

Shenzhen CTA Testing Technology Co., Ltd.

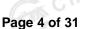
Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PA	ART 15 SUBPART C TEST	REPORT
	FCC PART 15.247	STING
Report Reference No		CTATES
Compiled by position+printed name+signatur	e)File administrators Kevin Liu	kevin Line
Supervised by position+printed name+signatur	e): Project Engineer Kevin Liu	ANT KOUTA - LYL
Approved by position+printed name+signatur	e)RF Manager Eric Wang	NG approved ung
Date of issue	: Jun. 30, 2022	TING
Festing Laboratory Name	Shenzhen CTA Testing Technol	logy Co., Ltd.
Address	Room 106, Building 1, Yibaolai Ind Fuhai Street, Bao' an District, Sh	dustrial Park, Qiaotou Community, nenzhen, China
Applicant's name	Shenzhen Anhaoruihe Electron	ics Co Ltd
Address	2 Building Anhaorui industrial Par Town Baoan Dist. Shenzhen, Gua	
Test specification	TESTIN	
Standard	: FCC Part 15.247	STING
Shenzhen CTA Testing Techno	logy Co., Ltd. All rights reserved.	CTATES
Shenzhen CTA Testing Technolo material. Shenzhen CTA Testing	eed in whole or in part for non-commen- ogy Co., Ltd. is acknowledged as copy Technology Co., Ltd. takes no respon in the reader's interpretation of the rep	right owner and source of the sibility for and will not assume
Equipment description	-INC -	
Frade Mark		
lanufacturer	Shenzhen Anhaoruihe Electronics	s Co., Ltd
/lodel/Type reference	: AHR-083	TING
isted Models	AHR-083 AHR-081, AHR-079, AHR-707, AI	HR-709, AHR-801, AHR-801B
Nodulation	: GFSK	CIL
requency	From 2402MHz to 2480MHz	
Ratings	: AC 120V/60Hz	
Result	: PASS	

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

				STA		CTATE	5
Re	port No.: CTA2206280010	2				Page 2 of 31	
	CTATESTING						
	CTA		TEST	REPO	RT		
			CTATL				
	Equipment under Test		Relocatable F	Power Tap			-6
	Model /Type	:	AHR-083				CTATE
ATESTIN	Listed Models	:	AHR-081, AH	IR-079, AHR	-707, AHR-709,	AHR-801, AHR-801	
	Applicant	SIL	Shenzhen An	haoruihe Ele	ctronics Co Ltd		
	Address	:			rial Park Jianan en, Guangdong,	Road Tangwei Fuyc , China, 518103	ong NG
	Manufacturer	:	Shenzhen An	nhaoruihe Ele	ctronics Co Ltd	GA CTA .	
	Address	:	-		rial Park Jianan en, Guangdong,	Road Tangwei Fuyo , China, 518103	ng
GIA	Test Res	ult:	CTATES	111	PAS	S	


The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

CTA

Contents

	-60.	
1	TEST STANDARDS	
	-ESIN	
	CUMMARY	G
<u>Z</u>	SUMMARY	
		CTATES 5 55
2.1	General Remarks	C ¹ 5
2.2	Product Description	5
2.3	Equipment Under Test	- Ltd
2.4	Short description of the Equipment under Test (EU	T) 5
2.5	EUT operation mode	
2.6	Block Diagram of Test Setup	6
2.7	Related Submittal(s) / Grant (s)	6
2.8	Modifications	6
<u>3</u>	TEST ENVIRONMENT	
<u> </u>		TEO
	Address of the test laboratory	- <u>-</u> NC
3.1	Address of the test laboratory	TESI T
3.2	Test Facility	CTATES 7 7 8 8
3.3	Environmental conditions Summary of measurement results	
3.4 3.5	Statement of the measurement uncertainty	8
3.5	Equipments Used during the Test	8
5.0	Equipments used during the rest	5
	TEST CONDITIONS AND RESULTS	
<u>4</u>	TEST CONDITIONS AND RESULTS	
	STINE	
4.1	AC Power Conducted Emission	10
4.2	Radiated Emissions and Band Edge	13
4.3	Maximum Peak Output Power	TESI 20
4.4	Power Spectral Density	
4.5	6dB Bandwidth	23
4.6	Out-of-band Emissions	CTATESTING 20 21 23 25 20
4.7	Antenna Requirement	29
-ING		C.
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	
<u>6</u>	PHOTOS OF THE EUT	<u></u>
		TESTING
		-ESIN'
		CTATESTING
		TATES
		GIN
	TA TESTING	
	TES	
	TATES	
	CTA 1-	CTATESTING
		~ES1"
		GV

