REPORT ON

FCC CFR 47: Parts 15 B and C Testing in support of a Class II Permissive Change for a Symbol 802.11a/b/g RLAN Module (5725-5850MHz)

FCC ID: H9P2121160

Report No OR611511/05 Issue 1

November 2004

BABT, Segensworth Road, Fareham, Hampshire, PO15 5RH, United Kingdom Tel: +44 (0)1329 443300

Website: www.tuvps.co.uk

REPORT ON Limited FCC CFR 47: Parts 15 B and C Testing in support of

Class II Permissive Change for a Symbol 802.11a/b/g RLAN Module

(5725-5850MHz)

FCC ID: H9P2121160

Report No OR611511/05 Issue 1

November 2004

PREPARED FOR Symbol Technologies Inc

One Symbol Plaza

Holtsville

NY 11742-1300 New York

United States of America

M Glasspool **Project Manager**

APPROVED BY

PREPARED BY

C Gould

UKAS EMC Signatory

DATED 09-11-04

DISTRIBUTION Symbol

BABT

Copy No

M Jenkins

UKAS Radio Signatory

8th November 2004

Copy 1

Copy 2

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47: Parts 15 B & C. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineers;

CONTENTS

Section	1	Page No
1	REPORT SUMMARY	
1.1	Status	5
1.2	Introduction	6
1.3	Product information	7
1.4	Brief Summary of Results (and Observations)	9
1.5	Opinions and Interpretations	10
1.6	Test Conditions (Configuration)	10
1.7	Deviations from the Standard	10
1.8	Modification Record	10
1.9	Alternative Test Site	10
2	TEST DETAILS Part 15 B	
2.1	Spurious Radiated Emissions	12
2	TEST DETAILS Part 15 C	
2.2	Conducted Emissions On Power Lines	15
2.3	6dB Bandwidth	19
2.4	Maximum Peak Output Power	23
2.5	Spurious Conducted Emissions On Antenna Port	24
2.6	Spurious Radiated Emissions	37
2.7	Peak Power Spectral Density	43
3	TEST EQUIPMENT USED	
3.1	Table of Test Equipment Used	49
3.2	Measurement Uncertainty	51
4	EUT PHOTOGRAPH	
4.1	EUT Photograph	53
5	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	
5.1	Accreditation, Disclaimers and Copyright	55
APPENDI	CES	
Α	Titchfield FCC Site Compliance Letter	57

SECTION 1

REPORT SUMMARY

Limited FCC CFR 47: Parts 15 B and C Testing in support of a Class II Permissive Change for a Symbol 802.11a/b/g RLAN Module (5725-5850MHz)

1.1 STATUS

EQUIPMENT UNDER TEST 802.11a/b/g RLAN Module

OBJECTIVE To undertake measurements to determine the Equipment

Under Test's (EUT's) compliance with the specification.

NAME AND ADDRESS OF CLIENT Symbol Technologies Inc

One Symbol Plaza

Holtsville

11742-1300, New York United States of America

TYPE NUMBER 21-21160

PART NUMBER 21-21160-01

SERIAL NUMBERS TH4290335 and TH4290282

HARDWARE VERSION Rev 3.5

DECLARED VARIANTS 21-1160-02

TEST SPECIFICATION FCC CFR 47: Part 15, Subparts B and C

ISSUE/DATE October 2003

NUMBER OF ITEMS TESTED Two

SECURITY CLASSIFICATION OF EUT Commercial In Confidence

INCOMING RELEASE Declaration of Build Status

DATE 24th August 2004

DISPOSAL Held pending disposal

REFERENCE NUMBER Not Applicable DATE Not Applicable

ORDER NUMBER USI 2000282857 DATE 18th March 2004

START OF TEST 25th July 2004

FINISH OF TEST 1st November 2004

RELATED DOCUMENTS ANSI C63.4 2001. Methods of Measurement of Radio-

Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. FCC Public Notice document (DA 00-705 released 30

March 2000)

1.2 INTRODUCTION

The information contained within this report is intended to show verification of compliance of the Symbol Technologies Inc 802.11a/b/g RLAN Module to the requirements of FCC Specification Parts 15 B and C for frequency band 5725-5850MHz.

Testing was carried out in support of an application for a Class II Permissive Change in the name of Symbol Technologies Inc.

