

FCC CFR47 PART 15 SUBPART C CERTIFICATION

TEST REPORT

FOR

802.11 a/b/g Mini PCI MODULE

MODEL NUMBER: AR5BMB-44

FCC ID: PPD-AR5BMB-00044

REPORT NUMBER: 04U2552-1

ISSUE DATE: APRIL 30, 2004

Prepared for ATHEROS COMMUNICATIONS, INC. 529 ALMANOR AVENUE SUNNYVALE CA 94085, USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1.	Т	EST RESULT CERTIFICATION	3
2.	E	UT DESCRIPTION	4
3.	Т	EST METHODOLOGY	5
4.	F	ACILITIES AND ACCREDITATION	5
5.	С	ALIBRATION AND UNCERTAINTY	6
-	5.1.	MEASURING INSTRUMENT CALIBRATION	6
-	5.2.	MEASUREMENT UNCERTAINTY	6
	5.3.	TEST AND MEASUREMENT EQUIPMENT	7
6.	S	ETUP OF EQUIPMENT UNDER TEST	8
7.	A	PPLICABLE LIMITS AND TEST RESULTS	10
	7.1.	6 dB BANDWIDTH	
	7.2.	99% BANDWIDTH	
	7.3.	PEAK OUTPUT POWER	
	7.4.	MAXIMUM PERMISSIBLE EXPOSURE	
	7.5.	AVERAGE POWER	
	7.6.	PEAK POWER SPECTRAL DENSITY	
	7.7.	CONDUCTED SPURIOUS EMISSIONS	
	7.8.	RADIATED EMISSIONS	
		 8.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS 8.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ 	
		8.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	
	7.9.	POWERLINE CONDUCTED EMISSIONS	
8.	S	ЕТИР РНОТОЅ	

Page 2 of 138

1. TEST RESULT CERTIFICATION

COMPANY NAME:	ATHEROS COMMUNICATIONS, INC. 529 ALMANOR AVENUE SUNNYVALE, CA 94085, USA
EUT DESCRIPTION:	802.11a/b/g Mini PCI module
MODEL:	AR5BMB-44
DATE TESTED:	FEBRUARY 24 – MARCH 19, 2004

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED			

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Note: The 2.4 and 5.8 GHz bands are applicable to this report; another band of operation (5.2 GHz) is documented in a separate report.

Approved & Released For CCS By:

M₽

MIKE HECKROTTE ENGINEERING MANAGER COMPLIANCE CERTIFICATION SERVICES

Tested By:

YAN ZHENG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 3 of 138

2. EUT DESCRIPTION

The EUT is an 802.11a/b/g transceiver Mini PCI card module.

The transmitter has a maximum peak conducted output power as follows:

Frequency Band	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	20.85	121.62
2412 - 2462	802.11g	24.45	278.61
2437	802.11g Turbo	24.34	271.64
5785 - 5825	802.11a	25.74	374.97
5760 - 5800	802.11a Turbo	24.38	274.16

The radio utilizes two film antennas for diversity (main and auxiliary), Hitachi model HTL017. Each antenna has a maximum gain of 4.24 dBi, without cable loss, in the 2.4 GHz band and 4.12 dBi, without cable loss, in the 5.8 GHz band.

The module alternately utilizes two other film antennas: Hitachi model HTL008 and Tyco model TIAN01 antennas. These have lower gains in the 2.4 and 5.8 GHz bands compared to the HTL017.

Two HTL017 antennas were utilized during final compliance tests.

Page 4 of 138

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2001, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 5 of 138

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 138

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/2005		
Peak Power Meter	Agilent	E4416A	GB41291160	11/7/2004		
Peak / Average Power Sensor	Agilent	E9327A	US40440755	11/7/2004		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2005		
Antenna, Horn 18 ~ 26 GHz	ARA	SWH-28	1007	2/24/2005		
Antenna, Horn 26 ~ 40 GHz	ARA	MWH-2640/B	1029	12/3/2004		
PreAmplifier 1-26GHz	MITEQ	NSP2600-SP	924341	4/25/2004		
PreAmplifier 26-40 GHz	MITEQ	NSP4000-SP2	924343	6/1/2004		
7.6GHz High Pass Filter	Micro-tronics	HPM13195	SN-002	N/A		
4.0GHz High Pass Filter	Micro-tronics	HPM13351	SN-001	N/A		
EMI Receiver, 9 kHz ~ 2.9 GHz	H₽	8542E	3942A00286	11/20/2004		
RF Filter Section	H₽	85420E	3705A00256	11/20/2004		
Antenna, Bicon/Log, 30 ~ 2000 MHz	Sunol Sciences	JB1	A121003	12/22/2004		
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	10/13/2004		
Line Filter	Lindgren	LMF-3489	497	CNR		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	10/13/2004		

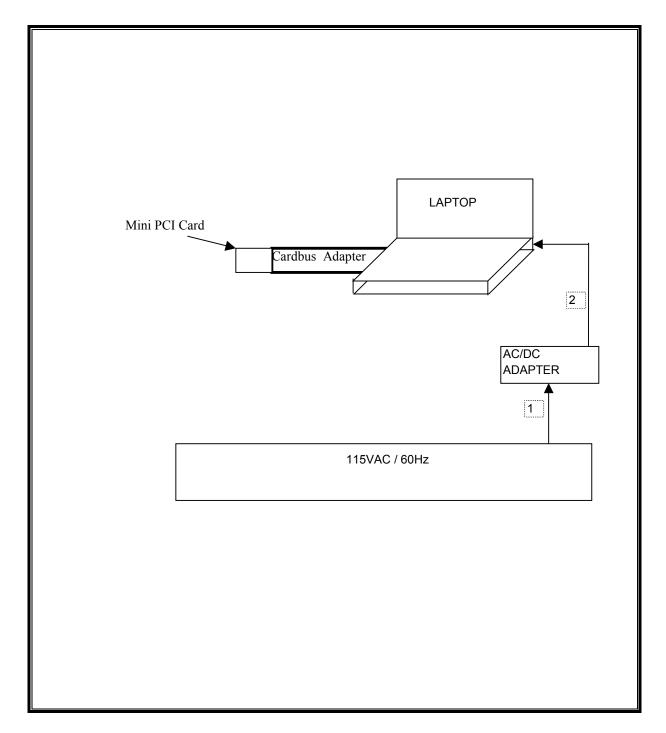
Page 7 of 138

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
LAPTOP	DEL	PP01L	DS/N CN-04P240-48643-2BK-4144	DOC		
AC ADAPTER	DELL	AA20031	DS/N CN-09364U-16291-2A9-01LG	DOC		
CARDBUS ADAPTER	STELLCOM	STCBMP13	SN-022	DOC		

I/O CABLES


	I/O CABLE LIST								
Cable	Port	# of	Connector	Cable	Cable	Remarks			
No.		Identical	Туре	Туре	Length				
		Ports							
1	AC	2	US115	UNSHIELDED	2m	NO			
2	DC	1	DC	UNSHIELDED	2m	NO			

TEST SETUP

The EUT is installed in a host laptop computer via a cardbus-to-miniPCI adapter / extension board during the tests. Test software exercised the radio card.

Page 8 of 138

SETUP DIAGRAM FOR TESTS

Page 9 of 138

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 6 dB BANDWIDTH

<u>LIMIT</u>

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

2.4 GHz BAND RESULTS

No non-compliance noted:

802.11b Mode

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	2412	12070	500	11570
Middle	2437	12070	500	11570
High	2462	11970	500	11470

802.11g Mode

Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	16400	500	15900
Middle	2437	16330	500	15830
High	2462	16400	500	15900

802.11g Turbo Mode

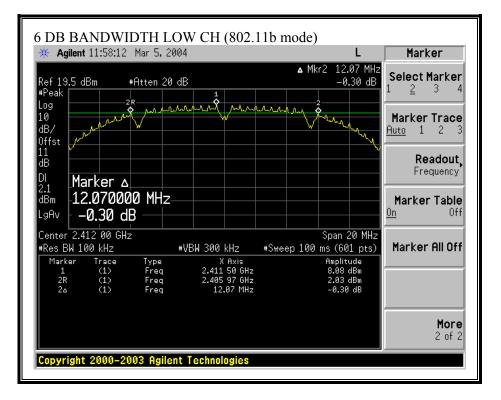
Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Middle	2437	32530	500	32030

Page 10 of 138

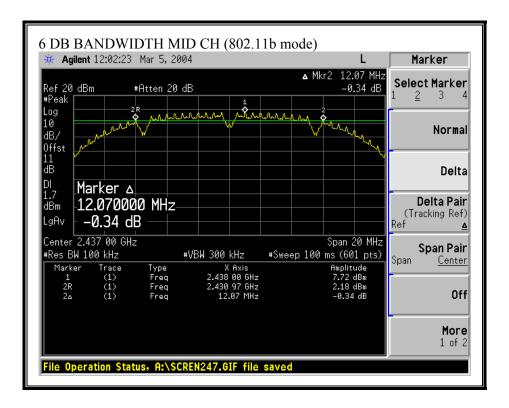
5.8 GHz BAND RESULTS

No non-compliance noted:

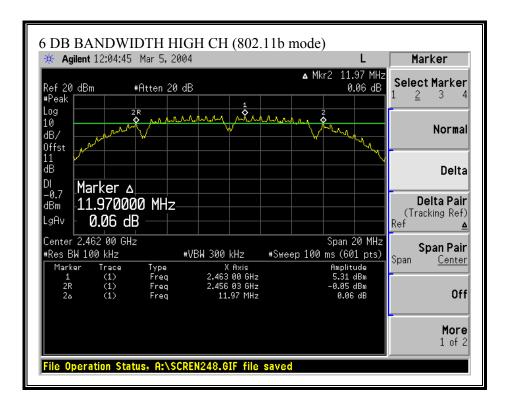
802.11a Mode


Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	5745	16500	500	16000
Middle	5785	16500	500	16000
High	5825	16500	500	16000

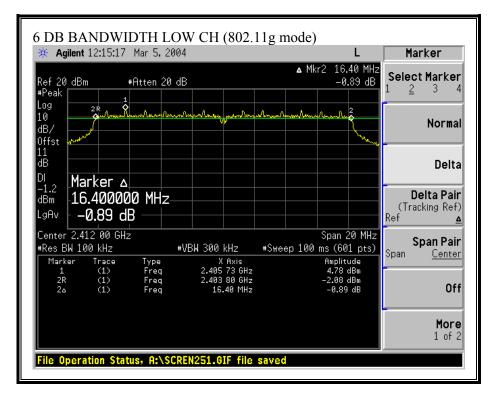
802.11a Turbo Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	5760	31417	500	30917
High	5800	31417	500	30917

