

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202502394F01

TEST Report

Applicant: Shenzhen Tianyuan Industry Co.,Ltd

Address of Applicant: 601-A, Building A, No.2-3, jiangjunmao, Wulian Community,

Longgang Street, Longgang District, Shenzhen, China

Manufacturer: Shenzhen Tianyuan Industry Co.,Ltd

Address of 601-A, Building A, No.2-3, jiangjunmao, Wulian Community,

Manufacturer: Longgang Street, Longgang District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: S+ bone conduction headphones

Model No.: Newlifest M2 Pro

Series model: Newlifest M2

Trade Mark:

FCC ID: 2A25Q-M2PRO

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Feb. 17, 2025

Date of Test: Feb. 17, 2025 ~ Feb. 24, 2025

Date of report issued: Feb. 24, 2025

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Feb. 24, 2025	Original

Tested/ Prepared By	Heber He	Date:	Feb. 24, 2025	
	Project Engineer			
Check By:	Bruce Zhu	Date:	Feb. 24, 2025	
	Reviewer			
Approved By :	Kein Young HT	Date:	Feb. 24, 2025	
	Authorized Signature			

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT	
4.1. GENERAL DESCRIPTION OF EUT	
4.3. DESCRIPTION OF SUPPORT UNITS	
4.4. DEVIATION FROM STANDARDS	
4.5. ABNORMALITIES FROM STANDARD CONDITIONS	7
4.6. Test Facility	
4.7. TEST LOCATION	
4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	9
6.2. CONDUCTED PEAK OUTPUT POWER	12
6.3. 20DB EMISSION BANDWIDTH	_
6.4. FREQUENCIES SEPARATION	
6.5. HOPPING CHANNEL NUMBER	
6.7. BAND EDGE	
6.7.1. Conducted Emission Method	
6.7.2. Radiated Emission Method	
6.8. Spurious Emission	
6.8.1. Conducted Emission Method	
6.8.2. Radiated Emission Method	
6.9. ANTENNA REQUIREMENT	
7. TEST SETUP PHOTO	45
8. EUT CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9KHz~30MHz	3.12 dB	(1)			
Radiated Emission	30~1000MHz	4.37 dB	(1)			
Radiated Emission	1~18GHz	5.40 dB	(1)			
Radiated Emission	18-40GHz	5.45 dB	(1)			
Conducted Disturbance 0.15~30MHz 2.68 dB						
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

4. General Information

4.1. General Description of EUT

Tit. Ocheral Description of Eot	
Product Name:	S+ bone conduction headphones
Model No.:	Newlifest M2 Pro
Series model:	Newlifest M2
Test sample(s) ID:	HTT202502394-1(Engineer sample)
	HTT202502394-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Chip Antenna
Antenna gain:	1.70 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information	Mode: GS-0500200
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 0.3A max
	Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

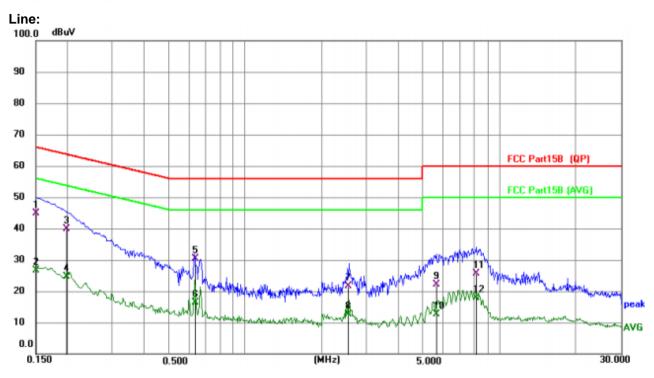
4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
	0 0 : 4	0		No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data


6.1. Conducted Emissions

13				
FCC Part15 C Section 15.2	07			
ANSI C63.10:2013 150KHz to 30MHz				
RBW=9KHz, VBW=30KHz,	Sweep time=auto			
Fraguesia van de (MIII-)	Limit	t (dBuV)		
	Quasi-peak	Average		
		56 to 46*		
		46		
		50		
Test setup: Reference Plane LISN AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test procedure: 1. The E.U.T and simulators are connected to the ma line impedance stabilization network (L.I.S.N.). This 50ohm/50uH coupling impedance for the measurin 2. The peripheral devices are also connected to the m LISN that provides a 50ohm/50uH coupling impedance				
Both sides of A.C. line as interference. In order to positions of equipment a according to ANSI C63.1	ind the maximum emis nd all of the interface of 0:2013 on conducted	ssion, the relative ables must be changed		
	1	Droop 1 1012 mb or		
<u>'</u>	umia.: 52%	Press.: 1012mbar		
Pass				
	FCC Part15 C Section 15.2 ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarity Reference Planta	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz) Quasi-peak 0.15-0.5 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment Under Test LISN Line impedance Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the line impedance stabilization network (L.I.S.N.). 500hm/50uH coupling impedance for the meas 2. The peripheral devices are also connected to the LISN that provides a 500hm/50uH coupling impedance for the meas 3. Both sides of A.C. line are checked for maximum interference. In order to find the maximum emis positions of equipment and all of the interface of according to ANSI C63.10:2013 on conducted in Refer to section 5.2 for details Refer to section 5.2 for details Temp.: 25 °C Humid.: 52% AC 120V, 60Hz		

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Measurement data:



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1507	34.80	10.08	44.88	65.96	-21.08	QP
2	0.1507	16.64	10.08	26.72	55.96	-29.24	AVG
3	0.1993	29.66	10.19	39.85	63.64	-23.79	QP
4	0.1993	14.34	10.19	24.53	53.64	-29.11	AVG
5	0.6388	20.05	10.22	30.27	56.00	-25.73	QP
6	0.6388	6.18	10.22	16.40	46.00	-29.60	AVG
7	2.5504	11.39	10.20	21.59	56.00	-34.41	QP
8	2.5504	2.38	10.20	12.58	46.00	-33.42	AVG
9	5.6601	12.05	10.12	22.17	60.00	-37.83	QP
10	5.6601	2.42	10.12	12.54	50.00	-37.46	AVG
11	8.0864	15.59	10.10	25.69	60.00	-34.31	QP
12	8.0864	7.88	10.10	17.98	50.00	-32.02	AVG

0.150

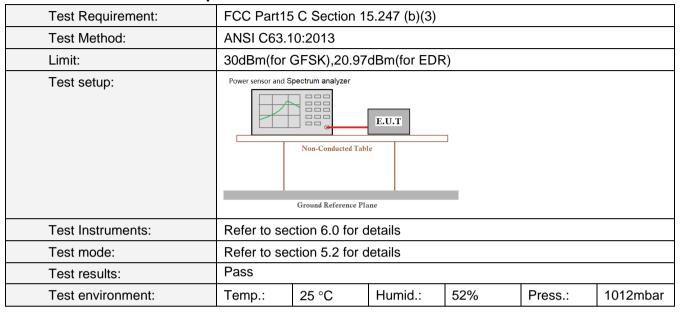
Report No.: HTT202502394F01

No. Mi	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1501	34.53	10.15	44.68	65.99	-21.31	QP
2	0.1501	15.26	10.15	25.41	55.99	-30.58	AVG
3	0.1969	29.58	10.20	39.78	63.74	-23.96	QP
4	0.1969	11.72	10.20	21.92	53.74	-31.82	AVG
5	0.6398	23.52	10.19	33.71	56.00	-22.29	QP
6	0.6398	8.14	10.19	18.33	46.00	-27.67	AVG
7	2.5815	22.79	10.23	33.02	56.00	-22.98	QP
8	2.5815	9.35	10.23	19.58	46.00	-26.42	AVG
9	6.2797	21.14	10.15	31.29	60.00	-28.71	QP
10	6.2797	10.89	10.15	21.04	50.00	-28.96	AVG
11	8.0778	18.25	10.18	28.43	60.00	-31.57	QP
12	8.0778	10.26	10.18	20.44	50.00	-29.56	AVG

(MHz)

5.000

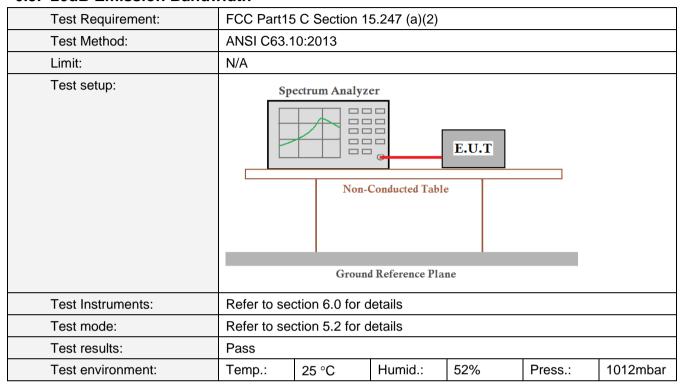
Notes:


- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

0.500

30.000

6.2. Conducted Peak Output Power



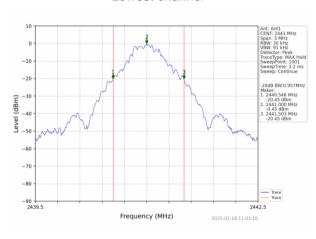
Measurement Data

Mode	TX	Frequency	Packet	Maximum Peak Conduc	ted Output Power (dBm)	Verdict	
Mode	Type	(MHz)	Type	ANT1	Limit	VOIGIO	
		2402	DH5	1.91	<=30	Pass	
GFSK	SISO	2441	DH5	1.98	<=30	Pass	
		2480	DH5	1.81	<=30	Pass	
		2402	2DH5	2.71	<=20.97	Pass	
Pi/4DQPSK	SISO	2441	2DH5	2.84	<=20.97	Pass	
		2480	2DH5	2.55	<=20.97	Pass	
		2402	3DH5	3.16	<=20.97	Pass	
8DPSK	SISO	2441	3DH5	3.31	<=20.97	Pass	
		2480	3DH5	3.11	<=20.97	Pass	

