

FCC ID :	2A525-AFF159				
Test Report No:	TCT250306E020				
Date of issue:	Mar. 20, 2025				
Testing laboratory: :	SHENZHEN TONGCE TESTIN	SHENZHEN TONGCE TESTING LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an Distri 518103, People's Republic of C	ct, Shenzhen, Guangdor			
Applicant's name: :	Jiangsu Zhong Heng Pet Article	es Joint-stock CO., LTD	No.		
Address:	NO.1388 Century Avenue, Yan Jiangsu, China	du District, Yancheng Ci	ity,		
Manufacturer's name :	Jiangsu Zhong Heng Pet Article	es Joint-stock CO., LTD			
Address:	NO.1388 Century Avenue, Yan Jiangsu, China	du District, Yancheng Ci	ity,		
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2020				
Product Name::	Automatic Pet Feeder				
Trade Mark :	N/A				
Model/Type reference :	AFF159, 16078W-2.4G-WX, W	SQ-D002			
Rating(s):	Adapter Information: MODEL: KA0601A-0501200US INPUT: AC 100-240V, 50/60Hz OUTPUT: DC 5V, 1200mA				
Date of receipt of test item	Mar. 06, 2025				
Date (s) of performance of test:	Mar. 06, 2025 ~ Mar. 20, 2025		6		
Tested by (+signature) :	Ronaldo LUO	R-snale & GWABE			
Check by (+signature) :	Beryl ZHAO	Boy 1 2 TCT			
Approved by (+signature):	Tomsin	Toms is at			

TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1. General Product Information	ation			3
1.1. EUT description	<u> </u>			3
1.2. Model(s) list				
1.3. Operation Frequency		<u></u>		3
2. Test Result Summary		<u></u>		4
3. General Information				
3.1. Test environment and m	node			5
3.2. Description of Support	Units			5
4. Facilities and Accreditat	tions			6
4.1. Facilities	<u>;)</u> ((<u>5)</u>		6
4.2. Location				6
4.3. Measurement Uncertain	ty			6
5. Test Results and Measu	rement Data	<u>ve</u>		
5.1. Antenna requirement				7
5.2. Conducted Emission		<u></u>		8
5.3. Conducted Output Powe	er	<u> </u>	\sim	12
5.4. Emission Bandwidth				
5.5. Power Spectral Density				14
5.6. Conducted Band Edge a	and Spurious Emissi	on Measuremer	nt	15
5.7. Radiated Spurious Emis	ssion Measurement			17
Appendix A: Test Result of	Conducted Test			
Appendix B: Photographs	of Test Setup			
Appendix C: Photographs	of EUT			

1. General Product Information

1.1. EUT description

Product Name:	Automatic Pet Feeder	6	
Model/Type reference:	AFF159)	
Sample Number	TCT250306E020-0101		
Bluetooth Version:	V4.2		
Operation Frequency:	2402MHz~2480MHz		
Channel Separation:	2MHz		(c ¹)
Number of Channel:	40		
Modulation Type:	GFSK		
Antenna Type:	PCB Antenna		
Antenna Gain:	2.54dBi		
Rating(s):	Adapter Information: MODEL: KA0601A-0501200USU INPUT: AC 100-240V, 50/60Hz, 0.2A OUTPUT: DC 5V, 1200mA	Max	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	AFF159	\boxtimes
Other models	16078W-2.4G-WX, WSQ-D002	
Note: AFF159 is test	ed model, other models are derivative models. The models are identical	in circuit and PCB

layout, only different on the model names. So the test data of AFF159 can represent the remaining models.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	$\langle \mathcal{O} \rangle$	(G)	(, Ć	·)	(\mathbf{C})	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark: Ch	nannel 0, 19	& 39 have b	been tested.	X			

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Page 4 of 47

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	24.1 °C	22.7 °C
Humidity:	55 % RH	57 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	Bluetooth RF TestTool Vers	sion :5.2.3.14
Power Level:	0x50	
Test Mode:		

Engineer mode:

Keep the EUT in continuous transmitting by select channel and modulations.

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
				1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

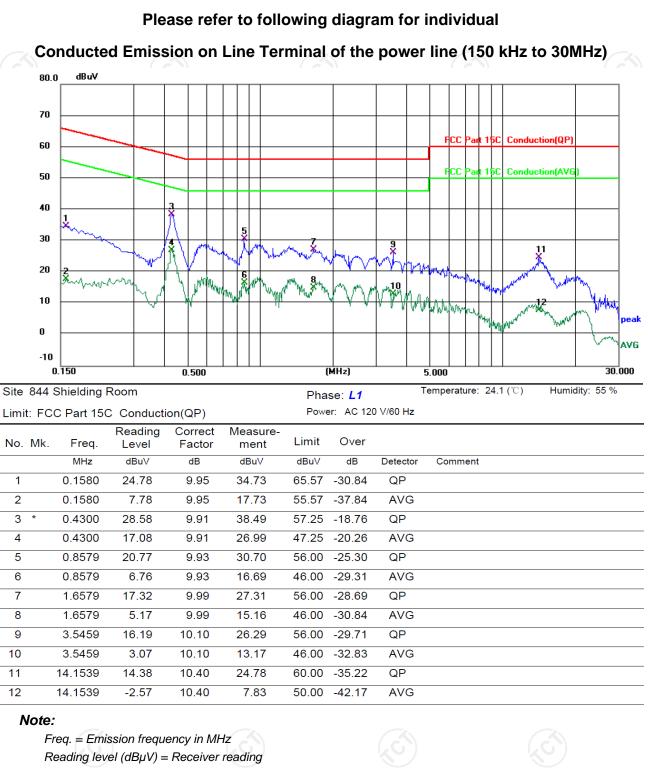
E.U.T Antenna:

The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 2.54dBi.