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission

Systems (DTS) Operating Under §15.247 CTATESTING

<u>SUMMARY</u> 2

2.1 General Remarks

CIATE			
2.1 General Remarks			
Date of receipt of test sample		Jun. 10, 2022	
Testing commenced on	(Gri	Jun. 10, 2022	10 mile
Testing concluded on	:	Jun. 30, 2022	Character Contract

2.2 **Product Description**

Ļ	Testing commenced on	: Jun. 10, 2022
ŀ	Testing concluded on	i Jun. 30, 2022
	2.2 Product Descrip	tion
ATE	Product Description:	Relocatable Power Tap
	Model/Type reference:	AHR-083
ſ	Power supply:	AC 120V/60Hz
ſ	Hardware version:	V1.0
ľ	Software version:	V1.0
	Testing sample ID:	CTA220628001-1# (Engineer sample) CTA220628001-2# (Normal sample)
	Bluetooth BLE	
Γ	Supported type:	Bluetooth low Energy
Γ	Modulation:	GFSK
	Operation frequency:	2402MHz to 2480MHz
	Channel number:	40
ľ	Channel separation:	2 MHz
ľ	Antenna type:	PCB antenna
F	Antenna gain:	0.00 dBi

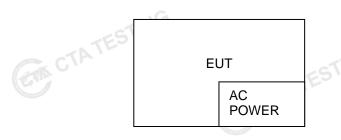
2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz		120V / 60Hz
G		0	12 V DC		24 V DC
		0	Other (specified in blank be	elow	()
			GAN U.		TESTIN
2.4 Short description of the	e Eo	iuc	pment under Test (EU	T)	CTA IL
This is a Relocatable Power Tap .		1		-,	

Short description of the Equipment under Test (EUT) 2.4

This is a Relocatable Power Tap Jier to For more details, refer to the user's manual of the EUT.


2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test. - CTATE

Operation Frequency:

	Channel	Frequency (MHz)
	00	2402
	01	2404
	02	2406
TATES		:
CIT	19	2440
1	TATES	-NG
	37	2476
	38	2478
	39	2480
	2.6 Block Diagram of Test Setup	CTATES CTATES

2.6 Block Diagram of Test Setup

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

CTATESTING No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: CTATESTING Radiated Emission

Raulaleu Emission.		
Temperature:	a second	23 ° C
		-
Humidity:	and the second states	44 %
Atmospheric pressure:		950-1050mbar

AC Main Conducted testing: CTATES

5		
Temperature:	24 ° C	
	-16	
Humidity:	47 %	
TES		. C.
Atmospheric pressure:	950-1050mbar	TING
Conducted testing:	C.	(P) .
Temperature	24 ° C]

Temperature:	24 ° C
Humidity:	46 %
Atmospheric pressure:	950-1050mbar
CTATESTING	ATESTIN
	TAL

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	 ☐ Lowest ☐ Middle ☐ Highest 	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	:ING _/-	BLE 1Mpbs	-/-	complies
2. We tested a	ement uncertainty is i Il test mode and reco	rded worst ca	se in report	CTP	TESTINO	

Summary of measurement results 3.4

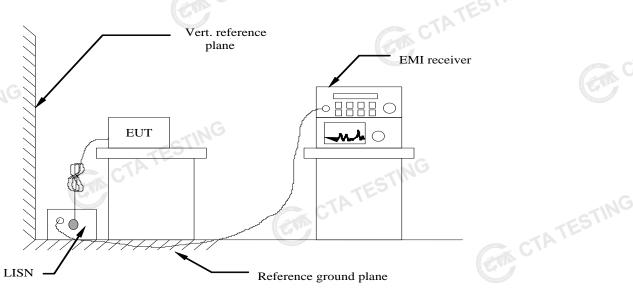
3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :-

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


3.6 **Equipments Used during the Test**

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/05
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
-	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
15	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05
			Con		CTA CT	ATES

TEST CONDITIONS AND RESULTS 4

AC Power Conducted Emission 4.1

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

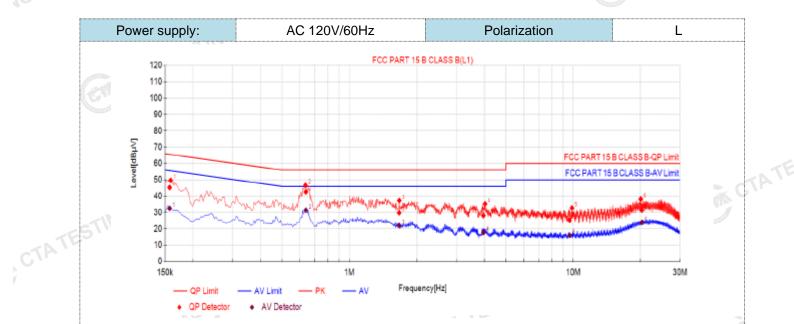
AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST RESULTS