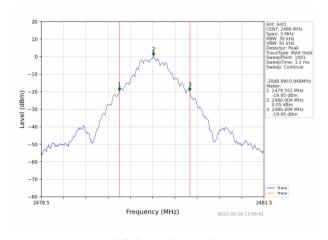
6.3. 20dB Emission Bandwidth


Measurement Data

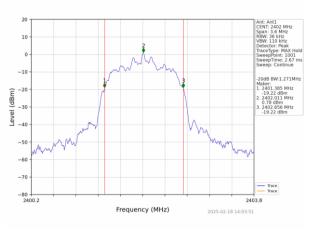
Mode	TX Type	Frequency (MHz)	Packet Type	ANT	20dB Bandy Result	width (MHz) Limit	Verdict
,	2402	DH5	1	0.950	/	Pass	
GFSK	SISO	2441	DH5	1	0.957	/	Pass
		2480	DH5	1	0.948	/	Pass
		2402	2DH5	1	1.271	/	Pass
Pi/4DQPSK	SISO	2441	2DH5	1	1.272	/	Pass
		2480	2DH5	1	1.272	/	Pass
		2402	3DH5	1	1.306	/	Pass
8DPSK	SISO	2441	3DH5	1	1.287	/	Pass
		2480	3DH5	1	1.292	/	Pass

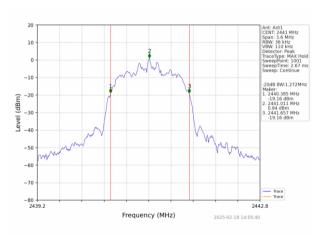


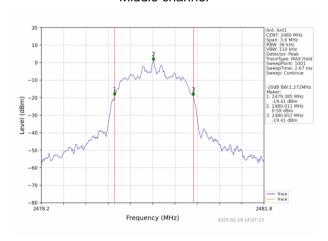
Test plot as follows:


Test mode: GFSK mode

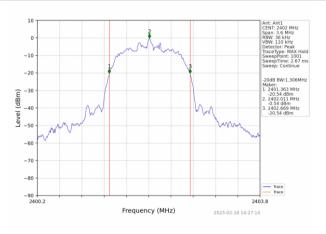
Lowest channel

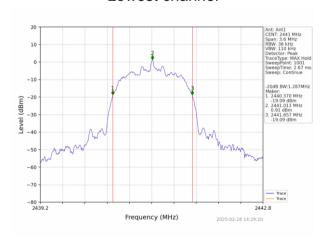

Middle channel

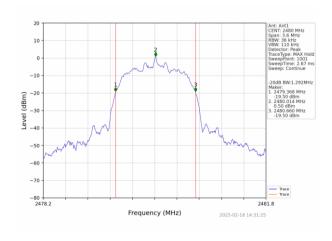

Highest channel


Test mode: $\pi/4$ -DQPSK mode

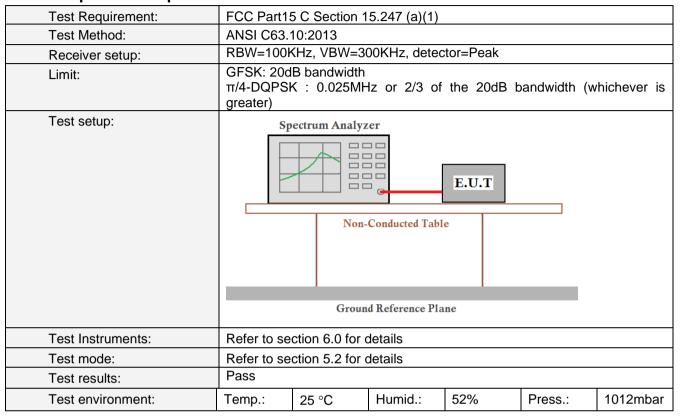
Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

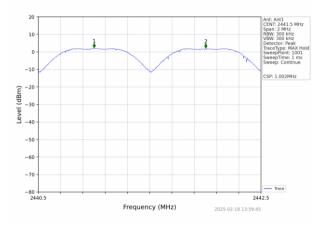
Lowest channel


Middle channel

Highest channel

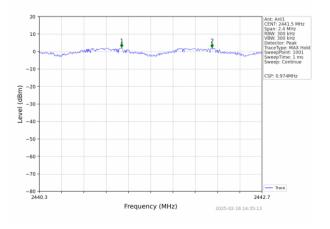
6.4. Frequencies Separation

Measurement Data


moadar omer													
	Ant1												
Mode	TX	Frequency	Packet	Channel Separation	20dB Bandwidth	Limit	Verdict						
iviode	Type	(MHz)	Type	(MHz)	(MHz)	(MHz)	verdict						
GFSK	SISO	HOPP	DH5	1.002	0.957	>=0.957	Pass						
Pi/4DQPSK	SISO	HOPP	2DH5	1.001	1.272	>=0.848	Pass						
8DPSK	SISO	HOPP	3DH5	0.974	1.306	>=0.871	Pass						

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:


Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

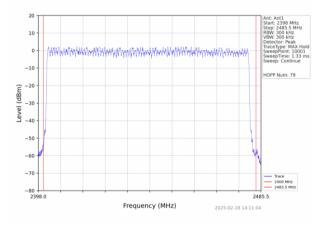
Modulation mode: 8-DPSK

6.5. Hopping Channel Number

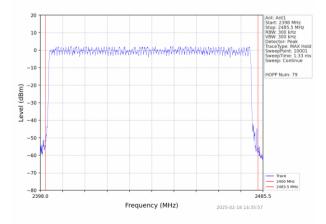
Test Requirement:	FCC Part15	C Section 1	5.247 (a)(<u>1</u>)(i	ii)				
Test Method:	ANSI C63.	10:2013						
Receiver setup:	RBW=100k Detector=P	Hz, VBW=30 eak	0kHz, Freque	ency range=2	2400MHz-248	33.5MHz,		
Limit:	15 channel	S						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to se	ction 6.0 for d	letails					
Test mode:	Refer to se	ction 5.2 for d	letails					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

