

CINCH Systems

RFCO-A

FCC 15.231:2019

433 MHz Periodic Radio

Report # CINC0042.2

NVLAP LAB CODE: 200881-0

CERTIFICATE OF TEST

Last Date of Test: August 5, 2019 CINCH Systems Model: RFCO-A

Radio Equipment Testing

Standards

Specification	Method
FCC 15.231:2019	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

Report No. CINC0042.2 3/23

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

Report No. CINC0042.2 4/23

FACILITIES

Minnesota	Oregon	Texas	Washington	
Lahs MN01-10		Lahs TX01-09	Labs NC01-05	
			19201 120 th Ave NE	
			Bothell, WA 98011	
			(425)984-6600	
(012) 000 0100	(000) 044 4000	(400) 004 0200	(420)004 0000	
	NVLAP			
NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
Innovation, Sci	ence and Economic Develop	ment Canada		
2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1	
	BSMI			
SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
VCCI				
A-0109	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA				
US0175	US0017	US0191	US0157	
	Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 NVLAP Lab Code: 200881-0 Innovation, Sci 2834E-1, 2834E-3 SL2-IN-E-1152R A-0109 cognized Phase I CAB for IS	Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 NVLAP NVLAP NVLAP Lab Code: 200881-0 Innovation, Science and Economic Develop 2834E-1, 2834E-3 2834D-1 BSMI SL2-IN-E-1152R SL2-IN-E-1017 VCCI A-0109 A-0108 cognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/	Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 NVLAP NVLAP NVLAP Lab Code: 200881-0 NVLAP Lab Code: 200881-0 NVLAP Lab Code: 200630-0 NVLAP Lab Code: 200630-0 NVLAP Lab Code: 200640-0 Innovation, Science and Economic Development Canada 2834E-1, 2834E-3 2834D-1 2834G-1 BSMI SL2-IN-E-1152R SL2-IN-E-1017 SL2-IN-E-1158R VCCI A-0109 A-0108 A-0201 Cognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OIC A-0109 A-CMA A-CMA COMMITTED Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255 NVLAP Lab Code: 200630-0 NVLAP Lab Code: 201049-0 N	

Report No. CINC0042.2 5/23

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. CINC0042.2 6/23

Test Setup Block Diagrams

Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. CINC0042.2 7/23

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CINCH Systems
Address:	12075 43rd Street NE Suite 300
City, State, Zip:	St. Michael, MN 55376
Test Requested By:	Jibril Aga
Model:	RFCO-A
First Date of Test:	April 4, 2019
Last Date of Test:	August 5, 2019
Receipt Date of Samples:	April 4, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Low power periodic radio with one antenna operating at 433.42 MHz used in a fire system sensor for communication with a fire alarm control panel.

Testing Objective:

To demonstrate compliance of the Low Power radio to FCC 15.231 specifications.

Report No. CINC0042.2 8/23

CONFIGURATIONS

Configuration CINC0042- 1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
CO2 Detector	CINCH Systems	RFCO-A	331720

Report No. CINC0042.2 9/23

CONFIGURATIONS

Configuration CINC0046- 1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
CO Detector	CINCH Systems	RFCO-A	136316011

Report No. CINC0042.2 10/23

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Occupied	Tested as	No EMI suppression	EUT remained at
1	2019-04-04	Bandwidth	delivered to	devices were added or	Element following the
		Danaman	Test Station.	modified during this test.	test.
			Tested as	No EMI suppression	EUT remained at
2	2019-04-05	Duty Cycle	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Field	Tested as	No EMI suppression	EUT remained at
3	2019-06-25	Strength of	delivered to	devices were added or	Element following the
		Fundamental	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	Sahadulad taating
4	2019-08-05	Radiated	delivered to	devices were added or	Scheduled testing was completed.
		Emissions	Test Station.	modified during this test.	was completed.

Report No. CINC0042.2 11/23

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx continuous packet at 433.42 MHz. Power level of 37 and 3F.