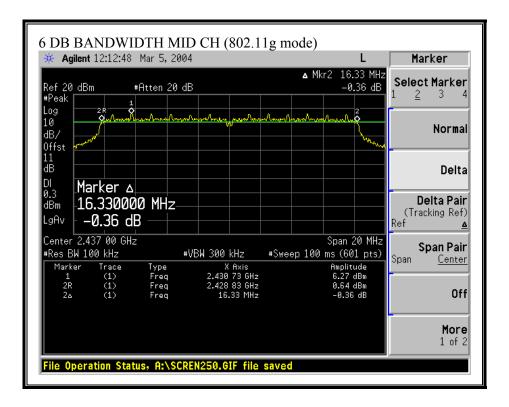
Page 11 of 138


6 DB BANDWIDTH (802.11b MODE)

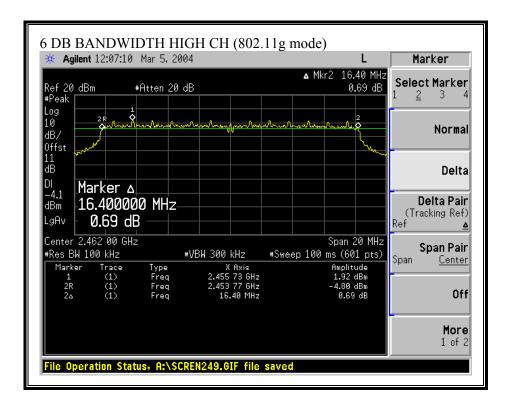
Page 12 of 138



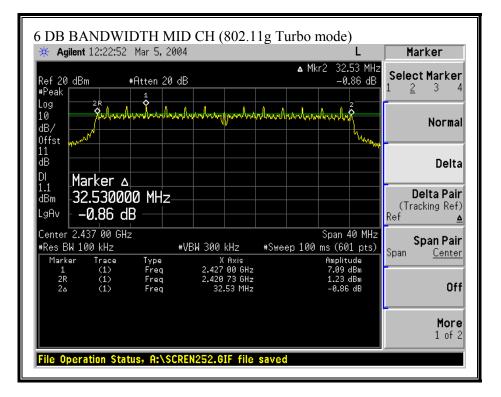
Page 13 of 138



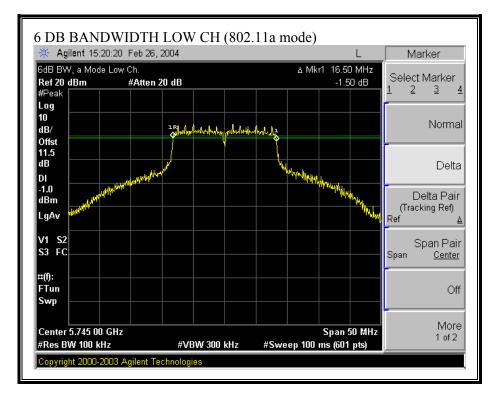
Page 14 of 138


6 DB BANDWIDTH (802.11g MODE)

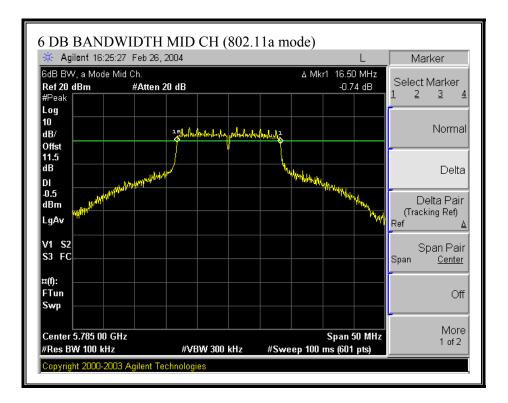
Page 15 of 138



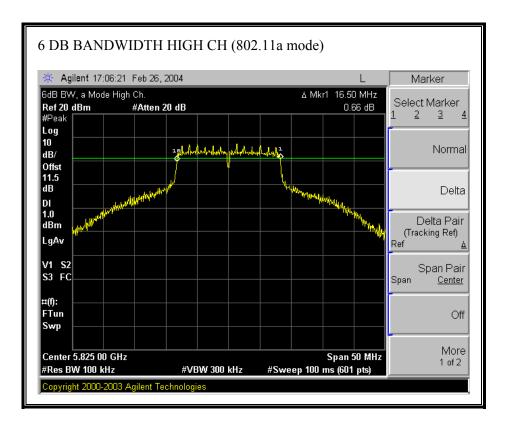
Page 16 of 138


Page 17 of 138

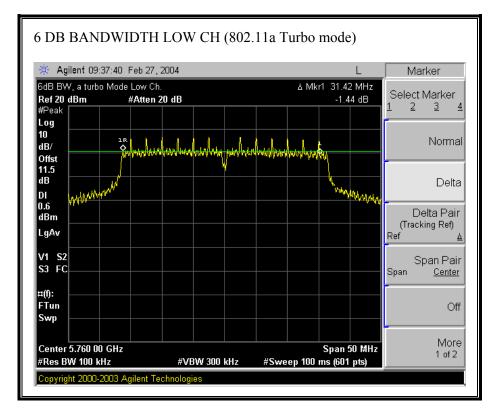
6 DB BANDWIDTH (802.11g TURBO MODE)



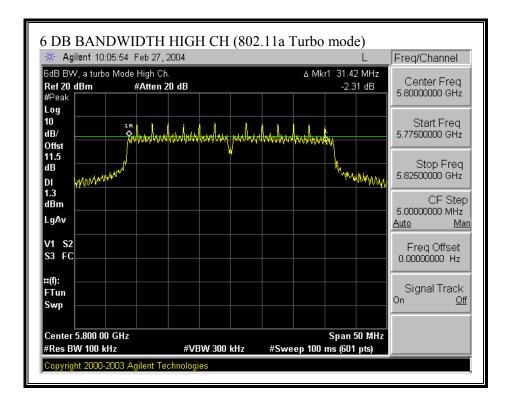
Page 18 of 138


6 DB BANDWIDTH (802.11a MODE)

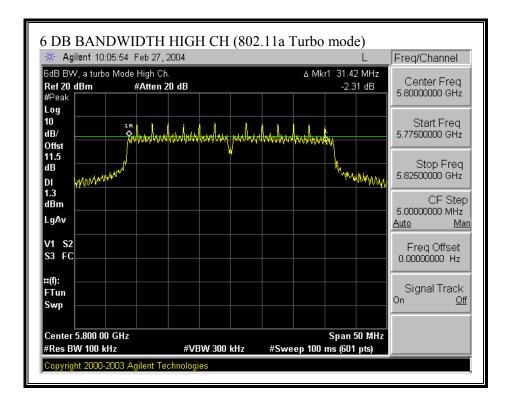
Page 19 of 138



Page 20 of 138



Page 21 of 138


6 DB BANDWIDTH (802.11a TURBO MODE)

Page 22 of 138

Page 23 of 138

Page 24 of 138

7.2. 99% **BANDWIDTH**

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

2.4 GHz BAND RESULTS

No non-compliance noted:

802.11b Mode		
Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	15.5621
Middle	2437	15.6073
High	2462	15.4983

802.11g Mode

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.4833
Middle	2437	16.5017
High	2462	16.4644

802.11g Turbo Mode

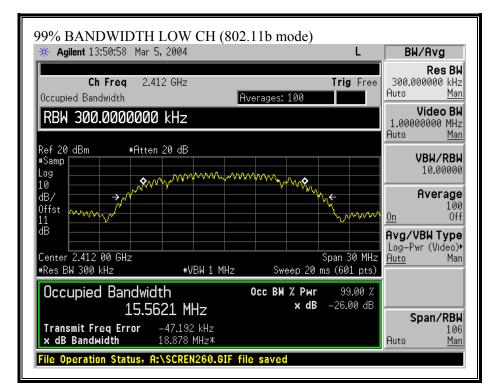
Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Middle	2437	32.8648	

Page 25 of 138

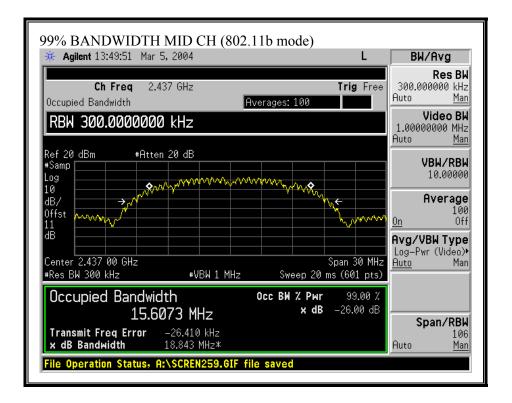
5.8 GHz BAND RESULTS

No non-compliance noted:

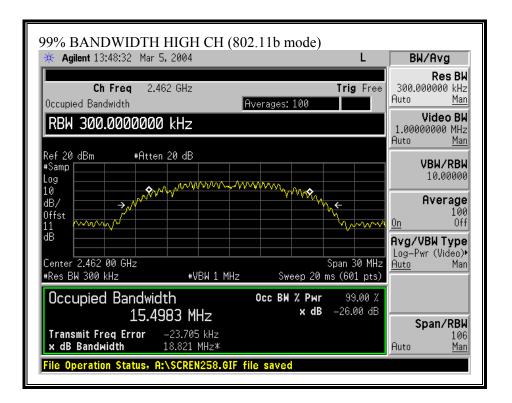
802.11a Mode


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5745	16.693
Middle	5785	16.918
High	5825	17.633

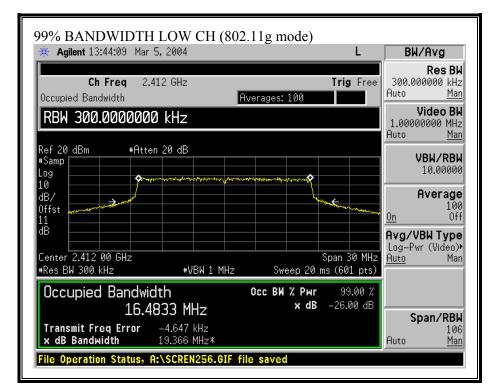
802.11a Turbo Mode


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5760	32.919
High	5800	33.179

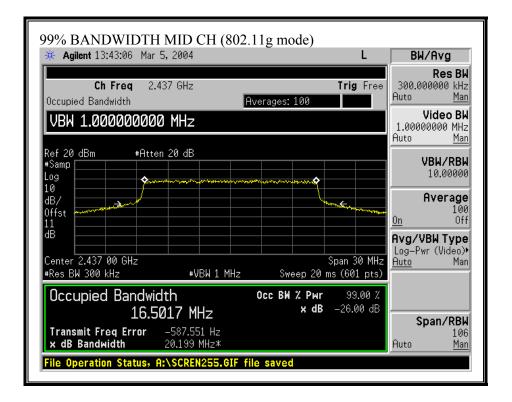
Page 26 of 138


99% BANDWIDTH (802.11b MODE)

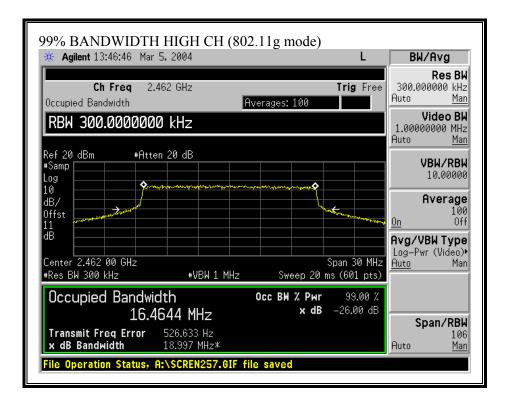
Page 27 of 138



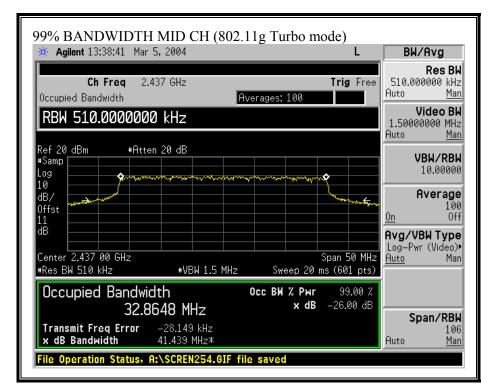
Page 28 of 138



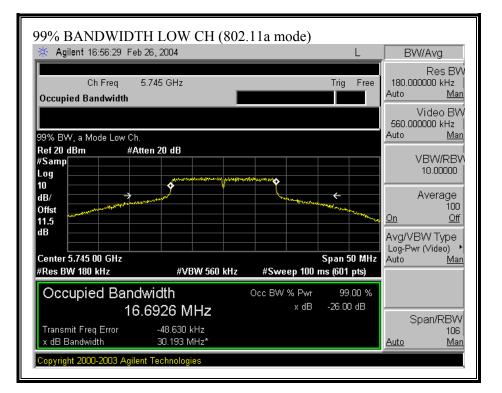
Page 29 of 138


99% BANDWIDTH (802.11g MODE)

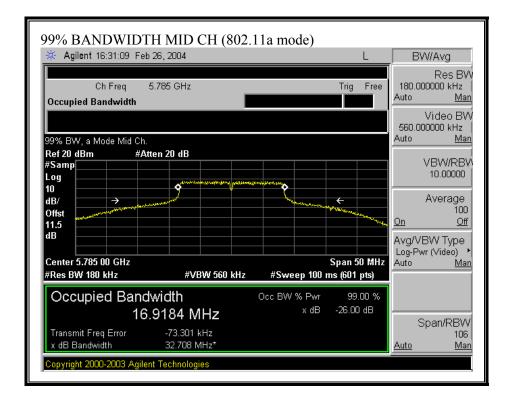
Page 30 of 138



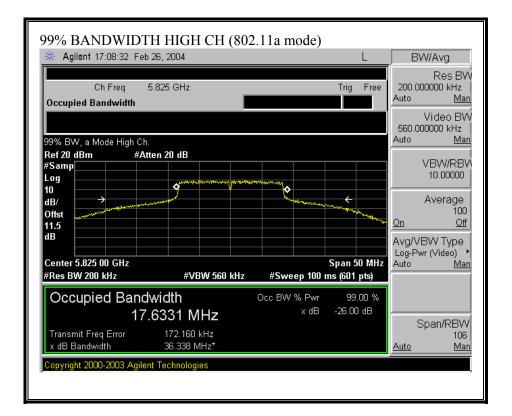
Page 31 of 138


Page 32 of 138

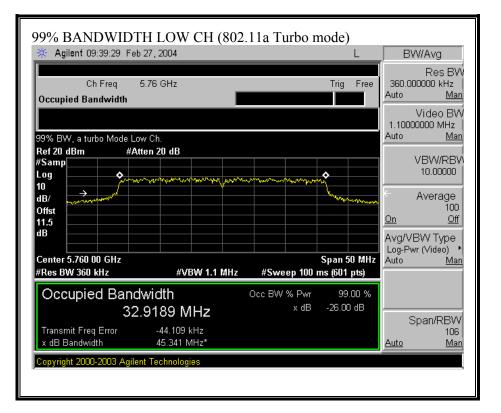
99% BANDWIDTH (802.11g TURBO MODE)