6.6. Dwell Time

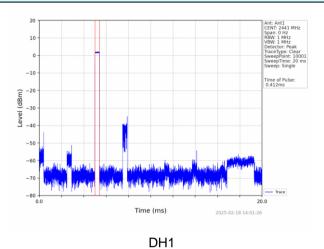
Test Requirement:	FCC Part1	5 C Section 1	5.247 (a)(1)(i	ii)						
Test Method:	ANSI C63.	10:2013								
Receiver setup:	RBW=1MH	z, VBW=1MH	Iz, Span=0Hz	z, Detector=F	Peak					
Limit:	0.4 Second									
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to se	ction 6.0 for c	letails							
Test mode:	Refer to se	ction 5.2 for c	letails							
Test results:	Pass	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

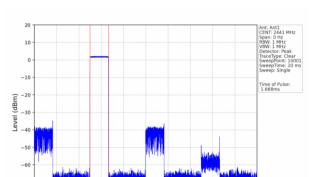
Measurement Data

Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result	
	DH1	0.412	131.840			
GFSK	DH3	1.668	248.532	400	Pass	
	DH5	2.918	344.324			
	2-DH1	0.422	135.040			
π/4DQPSK	2-DH3	1.670	260.520	400	Pass	
	2-DH5	2.922	295.122			
	3-DH1	0.422	135.040			
8DPSK	3-DH3	1.676	278.216	400	Pass	
	3-DH5	2.928	307.440			

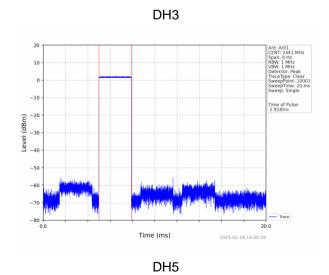
Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

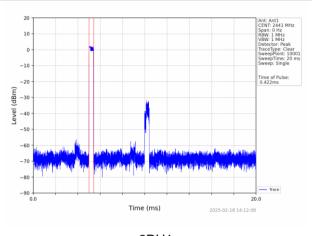
Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

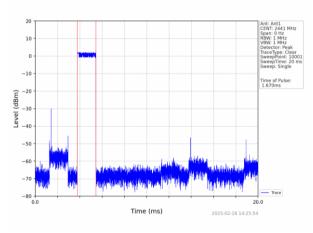

Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5, 3-DH5

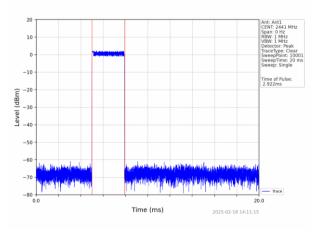
Test plot as follows:


GFSK mode

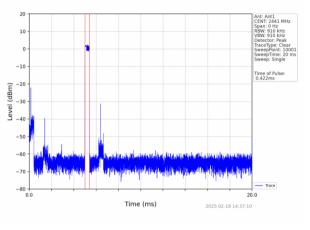

Time (ms)

2025-02-18 14:02:28

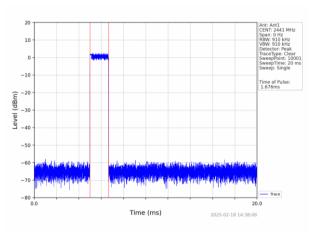


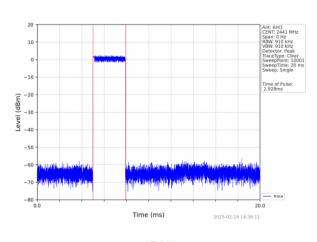

π/4-DQPSK mode

2DH1

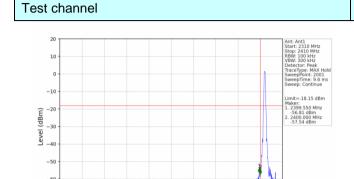


2DH3

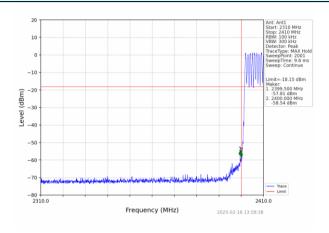



8-DPSK mode

3DH3

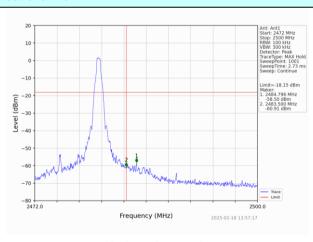

6.7. Band Edge

6.7.1. Conducted Emission Method

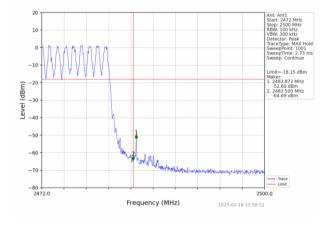

Test Requirement:	FCC Part15	5 C Section 1	5.247 (d)								
Test Method:	ANSI C63.	10:2013									
Receiver setup:	RBW=100k	Hz, VBW=30	0kHz, Detec	tor=Peak							
Limit:	spectrum in is produced the 100 kH: the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.									
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane										
Test Instruments:	Refer to se	ction 6.0 for c	letails								
Test mode:	Refer to se	ction 5.2 for c	letails								
Test results:	Pass										
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar									

Test plot as follows: GFSK Mode:

Lowest channel



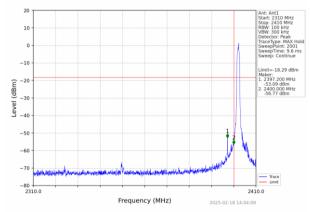
No-hopping mode

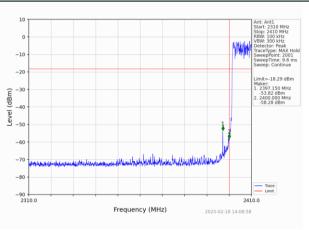

Hopping mode

Test channel:

-80 ↓ 2310.0

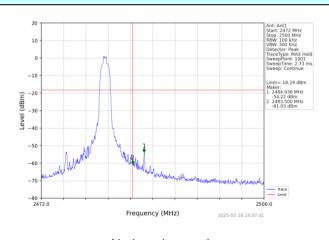
Highest channel

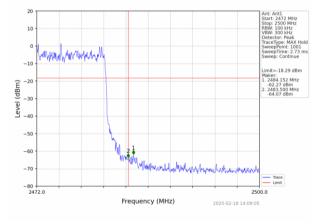

No-hopping mode


Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel

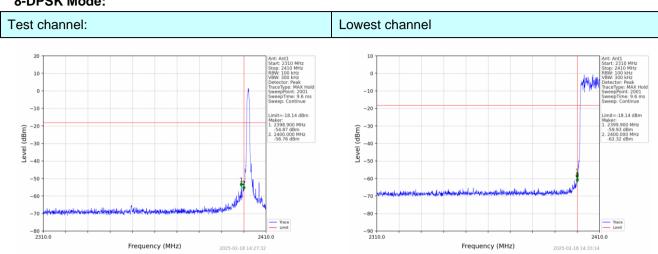



No-hopping mode

Hopping mode

Test channel:

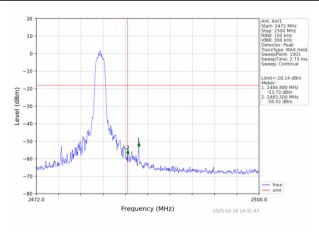
Highest channel



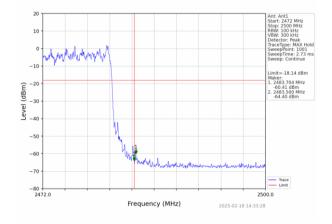
No-hopping mode

Hopping mode

8-DPSK Mode:



No-hopping mode


Hopping mode

Test channel:

Highest channel

No-hopping mode

Hopping mode

6.7.2. Radiated Emission Method

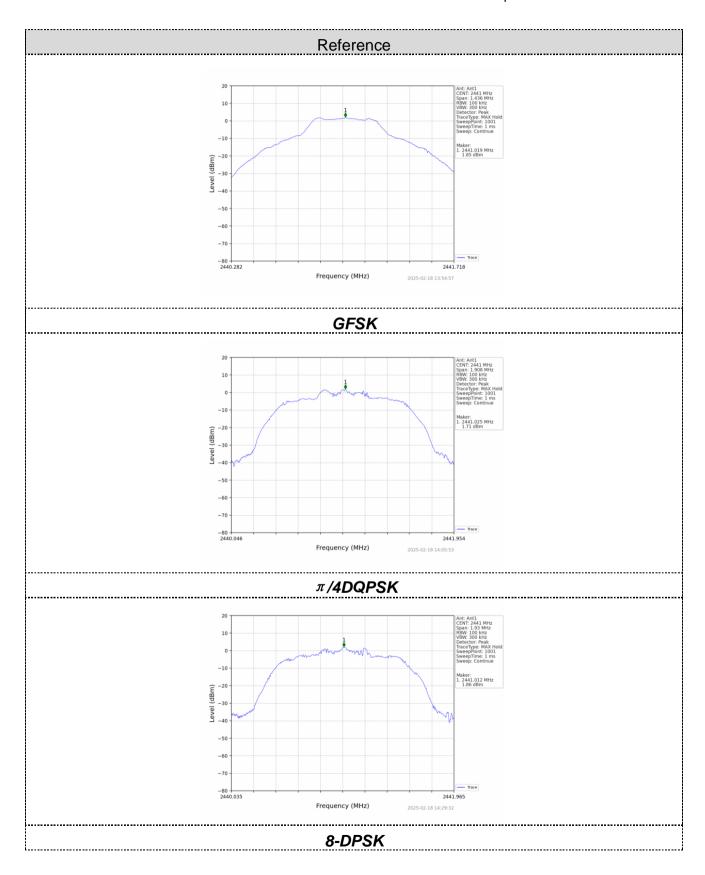
6.7.2. Radiated Emission Method											
Te	st Requirement:	FCC Part15	C Sec	ction 15	.209 a	nd 15.2	205				
Te	st Method:	ANSI C63.1	0:201	3							
Те	st Frequency Range:	All of the re 2500MHz) of				ested, o	only the w	orst I	band's (2	2310MHz to	
Te	st site:	Measureme	ent Dist	tance: 3	3m						
Re	eceiver setup:	Frequenc	су	Detec	tor	RBW	/ VBV	٧	Re	mark	
	·	Above 1GI	H ₇ —	Peal		1MH:				Value	
				Peal		1MH:				ge Value	
Lin	nit:	Fre	equenc	СУ	L	•	3uV/m @3r	n)		mark	
		Abo	ve 1G	Hz			54.00 74.00			ge Value k Value	
Т.	st setup:						4.00			Value	
	ot ootap.	Test Antenna. Compared to the control of the con									
т.	st Procedure:	4 TL FUT	•	. 1 1 -				3	5		
		 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 									
Te	st Instruments:	Refer to sec					en reported				
Te	st mode:	Refer to section 5.2 for details									
Те	st results:	Pass									
Те	st environment:	Temp.:	25 °C		Humid	d.: 5	52%	Pre	ess.:	1012mbar	