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0046 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 423 MHz Stop Frequency 443 MHz	
--	--

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	5-Jul-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	23-Feb-2019	12 mo
Cable	Element	Double Ridge Guide Horn Cables	MNV	23-Feb-2019	12 mo
Antenna - Double Ridge	ETS-Lindgren	3115	AJQ	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079 and SA18E-10	AOO	23-Feb-2019	12 mo
Cable	Element	Biconilog Cable	MNX	23-Feb-2019	12 mo
Antenna - Biconilog	ETS Lindgren	3142D	AXO	15-Dec-2017	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. CINC0042.2 12/23

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 1951 mSec Pulsewidth of Type 2 Pulse = 0.0962 mSec Number of Type 1 Pulses = 20 Number of Type 2 Pulses = 40

Duty Cycle = $20 \log [((20)(.1951) + (40)(.0962)))/100] = -22.2 dB$

The duty cycle correction factor of $-22.2\,$ dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

FIELD STRENGTH OF FUNDAMENTAL

					_			1		EmiR5 2019.05.20		PSA-ESCI 2019.05.10	-
w	ork Order:		C0046		Date:		n-2019	7	2	n	Mule		
	Project:		one	I en	nperature:		6 °C	12	yla	ma	mel	m	
Caria	Job Site:		N09 316011	Davama	Humidity:		% RH	_	Factod by	Kulo MoMu	lloo]
Seria		RFCO-A	10011	Barome	etric Pres.:	1011	mbar		ested by:	Kyle McMu	llian		_
Con	figuration:												=
0011	Customer:	CINCH SV	/stems										=
	Attendees:	Jibril Aga	,0101110										-
	UT Power:												=
		- ··	ous packet	at 433.42 l	MHz. Powe	r level of 3	7 and 3F.						-
Opera	ting Mode:												
Г	Deviations:	None											=
_	eviations.												_
		None											
C	comments:												
													-
	cifications						Test Meth						_
FCC 15.23	31:2019						ANSI C63	.10:2013					_
													=
Run #	6	Test Di	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Pa	ass	_
120 -													
100 -													
80 -													
80 -						1							
						•	•						
60 -													
40 -													
00													
20 -													
0 -													
42	23	425	427	429	431	433	43	5 4:	37	439	441	443	
				-		MHz		•					
						1711 12				■ PK	◆ AV	QP	
					Duty Cycle		Polarity/						
_					Correction	External	Transducer		Distance			Compared to	
Freq	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Factor (dB)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)	
(MHz)	(GDGV)	(dD)	(moters)	(degrees)	(45)	(GD)			(GD)	(dDdV/III)	(abav/III)	(35)	Comments
433.415	76.5	23.3	1.0	144.0		0.0	Vert	PK	0.0	99.8	100.8	-1.0	EUT On Side
433.415	75.8	23.3	1.9	343.0	00.0	0.0	Horz	PK	0.0	99.1	100.8	-1.7	EUT Vert
433.415 433.415	76.5 74.2	23.3 23.3	1.0 2.1	144.0 283.0	-22.2	0.0 0.0	Vert Horz	AV PK	0.0 0.0	77.6 97.5	80.8 100.8	-3.2 -3.3	EUT On Side EUT Horz
433.415	74.2 75.8	23.3	1.9	343.0	-22.2	0.0	Horz	AV	0.0	97.5 76.9	80.8	-3.3 -3.9	EUT Vert
433.415	72.9	23.3	1.3	200.0		0.0	Vert	PK	0.0	96.2	100.8	-4.6	EUT Horz
433.415	74.2	23.3	2.1	283.0	-22.2	0.0	Horz	AV	0.0	75.3	80.8	-5.5	EUT Horz
433.415	71.9	23.3	1.5	69.0		0.0	Vert	PK	0.0	95.2	100.8	-5.6	EUT Vert
433.415 433.415	71.6 72.9	23.3 23.3	1.8 1.3	191.0 200.0	-22.2	0.0 0.0	Horz Vert	PK AV	0.0 0.0	94.9 74.0	100.8 80.8	-5.9 -6.8	EUT On Side EUT Horz
433.415	72.9 71.9	23.3	1.5	69.0	-22.2 -22.2	0.0	Vert	AV	0.0	73.0	80.8	-0.6 -7.8	EUT Vert
433.415	71.6	23.3	1.8	191.0	-22.2	0.0	Horz	AV	0.0	72.7	80.8	-8.1	EUT On Side

Report No. CINC0042.2 14/23

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx at 433.42 MHz modulated. Power level 37 and 3F.