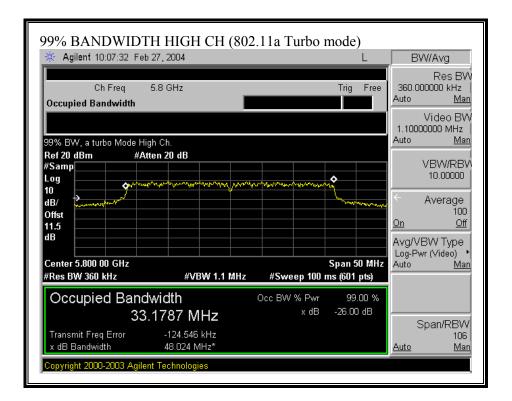
Page 33 of 138


99% BANDWIDTH (802.11a MODE)

Page 34 of 138



Page 35 of 138



Page 36 of 138

99% BANDWIDTH (802.11a TURBO MODE)

Page 37 of 138

Page 38 of 138

7.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 4.24 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

Page 39 of 138

2.4 GHZ BAND RESULTS

No non-compliance noted:

802.11b Mode

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	19.96	30	-10.04
Middle	2437	20.85	30	-9.15
High	2462	17.96	30	-12.04

802.11g Mode

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	23.15	30	-6.85
Middle	2437	24.45	30	-5.55
High	2462	20.20	30	-9.80

802.11g Turbo Mode

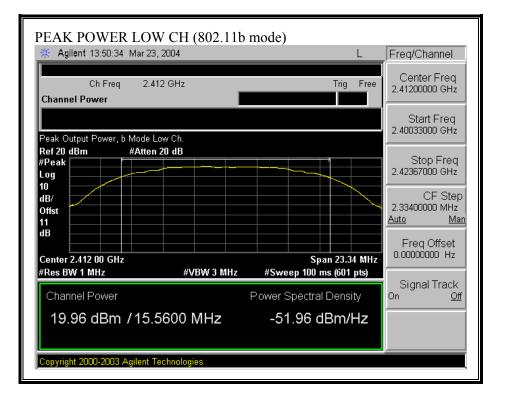
Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Middle	2437	24.34	30	-5.66

Page 40 of 138

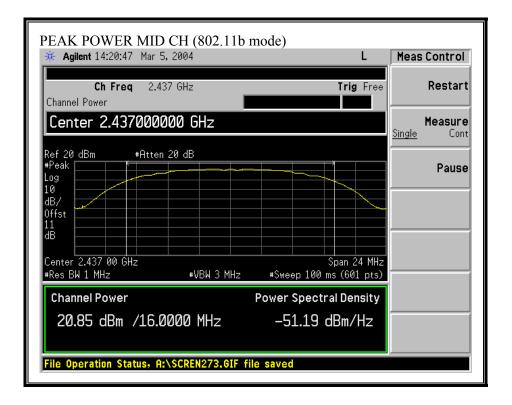
5.8 GHZ BAND RESULTS

No non-compliance noted:

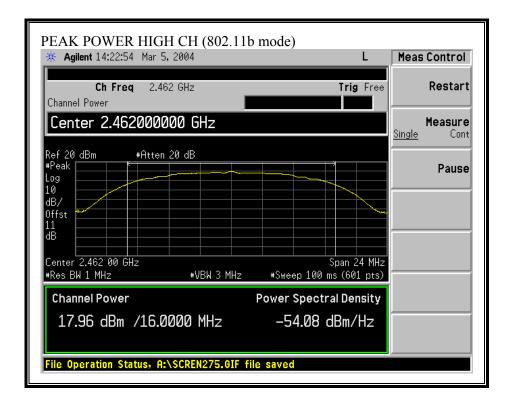
802.11a Mode


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	24.35	30	-5.65
Middle	5785	24.38	30	-5.62
High	5825	25.74	30	-4.26

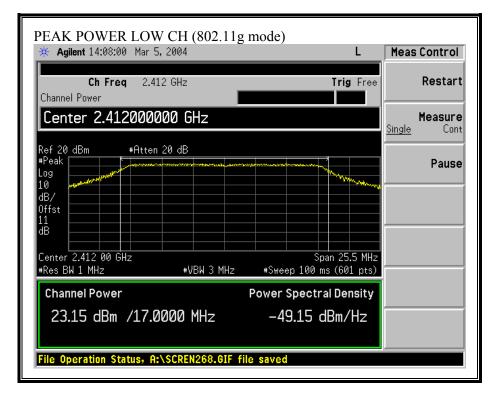
802.11a Turbo Mode


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5760	24.32	30	-5.68
High	5800	24.38	30	-5.62

Page 41 of 138

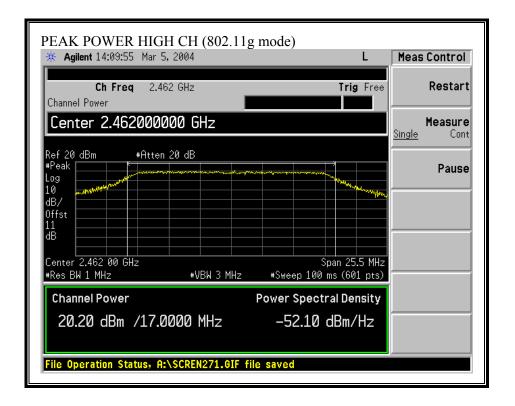

OUTPUT POWER (802.11b MODE)

Page 42 of 138



Page 43 of 138

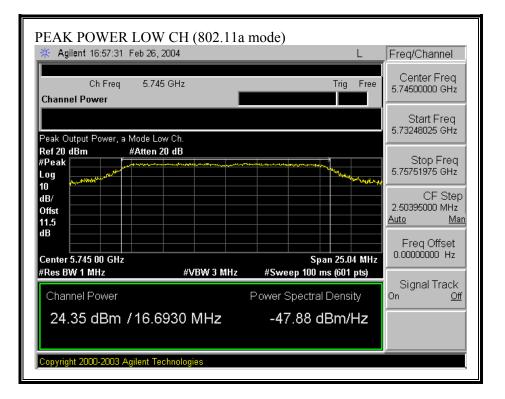
Page 44 of 138


OUTPUT POWER (802.11g MODE)

Page 45 of 138

* Agilent 14:08:39 Mar 5	OCH (802.11g n 5, 2004		L	Meas Control
Ch Freq 2.4	37 GHz	T	rig Free	Restart
Channel Power Center 2.4370000	200 GHz			Measure Single Cont
"Duals F				Pause
Center 2.437 00 GHz #Res BW 1 MHz	#VBW 3 MHz		25.5 MHz (601 pts)	
Channel Power		Power Spectral	Density	
24.45 dBm /17.0	0000 MHz	-47.86 dB	m/Hz	

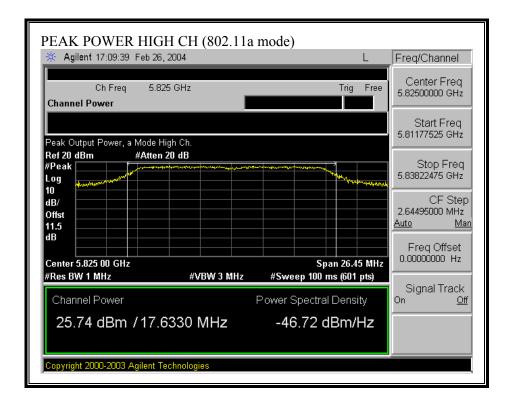
Page 46 of 138


Page 47 of 138

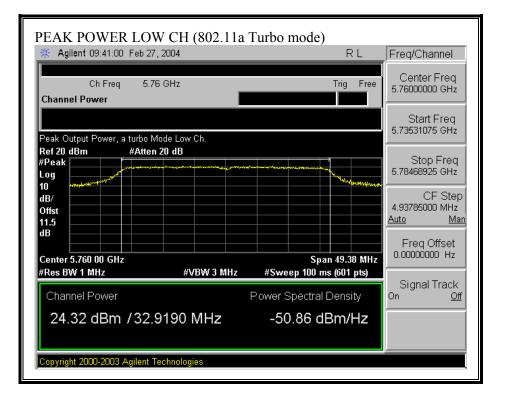
OUTPUT POWER (802.11g TURBO MODE)

PEAK POWER (802.11g Turbo mo	ode)	
Agilent 14:18:22 Mar 5, 2004	L	Meas Control
Ch Freq 2.437 GHz Channel Power	Trig Free	Restart
Center 2.437000000 GHz		Measure Single Cont
Ref 20 dBm #Atten 20 dB #Peak Log 10 dB/ Offst 11 dB		Pause
Center 2.437 00 GHz #Res BW 1 MHz #VBW 3 MHz	Span 49.5 MHz #Sweep 100 ms (601 pts)	
Channel Power	Power Spectral Density	
24.34 dBm /33.0000 MHz	-50.85 dBm/Hz	
File Operation Status, A:\SCREN272.GIF f	ile saved	

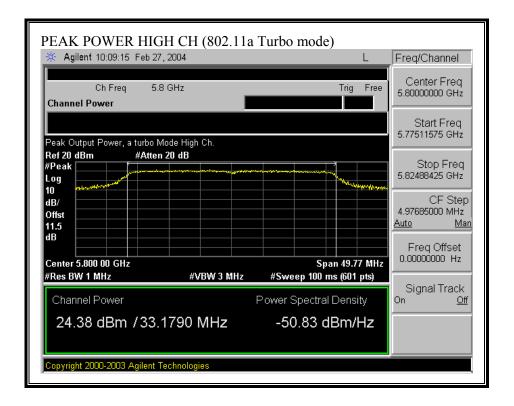
Page 48 of 138


OUTPUT POWER (802.11a MODE)

Page 49 of 138


PEAK POWER MID		node)		
* Agilent 16:32:19 Feb 26	, 2004		L	Freq/Channel
Ch Freq 5.70	35 GHz	Tri	g Free	Center Freq 5.78500000 GHz
Deels Ostrut Deurse - Maria N				Start Freq 5.77231150 GHz
Peak Output Power, a Mode M Ref 20 dBm #Atten				
#Peak	، سيادار وي _{ار وي} المراجعة من المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة ا	Ware and a strange of the strange of		Stop Freq 5 79768850 GHz
Log 10			www.www.www.www.www.	3.75786656 6112
dB/				CF Step 2.53770000 MHz
Offst				<u>Auto Man</u>
dB				
Center 5.785 00 GHz		Enon 26	i.38 MHz	Freq Offset 0.00000000 Hz
#Res BW 1 MHz	#VBW 3 MHz	Span 2: #Sweep 100 ms (6		
Channel Power		Power Spectral Der		Signal Track On <u>Off</u>
24.38 dBm / 16.9180 MHz -47.90 dBm/Hz				
Copyright 2000-2003 Agilent T	echnologies			,

Page 50 of 138



Page 51 of 138

OUTPUT POWER (802.11a TURBO MODE)

Page 52 of 138

Page 53 of 138

7.4. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6
30–300	61.4	0.163	1.0 f/300	6
1500-100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposed are the exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

Page 54 of 138

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 55 of 138

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

2.4 GHz BAND RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11b	1.0	20.85	4.24	5.07
802.11g	1.0	24.45	4.24	7.67
802.11g Turbo	1.0	24.34	4.24	7.57

5.8 GHz BAND RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11a	1.0	25.74	4.12	8.78
802.11a Turbo	1.0	24.38	4.12	7.50

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 56 of 138

7.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

2.4 GHZ BAND RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.03 dB (including 10 dB pad and 1.03 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2412	16.50	
Middle	2437	19.80	
High	2462	16.90	

802.11g Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2412	16.80
Middle	2437	19.50
High	2462	14.90

802.11g Turbo Mode

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Middle	2437	19.00	

Page 57 of 138

5.8 GHZ BAND RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.6 dB (including 10 dB pad and 1.6 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11a Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	5745	17.60
Middle	5785	17.10
High	5825	17.20

802.11a Turbo Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	5760	17.30
High	5800	17.00

Page 58 of 138

7.6. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

2.4 GHz BAND RESULTS

No non-compliance noted:

802.11b Mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-7.06	8	-15.06
Middle	2437	-8.02	8	-16.02
High	2462	-4.94	8	-12.94

802.11g Mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-6.04	8	-14.04
Middle	2437	-0.50	8	-8.50
High	2462	-4.38	8	-12.38

802.11g Turbo Mode

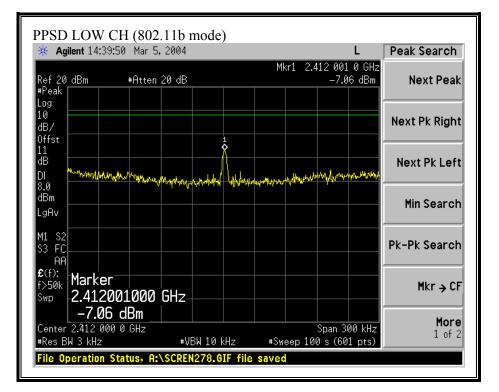
Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Middle	2437	-0.51	8	-8.51