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207		
Test Method:	ANSI C63.10:2020			
Frequency Range:	150 kHz to 30 MHz			
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto			
	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	Average	
Limits:	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	Referenc	e Plane		
Test Setup:	40cm	r ^{80cm} LISN Filter	r — AC power	
	Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	EMI Receiver		
Test Mode:	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m Transmitting Mode	EMI Receiver		
	 Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m Transmitting Mode The E.U.T is connel impedance stabiliz provides a 500hm/s measuring equipme The peripheral device power through a Li coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables 	EMI Receiver etwork etwork etwork etwork etwork etwork etwork etwork etwork etwork fould to an adapte etwork fould to an adapte etwork fould coupling im nt. etwork fould coupling im nt. fould coupling im diagram of the line are checked in order to fin e positions of equal s must be changed	er through a line (L.I.S.N.). This pedance for the ected to the main s a 50ohm/50ut nination. (Please test setup and test setup and ed for maximun nd the maximun ipment and all o jed according to	
Test Mode: Test Procedure: Test Result:	Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m Transmitting Mode 1. The E.U.T is conner impedance stabiliz provides a 50ohm/s measuring equipme 2. The peripheral device power through a Li coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative	EMI Receiver etwork etwork etwork etwork etwork etwork etwork etwork etwork etwork fould to an adapte etwork fould to an adapte etwork fould coupling im nt. etwork fould coupling im nt. fould coupling im diagram of the line are checked in order to fin e positions of equal s must be changed	er through a line (L.I.S.N.). This pedance for the ected to the mains a 50ohm/50ut nination. (Please test setup and test setup and ed for maximum ipment and all c jed according to	


5.2.2. Test Instruments

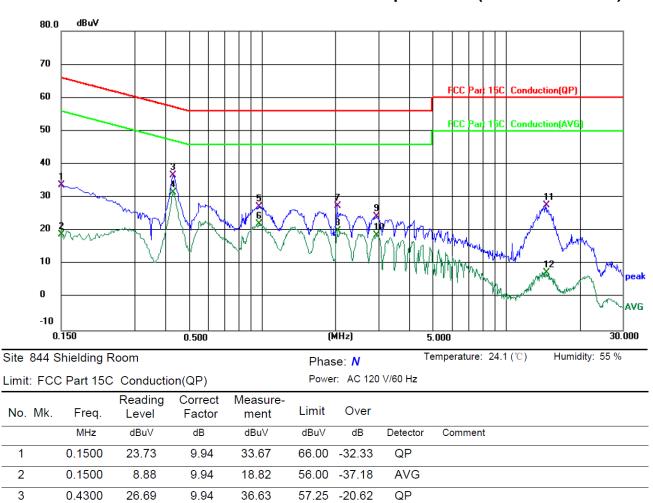
	Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Date of Cal.	Due Date		
EMI Test Receiver	R&S	ESCI3	100898	Jun. 27, 2024	Jun. 26, 2025		
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 21, 2025	Jan. 20, 2026		
Attenuator	N/A	10dB	164080	Jun. 27, 2024	Jun. 26, 2025		
Line-5	тст	CE-05	/	Jun. 27, 2024	Jun. 26, 2025		
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	(4)	1		

Page 9 of 47

5.2.3. Test data

Corr. Factor (dB) = LISN factor + Cable loss

 $Measurement (dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$


Limit ($dB\mu V$) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

47.25 -15.79

56.00 -28.77

56.00 -28.46

56.00 -31.73

46.00 -27.40

50.00 -42.57

-23.93

-26.07

-32.27

46.00

46.00

60.00

AVG QP

AVG

QP

AVG

QP

AVG

QP

AVG

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Note1: Freq. = Emission frequency in MHz

21.52

17.26

12.10

17.51

9.90

14.20

8.53

17.27

-3.03

9.94

9.97

9.97

10.03

10.03

10.07

10.07

10.46

10.46

31.46

27.23

22.07

27.54

19.93

24.27

18.60

27.73

7.43

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

- Limit $(dB\mu V) = Limit$ stated in standard
- Margin (dB) = Measurement (dB μ V) Limits (dB μ V)
- Q.P. =Quasi-Peak

AVG =average

4

5

6

7 8

9

10

11

12

0.4300

0.9700

0.9700

2.0260

2.0260

2.9539

2.9539

14.5420

14.5420

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2: Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle channel) was submitted only.

Page 11 of 47

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

5.3.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Date of Cal.	Due Date
Spectrum Analyzer	Analyzer		MY49100619	Jun. 27, 2024	Jun. 26, 2025
Combiner Box			/	/	/

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Date of Cal.	Due Date	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2024	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB		1	S) 1	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greate than 8dBm in any 3kHz band at any time interval o continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Equipment	Equipment Manufacturer		Model No. Serial Number		Due Date	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2024	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB	/	/	/	
(, c				G	S)	

5.6. Conducted Band Edge and Spurious Emission Measurement

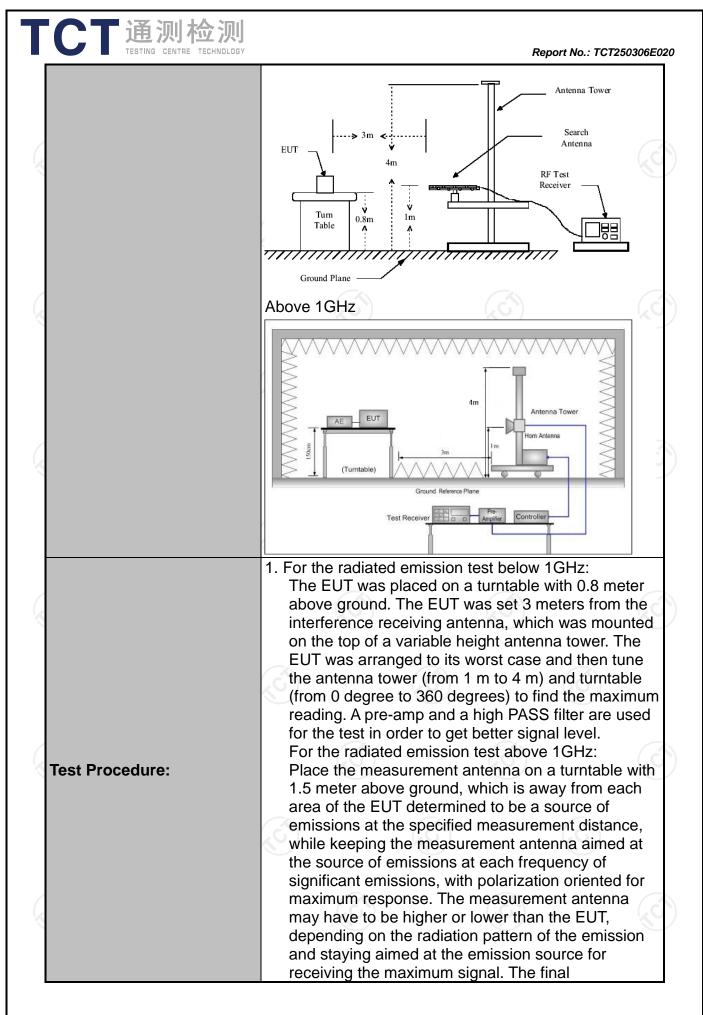
5.6.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section	15.247 (d)					
Test Method:	KDB 558074 D01 v05r0	KDB 558074 D01 v05r02					
Limit:	In any 100 kHz band frequency band, the non-restricted bands sh 30dB relative to the ma RF conducted measur which fall in the restrict 15.205(a), must also co limits specified in Section	emissions which fa nall be attenuated at lea aximum PSD level in 10 rement and radiated ted bands, as defined comply with the radiated	II in the ast 20 dB a 00 kHz by emissions in Sectior				
Test Setup:	Spectrum Analyzer	EUT					
Test Mode:	Refer to item 3.1						
Test Procedure:	compensated to the 2. Set to the maximum EUT transmit contin 3. Set RBW = 100 kHz, Unwanted Emission bandwidth outside of shall be attenuated maximum in-band p maximum peak cond used. If the transmit power limits based of a time interval, the a	e. The path loss was results for each measu power setting and enab uously. VBW=300 kHz, Peak I s measured in any 100 f the authorized frequer by at least 20 dB relativ eak PSD level in 100 kl ducted output power pro- ter complies with the co on the use of RMS avera- attenuation required unc 30 dB instead of 20 dB the results in the test re-	rement. le the Detector. kHz ncy band re to the Hz when ocedure is onducted aging over der this per				
		in the operating freque					