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0046 - 1

FREQUENCY RANGE INVESTIGATED

|--|

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Coaxicom	3910-10	AWZ	26-Sep-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	23-Feb-2019	12 mo
Cable	Element	Double Ridge Guide Horn Cables	MNV	23-Feb-2019	12 mo
Antenna - Double Ridge	ETS-Lindgren	3115	AJQ	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079 and SA18E-10	AOO	23-Feb-2019	12 mo
Cable	Element	Biconilog Cable	MNX	23-Feb-2019	12 mo
Antenna - Biconilog	ETS Lindgren	3142D	AXO	15-Dec-2017	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	5-Jul-2018	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. CINC0042.2 15/23

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 1951 mSec Pulsewidth of Type 2 Pulse = 0.0962 mSec Number of Type 1 Pulses = 20 Number of Type 2 Pulses = 40

Duty Cycle = $20 \log [((20)(.1951) + (40)(.0962)))/100] = -22.2 dB$

The duty cycle correction factor of $-22.2\,$ dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

SPURIOUS RADIATED EMISSIONS

We										EmiR5 2019.05.20		PSA-ESCI 2019.05.10		
	ork Order:	CINC	0046		Date:		g-2019			0.2]	
	Project:	Noi			nperature:		7 °C	The	y la	man	neta			
Caria	Job Site:	MN			Humidity:		% RH		Tastad bu	Kula MaMu	llaa]	
Seria	I Number:	13631 RFCO-A	6011	Баготе	tric Pres.:	1015	mbar		Tested by:	Kyle iviciviu	lian		-	
Conf		CINC0046	- 1										-	
		CINCH Sys											_	
	Attendees:												=	
El	UT Power:	Battery											-	
Operat	ing Mode:	Tx at 433.4	2 MHz mod	dulated. Po	ower level 3	7 and 3F.								
		None											-	
D	eviations:	TVOIC												
		None											-	
С	omments:													
Test Spec							Test Metho						_	
FCC 15.23	31:2019						ANSI C63.1	0:2013						
Run #	2	Test Dis	tance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Pa	ass	=	
Г														
80 +		nı —					n , er	— 100	- 		— 6			
	\mathbf{I}	III I												
	\mathbf{I}	III I					ســــا ـــ	₩,				w		
70 +														
	\mathbf{I}	III I				⁻								
60 +		╫						— 1 III	1 (111)		- 1 11			
		III I	1 1111					⊢ШІ		ШШІ				
_ 50														
ے ۳														
≥	ш	ш	_			•								
w//\ngp												+		
٥							•							
30														
20 +														
10 +														
I														
0														
0 +	0					1000						10000		
	0					1000 MHz				■ DIV	A AV			
	0									■ PK	◆ AV	10000 • QP		
	0		Antenna		Duty Cycle Correction		Polarity/ Transducer		Distance	■ PK	◆ AV			
10 ⁰	Amplitude	Factor	Antenna Height	Azimuth	Correction Factor	MHz External Attenuation	Polarity/ Transducer Type	Detector	Adjustment	Adjusted	Spec. Limit	Ompared to Spec.		
10		Factor (dB)		Azimuth (degrees)	Correction	MHz	Transducer	Detector				• QP Compared to	Comments	
Freq (MHz) 866.840	Amplitude (dBuV) 55.5	(dB)	Height (meters)	(degrees)	Correction Factor	External Attenuation (dB)	Transducer Type Horz	PK	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	EUT Horz	
Freq (MHz) 866.840 2167.100	Amplitude (dBuV) 55.5 77.6	(dB) 10.6 -3.3	Height (meters) 1.0 3.5	(degrees) 159.0 56.0	Correction Factor (dB)	External Attenuation (dB) 10.0 0.0	Transducer Type Horz Vert	PK PK	Adjustment (dB) 0.0 0.0	Adjusted (dBuV/m) 76.1 74.3	Spec. Limit (dBuV/m) 80.8 80.8	Compared to Spec. (dB)	EUT Horz EUT On Side	
Freq (MHz) 866.840 2167.100 866.840	Amplitude (dBuV) 55.5 77.6 55.5	(dB) 10.6 -3.3 10.6	Height (meters) 1.0 3.5 1.0	(degrees) 159.0 56.0 159.0	Correction Factor	External Attenuation (dB) 10.0 0.0 10.0	Transducer Type Horz Vert Horz	PK PK AV	Adjustment (dB) 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 76.1 74.3 53.9	Spec. Limit (dBuV/m) 80.8 80.8 60.8	Opportunity Compared to Spec. (dB) -4.7 -6.5 -6.9	EUT Horz EUT On Side EUT Horz	