Page 59 of 138

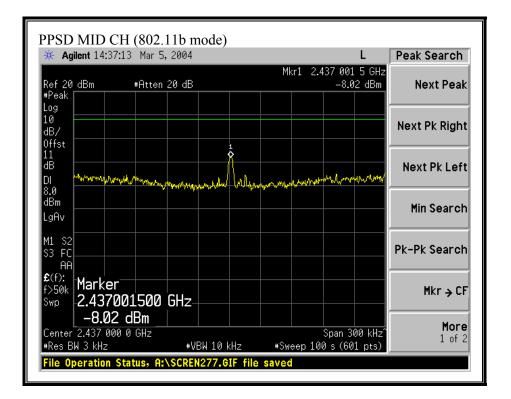
5.8 GHz BAND RESULTS

No non-compliance noted:

802.11a Mode


Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	5745	-8.34	8	-16.34
Middle	5785	-8.18	8	-16.18
High	5825	-5.29	8	-13.29

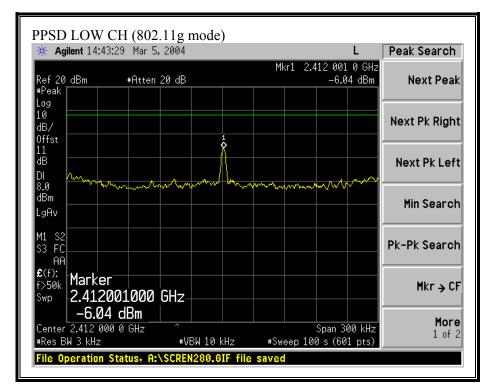
802.11a Turbo Mode


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5760	-8.04	8	-16.04
High	5800	-9.28	8	-17.28

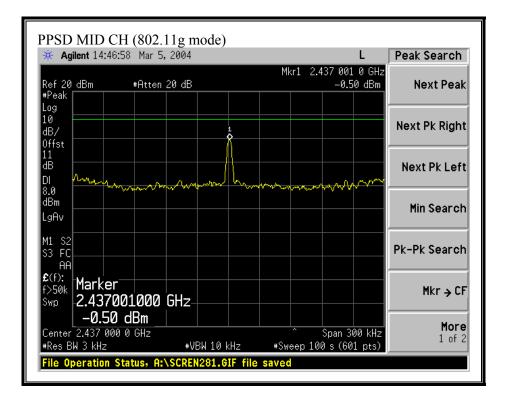
Page 60 of 138

PEAK POWER SPECTRAL DENSITY (802.11b MODE)

Page 61 of 138



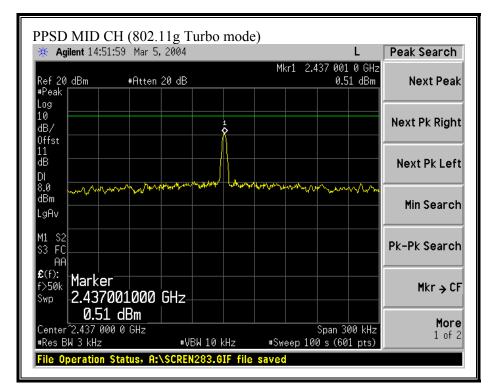
Page 62 of 138


🔆 Agilent 14:	28:46 Mar 5,2	2004			L	Peak Search
Ref 20 dBm #Peak	#Atten 2	0 dB		Mkr1 2.4	62 001 0 GHz -4.94 dBm	
Log 10 dB/ 0ffst			1			Next Pk Right
11 dB	www.t.w.w.www.yew	where an annalistic	A Containing	www.www.		Next Pk Left
dBm LgAv	V					Min Search
M1 S2 S3 FC AA						Pk-Pk Search
	2001000 0	iHz				Mkr → CF
Center 2.462 (#Res BW 3 kHz		#VBW 10	kHz +		Span 300 kHz)s (601 pts)	More 1 of 2

Page 63 of 138

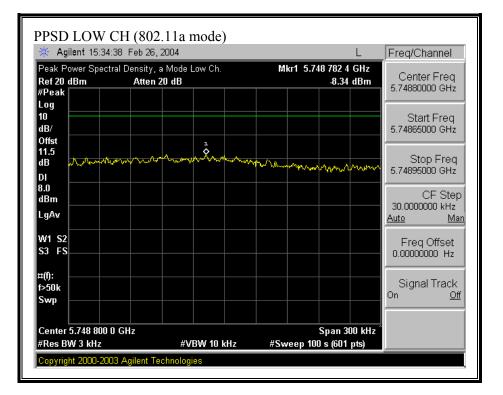
PEAK POWER SPECTRAL DENSITY (802.11g MODE)

Page 64 of 138



Page 65 of 138

PPSD HIGH CH (802	<u> </u>	1	Peak Search
Aynent 14.49.45 Mar 5,	2004	L	
Ref 20 dBm #Atten #Peak	20 dB	Mkr1 2.462 001 0 G —4.38 dB	
Log 10 dB/			Next Pk Right
Offst 11 dB			Next Pk Left
DI 8.0 dBm LgAv	mann han	manna	Min Search
M1 S2 S3 FC			Pk-Pk Search
AA £(f): f>50k Swp -2.462001000	GHz		Mkr → CF
-4.38 dBm Center 2.462 000 0 GHz		Coop 200 Li	More
#Res BW 3 kHz File Operation Status, A:		Span 300 kH #Sweep 100 s (601 pts	

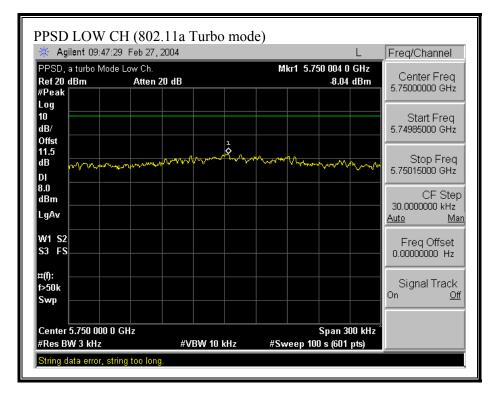

Page 66 of 138

PEAK POWER SPECTRAL DENSITY (802.11g TURBO MODE)

Page 67 of 138

PEAK POWER SPECTRAL DENSITY (802.11a MODE)

Page 68 of 138


🔆 Agilent 16:35	:15 Feb 26, 2004	RL	Freq/Channel	
Ref 20 dBm #Peak	ral Density, a Mode Mid Ch. Atten 20 dB	Mkr1 5.791 288 5 GHz -8.18 dBm	Center Freq 5.79130000 GHz	
Log 10 dB/ Offst			Start Freq 5.79115000 GHz	
11.5	Manana and a start of the second s	www.www.www.ww	Stop Freq 5.79145000 GHz	
8.0 dBm LgAv			CF Step 30.0000000 kHz Auto Man	
W1 S2 S3 FS			Freq Offset 0.00000000 Hz	
¤(f): f>50k Swp			Signal Track On <u>Off</u>	
Center 5.791 300 #Res BW 3 kHz	0 GHz #VBW 10 kHz	Span 300 kHz #Sweep 100 s (601 pts)		

Page 69 of 138

🔆 Agilent 17:12:	38 Feb 26, 2004	RL	Freq/Channel		
Ref 20 dBm #Peak	al Density, a Mode High Ch. Atten 20 dB	Mkr1 5.819 993 5 GHz -5.29 dBm	Center Freq 5.8200000 GHz		
Log 10 dB/ Offst	<u>1</u>		Start Freq 5.81985000 GHz		
	my water and and the state of t	have a second where the second s	Stop Freq 5.82015000 GHz		
8.0 dBm LgAv			CF Step 30.0000000 kHz <u>Auto Mar</u>		
W1 S2 S3 FS			Freq Offset 0.00000000 Hz		
¤(f): f>50k Swp			Signal Track On <u>Off</u>		
Center 5.820 000 0 #Res BW 3 kHz) GHz #VBW 10 kHz	Span 300 kHz #Sweep 100 s (601 pts)			

Page 70 of 138

PEAK POWER SPECTRAL DENSITY (802.11a TURBO MODE)

Page 71 of 138

🔆 Agilent 1	0:14:55	Feb 27, 2	2004						L	Freq/Chan	nel
PPSD, a turbo Mode Ref 20 dBm #Peak						Mkr1 5.802 540 1 GHz -9.28 dBm				Center Freq 5.80250000 GHz	
Log 10 dB/ Offst										Start F 5.80235000	
11.5	warme w	www	nn th	weedrame and	vw	wint	r ^{at} yy/wrw	www.y.y	~~~~~	Stop F 5.80265000	
8.0 dBm LgAv										CF 30.0000000 <u>Auto</u>	Step kHz <u>Mar</u>
W1 S2 S3 FS										Freq Off 0.00000000	
¤(f): f>50k Swp										Signal Ti On	ack <u>Off</u>
Center 5.802 : #Res BW 3 kH		lz	#1	RW 10.	kHz	#Sv	veen 10	Span 3(0 s (601			

Page 72 of 138

7.7. CONDUCTED SPURIOUS EMISSIONS

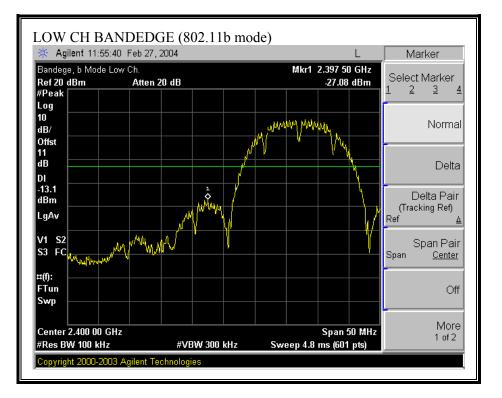
LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

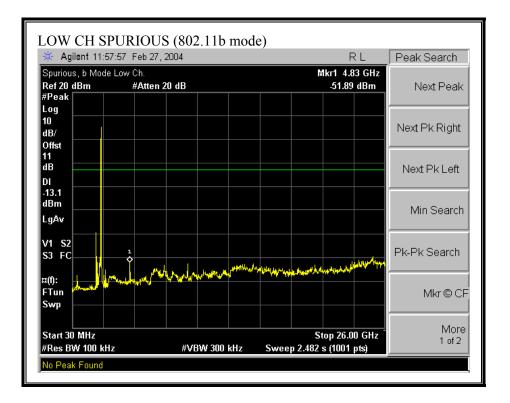
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

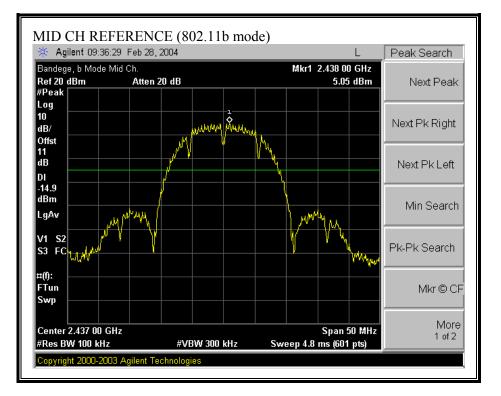

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 5.8 GHz band.

RESULTS

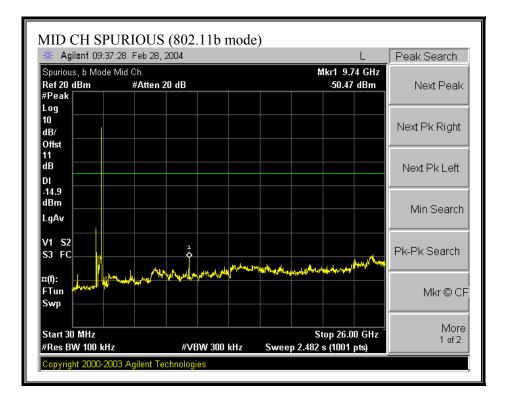

No non-compliance noted:

Page 73 of 138

SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)

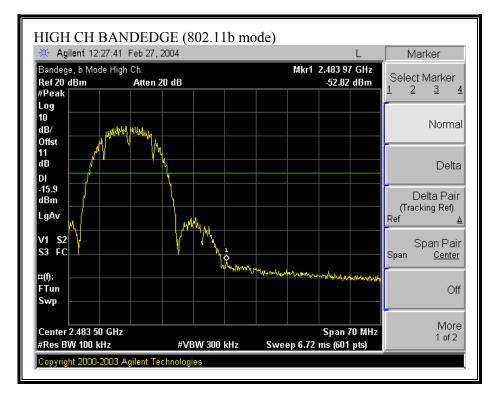


Page 74 of 138

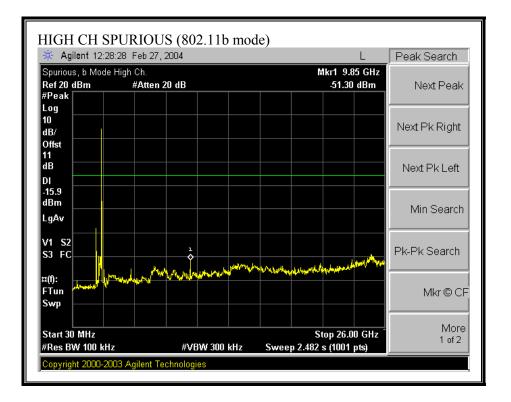


Page 75 of 138

SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)