1.3 PRODUCT INFORMATION

1.3.1 Technical Description

The device supplied for testing was a 21-21160-01 RF Module, which offers 2.4GHz and 5GHz wireless local area network connectivity employing IEEE 802.11a/b/g technologies.

The 2.4/5GHz wireless local area network connectivity employing IEEE 802.11a, b & g technology was previously tested and the results of this testing can be found in BABT Report Number OR611511/02 Issue 4, dated September 2004.

Variant 21-21160-02

The device is identical to that above, employing the same circuitry and same RF design. The only difference being, the PCB has cutouts and the antenna connection point is on the reverse side of the PCB.

BABT Chief Engineer Mr. Chris Gould examined both the 21-21160-01 and 21-21160-02 Radio Cards. It was determined that both cards are identical in respect of component placement and tracking and that the cards differ only in respect of the physical mounting arrangements.

The 21-21160-01 variant utilises a circuit board, which incorporates retained "snap off" mounting ears. For the 21-21160-02 variant the mounting ears are "snapped off".

It is considered that the 21-21160-02 variant would not emit any more interference, nor be any more susceptible to interference than the 21-21160-01 variant.

It is therefore concluded that if the EMC/RF performance of the 21-21160-01 variant is satisfactory that the 21-21160-02 can be deemed to be satisfactory on the grounds of similarity.

1.3.2 Modes of Operation

Modes of operation of the EUT during testing were as follows in section 1.3.3.

Applicable testing was carried out with the EUT transmitting at maximum power or receiving as detailed in Section 1.3.3 "Test Configuration".

1.3 PRODUCT INFORMATION - continued

1.3.3 Test Configuration

1.3.3.3 U-NII Band III & ISM Band Mode

The EUT is capable of using 802.11a modulation (54Mbps); all testing was performed using 802.11a modulation (6Mbps), as this was considered to be the worst case by Symbol Technologies.

802.11a RLAN Transmitting on the following channels and frequencies;

Channel 149 5745MHz Channel 161: 5805MHz Channel 166: 5830MHz

The Output Power level (controlled by application software) was set to +16dBm

802.11a RLAN Receiving on the following channels and frequencies;

Channel 149 5745MHz Channel 161: 5805MHz Channel 166: 5830MHz

1.3.4 DECLARATION OF BUILD STATUS

EUT			
MANUFACTURERS DESCRIPTION	802.11a/b/g RLAN Module		
MANUFACTURER	Symbol Technologies		
TYPE NUMBER	21-21160		
VARIANT	21-21160-01		
SERIAL NUMBER	TH4290335, TH4290281, TH4290339, TH4290073, TH4290282 and TH4290078		
HARDWARE VERSION	Rev 3.5		
TRANSMITTER OPERATING RANGE	2.4-2.4835 & 5.150-5.350, 5.470-5.725, 5.725-5.875GHz		
COUNTRY OF ORIGIN	Taiwan		
RECEIVER OPERATING RANGE	2.4-2.4835 & 5.150-5.350, 5.470-5.725, 5.725-5.875GHz		
RX INTERMEDIATE FREQUENCIES	Not Applicable (Zero IF)		
ITU DESIGNATION OF EMISSION	11M0F1D for DSSS & 20M0D2D for OFDM		
MODULATION	DSSS & OFDM		
RF POWER 100mW MAX EIRP for 2.4 and 5GHz.			
FCC ID	H9P2121160		
INDUSTRY CANADA ID	1549D-2121160		
TECHNICAL DESCRIPTION	The device supplied for testing was a RF Module, which offers 2.4GHz and 5GHz wireless local area network connectivity employing IEEE 802.11a/b/g technologies.		
DEC	LARED VARIANTS		
MANUFACTURERS DESCRIPTION	802.11a/b/g RLAN Module		
MANUFACTURER	Symbol Technologies		
TYPE NUMBER	21-21160		
VARIANT	21-21160-02		
TECHNICAL DESCRIPTION	The device is identical to that above, employing the same circuitry and same RF design. The only difference being, the PCB has cutouts and the antenna connection point is on the reverse side of the PCB.		
P	OWER SUPPLY		
VOLTAGE	RLAN Module Powered by Host. Supply Voltage 3.1-3.6V		

Signature

Date 24th August 2004

D of B S Serial No OS611511_ Issue 1

The unit used for the internal photographs in this report was not the EUT, but was supplied as an identical unit for photographs only. It is declared as being the same build status as the EUT.

BABT formally certifies that the manufacturer's declaration as reproduced in this report, is a true and accurate record of the original received from the applicant.