5.6.2. Test Instruments

Agilent Ascentest	N9020A	Number MY49100619 /	Jun. 27, 2024 /	Jun. 26, 2025 /
Ascentest	AT890-RFB	/	1	1
	$\langle \mathcal{G} \rangle$	$(\mathbf{z}^{\mathbf{z}})$		

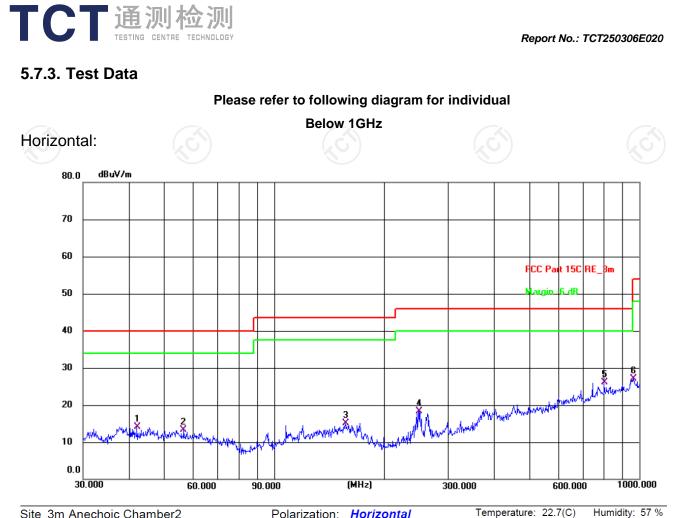

5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10	0:2020						
Frequency Range:	9 kHz to 25 (GHz						
Measurement Distance:	3 m	3 m						
Antenna Polarization:	Horizontal &	Horizontal & Vertical						
Operation mode:	Refer to item	Refer to item 3.1						
	Frequency 9kHz- 150kHz	Detector Quasi-pea		VBW 1kHz	Remark Quasi-peak Value			
Receiver Setup:	150kHz- 30MHz	Quasi-pea		30kHz	Quasi-peak Value			
•	30MHz-1GHz	Quasi-pea		300KHz	Quasi-peak Value			
	Above 1GHz	Peak Peak	1MHz	3MHz 10Hz	Peak Value Average Value			
		Реак	1MHz		Average value			
	Frequen	псу	Field Stre (microvolts	-	Measurement Distance (meters)			
	0.009-0.490		2400/F(KHz)		300			
	0.490-1.705		24000/F(30	KHz)	30			
	<u>1.705-30</u> 30-88		100		3			
	88-216		150		3			
Limit:	216-960		200		3			
	Above 9	60	500		3			
	Frequency	Frequency (micr		Measure Distan (meter	ce Detector			
		(500	3	Average			
	Above 1GHz	z	5000	3 Peak				
	-	For radiated emissions below 30MHz						
	Di	stance = 3m			Computer			
	Pre - Amplifier							
Test setup:	0.8m	Im Im						
	<u> </u>	Receiver						
	30MHz to 1GHz							

Page 17 of 47

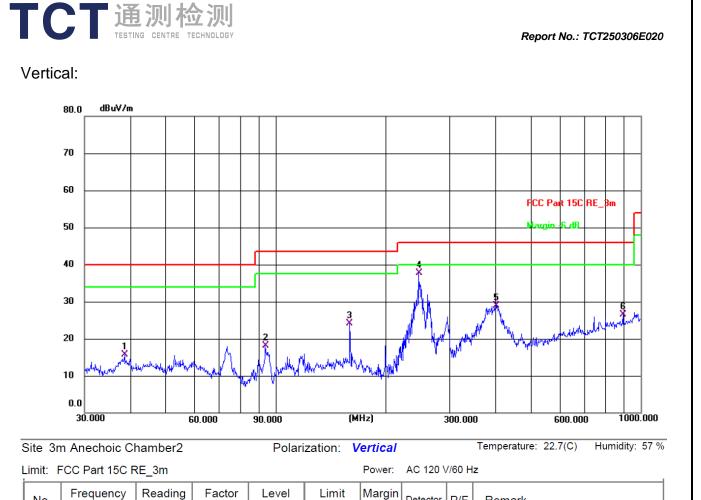

CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT250306E
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS