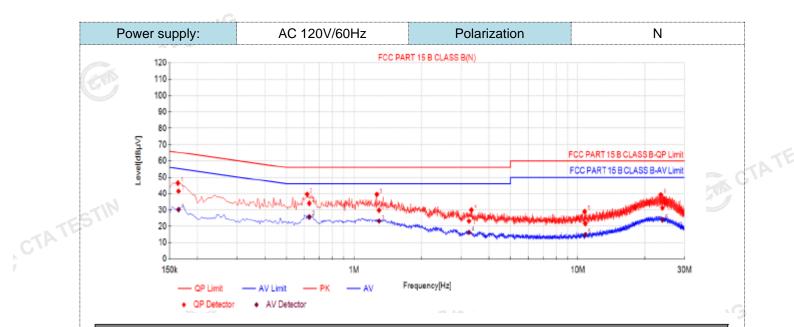

Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Report No.: CTA22062800102

Page 11 of 31

CTATE

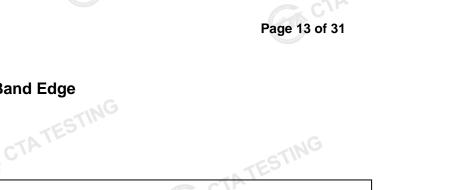

Final Data List

OTATESTING

	ctor Read	QP ding[dB JV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
0.1572 10	1.50 34	i.81	45.31	65.61	20.30	21.99	32.49	55.61	23.12	PASS
0.6389 10	1.50 32	2.13	42.63	56.00	13.37	20.92	31.42	46.00	14.58	PASS
1.6690 10	1.50 19	9.25	29.75	56.00	26.25	11.58	22.08	46.00	23.92	PASS
3.9673 10	1.50 17	7.59	28.09	56.00	27.91	7.26	17.78	46.00	28.24	PASS
9.6282 10).50 14	1.81	25.31	60.00	34.69	5.55	16.05	50.00	33.95	PASS
20.2548 10	1.50 20).86	31.36	60.00	28.64	13.36	23.86	50.00	26.14	PASS
	0.1572 10 0.6389 10 1.6690 10 3.9673 10 9.6282 10 20.2548 10	0.1572 10.50 34 0.6389 10.50 32 1.6690 10.50 19 3.9673 10.50 17 9.6282 10.50 14 20.2548 10.50 20	0.1572 10.50 34.81 0.6389 10.50 32.13 1.6690 10.50 19.25 3.9673 10.50 17.59 9.6282 10.50 14.81 20.2548 10.50 20.86	μVJ (dBμVJ) 0.1572 10.50 34.81 45.31 0.6389 10.50 32.13 42.63 1.6690 10.50 19.25 29.75 3.9673 10.50 17.59 28.09 9.6282 10.50 14.81 25.31 20.2548 10.50 20.86 31.36	μvj [dBμvj] [dBμvj] [dBμvj] 0.1572 10.50 34.81 45.31 65.61 0.6389 10.50 32.13 42.63 56.00 1.6690 10.50 19.25 29.75 56.00 3.9673 10.50 17.59 28.09 56.00 9.6282 10.50 14.81 25.31 60.00 20.2548 10.50 20.86 31.36 60.00	μVJ [dBμV] [dBμV] <th>Image: Constraint of the state state</th> <th>D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<></th> <th>D.1572 10.50 34.81 45.31 65.61 20.30 21.99 32.49 55.61 0.6389 10.50 32.13 42.63 56.00 13.37 20.92 31.42 46.00 1.6690 10.50 19.25 29.75 56.00 26.25 11.58 22.08 46.00 3.9673 10.50 17.59 28.09 56.00 27.91 7.26 17.76 46.00 9.6282 10.50 14.81 25.31 60.00 34.69 5.55 16.05 50.00 20.2548 10.50 20.86 31.36 60.00 28.64 13.36 23.86 50.00</th> <th>Link LVJ [dBµV] [dBµV]</th>	Image: Constraint of the state	D D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>	D.1572 10.50 34.81 45.31 65.61 20.30 21.99 32.49 55.61 0.6389 10.50 32.13 42.63 56.00 13.37 20.92 31.42 46.00 1.6690 10.50 19.25 29.75 56.00 26.25 11.58 22.08 46.00 3.9673 10.50 17.59 28.09 56.00 27.91 7.26 17.76 46.00 9.6282 10.50 14.81 25.31 60.00 34.69 5.55 16.05 50.00 20.2548 10.50 20.86 31.36 60.00 28.64 13.36 23.86 50.00	Link LVJ [dBµV] [dBµV]