1.4 BRIEF SUMMARY OF RESULTS

This report relates only to the actual item/items tested.

A brief summary of the tests carried out is shown below.

Test	Spec	Test Description	Result	Levels/
	Clause			Comments
2.1	15.109	Spurious Radiated Emissions	Pass	
2.2	15.207	Spurious Conducted Emissions on Power Lines	Pass	
2.3	15.247(a)(2)	6dB Bandwidth	Pass	
2.4	15.247(b)(3)	Maximum Peak Output Power	Pass	
2.5	15.247(c)	Spurious Conducted Emissions on Antenna Port	Pass	
2.6	15.247(c)	Spurious Radiated Emissions	Pass	
2.7	15.247(d)	Peak Power Spectral Density	Pass	

1.5 OPINIONS AND INTERPRETATIONS

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

1.6 TEST CONDITIONS

The EUT was set-up simulating a typical user installation on the Alternative Open Field Test Site identified in Appendix A and tested in accordance with the applicable specification.

For all tests, the Symbol 802.11a/b/g RLAN Module was powered by the Host Terminal.

1.7 DEVIATIONS FROM THE STANDARD

Limited tests were applied see Section 1.3.2 Modes of Operation and Section 1.4 Brief Summary of Results.

1.8 MODIFICATION RECORD

Not Applicable.

1.9 ALTERNATIVE TEST SITE

No alternative test site was used.

SECTION 2

TEST DETAILS

Limited FCC CFR 47: Part 15 B Testing in support of an Application for Grant of Equipment Authorisation of a Symbol 802.11a/b/g RLAN Module

2.1 SPURIOUS RADIATED EMISSIONS

2.1.1 Specification Reference

FCC CFR 47: Part 15 Subpart B, Section 15.109

2.1.2 Equipment Under Test

802.11 a/b/g RLAN Module

2.1.3 Date of Test

25th July 2004

2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified as "Section 2.1" within the Test Equipment Used table shown in Section 3.1.

2.1.5 Test Procedure

Test Performed in accordance with ANSI C63.4.

A preliminary profile of the Spurious Radiated Emissions was obtained by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Using the information from the preliminary profiling of the EUT. The list of emissions was then confirmed or updated under Alternative Open Site conditions. Emission levels were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

Emissions identified within the range 30MHz – 1GHz were then formally measured using a CISPR Quasi-Peak detector.

Emissions identified within the range 1GHz – 40GHz were then formally measured using Peak and Average Detectors, as appropriate.

The measurements were performed at a 3m distance unless otherwise stated.

Symbol declared that the highest frequency generated within the EUT was 10GHz and therefore testing to 15.109 was carried out to 40GHz.

2.1 SPURIOUS RADIATED EMISSIONS - continued

2.1.6 Test Results

Equipment Designation: Unintentional Radiator.

The EUT met the requirements of FCC CFR 47: Part 15 Subpart B, Section 15.109 for Spurious Radiated Emissions (30MHz – 1GHz).

Measurements were made with the EUT in 802.11a RLAN Mode (see Section 1.3.3 for details).

EUT Rx on Middle Channel (5805MHz)

The levels of the six highest emissions measured in accordance with the specification are presented below: -

Emission Frequency	Polarisation	Height	Azimuth	Field S	trength	L	imit
MHz	Horizontal/ Vertical	cm	degree	dBµV/m	μV/m	dBµV/m	μV/m
99.7	Н	176	183	29.5	29.9	43.5	150.0
147.5	Н	179	183	27.3	23.2	43.5	150.0
440.0	Н	229	168	29.3	29.2	43.5	150.0
480.0	Н	174	158	31.1	35.9	46.0	200.0
520.2	V	100	116	27.2	22.9	46.0	200.0
524.7	Н	168	205	30.3	32.7	46.0	200.0

The EUT met the requirements of FCC CFR 47: Part 15 Subpart B, Section 15.109 for Spurious Radiated Emissions (1GHz – 40GHz).

Measurements were made with the EUT in 802.11a RLAN Mode (see Section 1.3.3 for details).

EUT Rx on Middle Channel (5805MHz)

Fraguanay	Ante	enna	Azm	Peak Field	Peak Limit	Average Field	Average
Frequency	Pol	Hgt	AZIII	Strength	Peak Lillin	Strength	Limit
GHz	H/V	cm	deg	dBμV/m	dBμV/m	dBμV/m	dBμV/m
1.040	Н	152	305	48.7	74.0	41.4	54.0
23.220*	٧	100	064	62.9	84.0	55.7	64.0

^{*} Measurement made at 1m, limit increased by 10dB.