Freq (MHz) 866.840 2167.100 866.840 2167.100 1300.302	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8	10.6 -3.3 10.6 -3.3 -6.3	Height (meters) 1.0 3.5 1.0 1.1 1.0	159.0 56.0 159.0 162.0 275.0	Correction Factor (dB)	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0	Horz Vert Horz Horz Horz Horz	PK PK AV PK PK	0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5	Spec. Limit (dBuV/m) 80.8 80.8 60.8 80.8 74.0	• QP Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz	
Freq (MHz) 866.840 2167.100 866.840 2167.100 1300.302 2167.100	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -3.3	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5	159.0 56.0 159.0 162.0 275.0 56.0	Correction Factor (dB)	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 0.0 0.0	Horz Vert Horz Horz Horz Horz Vert	PK PK AV PK PK AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1	Spec. Limit (dBuV/m) 80.8 80.8 60.8 80.8 74.0 60.8	Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side	
Freq (MHz) 866.840 2167.100 866.840 2167.100 1300.302 2167.100 866.840	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 51.1	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -3.3 10.6	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5 1.0	159.0 56.0 159.0 162.0 275.0 56.0 211.0	Correction Factor (dB)	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 10.0 10.0 10.0	Horz Vert Horz Horz Horz Horz Vert Horz	PK PK AV PK PK AV PK	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7	Spec. Limit (dBuV/m) 80.8 80.8 60.8 80.8 74.0 60.8 80.8	Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT On Side	
Freq (MHz) 866.840 2167.100 866.840 2167.100 1300.302 2167.100	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -3.3	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5	159.0 56.0 159.0 162.0 275.0 56.0	Correction Factor (dB)	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 0.0 0.0	Horz Vert Horz Horz Horz Horz Vert	PK PK AV PK PK AV PK PK PK	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1	Spec. Limit (dBuV/m) 80.8 80.8 60.8 80.8 74.0 60.8	- QP Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT On Side EUT On Side EUT On Side EUT On Side	
Freq (MHz) 866.840 2167.100 866.840 2167.100 1300.302 2167.100 866.840 1300.260 866.845	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 51.1 71.0 50.8 50.2	10.6 -3.3 10.6 -3.3 -6.3 -3.3 10.6 -6.3 10.6 10.6	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5 1.0 2.4 1.2	159.0 56.0 159.0 162.0 275.0 56.0 211.0 43.0 180.0 118.0	Correction Factor (dB)	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 0.0 0.0 10.0 0.0	Transducer Type Horz Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert	PK PK AV PK PK AV PK PK PK PK	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8	Spec. Limit (dBuV/m) 80.8 80.8 60.8 80.8 74.0 60.8 80.8 74.0 80.8 80.8	Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT On Side EUT On Side EUT On Side	
Freq (MHz) 866.840 2167.100 1300.302 2167.100 1300.260 866.845 866.845 2167.100	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 55.1 71.0 50.8 50.2 76.2	(dB) 10.6 -3.3 10.6 -3.3 -6.3 10.6 -6.3 10.6 -3.3	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5 1.0 1.1 1.0 2.4 1.2 1.1	159.0 56.0 159.0 162.0 275.0 56.0 211.0 43.0 118.0 162.0	-22.2	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 0.0 0.0 10.0 0.0	Horz Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz	PK PK AV PK PK AV PK PK PK PK	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8 50.7	Spec. Limit (dBuV/m) 80.8 80.8 80.8 80.8 74.0 60.8 80.8 74.0 80.8 60.8	Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0 -10.1	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side	