5.7.2. Test Instruments

	Radiated Emission Test Site (966)									
Equipment	Manufacturer	anufacturer Model Serial Nu		Date of Cal.	Due Date					
EMI Test Receiver			100529	Jan. 21, 2025	Jan. 20, 2026					
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 27, 2024	Jun. 26, 2025					
Pre-amplifier	SKET	LNPA_0118G-45	SK2021012102	Jan. 21, 2025	Jan. 20, 2026					
Pre-amplifier	SKET	LNPA_1840G-50	SK202109203500	Jan. 21, 2025	Jan. 20, 2026					
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024	Jun. 26, 2025					
Loop antenna	Loop antenna Schwarzbeck		00191	Jun. 27, 2024	Jun. 26, 2025					
Broadband Antenna Schwarzbeck		VULB9163	340	Jun. 29, 2024	Jun. 28, 2025					
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 29, 2024	Jun. 28, 2025					
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 23, 2025	Jan. 22, 2026					
Coaxial cable	SKET	RE-03-D	/	Jun. 27, 2024	Jun. 26, 2025					
Coaxial cable	SKET	RE-03-M	1	Jun. 27, 2024	Jun. 26, 2025					
Coaxial cable	SKET	RE-03-L /		Jun. 27, 2024	Jun. 26, 2025					
Coaxial cable	SKET	RE-04-D	/	Jun. 27, 2024	Jun. 26, 2025					
Coaxial cable	SKET	RE-04-M	/	Jun. 27, 2024	Jun. 26, 2025					
Coaxial cable	SKET	RE-04-L	1	Jun. 27, 2024	Jun. 26, 2025					
Antenna Mast	Keleto	RE-AM	/	/	/					
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	1	1					

Page 20 of 47

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Site 3m Anechoic Chamber2

Polarization: Horizontal

Limit:	FCC Part 15C R	RE_3m			Power:	Power: AC 120 V/60 Hz				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	42.1541	32.68	-18.55	14.13	40.00	-25.87	QP	Ρ		
2	56.5929	32.15	-18.86	13.29	40.00	-26.71	QP	Ρ		
3	156.4577	32.09	-16.93	15.16	43.50	-28.34	QP	Ρ		
4	248.5519	37.97	-19.57	18.40	46.00	-27.60	QP	Ρ		
5 *	801.7863	32.87	-6.72	26.15	46.00	-19.85	QP	Ρ		
6	965.5420	31.79	-4.63	27.16	54.00	-26.84	QP	Ρ		

Page 21 of 47

6 893.8566 32.64 -6.16 26.48 46.00 -19.52 QP Ρ Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower

Limit

40.00

43.50

43.50

46.00

46.00

(dBuV/m) (dBuV/m)

Detector

QP

QP

QP

QP

QP

(dB)

-24.22

-25.44

-19.41

-8.25

-17.15

P/F

Ρ

Ρ

Ρ

Ρ

Ρ

Remark

- than the limit line per 15.31(o) was not reported 2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle
 - channel) was submitted only.
- 3. Freq. = Emission frequency in MHz

Reading

(dBuV)

34.44

40.23

41.26

57.36

43.72

Factor

(dB/m)

-18.66

-22.17

-17.17

-19.61

-14.87

Level

15.78

18.06

24.09

37.75

28.85

Frequency

(MHz)

38.6160

93.7684

159.7844

246.8149

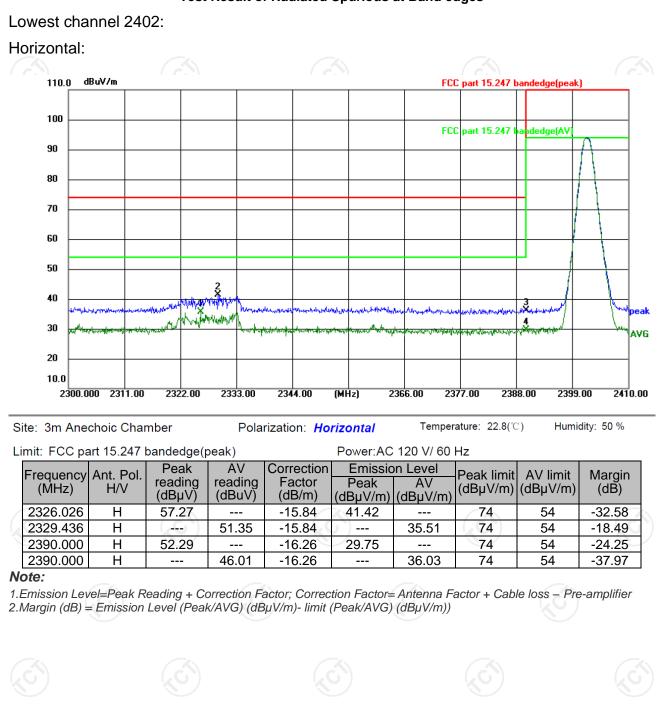
403.2500

No.

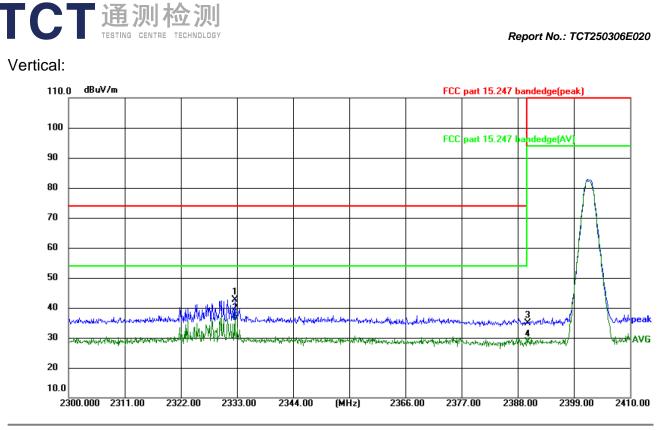
1

2

3


4 * 5

- Measurement $(dB\mu V/m) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$
- Correction Factor= Antenna Factor + Cable loss Pre-amplifier

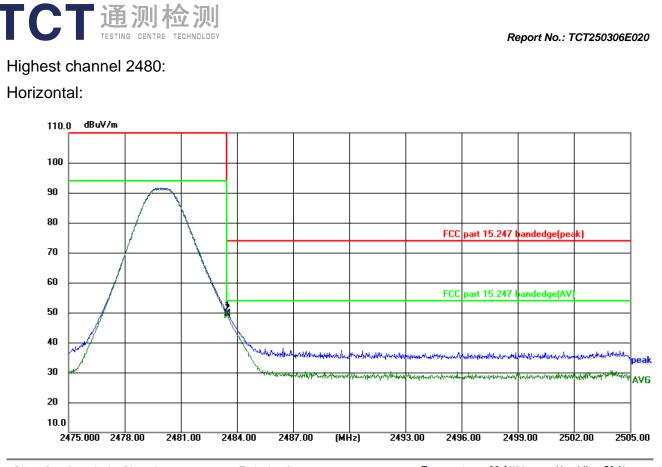

Limit $(dB\mu V/m) = Limit$ stated in standard

- Margin (dB) = Measurement (dB μ V/m) Limits (dB μ V/m)
- * is meaning the worst frequency has been tested in the test frequency range