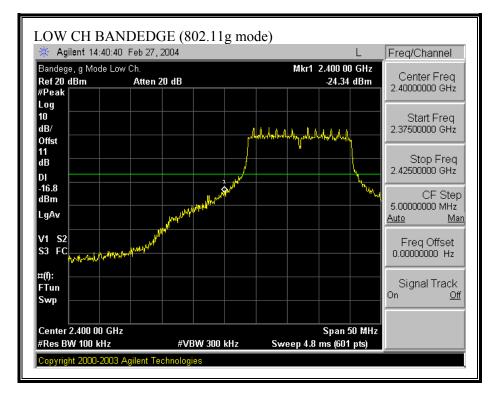


Page 76 of 138

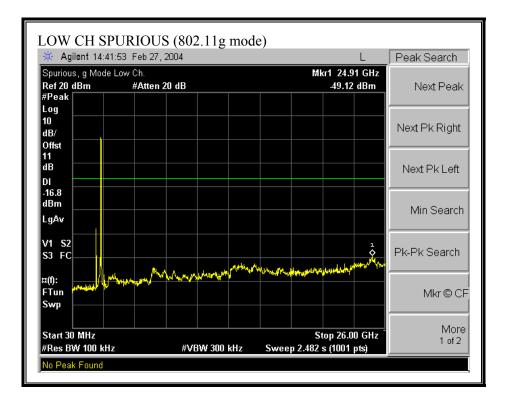


Page 77 of 138

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11b MODE)

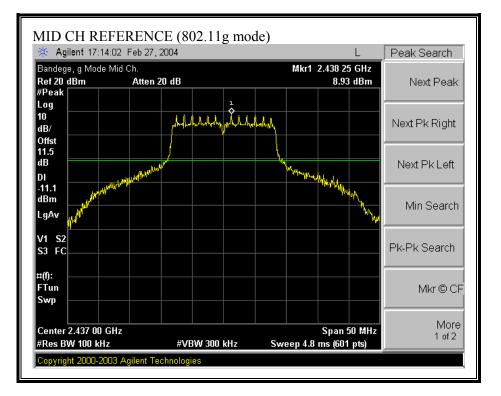


Page 78 of 138

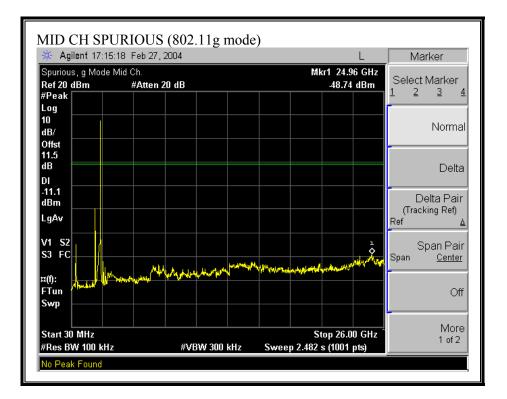


Page 79 of 138

SPURIOUS EMISSIONS, LOW CHANNEL (802.11g MODE)

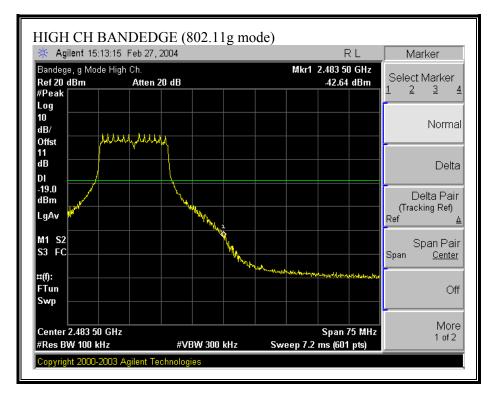


Page 80 of 138

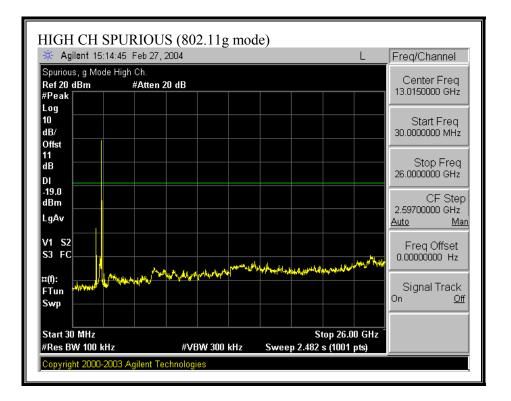


Page 81 of 138

SPURIOUS EMISSIONS, MID CHANNEL (802.11g MODE)

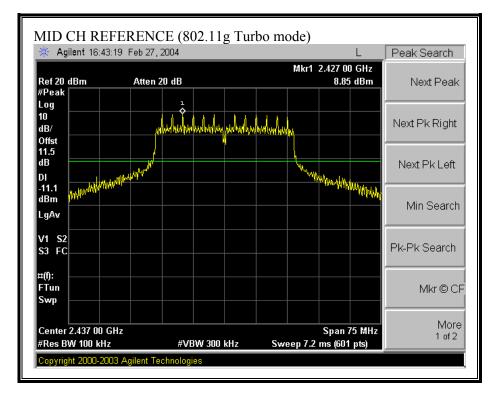


Page 82 of 138



Page 83 of 138

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11g MODE)

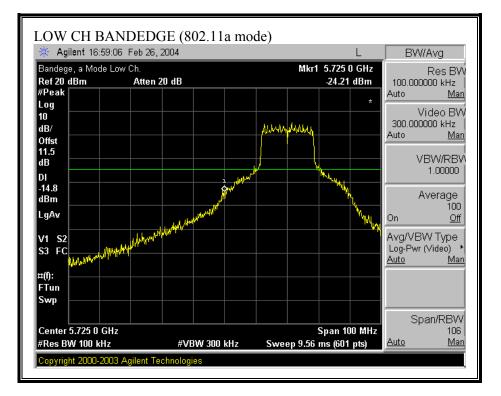


Page 84 of 138

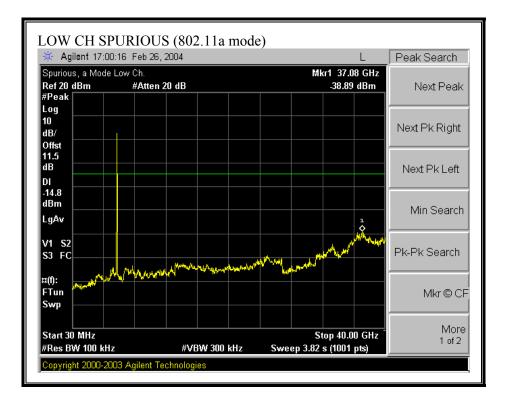


Page 85 of 138

SPURIOUS EMISSIONS, MID CHANNEL (802.11g TURBO MODE)

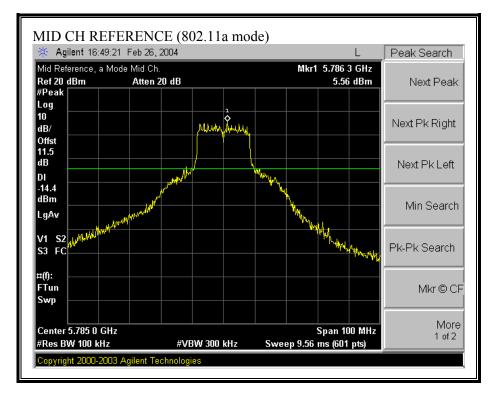


Page 86 of 138

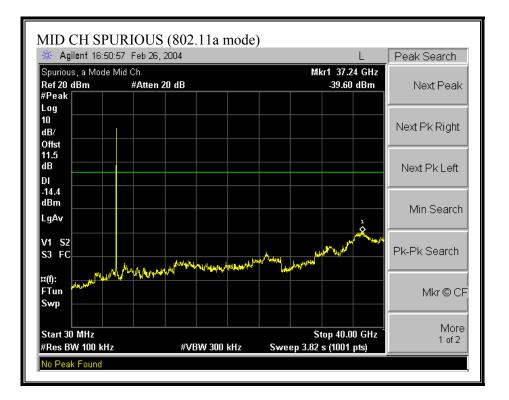


Page 87 of 138

SPURIOUS EMISSIONS, LOW CHANNEL (802.11a MODE)

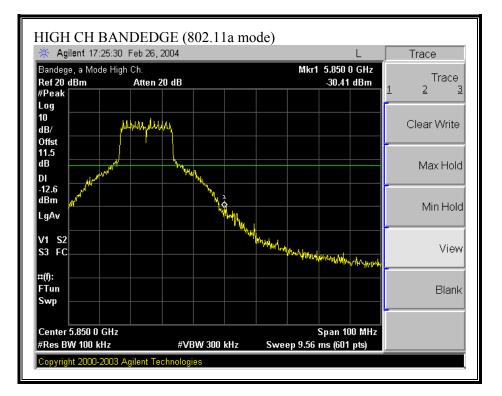


Page 88 of 138

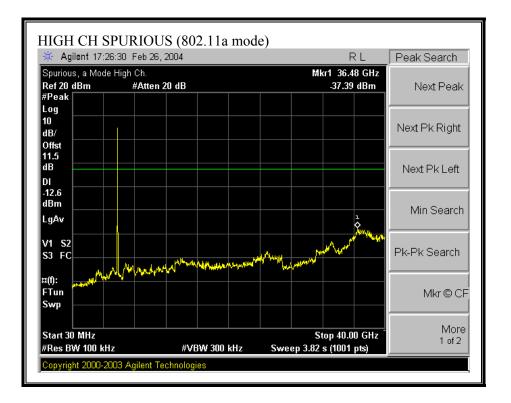


Page 89 of 138

SPURIOUS EMISSIONS, MID CHANNEL (802.11a MODE)

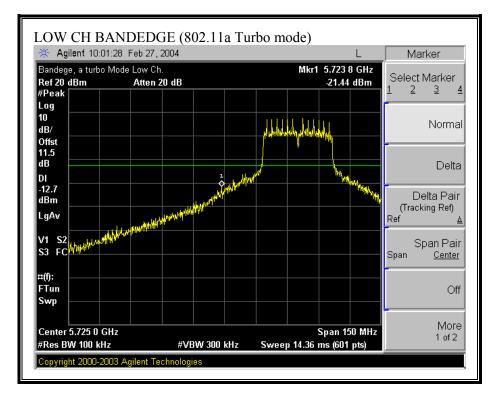


Page 90 of 138

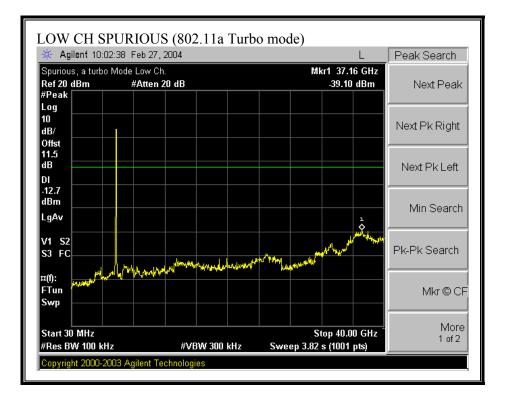


Page 91 of 138

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11a MODE)

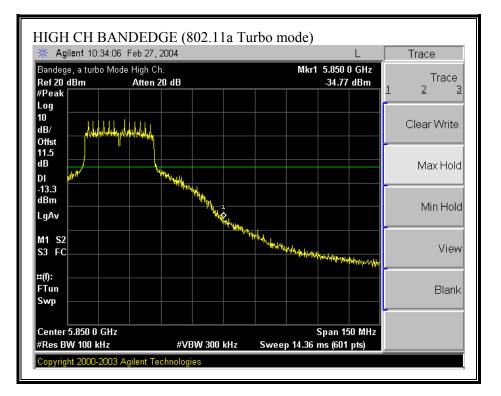


Page 92 of 138

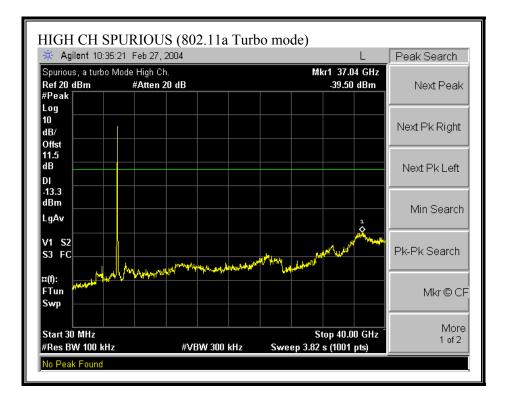


Page 93 of 138

SPURIOUS EMISSIONS, LOW CHANNEL (802.11a TURBO MODE)



Page 94 of 138



Page 95 of 138

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11a TURBO MODE)