Freq (MHz) 866.840 2167.100 866.840 2167.100 1300.302 2167.100 866.840 1300.260 866.845	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 51.1 71.0 50.8 50.2	10.6 -3.3 10.6 -3.3 -6.3 -3.3 10.6 -6.3 10.6 10.6	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5 1.0 2.4 1.2	159.0 56.0 159.0 162.0 275.0 56.0 211.0 43.0 180.0 118.0	Correction Factor (dB)	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 0.0 0.0 10.0 0.0	Transducer Type Horz Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert	PK PK AV PK PK AV PK PK PK PK	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8	Spec. Limit (dBuV/m) 80.8 80.8 60.8 80.8 74.0 60.8 80.8 74.0 80.8 80.8	Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT On Side EUT On Side EUT On Side	
Freq (MHz) 866.840 2167.100 1300.302 2167.100 866.840 1300.260 866.845 2167.100 1300.302 866.845 2167.100 300.302	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 55.1 71.0 50.8 50.2 76.2 71.8 51.1 48.8	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -6.3 10.6 -6.3 10.6 10.6 10.6 10.6 10.6 10.6	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5 1.0 1.0 1.0 1.0 2.4 1.2 1.1 1.0 2.1	(degrees) 159.0 56.0 159.0 162.0 275.0 56.0 211.0 43.0 180.0 118.0 162.0 275.0 211.0 279.0	-22.2 -22.2 -22.2 -22.2 -22.2	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 0.0 0.0 10.0 0.0	Transducer Type Horz Vert Horz Horz Vert Vert Vert Vert Vert Vert Vert Vert	PK PK AV PK AV PK PK AV PK PK AV PK PK PK AV PK AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8 50.7 43.3 49.5 69.4	Spec. Limit (dBuV/m) 80.8 80.8 80.8 60.8 80.8 74.0 60.8 80.8 80.8 60.8 60.8 60.8 60.8	- QP Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0 -10.1 -10.7 -11.3 -11.4	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT Or Side EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT Or Side EUT Vertical	
Freq (MHz) 866.840 2167.100 866.840 2167.100 866.840 1300.302 2167.100 866.845 866.845 866.845 2167.100 1300.302 866.845 81300.260	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 50.8 50.2 76.2 71.8 51.1 48.8 71.0	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -6.3 10.6 -6.3 10.6 10.6 10.6 -3.3 10.6 10.6 -6.3	1.0 3.5 1.0 1.1 1.0 3.5 1.0 1.0 1.0 1.0 2.4 1.2 1.1 1.0 1.0	(degrees) 159.0 56.0 159.0 162.0 275.0 56.0 211.0 43.0 180.0 118.0 162.0 275.0 211.0 43.0	-22.2 -22.2 -22.2 -22.2 -22.2 -22.2	External Attenuation (dB) 10.0 0.0 0.0 10.0 0.0 0.0 10.0 10.0 1	Transducer Type Horz Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Vert Vert Vert Vert	PK PK AV PK AV PK PK PK PK AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8 50.7 43.3 49.5 69.4 42.5	Spec. Limit (dBuV/m) 80.8 80.8 60.8 80.8 74.0 60.8 80.8 80.8 74.0 60.8 80.8 60.8 80.8 60.8 854.0	- QP Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0 -10.1 -10.7 -11.3 -11.4 -11.5	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT On Side EUT Horz EUT On Side	
Freq (MHz) 866.840 2167.100 866.840 2167.100 1300.302 2167.100 866.845 866.845 2167.100 1300.302 866.845 1300.260 866.835	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 51.1 71.0 50.8 50.2 76.2 71.8 51.1 48.8 71.0 50.8	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -3.3 10.6 -6.3 10.6 10.6 10.6 -3.3 10.6 10.6 10.6 10.6 10.6	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5 1.0 1.1 1.0 2.4 1.2 1.1 1.0 2.1 1.0 2.4	(degrees) 159.0 56.0 159.0 162.0 275.0 211.0 43.0 118.0 118.0 275.0 2211.0 43.