SECTION 2

TEST DETAILS

Limited FCC CFR 47: Parts 15 C Testing in support of an Application for Grant of Equipment Authorisation of a Symbol 802.11a/b/g RLAN Module

2.2 CONDUCTED EMISSIONS ON POWER LINES

2.2.1 Specification Reference

FCC CFR 47: Part 15 Subpart C, Section 15.207

2.2.2 Equipment Under Test

802.11a/b/g RLAN Module

2.2.3 Date of Test

21st August 2004

2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified as "Section 2.2" within the Test Equipment Used table shown in Section 3.1.

2.2.5 Test Procedure

Test performed in accordance with ANSI C63.4.

Conducted Emission Measurements were undertaken within the semi-anechoic chamber. Emissions were measured on the Live and Neutral Lines in turn.

Emissions were formally measured using a Quasi-Peak and Average Detectors, which meet the CISPR requirements. The details of the worst-case emissions for the Live and Neutral Lines are presented in the tables on the following pages.

The Conducted Emissions Measurements were made on the Host Laptop.

The Host Laptop was supplied from a 120V, 60Hz supply.

2.2 CONDUCTED EMISSIONS ON POWER LINES - continued

2.2.6 Test Results

The EUT met the Class B requirements of FCC CFR 47: Part 15 Subpart C, Section 15.207 for Conducted Emissions on the Live and Neutral Lines.

Measurements were made with the EUT in 802.11a RLAN Mode (see Section 1.3.3 for details).

EUT Tx on Bottom Channel (5745MHz) - Live Line

Emission Frequency (MHz)	Quasi-Peak Level (dBµV)	Quasi-Peak Limit (dBµV)	Average Level (dBµV)	Average Limit (dBµV)
0.156	41.6	65.7	23.3	55.7
0.198	43.3	63.7	35.4	53.7
0.262	36.7	61.4	29.4	51.4
0.454	37.0	56.8	33.7	46.8
0.519	34.5	56.0	31.4	46.0
0.584	31.6	56.0	29.2	46.0

The margin between the specification requirements and all other emissions were 19.3dB or more below the specified Quasi-Peak limit and 24.7dB or more below the Average limit.

EUT Tx on Bottom Channel (5745MHz) - Neutral Line

Emission Frequency (MHz)	Quasi-Peak Level (dBµV)	Quasi-Peak Limit (dBµV)	Average Level (dBµV)	Average Limit (dBµV)
0.152	41.5	65.9	22.9	55.9
0.194	44.6	63.9	38.9	53.9
0.261	37.5	61.4	31.5	51.4
0.453	37.1	56.8	33.6	46.8
0.519	34.1	56.0	31.2	46.0
0.584	32.2	56.0	29.7	46.0

The margin between the specification requirements and all other emissions were 21.2dB or more below the specified Quasi-peak limit and 27.4dB or more below the specified Average limit.

2.2 CONDUCTED EMISSIONS ON POWER LINES - continued

2.2.6 Test Results - continued

EUT Tx on Middle Channel (5805MHz) - Live Line

Emission Frequency (MHz)	Quasi-Peak Level (dBµV)	Quasi-Peak Limit (dBµV)	Average Level (dBµV)	Average Limit (dBµV)
0.165	40.0	65.2	17.2	55.2
0.197	46.2	63.7	40.2	53.7
0.391	33.7	58.0	26.3	48.0
0.456	33.1	56.8	29.0	46.8
0.523	33.0	56.0	27.7	46.0
0.581	33.4	56.0	30.5	46.0

The margin between the specification requirements and all other emissions were 22.6dB or more below the specified Quasi-Peak limit and 24.8dB or more below the Average limit.

EUT Tx on Middle Channel (5805MHz) - Neutral Line

Emission Frequency (MHz)	Quasi-Peak Level (dBµV)	Quasi-Peak Limit (dBµV)	Average Level (dBµV)	Average Limit (dBµV)
0.197	44.0	63.7	37.5	53.7
0.262	35.6	61.4	27.2	51.4
0.390	34.9	58.1	32.6	48.1
0.456	33.3	56.8	33.7	46.8
0.523	33.0	56.0	27.9	46.0
0.584	31.5	56.0	29.5	46.0

The margin between the specification requirements and all other emissions were 33.2dB or more below the specified Quasi-peak limit and 25.2dB or more below the specified Average limit.

