -300 -400 -500 -600 -700 Start 2.47500 GHz		4 Sween	3 PEA Stop 2.50000 GHz
8DPSK/HCH/Hop	-100 -200 -300 -400 -500 -600 -700 -500 -700 -500 -700 -500 -700 -500 -5	#VBW 300 kHz	•	Stop 2.50000 GHz I.000 ms (1001 pts)
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -70.0	#VBW 300 kHz	•	3 PEAS Stop 2.50000 GHz
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -50.0 -50.0 -70.0 Start 2.47500 GHz #Res BW 100 kHz MKE MODE TRG SCL X 1 N 1 f 2.478 200 GH	#VBW 300 kHz #CBW 300 kHz iz 4.679 dBm iz -51.936 dBm	•	Stop 2.50000 GHz 1.000 ms (1001 pts)
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 2.47500 GHz #Res BW 100 kHz MXR MODE TEC SSL X 1 N 1 f 2.478 200 GH 2 N 1 f 2.478 200 GH 2 N 1 f 2.478 200 GH	#VBW 300 kHz z 4.679 dBm z -51.936 dBm z -51.936 dBm	•	3 PEX Stop 2.50000 GHz I.000 ms (1001 pts)
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0 -60.0 -60.0 -60.0 -70.0 Start 2.47500 GHz #Res BW 100 kHz	#VBW 300 kHz z 4.679 dBm z -51.936 dBm z -51.936 dBm	•	Stop 2.50000 GHz I.000 ms (1001 pts)
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0 -60.0 -60.0 -60.0 -70.0 Start 2.47500 GHz #Res BW 100 kHz	#VBW 300 kHz z 4.679 dBm z -51.936 dBm z -51.936 dBm	•	Stop 2.50000 GHz 1.000 ms (1001 pts)
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 2.47500 GHz #Res BW 100 kHz MISS MODE FIEL SCI 1 N 1 f 2.478 200 GH 2 N 1 f 2.478 200 GH 3 N 1 f 2.483 500 GH 3 N 1 f 2.491 200 GH 6 G	#VBW 300 kHz z 4.679 dBm z -51.936 dBm z -51.936 dBm	•	Stop 2.50000 GHz I.000 ms (1001 pts)
8DPSK/HCH/Hop	-10.0 -20.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -70.0 -50.0	#VBW 300 kHz z 4.679 dBm z -51.936 dBm z -51.936 dBm	•	Stop 2.50000 GHz 1.000 ms (1001 pts)
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -50.0 -70.0 -50.0 -70.0	#VBW 300 kHz z 4.679 dBm z -51.936 dBm z -51.936 dBm	•	Stop 2.50000 GHz 1.000 ms (1001 pts)
8DPSK/HCH/Hop	-10.0 -20.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -70.0 -50.0	#VBW 300 kHz z 4.679 dBm z -51.936 dBm z -51.936 dBm	•	Stop 2.50000 GHz 1.000 ms (1001 pts)
8DPSK/HCH/Hop	-10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -50.0 -70.0 -50.0 -70.0	¥VBW 300 kHz Iz 4.679 dBm Iz -51.936 dBm Iz -51.740 dBm Iz -49.278 dBm	•	Stop 2.50000 GHz 1.000 ms (1001 pts)

Appendix D): RF Conducted Spurious Emissions

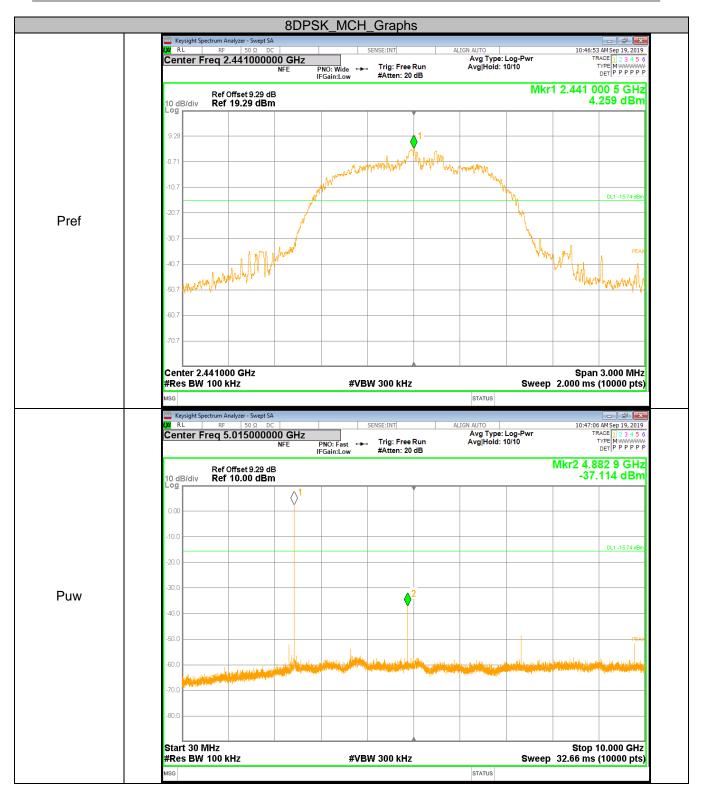

Result: PASS

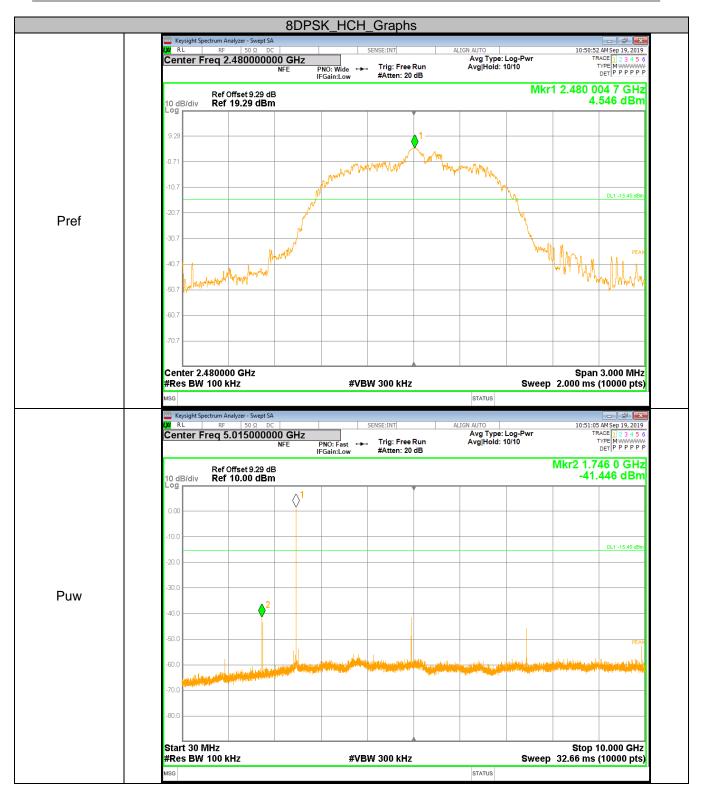
Test Graph


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM No.: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.





END OF REPORT

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.