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0	-22.2 -22.2 -22.2 -22.2 -22.2 -22.2	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 10.0 10.0 10.0	Transducer Type Horz Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Horz Horz Horz Horz Horz Horz Horz	PK PK AV PK AV PK PK PK PK AV AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8 50.7 43.3 49.5 69.4 42.5 49.2	Spec. Limit (dBuV/m) 80.8 80.8 80.8 60.8 80.8 74.0 60.8 80.8 80.8 74.0 60.8 80.8 60.8 60.8 60.8 60.8	Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0 -10.1 -10.7 -11.3 -11.4 -11.5 -11.6	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT Vertical EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT Vertical EUT On Side	
Freq (MHz) 866.840 2167.100 866.840 2167.100 866.840 1300.302 2167.100 866.845 866.845 866.845 2167.100 1300.302 866.845 81300.260	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 50.8 50.2 76.2 71.8 51.1 48.8 71.0	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -6.3 10.6 -6.3 10.6 10.6 10.6 -3.3 10.6 10.6 -6.3	1.0 3.5 1.0 1.1 1.0 3.5 1.0 1.0 1.0 1.0 2.4 1.2 1.1 1.0 1.0	(degrees) 159.0 56.0 159.0 162.0 275.0 56.0 211.0 43.0 180.0 118.0 162.0 275.0 211.0 43.0	-22.2 -22.2 -22.2 -22.2 -22.2 -22.2	External Attenuation (dB) 10.0 0.0 0.0 10.0 0.0 0.0 10.0 10.0 1	Transducer Type Horz Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Vert Vert Vert Vert	PK PK AV PK AV PK PK PK PK AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8 50.7 43.3 49.5 69.4 42.5	Spec. Limit (dBuV/m) 80.8 80.8 60.8 80.8 74.0 60.8 80.8 80.8 74.0 60.8 80.8 60.8 80.8 60.8 854.0	- QP Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0 -10.1 -10.7 -11.3 -11.4 -11.5	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT Horz EUT On Side EUT Vertical EUT On Side EUT On Side EUT On Side	
Freq (MHz) 866.840 2167.100 866.840 2167.100 1300.302 2167.100 866.845 866.845 2167.100 1300.260 866.835 1300.260 866.845 866.845 866.845	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 51.1 71.0 50.8 50.2 76.2 71.8 51.1 48.8 71.0 50.8 50.2 46.8 48.8	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -3.3 10.6 -6.3 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5 1.0 1.0 1.1 1.0 2.4 1.2 1.1 1.0 2.1 1.0 2.1 1.0 2.1 1.0 2.1	(degrees) 159.0 56.0 159.0 162.0 275.0 275.0 180.0 118.0 162.0 275.0 211.0 43.0 180.0 118.0 82.0 279.0	-22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 0.0 10.0 10.0 1	Transducer Type Horz Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Vert Vert Vert Vert Vert	PK PK AV PK PK PK PK PK AV AV AV AV AV AV AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8 50.7 43.3 49.5 69.4 42.5 49.2 48.6 67.4 47.2	Spec. Limit (dBuV/m) 80.8 80.8 80.8 74.0 60.8 80.8 74.0 60.8 80.8 74.0 60.8 80.8 80.8 80.8 80.8 60.8	- QP Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0 -10.1 -10.7 -11.3 -11.4 -11.5 -11.6 -12.2 -13.4 -13.6	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT On Side EUT On Side EUT On Side EUT Vertical EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT Vertical EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz	
Freq (MHz) 866.840 2167.100 866.840 2167.100 1300.302 2167.100 366.845 2167.100 1300.260 1300.260 1300.366 845 866.845 866.845 866.845 866.845 866.845 866.845	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 55.1 71.0 50.8 50.2 76.2 71.8 51.1 48.8 71.0 50.8 50.2 46.8 48.8 46.8	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -6.3 10.6 -6.3 10.6 10.6 -6.3 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5 1.0 1.0 2.4 1.2 1.1 1.0 2.1 1.0 2.4 1.2 1.1 1.0 2.1 1.0 2.1 1.0 2.1 1.0	159.0 56.0 159.0 162.0 275.0 275.0 211.0 211.0 279.0 43.0 118.0 162.0 279.0 