Test Result of Radiated Spurious at Band edges

Page 23 of 47

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 22.8(°C) Humidity: 50 %


Limit: FCC part 15.247 bandedge(peak)

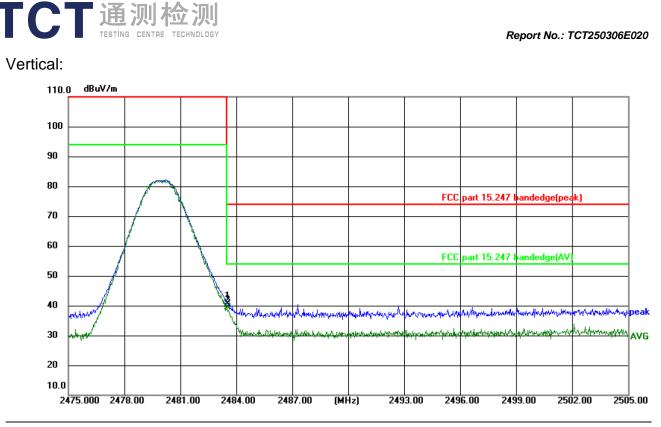
Power:AC 120 V/ 60 Hz

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2332.637	V	58.55	ЦĶО Ц	-15.84	42.69		74	54	-31.31
2332.637	V		53.14	-15.84		37.28	74	54	-16.72
2390.000	V	51.05		-16.26	34.79		74	54	-39.21
2390.000	V		44.84	-16.26		28.58	74	54	-25.42

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier 2. Margin (dB) = Emission Level (Peak/AVG) (dB μ V/m)- limit (Peak/AVG) (dB μ V/m))

Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 22.8(°C) Humidity: 50 %


Limit: FCC part 15.247 bandedge(peak)

E	roquoncy	Ant. Pol.	Peak	AV	Correction	Emissio	n Level	Peak limit	A\/ limit	Margin
	(MHz)	H/V	reading	reading	Factor	Peak	AV	(dBuV/m)	$(dB\mu V/m)$	
	(11112)	11/ V	(dBµV)	(dBuV)	(dB/m)	(dBµV/m)	(dBµV/m)		(abp v/m)	(ub)
2	483.500	Н	65.55		-15.91	49.64		74	54	-24.36
2	483.500	Н	<u> </u>	64.67	-15.91		48.76	74	54	-5.24

Power:AC 120 V/ 60 Hz

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier 2. Margin (dB) = Emission Level (Peak/AVG) (dB μ V/m)- limit (Peak/AVG) (dB μ V/m))

Temperature: 22.8(℃) Humidity: 50 % Site: 3m Anechoic Chamber Polarization: Vertical

Limit: FCC part 15.247 bandedge(peak)

Power: AC 120 V/ 60 Hz Emission Level Peak AV Correction Frequency Ant. Pol. Peak limit AV limit Margin reading reading Factor Peak AV (MHz) H/V $(dB\mu V/m) | (dB\mu V/m)$ (dB)(dBµV) (dBuV) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ 2483.500 V 56.48 -15.91 40.57 74 54 -33.43 -4-11. 2483.500 V 55.29 -15.91 39.38 74 -14.62 54

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier 2.Margin (dB) = Emission Level (Peak/AVG) (dBµV/m)- limit (Peak/AVG) (dBµV/m))

CT通测检测 TESTING CENTRE TECHNOLOGY

0400 14

Above 1GHz

	Low chann	ei: 2402 IV	IHZ							
	Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
	4804	Н	55.32		-9.51	45.81		74	54	-8.19
5	7206	Н	46.65		-1.41	45.24		74	54	-8.76
		Н								
	4804	V	55.04		-9.51	45.53		74	54	-8.47
	7206	V	45.63	-+20	-1.41	44.22	<u>i</u>	74	54	-9.78
		V				"				

Middle channel: 2440 MHz

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	Peak limit (dBµV/m)		Margin (dB)
4880	Н	55.69		-9.36	46.33	 74	54	-7.67
7320	Н	45.47		-1.15	44.32	 74	54	-9.68
	H			·	(
ļ			Ň)				
4880	V	56.52		-9.36	47.16	 74	54	-6.84
7320	V	46.10		-1.15	44.95	 74	54	-9.05
	V					 		

				(.0					(.c
High chanr	nel: 2480 N	ЛНz		0					<u> </u>
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Н	55.36		-9.20	46.16		74	54	-7.84
7440	H	45.77		-0.96	44.81		74	54	-9.19
	Н								
4960	V	54.03		-9.20	44.83		74	54	-9.17
7440	V	45.41		-0.96	44.45		74	54	-9.55
	V				/				<i></i>

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

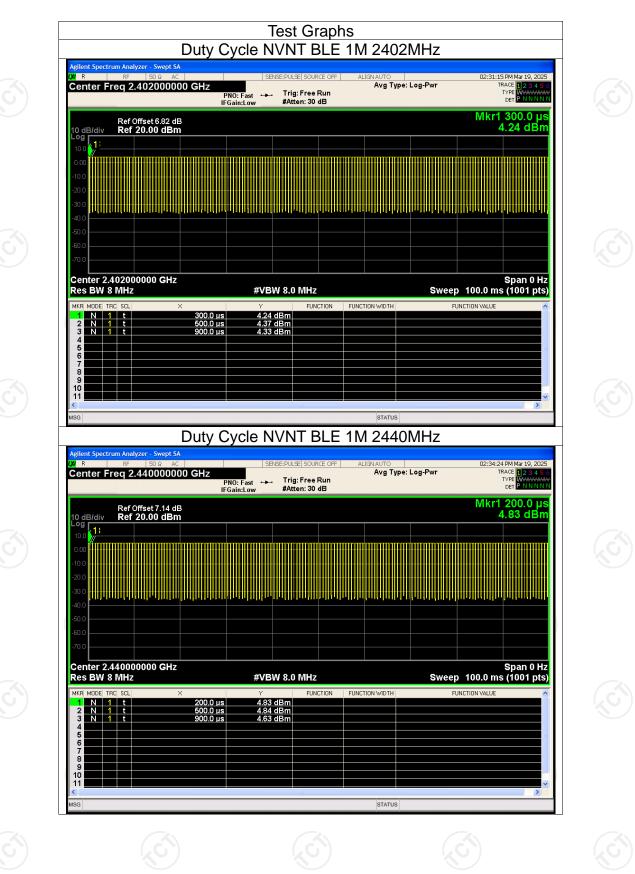
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