Page 12 of 31

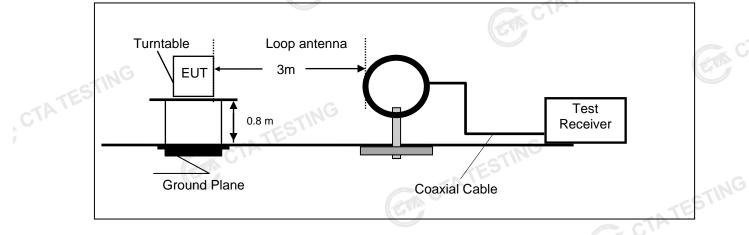
GATE

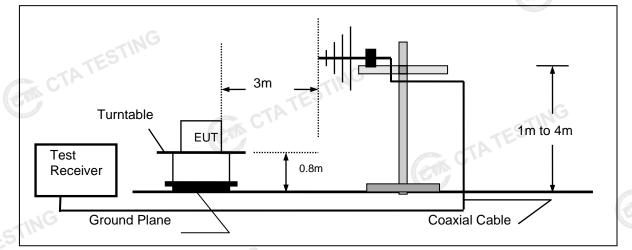

Final Data List												
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.1646	10.50	31.01	41.51	65.23	23.72	19.64	30.14	55.23	25.09	PASS	
2	0.6312	10.50	23.62	34.12	56.00	21.88	15.21	25.71	46.00	20.29	PASS	
3	1.2949	10.50	19.25	29.75	56.00	26.25	12.73	23.23	46.00	22.77	PASS	
4	3.2664	10.50	12.66	23.16	56.00	32.84	5.74	16.24	46.00	29.76	PASS	
5	10.8171	10.50	11.10	21.60	60.00	38.40	4.28	14.78	50.00	35.22	PASS	
6	23.9064	10.50	20.67	31.17	60.00	28.83	13.34	23.84	50.00	26.16	PASS	
	1 2 3 4 5	I 0.1646 2 0.6312 3 1.2949 4 3.2664 5 10.8171	NO. [MHz] [dB] 1 0.1646 10.50 2 0.6312 10.50 3 1.2949 10.50 4 3.2664 10.50 5 10.8171 10.50	NO. Freq. [MHz] Factor [dB] Reading[dB µV] 1 0.1646 10.50 31.01 2 0.6312 10.50 23.62 3 1.2949 10.50 19.25 4 3.2664 10.50 12.66 5 10.8171 10.50 11.10	NO. Freq. [MHz] Factor [dB] Reading[dB µV] Value [dBµV] 1 0.1646 10.50 31.01 41.51 2 0.6312 10.50 23.62 34.12 3 1.2949 10.50 19.25 29.75 4 3.2664 10.50 12.66 23.16 5 10.8171 10.50 11.10 21.60	NO. Freq. [MHz] Factor [dB] Reading(dB µV] Value [dBµV] Limit [dBµV] 1 0.1846 10.50 31.01 41.51 65.23 2 0.6312 10.50 23.62 34.12 56.00 3 1.2949 10.50 19.25 29.75 56.00 4 3.2664 10.50 12.66 23.16 56.00 5 10.8171 10.50 11.10 21.60 60.00	NO. Freq. [MHz] Factor [dB] Reading(dB µV] Value [dBµV] Limit [dBµV] Margin [dBµV] 1 0.1846 10.50 31.01 41.51 65.23 23.72 2 0.6312 10.50 23.62 34.12 56.00 21.88 3 1.2949 10.50 19.25 29.75 56.00 26.25 4 3.2664 10.50 12.66 23.16 56.00 32.84 5 10.8171 10.50 11.10 21.60 60.00 38.40	NO. Freq. [MHz] Factor [dB] Reading[dB µV] Value [dBµV] Limit [dBµV] Margin [dBµV] Reading [dBµV] 1 0.1646 10.50 31.01 41.51 65.23 23.72 19.64 2 0.6312 10.50 23.62 34.12 56.00 21.88 15.21 3 1.2949 10.50 19.25 29.75 56.00 26.25 12.73 4 3.2664 10.50 12.66 23.16 56.00 32.84 5.74 5 10.8171 10.50 11.10 21.60 60.00 38.40 4.28	NO. Freq. [MHz] Factor [dB] Reading[dB} µV] Value [dBµV] Limit [dBµV] Margin [dB] Reading [dBµV] Value [dBµV] 1 0.1646 10.50 31.01 41.51 65.23 23.72 19.64 30.14 2 0.6312 10.50 23.62 34.12 56.00 21.88 15.21 25.71 3 1.2949 10.50 19.25 29.75 56.00 26.25 12.73 23.23 4 3.2664 10.50 12.66 23.16 56.00 32.84 5.74 16.24 5 10.8171 10.50 11.10 21.60 60.00 38.40 4.28 14.78	NO. Freq. [MHz] Factor [dB] Reading(dB µV] Value [dBµV] Limit [dBµV] Margin [dB] Reading [dBµV] Value [dBµV] Limit [dBµV] 1 0.1646 10.50 31.01 41.51 65.23 23.72 19.64 30.14 55.23 2 0.6312 10.50 23.62 34.12 56.00 21.88 15.21 25.71 46.00 3 1.2949 10.50 19.25 29.75 56.00 26.25 12.73 23.23 46.00 4 3.2664 10.50 12.66 23.16 56.00 32.84 5.74 16.24 46.00 5 10.8171 10.50 11.10 21.60 60.00 38.40 4.28 14.78 50.00	NO. Freq. [MHz] Factor [dB] Reading[dB µV] Value [dBµV] Limit [dBµV] Margin [dB] Reading [dBµV] Value [dBµV] Limit [dBµV] Margin [dB] 1 0.1846 10.50 31.01 41.51 65.23 23.72 19.64 30.14 55.23 25.09 2 0.6312 10.50 23.62 34.12 56.00 21.88 15.21 25.71 46.00 20.29 3 1.2949 10.50 19.25 29.75 56.00 26.25 12.73 23.23 46.00 22.77 4 3.2664 10.50 12.66 23.16 56.00 32.84 5.74 16.24 46.00 29.76 5 10.8171 10.50 11.10 21.60 60.00 38.40 4.28 14.78 50.00 35.22	