43.0 180.0 279.0 43.0 180.0 279.0 43.0 82.0 279.0	-22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0	Transducer Type Horz Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Vert Vert Vert Vert Vert	PK PK PK PK PK PK PK PK AV AV AV AV AV AV AV AV AV AV AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8 50.7 43.3 49.5 69.4 42.5 49.2 48.6 67.4 47.2 45.2	Spec. Limit (dBuV/m) 80.8 80.8 80.8 60.8 80.8 74.0 60.8 80.8 60.8 60.8 60.8 60.8 60.8 60	- QP Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0 -10.1 -10.7 -11.3 -11.4 -11.5 -11.6 -12.2 -13.4 -13.6 -15.6	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT On Side EUT On Side EUT On Side EUT Vertical EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT Vertical EUT Horz EUT Horz EUT Horz	
Freq (MHz) 866.840 2167.100 866.840 2167.100 866.840 1300.302 2167.100 866.845 866.845 2167.100 1300.302 866.845 866.845 866.845 866.845 866.845 866.845	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 51.1 71.0 50.8 50.2 76.2 71.8 51.1 48.8 71.0 50.8 50.2 46.8 48.8 46.8 70.4	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -6.3 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	1.0 3.5 1.0 1.1 1.0 3.5 1.0 1.0 1.0 1.0 2.4 1.2 1.1 1.0 2.1 1.0 2.1 1.0 2.1 1.0 2.1 1.0 2.1 1.0 2.1 1.0 2.1 1.0	(degrees) 159.0 56.0 159.0 162.0 275.0 56.0 211.0 43.0 180.0 118.0 275.0 211.0 279.0 43.0 180.0 279.0 43.0	-22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 10.0 10.0 10.0	Transducer Type Horz Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Vert Vert Vert Vert Vert	PK PK AV PK PK PK PK PK PK AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8 50.7 43.3 49.5 49.5 49.2 48.6 67.4 47.2 45.2 64.1	Spec. Limit (dBuV/m) 80.8 80.8 60.8 80.8 74.0 60.8 80.8 74.0 80.8 60.8 60.8 60.8 60.8 60.8 60.8 80.8	Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0 -10.1 -10.7 -11.3 -11.6 -12.2 -13.4 -13.6 -15.6 -16.7	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT On Side EUT On Side EUT On Side EUT Vertical EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT Vertical EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz EUT Horz	
Freq (MHz) 866.840 2167.100 866.840 2167.100 1300.302 2167.100 366.845 2167.100 1300.260 1300.260 1300.366 845 866.845 866.845 866.845 866.845 866.845 866.845	Amplitude (dBuV) 55.5 77.6 55.5 76.2 71.8 77.6 55.1 71.0 50.8 50.2 76.2 71.8 51.1 48.8 71.0 50.8 50.2 46.8 48.8 46.8	(dB) 10.6 -3.3 10.6 -3.3 -6.3 -6.3 10.6 -6.3 10.6 10.6 -6.3 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	Height (meters) 1.0 3.5 1.0 1.1 1.0 3.5 1.0 1.0 2.4 1.2 1.1 1.0 2.1 1.0 2.4 1.2 1.1 1.0 2.1 1.0 2.1 1.0 2.1 1.0	159.0 56.0 159.0 162.0 275.0 275.0 211.0 211.0 279.0 43.0 118.0 162.0 279.0 43.0 180.0 279.0 43.0 180.0 279.0 43.0 82.0 279.0	-22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2 -22.2	External Attenuation (dB) 10.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0	Transducer Type Horz Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Vert Vert Vert Vert Vert	PK PK PK PK PK PK PK PK AV AV AV AV AV AV AV AV AV AV AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 76.1 74.3 53.9 72.9 65.5 52.1 71.7 64.7 71.4 70.8 50.7 43.3 49.5 69.4 42.5 49.2 48.6 67.4 47.2 45.2	Spec. Limit (dBuV/m) 80.8 80.8 80.8 60.8 80.8 74.0 60.8 80.8 60.8 60.8 60.8 60.8 60.8 60	- QP Compared to Spec. (dB) -4.7 -6.5 -6.9 -7.9 -8.5 -8.7 -9.1 -9.3 -9.4 -10.0 -10.1 -10.7 -11.3 -11.4 -11.5 -11.6 -12.2 -13.4 -13.6 -15.6	EUT Horz EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT Hors EUT On Side EUT Horz EUT Horz EUT Horz EUT Horz EUT On Side EUT Vertical EUT Horz EUT Horz EUT Horz EUT Horz	