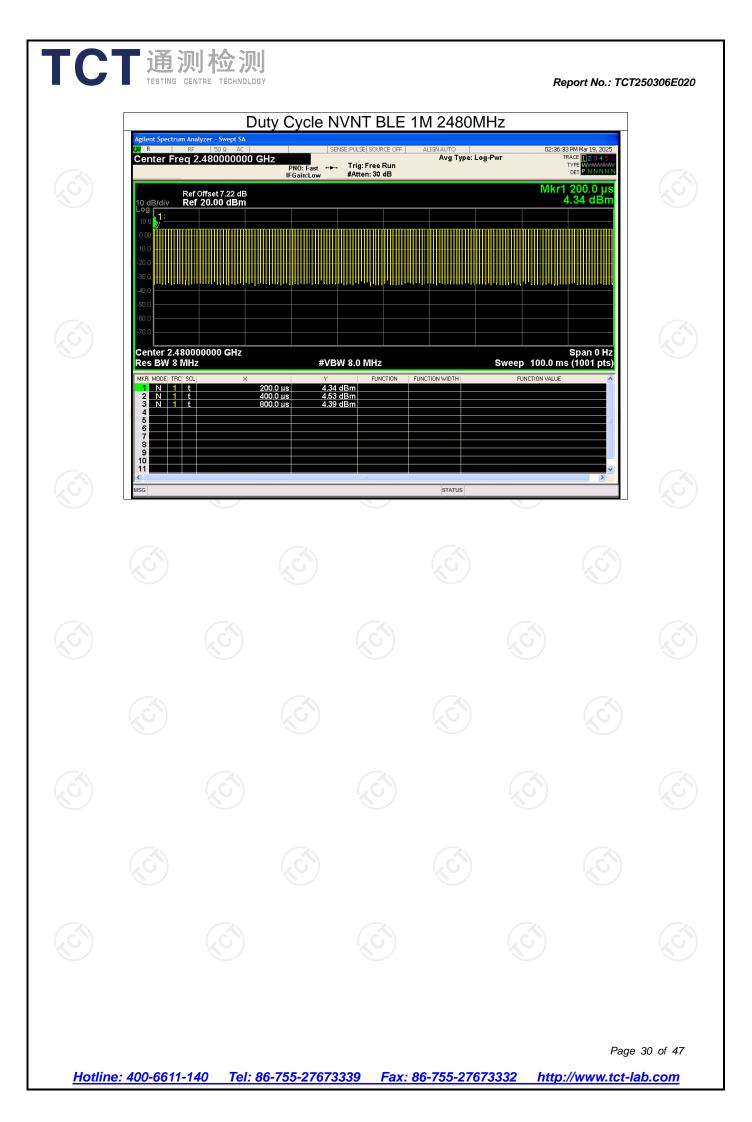
6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

	(c)	Du	uty Cycle		
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	80.02	0.97	2.5
NVNT	BLE 1M	2440	80.02	0.97	2.5
NVNT	BLE 1M	2480	80.02	0.97	2.5

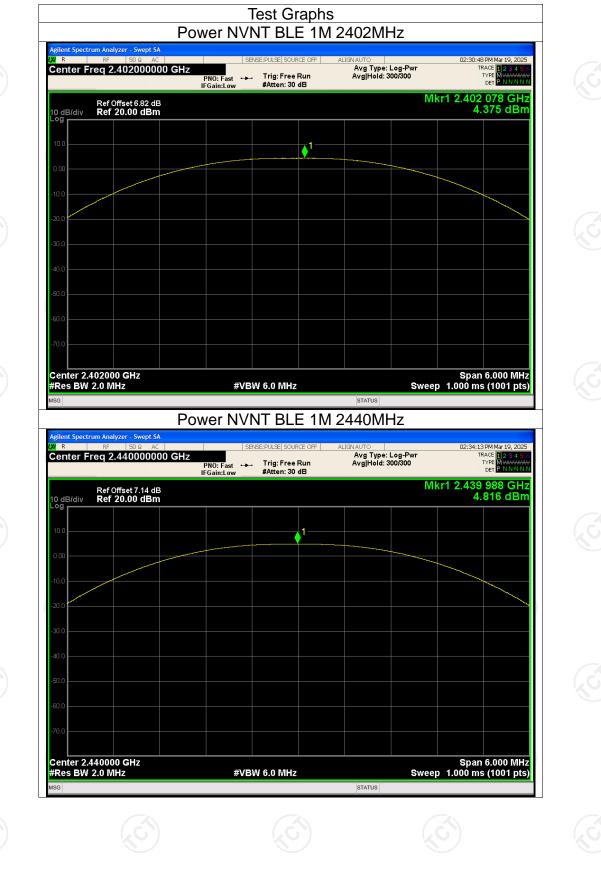

<u>Hotlin</u>	e: 400-6611-	<u>140 Tel: 8</u>	86-755-27673	1339 Fax:	<u>86-755-2767</u>	<u>3332 http</u>	Page :// www.tct-la	28 of 47 1 <mark>b.com</mark>