Measurement Data

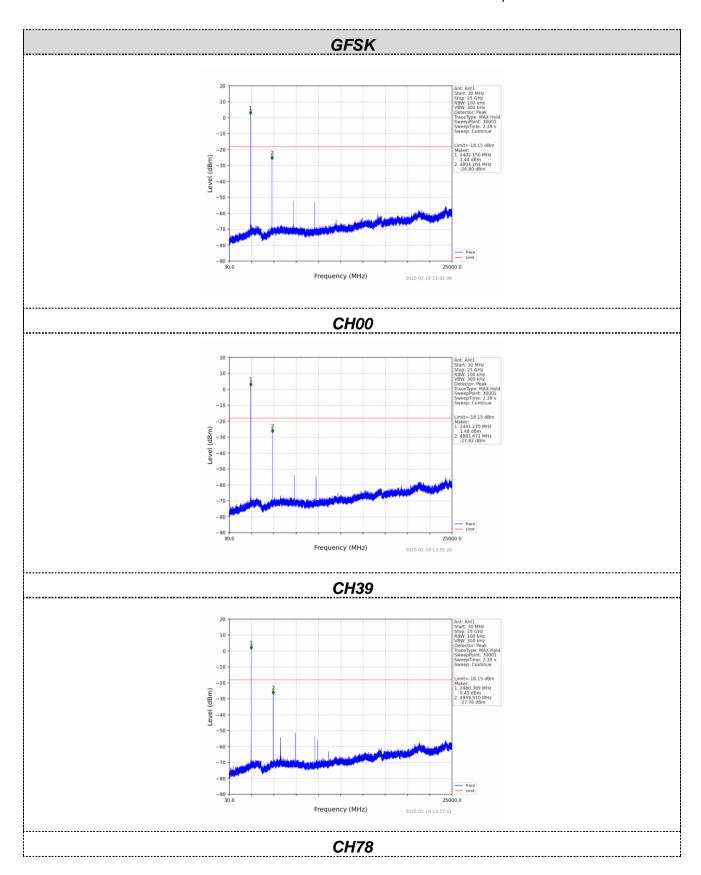
Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK

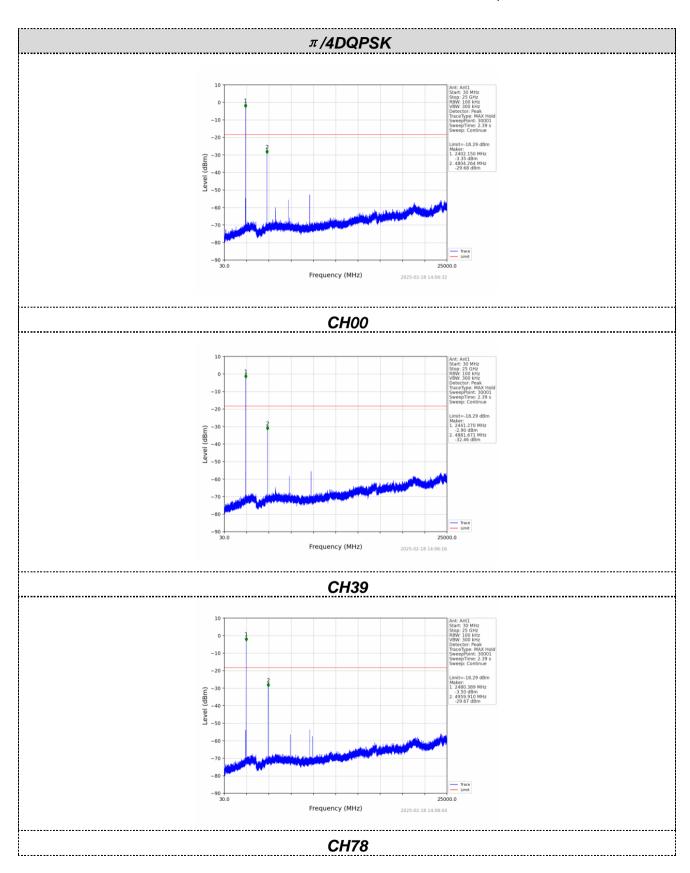
Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	ORIZONTA	۱L
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.90	PK	74	14.10	61.29	27.2	4.31	32.9	-1.39
2390.00	44.72	AV	54	9.28	46.11	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.99	PK	74	15.01	60.38	27.2	4.31	32.9	-1.39
2390.00	46.85	AV	54	7.15	48.24	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	2480		P olarity:		н	ORIZONTA	۸L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.44	PK	74	18.56	56.37	27.4	4.47	32.8	-0.93
2483.50	45.04	AV	54	8.96	45.97	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.98	PK	74	18.02	56.91	27.4	4.47	32.8	-0.93
2483.50	43.93	AV	54	10.07	44.86	27.4	4.47	32.8	-0.93