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

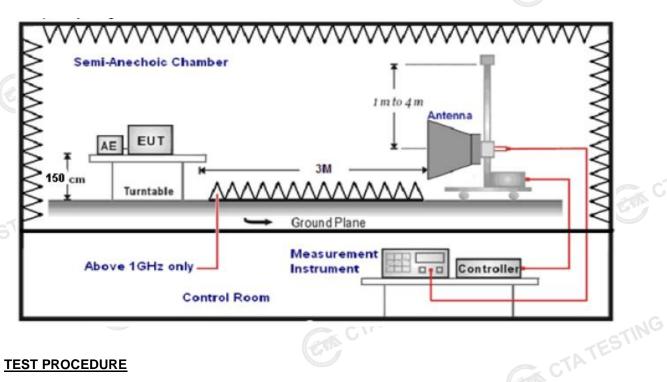
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V) 4). AVMargin(dB) - AV/

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn


CTATESTI


4.2 **Radiated Emissions and Band Edge**

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and
- rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT. 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5. frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states: 6.

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	Stor Lie
30MHz-1GHz	Ultra-Broadband Antenna	3	(21)
1GHz-18GHz	Double Ridged Horn Antenna	3	Construction of the second
18GHz-25GHz	Horn Anternna	1	
	A 11 1 1 1 1 1 1		

Setting test receiver/spectrum as following table states: 7.

Test Frequency range	Test Receiver/Spectrum Setting	Detector		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP		
and the second se	Peak Value: RBW=1MHz/VBW=3MHz,	TING		
1GHz-40GHz	Sweep time=Auto	Peak		
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,			
	Sweep time=Auto			

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

le calculation is as follows.	
RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(20)
	CTA'
Shenzhen CTA Testin	a Technoloay Co., Ltd.