Fax: 86-755-27673332

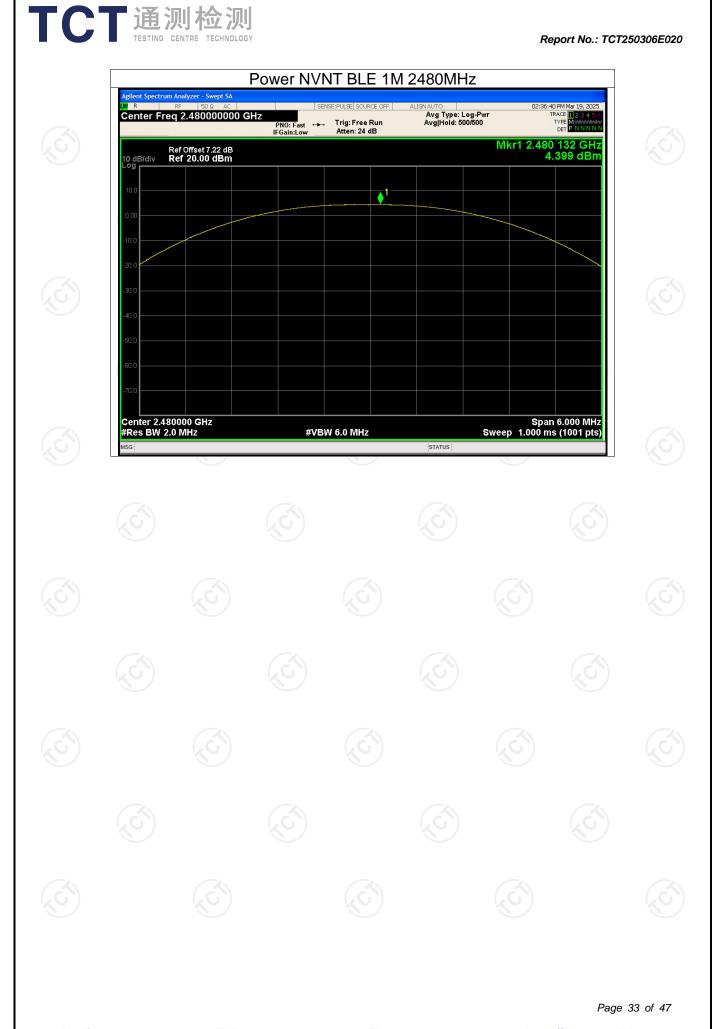

http://www.tct-lab.com

Tel: 86-755-27673339

Hotline: 400-6611-140



Report No.: TCT250306E020


Condition	Mode	Frequency (MHz)	ted Output Powe Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT NVNT NVNT	BLE 1M BLE 1M BLE 1M	2402 2440 2480	4.38 4.82 4.40	30 30 30 30	Pass Pass Pass
Ś				(Ś
					Page 31 of 47

TCT通测检测 TESTING CENTRE TECHNOLOGY

TCT通测检测 TEGTING CENTRE TECHNOLOGY

Page 32 of 47

Page 34 of 47			
http://www.tct-lab.com	Fax: 86-755-27673332	Tel: 86-755-27673339	Hotline: 400-6611-140

Condition	Mode	Frequenc (MHz)	-6dB Bandw y -6 dB Ban (MH	dwidth	Limit -6 dB Bandwidth (MH	z) Verdict
NVNT NVNT NVNT	BLE 1M BLE 1M BLE 1M	2402 2440 2480	0.66 0.65 0.64	5 1	0.5 0.5 0.5	Pass Pass Pass

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250306E020

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 35 of 47

CT	通测检测
	TESTING CENTRE TECHNOLOGY

Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-11.45	8	Pass
NVNT	BLE 1M	2440	-10.14	8	Pass
NVNT	BLE 1M	2480	-9.37	8	Pass
				(~

Page 37 of 47

≜¹

Span 1.200 MHz Sweep 126.5 ms (1001 pts)

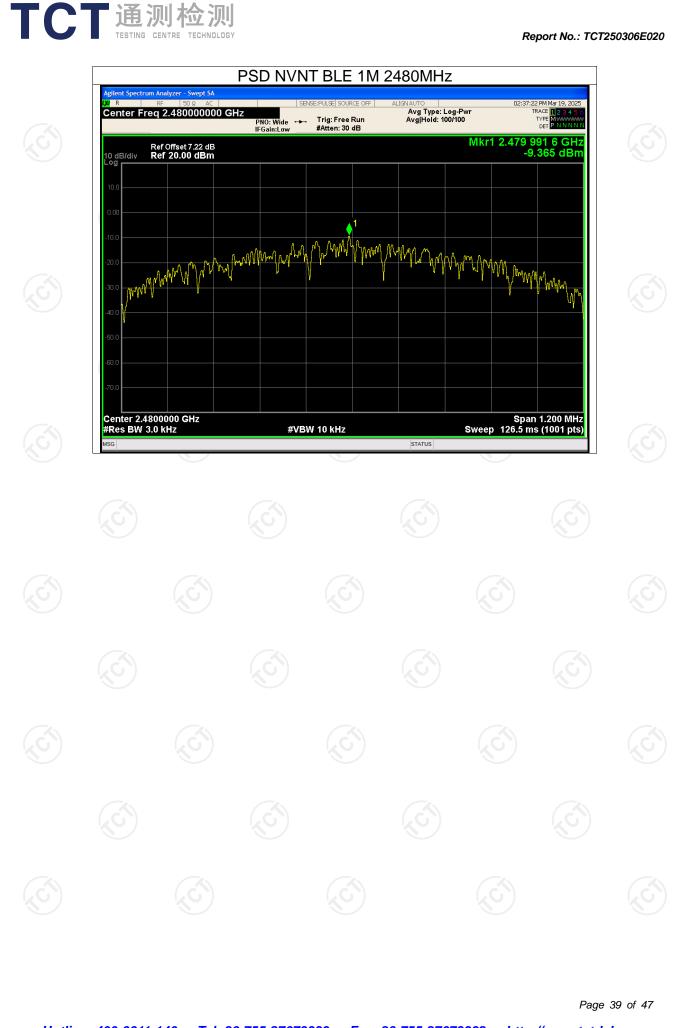
when when a when the when the second when the second when the second sec