2.2 CONDUCTED EMISSIONS ON POWER LINES - continued

2.2.6 Test Results - continued

EUT Tx on Top Channel (5830MHz) - Live Line

Emission Frequency (MHz)	Quasi-Peak Level (dBµV)	Quasi-Peak Limit (dBµV)	Average Level (dBµV)	Average Limit (dBµV)
0.155	41.6	65.7	22.8	55.7
0.198	44.9	63.7	39.3	53.7
0.262	37.2	61.4	31.6	51.4
0.456	33.0	56.8	28.9	46.8
0.519	34.4	56.0	30.9	46.0
0.584	31.6	56.0	29.4	46.0

The margin between the specification requirements and all other emissions were 19.4dB or more below the specified Quasi-Peak limit and 24.6dB or more below the Average limit.

EUT Tx on Top Channel (5830MHz) - Neutral Line

Emission Frequency (MHz)	Quasi-Peak Level (dBµV)	Quasi-Peak Limit (dBµV)	Average Level (dBµV)	Average Limit (dBµV)
0.164	39.8	65.3	16.9	55.3
0.194	44.9	63.9	39.1	53.9
0.259	37.9	61.5	32.3	51.5
0.454	37.1	56.8	33.5	46.8
0.519	34.1	56.0	30.7	46.0
0.584	31.8	56.0	29.2	46.0

The margin between the specification requirements and all other emissions were 32.6dB or more below the specified Quasi-peak limit and 31.1dB or more below the specified Average limit.

2.3 6dB BANDWIDTH

2.3.1 Specification Reference

FCC CFR 47: Part 15 Subpart C, Section 15.247(b)(2)

2.3.2 Equipment Under Test

802.11a/b/g RLAN Module

2.3.3 Date of Test

28th October 2004

2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified as Section 2.3 within the Test Equipment Used table shown in Section 3.1.

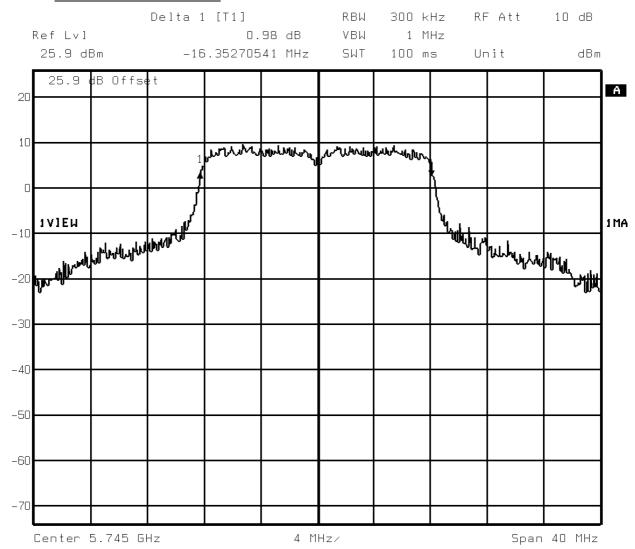
2.3.5 Test Procedure

Test Performed in accordance with 15.247.

The EUT was transmitted at maximum power at the data rates specified by the manufacturer, via a 20dB Attenuator to the Spectrum Analyser. The Analyser settings were adjusted to display the resultant trace on screen. The peak point of the trace was measured and the markers positioned to give the –6dBc points of the displayed spectrum.

The measurement plots can be seen on the following pages.

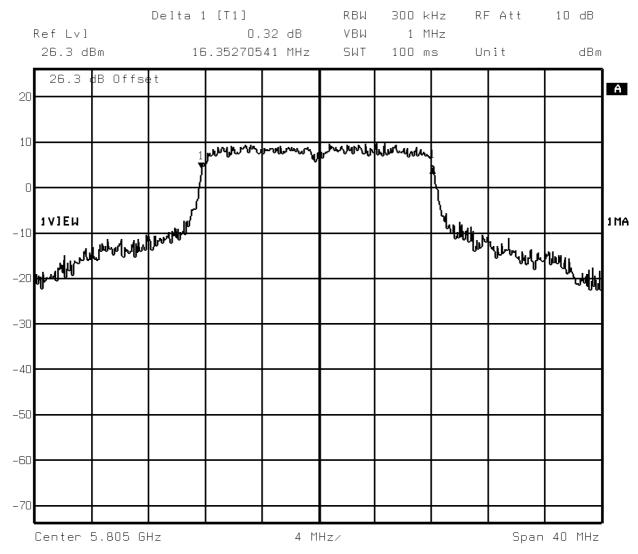
2.3.6 Test Results


Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (MHz)
5745	6	16.353
5805	6	16.353
5830	6	16.353