Transd=AF +CL-AG

RADIATION LIMIT

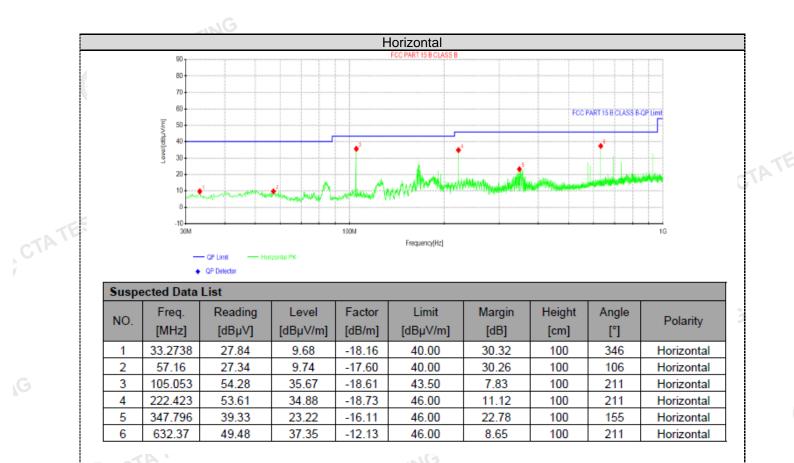
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.05	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:


- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTA TESTING

For 30MHz-1GHz

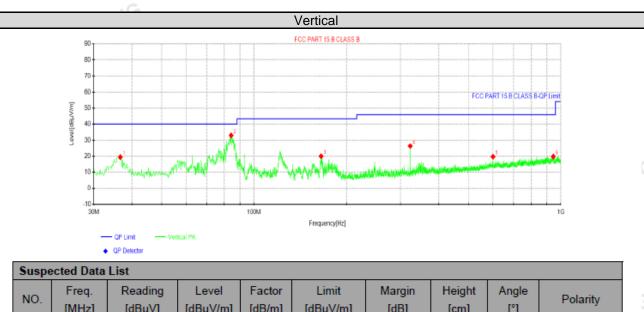
TATE

CIA

Note:1).Level (dBµV/m)= Reading (dBµV/m)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)


Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATESTING

Page 17 of 31

TATE

GA CTATE

NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty
1	36.6688	37.14	19.53	-17.61	40.00	20.47	100	263	Vertical
2	84.1988	53.79	33.05	-20.74	40.00	6.95	100	77	Vertical
3	165.315	41.36	20.05	-21.31	43.50	23.45	100	247	Vertical
4	322.697	43.14	26.33	-16.81	46.00	19.67	100	287	Vertical
5	600.723	31.99	19.77	-12.22	46.00	26.23	100	151	Vertical
6	944.952	28.87	19.86	-9.01	46.00	26.14	100	126	Vertical
	ATE				STING				
K () /	P				STIL				

Note:1).Level (dBµV/m)= Reading (dBµV/m)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATE

Page 18 of 31

For 1GHz to 25GHz

		NG		GFSK (abo	ve 1GHz)					
Frequency(MHz):			24	02	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.34	PK	74	12.66	65.61	32.33	5.12	41.72	-4.27	
4804.00	45.37	AV	54	8.63	49.64	32.33	5.12	41.72	-4.27	
7206.00	54.37	PK	74	19.63	54.89	36.6	6.49	43.61	-0.52	
7206.00	43.30	AV	54	10.70	43.82	36.6	6.49	43.61	-0.52	

Freque	Frequency(MHz):			2402		arity:	VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.76	PK	74	15.24	63.03	32.33	5.12	41.72	-4.27
4804.00	42.89	AV	54	11.11	47.16	32.33	5.12	41.72	-4.27
7206.00	51.63	🖉 PK	74	22.37	52.15	36.6	6.49	43.61	-0.52
7206.00	40.72	AV	54	13.28	41.24	36.6	6.49	43.61	-0.52

Freque	ncy(MHz):		2440		Polarity:		HORIZONTAL			
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4880.00	61.84	PK	74	12.16	65.72	32.6	5.34	41.82	-3.88	
4880.00	46.25	AV	54	7.75	50.13	32.6	5.34	41.82	-3.88	
7320.00	53.87	PK	74	20.13	53.98	36.8	6.81	43.72	-0.11	
7320.00	43.62	AV	54	10.38	43.73	36.8	6.81	43.72	-0.11	
A CONTRACTOR OF THE OWNER				(P)	-ING					

Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.26	PK	74	14.74	63.14	32.6	5.34	41.82	-3.88
4880.00	43.67	AV	54	10.33	47.55	32.6	5.34	41.82	-3.88
7320.00	51.29	PK	74	22.71	51.40	36.8	6.81	43.72	-0.11
7320.00	41.04	AV	54	12.96	41.15	36.8	6.81	43.72	-0.11
			GTIN						

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.72	PK	74	12.28	64.80	32.73	5.66	41.47	-3.08
4960.00	45.77	AV	54	8.23	48.85	32.73	5.66	41.47	-3.08
7440.00	55.58	PK	74	18.42	55.13	37.04	7.25	43.84	0.45
7440.00	44.37	PK	54	9.63	43.92	37.04	7.25	43.84	0.45