Test Graphs PSD NVNT BLE 1M 2402MHz

ent Spectrum Analyzer - Swept SA

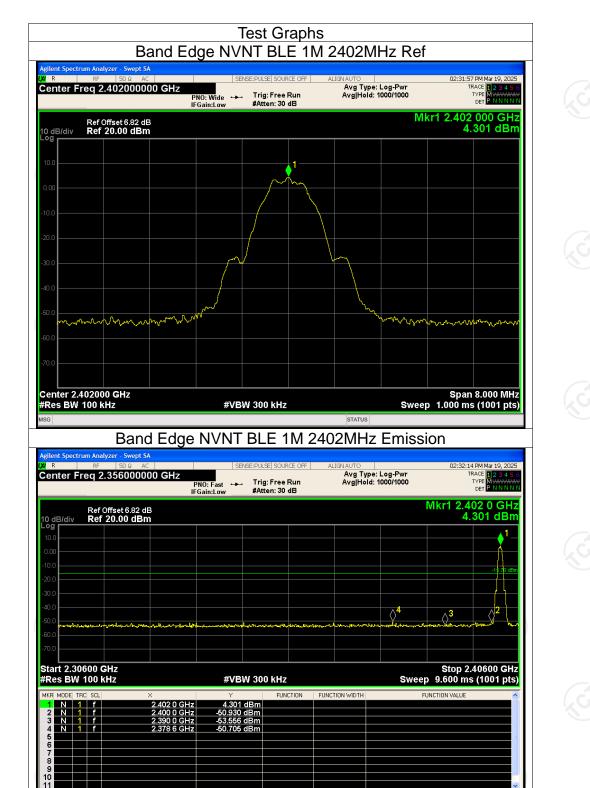
Center Freq 2.402000000 GHz

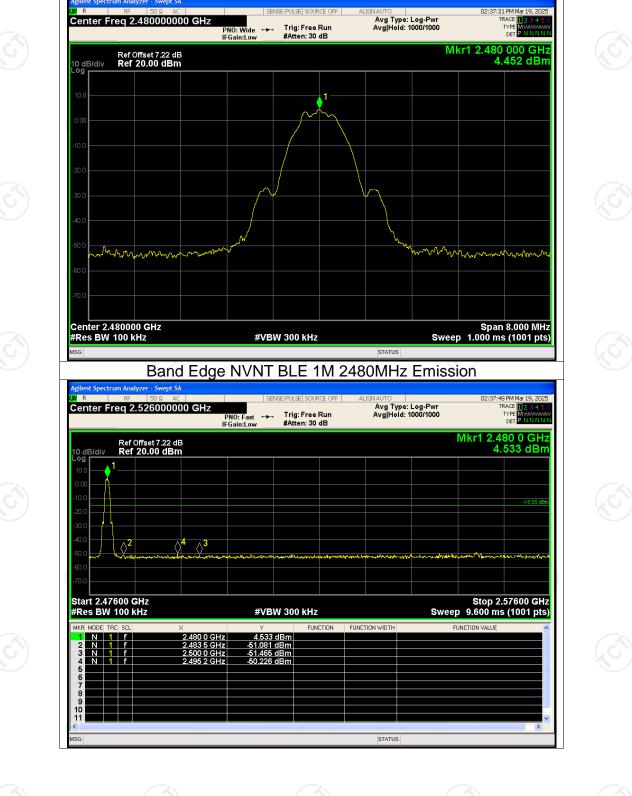
Ref Offset 7.14 dB Ref 20.00 dBm


10 dB/div Log

48 PM Mar 19, 2025

TRACE TYPE DET


Avg Type: Log-Pwr Avg|Hold: 100/100


Condi	tion	Mode	Fre	quency (N	Band Edg /IHz) Ma	e x Value (d	Bc) Lir	nit (dBc)	Verdic
NVN NVN	NT E	BLE 1M BLE 1M		2402 2480		-55.00 -54.67		-20 -20	Pass Pass
			9)	2400		-04.07		-20	1 035

STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250306E020

Band Edge NVNT BLE 1M 2480MHz Ref

gilent Spect

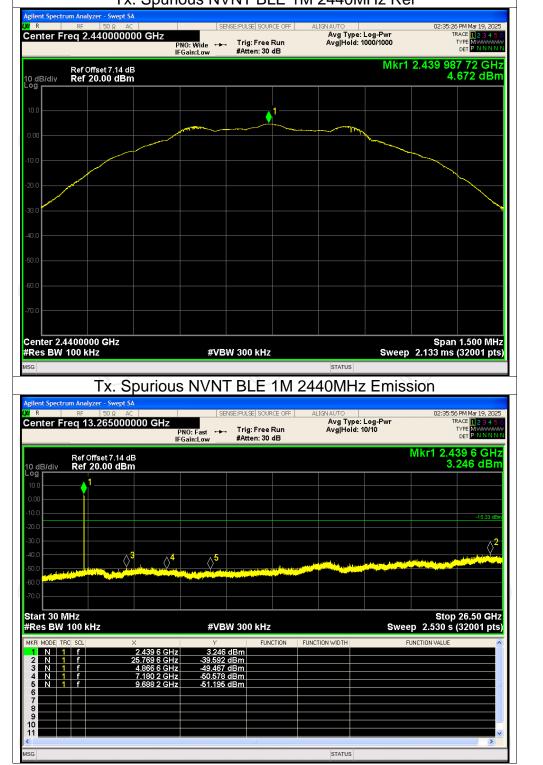
Report No.: TCT250306E020

Page 42 of 47

Condition Mode Frequency (MHz) Max Value (dBc) Limit (dBc) Verdict NVNT BLE 1M 2402 -44.18 -20 Pass NVNT BLE 1M 2480 -44.26 -20 Pass NVNT BLE 1M 2480 -44.13 -20 Pass NUNT BLE 1M 2480 -44.13 -20 Pass NUNT S	TCT通测检测 Testing CENTRE TECHNOLOGY Report No.: TCT2503 Conducted RF Spurious Emission									
NVNT BLE 1M 2440 -44.26 -20 Pass NVNT BLE 1M 2480 -44.13 -20 Pass			de Fre	quency (N		x Value (dl	Bc) Lim			
	NVNT	BLE	1M	2440		-44.26		-20	Pass	
	NVNT	BLE	1M	2480		-44.13		-20	Pass	

Tx. Spurious NVNT BLE 1M 2402MHz Emission 02:33:07 PM Mar 19, 2025 SENSE:PULSE SOURCE OFF

Test Graphs Tx. Spurious NVNT BLE 1M 2402MHz Ref

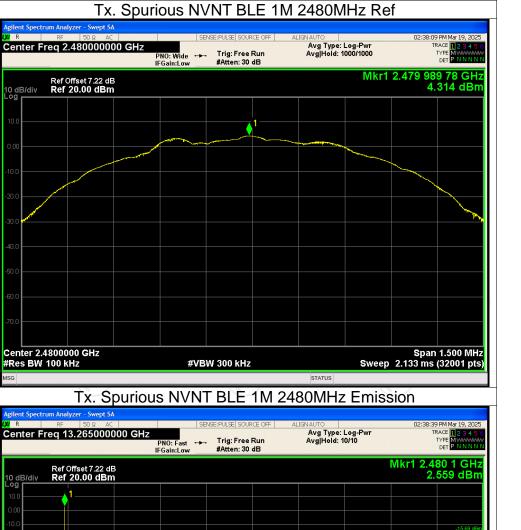

TCT通测检测 TESTING CENTRE TECHNOLOGY

U R

Center Freq 13.265000000 GHz TRACE 1234 TYPE MWWW DET P N N N Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast $\leftrightarrow \rightarrow$ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 5 GHz 2.143 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/di

Report No.: TCT250306E020

Ô



Page 45 of 47

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250306E020

gilent Sp

10 dB/div

U F

Report No.: TCT250306E020

Page 46 of 47