Page 96 of 138

Page 97 of 138

7.8. RADIATED EMISSIONS

7.8.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 98 of 138

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 99 of 138

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

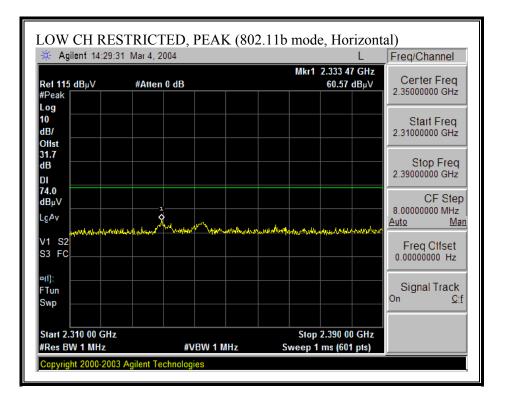
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

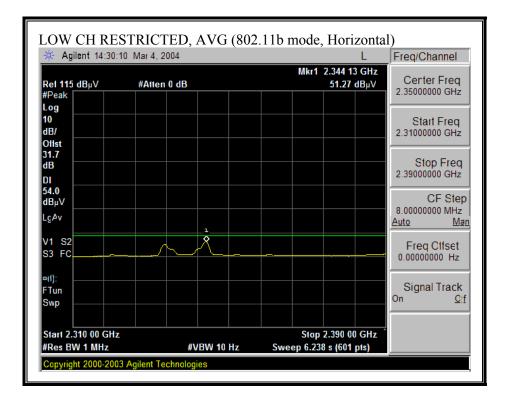
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels of the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels of the 5.8 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

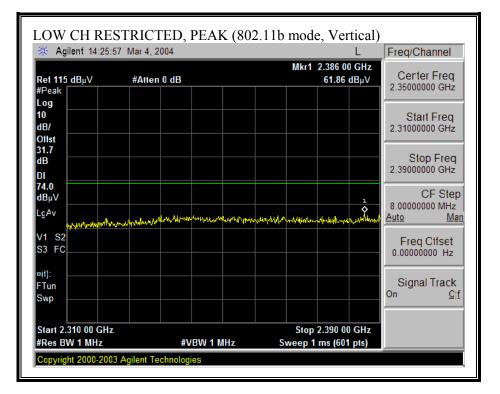

RESULTS

No non-compliance noted:

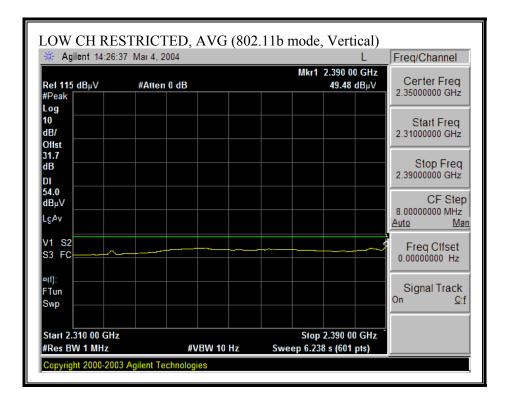

Page 100 of 138

7.8.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)

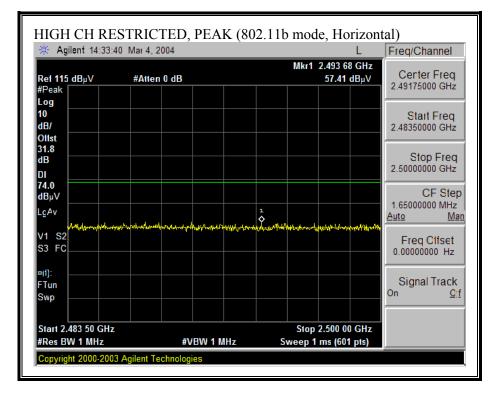


Page 101 of 138



Page 102 of 138

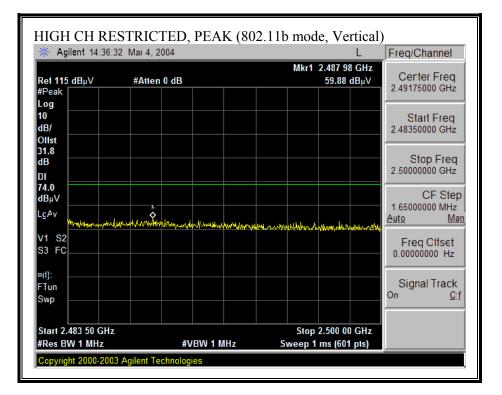
RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)



Page 103 of 138

Page 104 of 138

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)



Page 105 of 138

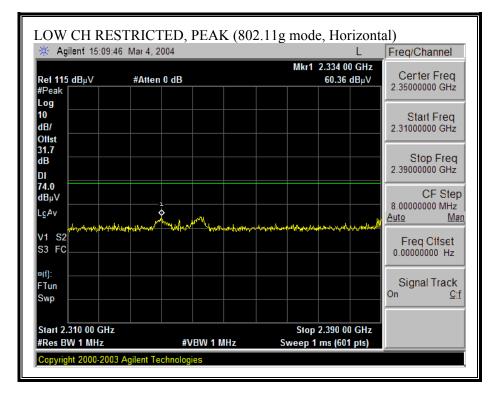
🔆 Agilent 14:34	:11 Mar 4, 2004			L	Freq/Channel
Ref 115 dBµV #Peak □	#Atten 0 dB		Mkr1	2.488 12 GHz 45.23 dBµ∨	Certer Freq 2.49175000 GHz
Log 10 dB/ Ollst					Start Freq 2.48350000 GHz
31.8 dB DI					Stop Freq 2.5000000 GHz
54.0 dBμV LgAv					CF Step 1.6500000 MHz <u>Auto Mar</u>
V1 S2 S3 FC 	1 •				Freq Ctfset 0.00000000 Hz
¤(1): FTun Swp					Signal Track ^{On <u>Q</u>:f}
Start 2.483 50 GH #Res BW 1 MHz		#VBW 10 Hz		2.500 00 GHz 7 s (601 pts)	

Page 106 of 138

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

Page 107 of 138

🔆 Agilent 14:37:0	01 Mar 4, 2004		L	Freq/Channel
Re i 11 5 dBµV #Peak	#Atten 0 dB		487 90 GHz 47.96 dBµ∨	Certer Freq 2.49175000 GHz
Log 10 dB/ Ollst				Start Freq 2.48350000 GHz
dB DI				Stop Freq 2.5000000 GHz
54.0 dBμV LgAv				CF Step 1.6500000 MHz <u>Auto Mar</u>
V1 S2 S3 FC	`			Freq Clfset 0.00000000 Hz
¤(1): FTun Swp				Signal Track ^{On <u>Q:f</u>}
Start 2.483 50 GHz #Res BW 1 MHz	#VBW 10	•	500 00 GHz s (601 pts)	

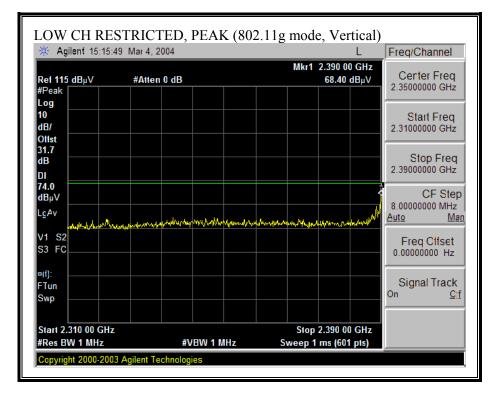

Page 108 of 138

HARMONICS AND SPURIOUS EMISSIONS (b MODE)

est Equ		<u>t:</u> 1-18GHz	Spec	etrum An	alyzer		Pre-am	plifer 1	-26GHz	Pre-am	plifer 26-40	GHz		Horn >18G	Hz
T73; S	/N: 6717	7@3m 🗸	Agilent	E4446A /	Analyze	r 🗸	T63 Mit	•				-			
Hi Freq	uency Ca ft)		└ (4 ~ 6 ft)	▼ (12 ft)			FCC 15	Limit	Ţ		1 MHz Reso	asurement: olution Bandy Bandwidth	width	Average Mea 1 MHz Resolution 10Hz Video Band	n Bandwidth
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	:		Pk Mar dB	Avg Mar dB	Notes
l 1b low								<u> </u>							
1.824 9.648	9.8 9.8	53.5 44.0	50.6 33.9	33.4 38.6	2.9 4.0	-35.3 -33.3	0.0 0.0	1.0 1.0	55.4 54.2	52.4 44.1	74.0 74.0	54.0 54.0	-18.6 -19.8	-1.6 -9.9	V V
1b mid	9.8												ļ		
.874 .748	9.8 9.8	54.5 43.1	50.3 33.2	33.4 38.5	2.9 4.1	-35.3 -33.4	0.0	1.0 1.0	56.5 53.2	52.3 43.3	74.0 74.0	54.0 54.0	-17.5 -20.8	-1.7 -10.7	V V
./48 1b high	9.8 9.8	43.1	33.4	30.3	4.1	-00.4	0.0	1.0	23.4	40.0	/4.0	34.0	-40.0	-10./	V
.924	9.8	52.3	48.0	33.5	2.9	-35.3	0.0	1.0	54.3	50.0	74.0	54.0	- 19.7	-4.0	V
.848	9.8	43.8	32.5	38.4	4.1	-33.4	0.0	1.0	53.9	42.6	74.0	54.0	-20.1	-11.4	V
1b low .824	9.8 9.8	51.5	46.8	33.4	2.9	-35.3	0.0	1.0	53.4	48.7	74.0	54.0	-20.6	-5.3	Н
16 mid	9.8 9.8	21.3	-10.0	55.4	2.7	-00.0	0.0	1.0	00.4	-10.7	/ 4.0	J-1.0	-20.0		п
1.874	9.8	55.8	47.5	33.4	2.9	-35.3	0.0	1.0	57.8	49.5	74.0	54.0	-16.2	-4.5	H
llb high	9.8		(3.4						10.6					10.5	
.924 9.848	9.8 9.8	47.6 43.7	41.3 32.3	33.5 38.4	2.9 4.1	-35.3 -33.4	0.0	1.0 1.0	49.6 53.8	43.3 42.4	74.0 74.0	54.0 54.0	-24.4 -20.2	-10.7 -11.6	H
.040	7.8	43./	34.3	36.4	4.1	-33.4	0.0	1.0	23.8	44.4	/4.0	54.0	-20.2	-11.0	н
	f Dist Read AF CL	Measureme Distance to Analyzer R Antenna Fa Cable Loss	leading actor	y		D Corr Avg Peak	Average	Correc Field S ed Peal	ct to 3 mete Strength @ k Field Stre	3 m		Pk Lim Avg Mar	Peak Field Margin vs	Field Strength Li d Strength Limit 5. Average Limit 5. Peak Limit	

Page 109 of 138

RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, HORIZONTAL)

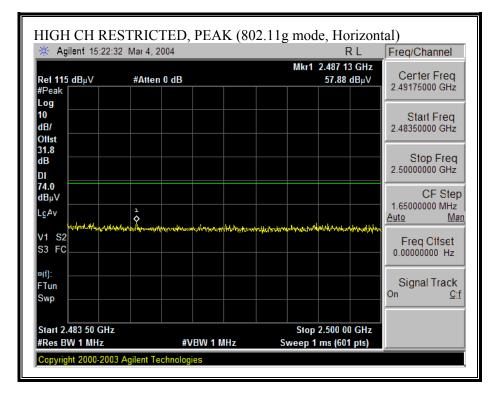


Page 110 of 138

🔆 Agilent 15:10:2	6 Mar 4, 2004	RT	Freq/Channel
Rei 115 dBµV #Peak	#Atten 0 dB	Mkr1 2.344 13 GHz 51.29 dBµ∨	Certer Freq 2.35000000 GHz
Log 10 dB/ Ollst			Start Freq 2.31000000 GHz
dB DI			Stop Freq 2.39000000 GHz
54.0 dBμV LgAv			CF Step 8.0000000 MHz <u>Auto Mar</u>
V1 S2 S3 FC			Freq Clfset 0.00000000 Hz
¤(1): FTun Swp			Signal Track ^{On <u>Q</u>:f}
Start 2.310 00 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 2.390 00 GHz Sweep 6.238 s (601 pts)	

Page 111 of 138

RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, VERTICAL)

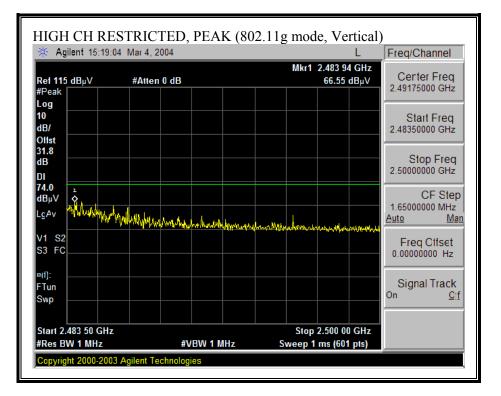


Page 112 of 138

🔆 Agilent 15:15:	13 Mar 4, 2004	L	Freq/Channel
Rel 115 dBµV #Peak	#Atten 0 dB	Mkr1 2.390 00 GHz 50.55 dBµ∨	Certer Freq 2.3500000 GHz
Log 10 dB/ Ollst			Start Freq 2.31000000 GHz
dB			Stop Freq 2.39000000 GHz
54.0 dBμV LgAv			CF Step 8.00000000 MHz Auto Mar
V1 S2 S3 FC			Freq Offset 0.00000000 Hz
¤(1): FTun Swp			Signal Track ^{On <u>C</u>:f}
Start 2.310 00 GHz #Res BW 1 MHz	#VBW 10 H	Stop 2.390 00 GHz z Sweep 6.238 s (601 pts)	