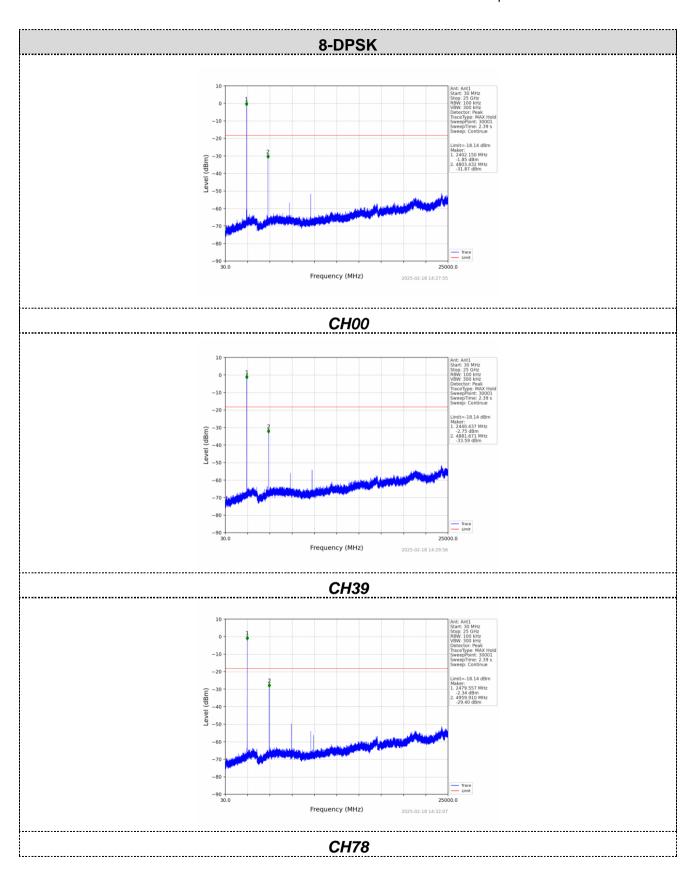


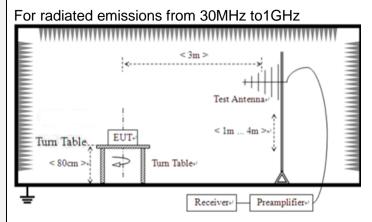
6.8. Spurious Emission

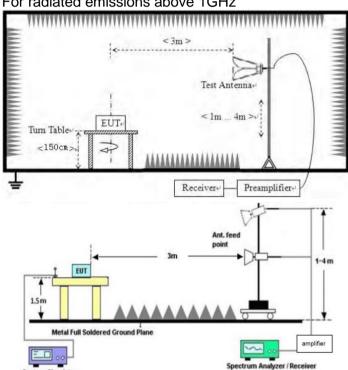

6.8.1. Conducted Emission Method

Test Requirement:	FCC Part15	C Section 1	5.247 (d)						
Test Method:	ANSI C63.1	0:2013							
Limit:	spectrum in is produced the 100 kHz	tentional radi by the intent bandwidth v power, base	ator is opera ional radiator vithin the ban	e frequency be ting, the radio shall be at le d that contain n RF conduct	o frequency peast 20 dB be ns the highes	ower that elow that in at level of			
Test setup:	Spo	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to sec	ction 6.0 for c	letails						
Test mode:	Refer to sec	tion 5.2 for c	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			








6.8.2. Radiated Emission Method

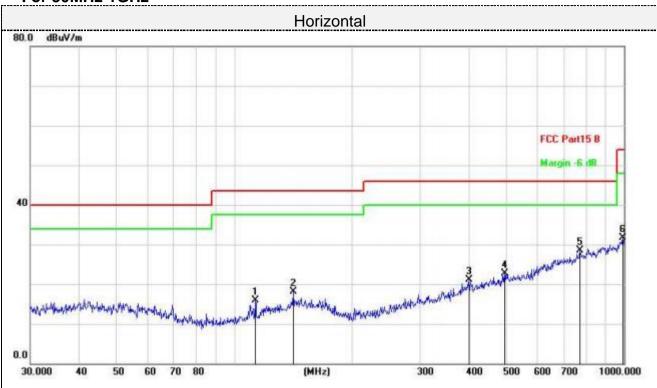
6.6.2. Radiated E	mission wethod									
Test Requirement:	FCC Part15 C Section	on 15	5.209							
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	nce: 3	3m							
Receiver setup:	Frequency		Detector	RB\	Ν	VBW	'	Value		
	9KHz-150KHz	Qι	uasi-peak	200H	Ηz	600H	Z	Quasi-peak		
	150KHz-30MHz	Qı	uasi-peak	9KF	łz	30KH	Z	Quasi-peak		
	30MHz-1GHz	Qı	uasi-peak	120K	Ήz	300KF	lz	Quasi-peak		
	Above 1GHz		Peak	1MF	Ηz	3MHz	<u> </u>	Peak		
	Above 1GHz		Peak	1MF	Ιz	10Hz		Average		
Limit:	Frequency		Limit (u\	//m)	V	alue	N	Measurement Distance		
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m		
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m		
	1.705MHz-30MH	lz	30		QP		30m			
	30MHz-88MHz		100			QP				
	88MHz-216MHz	<u> </u>	150		-	QP				
	216MHz-960MH	Z	200			QP		3m		
	960MHz-1GHz		500		QP			5111		
	Above 1GHz	500		Av		erage				
	710070 10112		5000		F	eak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30)MH	Z				
	For radiated emissions from 9kHz to 30MHz Compared to 30MHz									