Report No. CINC0042.2 17/23

OCCUPIED BANDWIDTH

XMit 2019 02 2

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079 and SA18E-10	AOO	23-Feb-19	23-Feb-20
Cable	Element	Biconilog Cable	MNX	23-Feb-19	23-Feb-20
Antenna - Biconilog	ETS Lindgren	3142D	AXO	15-Dec-17	15-Dec-19
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	13-Dec-18	13-Dec-19

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

Report No. CINC0042.2 18/23

OCCUPIED BANDWIDTH

								AIWII 2015.02.20
EUT:	RFCO-A					Work Order:	CINC0042	
Serial Number:	331720					Date:	5-Apr-19	
Customer:	CINCH Systems					Temperature:	23.3 °C	
Attendees:	Jibril Aga					Humidity:	28.9% RH	
Project:	None					Barometric Pres.:	1020 mbar	
Tested by:	: Andrew Rogstad			Power:	Battery	Job Site:	MN09	
TEST SPECIFICATI	TONS				Test Method			
FCC 15.231:2019					ANSI C63.10:2013			
COMMENTS								
None								
	M TEST STANDARD							
None								
Configuration #	1	Signature	a	Roo	Stark			
						Value (kHz)	Limit (kHz)	Result
433.42 MHz	•	•		-		26.82	1083.55	Pass

Report No. CINC0042.2 19/23

OCCUPIED BANDWIDTH

433.42 MHz

Value (kHz) Limit (kHz) Result

26.82 1083.55 Pass

Report No. CINC0042.2 20/23

DUTY CYCLE

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	25-Jan-2020
Cable	ESM Cable Corp.	Bilog Cables	MNH	2-Nov-2018	2-Nov-2019
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	27-Apr-2018	27-Apr-2019

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = .1951 mSec Pulsewidth of Type 2 Pulse = .0962 mSec Number of Type 1 Pulses = 20 Number of Type 2 Pulses = 40

Duty Cycle = $20 \log [((20)(.1951) + (40)(.0962)))/100] = -22.2 dB$

The duty cycle correction factor of –22.2 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. CINC0042.2

DUTY CYCLE

EUT: RFCO-A
Serial Number: 331720
Customer: CINCH Systems
Attendees: Jibril Aga
Project: None
Tested by: Chris Patterson
TEST SPECIFICATIONS Work Order: CINC0042
Date: 4-Apr-19
Temperature: 22.4 °C
Humidity: 22.6% RH
Barometric Press.: 1029 mbar Power: Battery
Test Method Job Site: MN05 ANSI C63.10:2013 FCC 15.231:2019 COMMENTS Tx at 433.42 MHz DEVIATIONS FROM TEST STANDARD Configuration # Signature Type 1 Pulse Number of Type Type 2 Pulse DCCF Result 0.1951 N/A 2 Pulses 40 N/A 1 Pulses length (ms) 0.09627 -22.2 N/A N/A N/A 20 N/A N/A

Report No. CINC0042.2 22/23

DUTY CYCLE

100 ms Type 1 Pulse Type 2 Pulse Number of Number of Type 1 Pulses Type 2 Pulses DCCF length (ms) length (ms) Result 0.1951 -22 2 N/A 20 40 0.09627

			5 s			
	Number of	Type 1 Pulse	Number of	Type 2 Pulse		
	Type 1 Pulses	length (ms)	Type 2 Pulses	length (ms)	DCCF	Result
	N/A	N/A	N/A	N/A	N/A	N/A

Report No. CINC0042.2 23/23