Page 113 of 138

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, HORIZONTAL)



Page 114 of 138

🔆 Agilent 15:23:	03 Mar 4, 2004		L Freq/Channel
<mark>Rel 11</mark> 5 dBμV #Peak	#Atten 0 dB	Mkr1 2.483 5 45.35	i0 GHz dBμV 2.49175000 GHz
Log 10 dB/ Ollst			Start Freq 2.48350000 GHz
dB			Stop Freq 2.5000000 GHz
54.0 dBμV LgAv			CF Ste 1.65000000 MHz <u>Auto M</u> a
V1 S2 <u>.</u> S3 FC 2			Freq Cifset 0.00000000 Hz
¤(†): FTun Swp			Signal Track
Start 2.483 50 GHz #Res BW 1 MHz		Stop 2.500 0 z Sweep 1.287 s (601	

Page 115 of 138

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, VERTICAL)

Page 116 of 138

🔆 Agilent 15:19:	:22 Mar 4, 2004		L Freq/Channel
Rel 115 dBµV #Peak	#Atten 0 dB	Mkr1 2.483 5 48.94	0 GHz dBμ∨ 2.49175000 GHz
Log 10 dB/ Ollst			Start Freq 2.48350000 GHz
dB			Stop Freq 2.5000000 GHz
54.0 dBμV LgAv			CF Step 1.65000000 MHz Auto Ma
V1 S2 S3 FC			Freq Ctfset 0.00000000 Hz
¤(t): FTun Swp			Signal Track On <u>Ci</u> t
Start 2.483 50 GHz #Res BW 1 MHz	z #VBW 10 H	Stop 2.500 0 z Sweep 1.287 s (601	

Page 117 of 138

HARMONICS AND SPURIOUS EMISSIONS (g MODE)

st Engr	ce Certi	fication	Services, M	organ I	iill O _l	oen Field	l Site								
	VIEN	TRAN													
десь п.	04U247														
	: TOSHI														
			EXTENDEI	O CARI)										
	et: 15.2	_ ACE9 47													
-	-		URBO MOI	DE 2.4G	Hz B.	AND									
st Equi	pment:														
			Sau	ctrum An			_			-				Horn > 1	PCH-
EMCO	Horn 1-1	8GHz	Spec	ctrum An	aiyzer		Pre-am	plifer 1	26GHz	Pre-am	plifer 26-40	GHz		Horn >1	8GHZ
T60; S/N	N: 2238 @	3m 🗸	Agilent	E4446A	Analyze	•r 👻	T63 Mi	teq 646	456 🖵			-			-
			1				1			1					
Hi Frequ	ency Cable	s —				1		Limit			Peak Mea	asurements	<u>s:</u>	Average M	easurements:
🗹 (2 ft	t) 🗖	(2 ~ 3 ft)	□ (4 ~ 6 ft)	🗹 (12 ft)								lution Bandy	vidth		tion Bandwidth
							FCC 15	.209	-		IMHz Video	Bandwidth		10Hz Video Ba	andwidth
		dBuV	Read Avg.		CL dB	Amp	D Corr	HPF	Peak	Avg				Avg Mar dB	Notes
	feet 412MHz	abuv	dBuV	dB/m	aB	dB	dB		aBuv/m	dBuV/m	dBuv/m	dBuv/m	dB	aB	
24	9.8	47.7	35.4	33.1	2.9	-35.3	0.0	1.0	49.3	37.0	74.0	54.0	-24.7	-17.0	V
26	9.8	45.0	33.5	36.2	3.8	-34.6	0.0	1.0	51.5	40.0	74.0	54.0	-22.5	-14.0	V
24	9.8	45.9	33.4	33.1	2.9	-35.3	0.0	1.0	47.5	35.0	74.0	54.0	-26.5	-19.0	Н
26	9.8	43.6	32.8	36.2	3.8	-34.6	0.0	1.0	50.1	39.3	74.0	54.0	-23.9	-14.7	H
	37MHz 9.8	53.7	41.3	33.1	2.9	-35.3	0.0	1.0	55.4	43.0	74.0	54.0	-18.6	-11.0	V
	9.0	49.0	35.1	36.2	3.8	-33.5	0.0	1.0	55.4	41.5	74.0	54.0	-18.6	-12.5	v
74	9.8														
74 11						-35.3	0.0	1.0	51.7	39.2	74.0	54.0	-22.3	-14.8 -14.2	H
74 11 74	9.8	50.0	37.5	33.1	2.9			10	51 8	30.8	74.0	54.0			н
74 11 74		50.0 45.4	37.5 33.4	33.1 36.2	3.8	-34.6	0.0	1.0	51.8	39.8	74.0	54.0	-22.2	-14.2	H
74 11 74 11	9.8 9.8	45.4	33.4	36.2	3.8	-34.6	0.0	1.0	51.8						
74 11 74 11 CH 2462 24	9.8 9.8 2MHZ 9.8	45.4 48.9	33.4 36.5	36.2 33.2	3.8 2.9	-34.6 -35.3	0.0	1.0	50.6	38.2	74.0	54.0	-23.4	-15.8	v
D CH 24: 74 11 74 11 74 11 CH 2462 24 86	9.8 9.8 2MHZ	45.4	33.4	36.2	3.8	-34.6	0.0	1.0 1.0							
74 11 74 11 CH 2462 24	9.8 9.8 2MHZ 9.8	45.4 48.9	33.4 36.5	36.2 33.2	3.8 2.9	-34.6 -35.3	0.0	1.0	50.6	38.2	74.0	54.0	-23.4	-15.8	v

Page 118 of 138

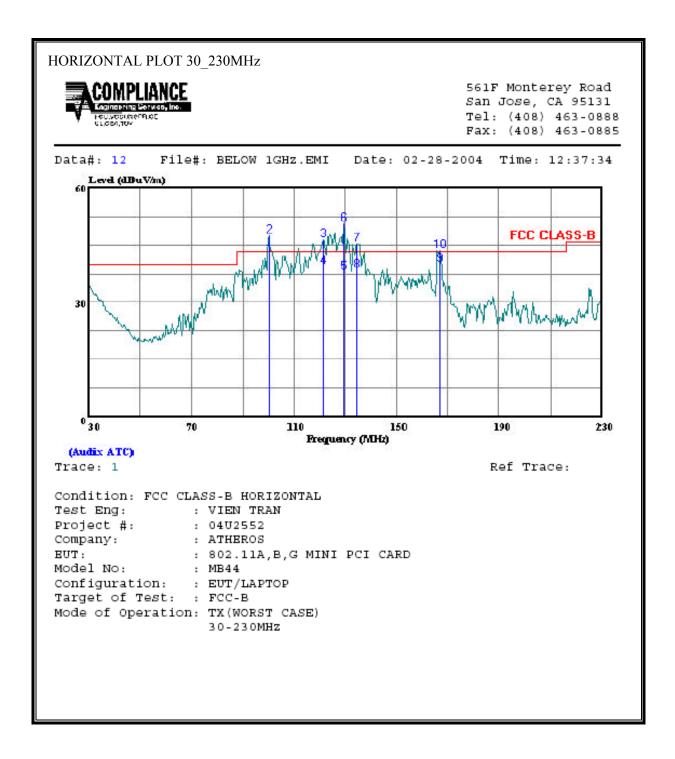
HARMONICS AND SPURIOUS EMISSIONS (g TURBO MODE)

03/04/04 Compli			⁷ Measurem Services, M		Hill O	pen Field	l Site								
Project Compar EUT D EUT M Test Ta Mode (#: 04U2 ny: TOS escrip.: /N: MB urget: 15	HIBA MB44 ON 444 _ ACE9 5.247 x_11g & T1	EXTENDEI , URBO MOI			AND									
EMC	O Horn	1-18GHz	Spe	ctrum An	alyzer		Pre-am	plifer 1	-26GHz	Pre-am	plifer 26-40	GHz		Horn >	18GHz
T60; 5	S/N: 223	3@3m 🗸	Agilent	E4446A	Analyz	er 🗸	T63 Mi	teq 646	456 🗸			•			-
	equency Ca	□ (2 ~ 3 ft)	□ (4 ~ 6 ft))]	FCC 15	Limit 5.209	•		1 MHz Reso	asurement olution Bandy Bandwidth	width	1 MHz Resolu 10Hz Video B	Leasurements: ntion Bandwidth andwidth
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF		Avg dBuV/m	Pk Lim dBuV/m		Pk Mar dB	Avg Mar dB	Notes
0112	Teet	ubuv	ubuv	ub/m					albu v/m	uDu v/m	uDu v/m	uDu v/m		and and a	
MID CH	2437MH	z_TURBO													
1.874	9.8 9.8	56.2 45.7	42.9 34.0	33.1	2.9 3.8	-35.3 -34.6	0.0	1.0 1.0	57.9 52.1	44.6 40.4	74.0 74.0	54.0 54.0	-16.1 -21.9	-9.4 -13.6	V
7.311	9.8	45./	34.0	36.2	3.8	-34.0	0.0	1.0	54.1	40.4	/4.0	54.0	-21.9	-13.0	V
4.874	9.8	47.2	35.6	33.1	2.9	-35.3	0.0	1.0	48.9	37.3	74.0	54.0	-25.1	- 16.7	Н
7.311	9.8	44.0	32.8	36.2	3.8	-34.6	0.0	1.0	50.4	39.2	74.0	54.0	-23.6	-14.8	H
	f Measurement Frequency Am Dist Distance to Antenna D O Read Analyzer Reading Av AF Antenna Factor Pee CL Cable Loss HP						Distance Correct to 3 meters P Average Field Strength @ 3 m					Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit			

Page 119 of 138

HARMONICS AND SPURIOUS EMISSIONS (a MODE)

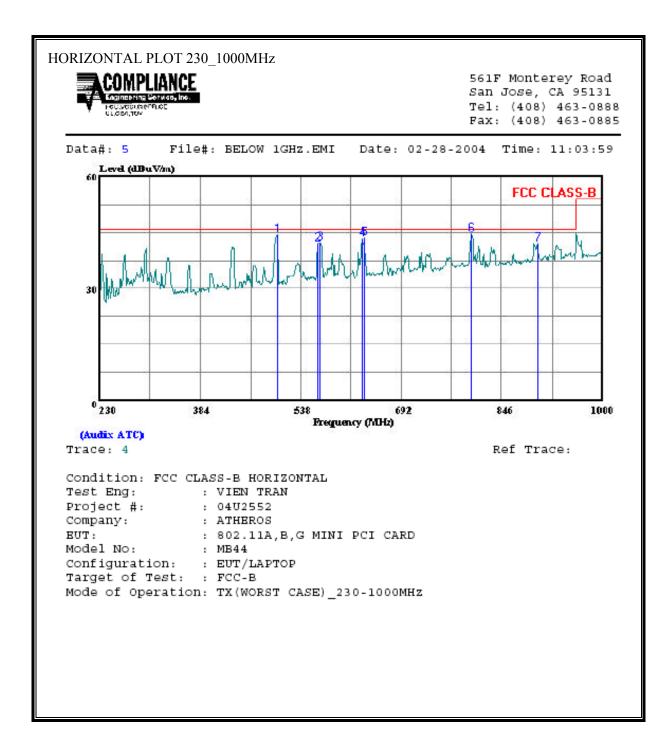
EUT M/ EUT M/ Test Tai Mode O	N: rget:	LAN Module MB44, # ACI Harmonics			de										
First Eq		-	Spec	trum An	aluzar					-				Horn > 180	2117
	O Horn 1		Agilent I		-	r 🗸	Pre-amp T63 Mit			Pre-am	plifer 26-40			HUTH > 100	•
Hi Free	quency Ca ft)		☐ (4 ~ 6 ft)	▼ (12 ft)			FCC 15.	Limit	•	<u> </u>	1 MHz Reso	surement lution Bandw Bandwidth	width	<u>Average Mea</u> 1 MHz Resolutio 10Hz Video Bano	asurements: on Bandwidth
f	Dist	Read Pk	Read Avg.	CL	Amp	D Corr	HPF	Peak	Avg	Pk Lim	-	Pk Mar	Avg Mar	Notes	
GHz	feet 9.8	dBuV 48.1	dBuV 36.9	dB/m 38.7	dB	dB	dB	1.0	dBuV/m 58.2	dBuV/m 47.0	dBuV/m 74.0	dBuV/m 54.0	dB	dB	v
1.490 7.235	9.8 9.8	48.1 48.4	36.9 37.2	38.7 42.6	4.6 5.9	-34.2 -39.8	0.0 0.0	1.0	58.2 58.1	47.0 46.9	74.0 74.0	54.0 54.0	-15.8 -15.9	-7.0 -7.1	V V
1.570	9.8	50.2	38.6	38.8	4.6	-34.3	0.0	1.0	60.3	48.7	74.0	54.0	- 13.7	-5.3	V
7.355	9.8	48.6	36.1	43.2	6.0	-39.8	0.0	1.0	58.9	46.4	74.0	54.0	-15.1	-7.6	V
1.650 1.490	9.8 9.8	51.5 49.6	40.6 38.5	38.9 38.7	4.6 4.6	-34.4	0.0 0.0	1.0 1.0	61.6 59.7	50.7 48.6	74.0 74.0	54.0 54.0	-12.4 -14.3	-3.3 -5.4	V H
7.235	9.8	49.0	37.9	42.6	5.9	-39.8	0.0	1.0	58.7	47.6	74.0	54.0	- 15.3	-6.4	H
1.570	9.8	49.2	39.2	38.8	4.6	-34.3	0.0	1.0	59.3	49.3	74.0	54.0	-14.7	-4.7	H
1.650	9.8	52.8	41.8	38.9	4.6	-34.4	0.0	1.0	62.9	51.9	74.0	54.0	-11.1	-2.1	H
	f	Measureme	ent Frequency	,		Amp	Preamp (Jain				Avg Lim	Average I	Field Strength L	imit
		Distance to				-	-		t to 3 mete	ers		-	-	d Strength Limit	
		Analyzer R				Avg			trength @					. Average Limi	
	AF	Antenna Fa	-			Peak			Field Stre					. Peak Limit	
	CL	Cable Loss				HPF	High Pass			3					