For radiated emissions above 1GHz

Test Procedure:

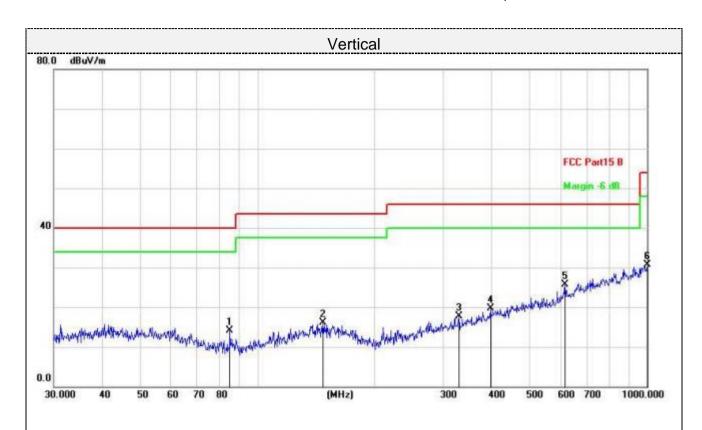
- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

		The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test Instruments:	Refer to se	ction 6.0 for o	details						
Test mode:	Refer to se	ction 5.2 for o	details						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz								
Test results:	Pass								


Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as DH5 2402MHz as below:


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		113.3162	29.87	-13.92	15.95	43.50	-27.55	peak
2		141.8262	29.53	-11.39	18.14	43.50	-25.36	peak
3		400.4318	28.75	-7.61	21.14	46.00	-24.86	peak
4		494.1983	28.26	-5.46	22.80	46.00	-23.20	peak
5	*	771.4486	28.68	-0.16	28.52	46.00	-17.48	peak
6		993.0113	28.21	3.42	31.63	54.00	-22.37	peak

Final Level =Receiver Read level + Correct Factor

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		84.9993	29.92	-15.79	14.13	40.00	-25.87	peak
2		147.4036	27.05	-11.01	16.04	43.50	-27.46	peak
3		329.0389	27.67	-9.97	17.70	46.00	-28.30	peak
4		396.2412	27.47	-7.73	19.74	46.00	-26.26	peak
5	*	616.3718	28.53	-2.92	25.61	46.00	-20.39	peak
6		1000.0000	27.16	3.62	30.78	54.00	-23.22	peak

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	59.57	PK	74	14.43	53.87	31	6.5	31.8	5.7		
4804.00	42.59	AV	54	11.41	36.89	31	6.5	31.8	5.7		
7206.00	54.03	PK	74	19.97	41.38	36	8.15	31.5	12.65		
7206.00	43.36	AV	54	10.64	30.71	36	8.15	31.5	12.65		

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	59.34	PK	74	14.66	53.64	31	6.5	31.8	5.7		
4804.00	42.97	AV	54	11.03	37.27	31	6.5	31.8	5.7		
7206.00	53.23	PK	74	20.77	40.58	36	8.15	31.5	12.65		
7206.00	42.46	AV	54	11.54	29.81	36	8.15	31.5	12.65		

Freque	Frequency(MHz):			2441		Polarity:		HORIZONTAL			
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4882.00	59.53	PK	74	14.47	53.37	31.2	6.61	31.65	6.16		
4882.00	43.87	AV	54	10.13	37.71	31.2	6.61	31.65	6.16		
7323.00	53.14	PK	74	20.86	40.19	36.2	8.23	31.48	12.95		
7323.00	43.57	AV	54	10.43	30.62	36.2	8.23	31.48	12.95		

Freque	Frequency(MHz):			2441		Polarity:		VERTICAL			
Frequency (MHz)	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction		
	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor		
(1011-12)	(dBu	V/m)	(abav/III)	(GD)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4882.00	61.34	PK	74	12.66	55.18	31.2	6.61	31.65	6.16		
4882.00	43.14	AV	54	10.86	36.98	31.2	6.61	31.65	6.16		
7323.00	53.39	PK	74	20.61	40.44	36.2	8.23	31.48	12.95		
7323.00	44.41	AV	54	9.59	31.46	36.2	8.23	31.48	12.95		

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4960.00	62.52	PK	74	11.48	55.86	31.4	6.76	31.5	6.66		
4960.00	43.02	AV	54	10.98	36.36	31.4	6.76	31.5	6.66		
7440.00	54.86	PK	74	19.14	41.56	36.4	8.35	31.45	13.3		
7440.00	44.67	AV	54	9.33	31.37	36.4	8.35	31.45	13.3		

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le [,] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4960.00	63.16	PK	74	10.84	56.50	31.4	6.76	31.5	6.66		
4960.00	44.01	AV	54	9.99	37.35	31.4	6.76	31.5	6.66		
7440.00	53.52	PK	74	20.48	40.22	36.4	8.35	31.45	13.3		
7440.00	45.18	AV	54	8.82	31.88	36.4	8.35	31.45	13.3		

Remark

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average

Shenzhen Hint rechnology need completed.

Tel: 0755-23595200 Fax: 0755-23595201

¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 1.70 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----