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Frequency(MHz):			2480		Polarity:		VERTICAL		
4960.0043.19AV5410.8146.2732.735.6641.47-3.087440.0053.00PK7421.0052.5537.047.2543.840.457440.0041.79PK5412.2141.3437.047.2543.840.45		Lev	vel		•	Value	Factor	Factor	amplifier	
7440.00 53.00 PK 74 21.00 52.55 37.04 7.25 43.84 0.45 7440.00 41.79 PK 54 12.21 41.34 37.04 7.25 43.84 0.45	4960.00	59.14	PK	74	14.86	62.22	32.73	5.66	41.47	-3.08
7440.00 41.79 PK 54 12.21 41.34 37.04 7.25 43.84 0.45	4960.00	43.19	AV	54	10.81	46.27	32.73	5.66	41.47	-3.08
	7440.00	53.00	PK	74	21.00	52.55	37.04	7.25	43.84	0.45
	7440.00	41.79	PK	54	12.21	41.34	37.04	7.25	43.84	0.45
REMARKS: Shenzhen CTA Testing Technology Co., Ltd.	REMARKS	:				0	Contraction of the second			CTA

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

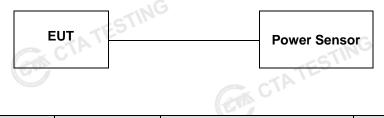
Results of Band Edges Test (Radiated)

Frequency(MHz):		24	<u>GFS</u> 02		arity:	HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu)	sion vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.67	PK	74	12.33	72.09	27.42	4.31	42.15	-10.42
2390.00	44.21	AV	54	9.79	54.63	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.09	PK	74	14.91	69.51	27.42	4.31	42.15	-10.42
2390.00	41.63	AV	54	12.37	52.05	27.42	4.31	42.15	-10.42
Freque	Frequency(MHz):		2480		P olarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
		PK	74	12.86	71.25	27.7	4.47	42.28	-10.11
2483.50	61.14					27.7	1 17	42.28	-10.11
2483.50 2483.50	61.14 42.68	AV	54	11.32	52.79	21.1	4.47	42.20	10.11
2483.50		AV	54 24			arity:		VERTICAL	
2483.50	42.68	AV : sion vel	1						
2483.50 Freque Frequency	42.68 ncy(MHz) Emis Lev	AV : sion vel	24 Limit	80 Margin	Pola Raw Value	arity: Antenna Factor	Cable Factor	VERTICAL Pre- amplifier	Correction Factor

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

Maximum Peak Output Power 4.3


Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Test Results		CTA THE		TESTING
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	0.34	Contraction of the second s	
GFSK 1Mbps	ة 19	0.94	30.00	Pass
TATEST	39	1.36		

Note: 1.The test results including the cable lose.S

4.4 **Power Spectral Density**

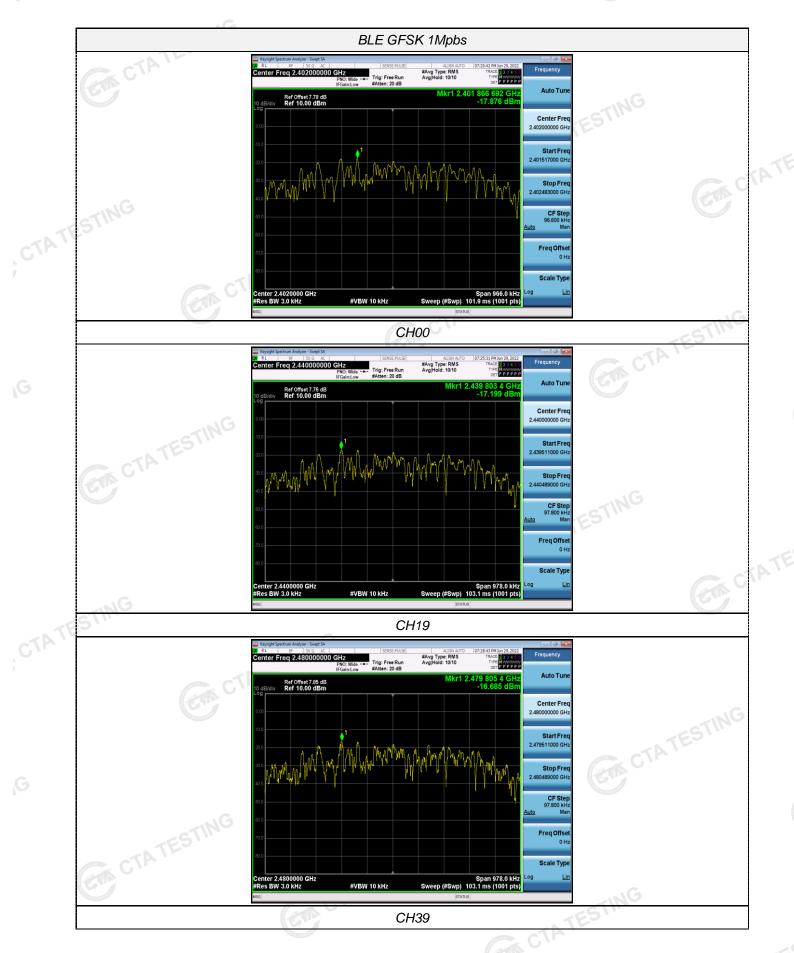
Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