2.3 6dB BANDWIDTH - continued

2.3.6 Test Results - continued

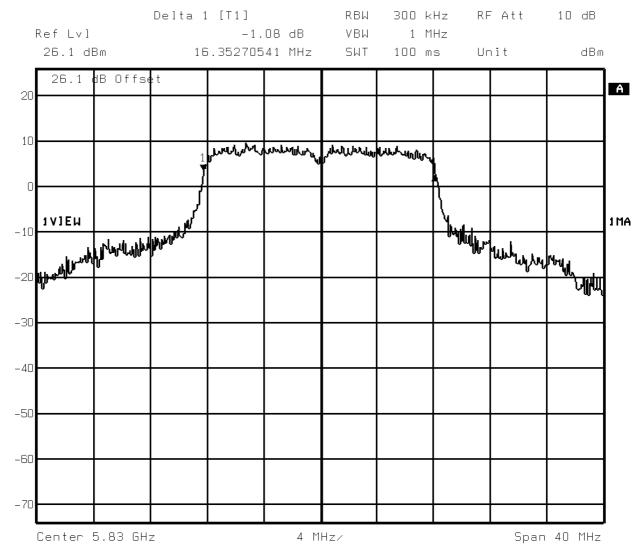
<u>5745MHz – Maximum Power</u>


Date: 28.0CT.04 17:00:03

2.3 6dB BANDWIDTH - continued

2.3.6 Test Results - continued

5805MHz – Maximum Power


Date: 29.0CT.04 9:25:13

2.3 6dB BANDWIDTH - continued

2.3.6 Test Results - continued

5830MHz – Maximum Power

Date: 29.0CT.04 9:14:55

2.4 MAXIMUM PEAK OUTPUT POWER

2.4.1 Specification Reference

FCC CFR 47: Part 15 Subpart C, Section 15.247(b)(3)

2.4.2 Equipment Under Test

802.11a/b/g RLAN Module

2.4.3 Date of Test

29th July 2004

2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified as "Section 2.4" within the Test Equipment Used table shown in Section 3.1.

2.4.5 Test Procedure

Test Performed in accordance with FCC CFR 47: Part 15.247(b)(3).

The EUT was connected to a Peak Power Analyser via a 10dB Attenuator. The path loss previously measured was used as an offset in the Peak Power Analyser and the Peak Power was measured.

2.4.6 Test Results

Measurements were made with the EUT in 802.11a RLAN Mode (see Section 1.3.3 for details).

Frequency (MHz)	Data Rate (Mbps)	Output Power (dBm)	Result (mW)
5745	6	18.60	72.44
5805	6	18.39	69.02
5830	6	18.76	75.16

Limits

Frequency (MHz)	Limit (W)
5745	1.0
5805	1.0
5830	1.0

2.5 SPURIOUS CONDUCTED EMISSIONS ON ANTENNA PORT

2.5.1 Specification Reference

FCC CFR 47: Part 15 Subpart C, Section 15.247(c)

2.5.2 Equipment Under Test

802.11a/b/g RLAN Module

2.5.3 Date of Test

29th October 2004

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified as "Section 2.5" within the Test Equipment Used table shown in Section 3.1.

2.5.5 Test Procedure

Test Performed in accordance with FCC CFR 47: Part 15 Subpart C, Section 15.247(c).

In accordance with Part 15.247(c), Spurious Conducted Emissions from the antenna terminal were measured. The transmitter output power was attenuated using a combination of filters and attenuators and the frequency spectrum investigated from 9kHz to 40GHz. The EUT was set to transmit on full power, at the data rates specified by the manufacturer. The resolution and video bandwidths were set to 100kHz in accordance with Part 15.247(c). The spectrum analyser detector was set to Max Hold.

For measuring the range 9kHz to 7GHz, a 20dB attenuator was used. From 7GHz to 18GHz, a high pass filter was used. From 18GHz to 26GHz and from 26GHz to 40GHz, pieces of waveguide were used as a high pass filter.