Page 120 of 138

HARMONICS AND SPURIOUS EMISSIONS (a TURBO MODE)

Page 121 of 138

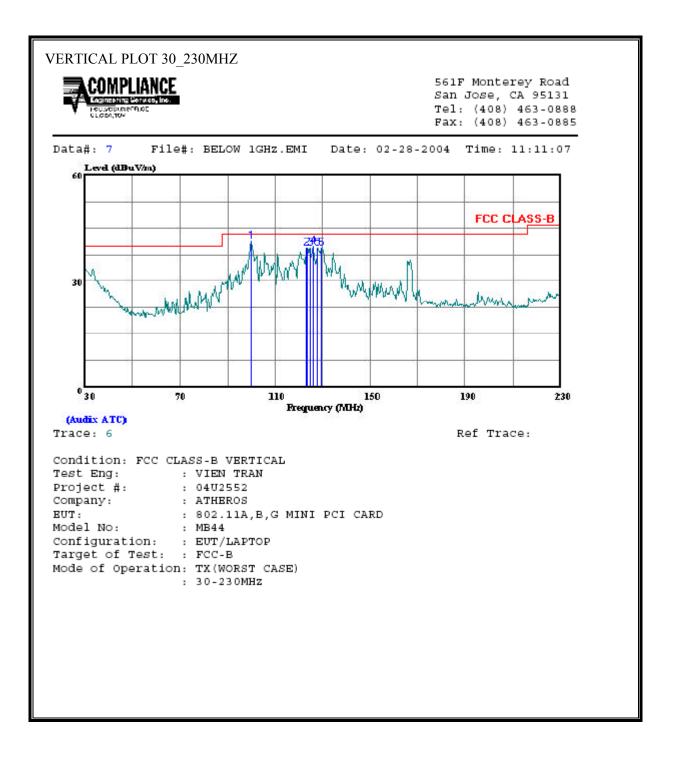
7.8.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 122 of 138

HORIZONTAL DATA	30_230MH	Z				
Freq	Remark	Read Level	Factor	Level	Limit Line	Over Limit
MHZ		dBuV	dB	dBuV/m	dBuV/m	dB
1 100.400 2 * 100.400		31.80			43.50 43.50	
3 * 121.400					43.50	
4 121.400					43.50	
5 129.400 6 * 129.400					43.50 43.50	
7 * 134.400					43.50	1.87
8 134.400	QP	23.00	15.43	38.43	43.50	-5.07
9 166.800					43.50	
10 * 166.800	Peak	29.95	13.61	43.56	43.50	0.06

Page 123 of 138

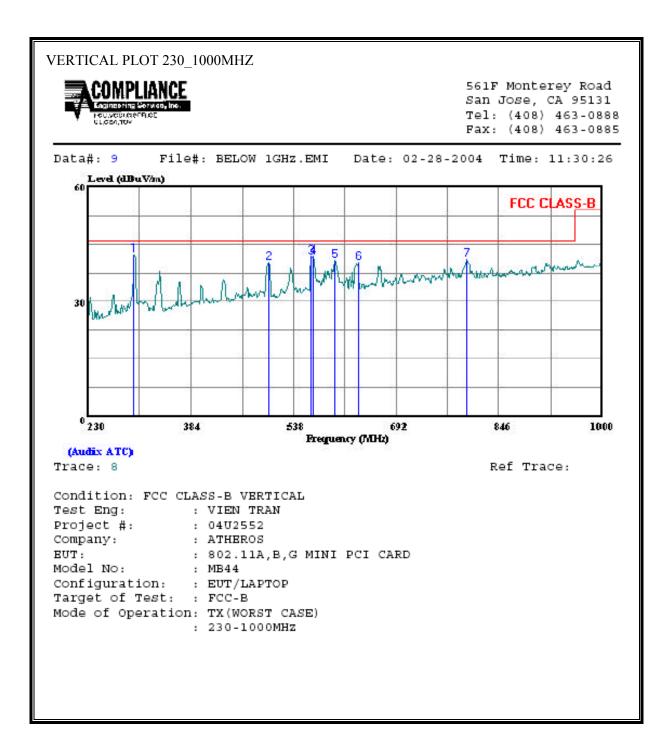


Page 124 of 138

HORIZ	ONTAL DATA	230_1000N	ИНz				
	Freq	Remark	Read Level F	actor	Level	Limit Line	Over Limit
	MHz		dBuV	dB	dBuV/m	iBuV/m	dB
1 2 3	502.580 564.180 568.030	Peak	23.67 20.76 20.78	21.44		46.00 46.00 46.00	-3.80
- 4 5	631.940 635.790	Peak	20.98 20.87 21.00	22.41	43.28		-2.72
6 7	799.030 901.440	Peak	19.70 15.98	25.01	44.71	46.00 46.00	-1.29

Page 125 of 138

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)



Page 126 of 138

REPORT NO: 04U2552-1 EUT: 802.11 a/b/g Mini PCI Module

VERTI	CAL DATA 30	_230MHZ					
	Freq	Remark	Read Level :	Factor	Level	Limit Line	
	MHz		dBuV	dB	dBuV/m	1BuV/m	dB
1 2 3 4 5 6	99.800 123.400 124.400 125.800 127.800 129.400	Peak Peak Peak Peak	30.76 24.24 24.01 24.63 24.07	10.41 15.31 15.41 15.48 15.51	41.17 39.55 39.42 40.11 39.58 39.46	43.50 43.50 43.50 43.50 43.50	-2.33 -3.95 -4.08 -3.39 -3.92

Page 127 of 138

Page 128 of 138

VERTICAL DATA 230_1000MHZ								
	Freq	Remark	Read Level	Factor	Level	Limit Line		
	MHz		dBuV	dB	dBuV/m	dBuV/m	dB	
1 2 3 4 5 6 7	298.530 501.040 564.180 568.030 598.830 635.790 797.490	Peak Peak Peak Peak Peak	26.42 19.72 20.41 20.22 18.84 17.84	2 15.91 20.61 21.44 21.59 21.93 22.53	42.33 40.32 41.85 41.81 40.77 40.37	46.00 46.00 46.00 46.00 46.00 46.00	-3.68 -5.68 -4.15 -4.19 -5.24 -5.63	

Page 129 of 138

7.9. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE

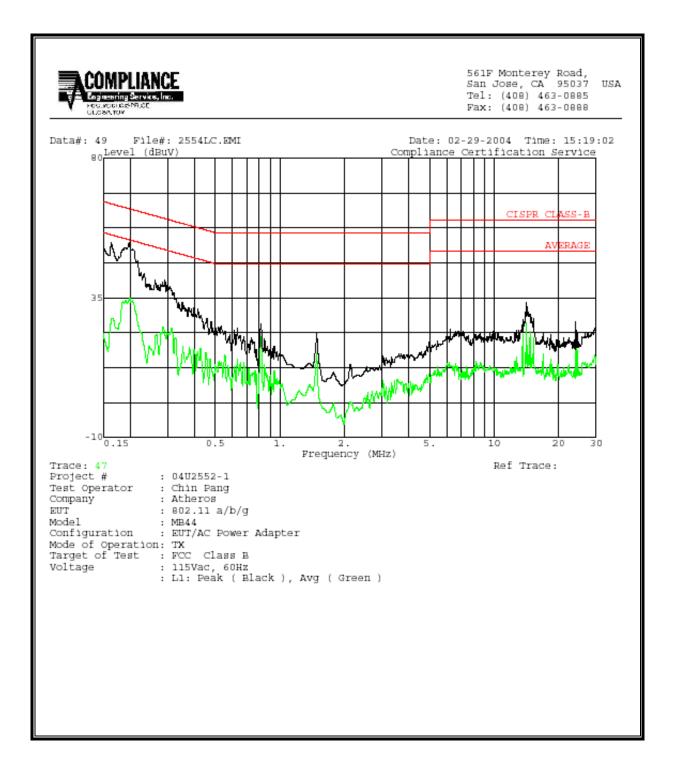
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

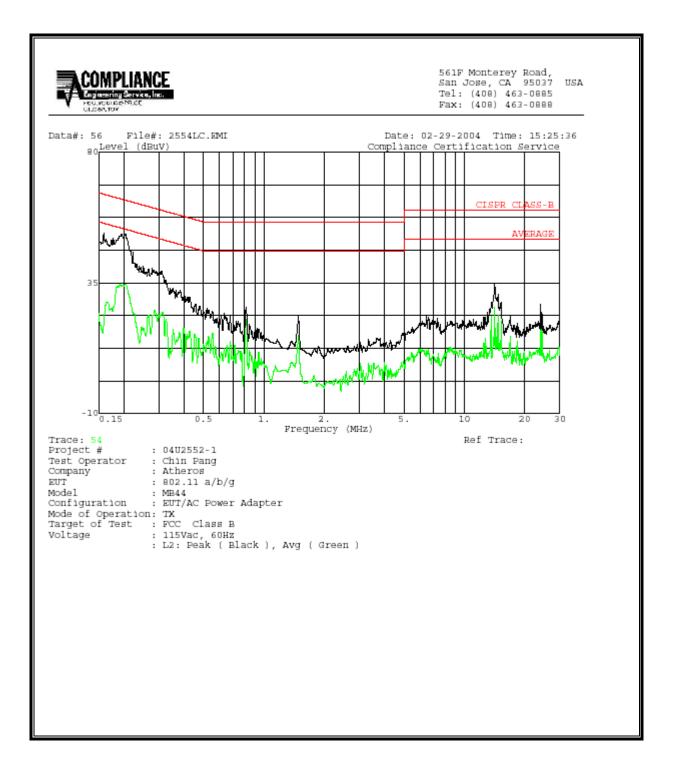
RESULTS

No non-compliance noted:


Page 130 of 138

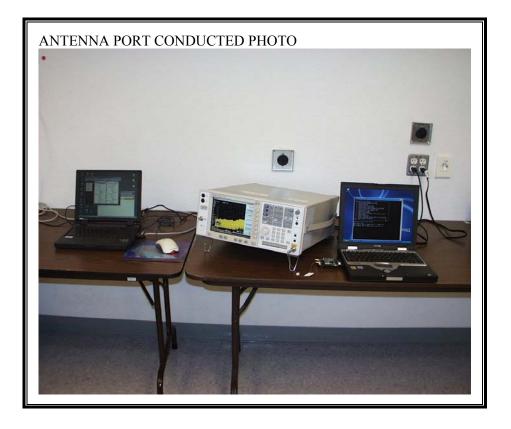
<u>6 WORST EMISSIONS</u>

		CONI	ONDUCTED EMISSIONS DATA (115VAC 60Hz)						
Freq.	Reading			Closs	Limit	EN_B	Margin		Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2
0.16	53.05		28.17	0.00	65.60	55.60	-12.55	-27.43	L1
0.20	52.83		34.79	0.00	64.63	54.63	-11.80	-19.84	L1
14.36	34.61		27.21	0.00	60.00	50.00	-25.39	-22.79	L1
0.16	52.13		28.51	0.00	65.71	55.71	-13.58	-27.20	L2
0.20	52.50		35.02	0.00	64.51	54.51	-12.01	-19.49	L2
14.21	35.40		27.36	0.00	60.00	50.00	-24.60	-22.64	L2
6 Worst Data									


Page 131 of 138

LINE 1 RESULTS

Page 132 of 138


LINE 2 RESULTS

Page 133 of 138

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 134 of 138

RADIATED RF MEASUREMENT SETUP

Page 135 of 138

Page 136 of 138

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 137 of 138

END OF REPORT

Page 138 of 138