EUT	CTATES III	SPECTRUM ANALYZER	TESTING
		GA C	78.
	Dower Crostro		

Test Results

O0 -17.88 8.00 Pass GFSK 1Mbps 19 -17.20 8.00 Pass 39 -16.69 6 6 6	Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
39 -16.69	TIM	00	-17.88		12 martin
TATES	GFSK 1Mbps	19	-17.20	8.00	Pass
Test plot as follows:		39	-16.69		
CTA TEST.	Test plot as follow	s: CTATL		TING	TESTING

Test plot as follows:

Page 22 of 31

4.5 6dB Bandwidth

Limit

ESTING For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

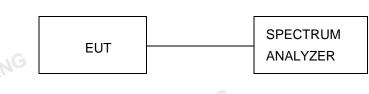
Test Configuration

Test Results

G		ANALYZ	ER	
Test Results		GIACIT		CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	G 00	0.644		
GFSK 1Mbps	19	0.652	≥500	Pass
TATES	39	0.652		
Test plot as follows:	(CA)	TATESTING	CTATESTIN	G

Page 24 of 31

Out-of-band Emissions 4.6

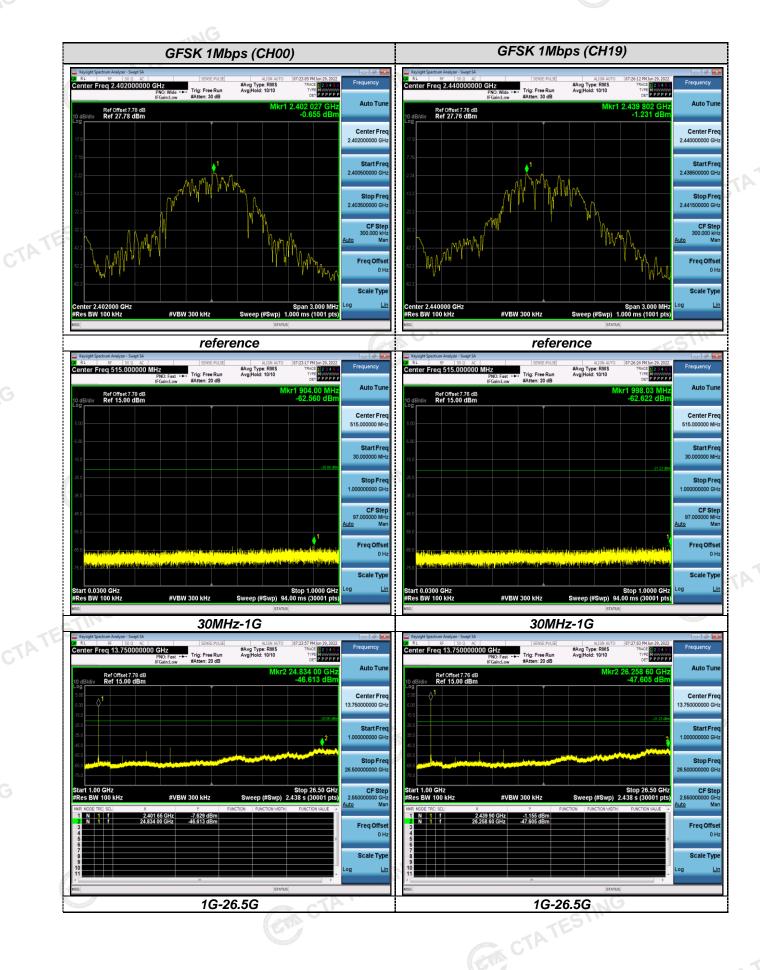

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are GTA CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows: or p

Page 26 of 31

Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 0.00 dBi.

Remark: The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT

6 Photos of the EUT

Reference to the test report No. **CTA22062800101**