The Maximum "fundamental peak" level measured was used to determine the limit line as displayed on the following plots.

The maximum path loss across each measurement band was used as the reference level offset to ensure worst case

2.5.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 15 Subpart C, Section 15.247(c) for Spurious Conducted Emissions on the Antenna Port.

The plots on the following pages show the EUT's Antenna Ports Spurious Conducted Emissions over the frequency range 9kHz to 40GHz.

2.5.6 Test Results – continued

Spurious Conducted Emissions (9kHz – 7GHz)

	EUT Tx on 5745MHz – Maximum Power											
R			Marker	1 [T1]		RBW	100	kHz R	F At	t	10 dB	
V \$/	Ref Lvl			-40.	.00 dBm	VBW	300]	kHz				
	7.6 dB	m	į	5.218439	916 GHz	SWT	10	s U	nit		dBm	l
7.6	27 6	dB Offs	+	I					1	Τ		
	27.0	db orrs										A
0												
-10									+			
	—D1 −15	.55 dBm							Ш			
-20									Ш			
												IN1
	1VIEW											1MA
-30									H			
								1				
-40								<u></u>	+	-		
								My July	Ш		۸۸۰۰ ۸۷	
-50				MANAMA	~~4			4	4J W.	mmy	MANN	
30	m	~~~~~	J-WW-VIII	~	horm	white	WW.					
-60												
-70												
-80												
-80												
-92.4												
	Start 9	kHz			699.99	91 MHz/				Stop	o 7 GHz	-

Date: 1.NOV.2004 11:50:24

2.5.6 Test Results – continued

Spurious Conducted Emissions (7GHz – 18GHz)

	EUT Tx on 5	745MHz – Ma	aximum Po	<u>ower</u>	<u>6Mbps</u>					
Ŕ		Marker	1 [T1]		RBW	100 k	Hz RI	F Att	10 dB	
V \$/	Ref Lvl		-57.	87 dBm	VBW	300 k	Hz			
	4.1 dBm	11	L.496993	99 GHz	SWT	10	s Un	nit	dBm	ı
4.1	4.1 dB Off	set								
										A
-10										
-10										
	—D1 −15.55 d	dBm								
-20										
										IN1
-30	1VIEW									1MA
-40										
-50										
			,	1						
-60										
						la./a .			1	
-70	mandy		~~~~~~	May	mmh-nn.	~~~	whenhan	MANA		
-80										
-90										
-95.9										
	Start 7 GHz			1.1	GHz/			Stop	18 GHz	

Date: 1.NOV.2004 09:30:13

2.5.6 Test Results – continued Spurious Conducted Emissions (18GHz – 26GHz)

EUT Tx on 574	5MHz – Ma	aximum P	<u>ower</u>	6Mbps						
Ŕ	Marker	1 [T1]		RBW	100	kHz	RF	Att	10 dB	
Ref Lvl		-65.	.05 dBm	VBW	300	kHz				
	22	2.921843	369 GHz	SWT	5	s	Uni	t	dBm	n
4.5 dB Offse	et									1_
0										A
-10										
—D1 −15.55 dB	m									
-20										
										IN:
-30 1VIEW										1М
-40										
-50										
-30										
-60					1					
-70 Million Million Marie Mari	1	س⁄س دما ۸۰۰	weller.	man	whomewa	\		بالمد	Marradil	
-70 Mully Miller	Mmhr ~ M	Ti Choring.			•	W.W.		<i>~</i>	- (*)(*)	
-80										
-90										
-95.5										
Start 18 GHz			800	MHz/			•	Stor	26 GHz	

Date: 29.OCT.2004 14:57:45

2.5.6 Test Results – continued

Spurious Conducted Emissions (26GHz – 40GHz)

	EUT Tx on 5	5745MHz – I	<u> Maximum P</u>	<u>ower</u>	6Mbps	<u>i</u>				
Ŕ		Marke	r 1 [T1]		RBW	100 }	kHz R	F Att	10 dB	
V \$/	Ref Lvl		-65				кНz			
			22.921843	369 GHz	SWT	5	s U	nit	dBm	į
4.5	4.5 dB Of	fset								
0										A
-10										
	—D1 −15.55	dBm								
-20										
										IN1
-30	1VIEW									1MA
-40										
-50										
-60										
-60						1				
	Leever Allannan	م السلم	u muun	nellen	hour	whomen	mm	hundry	manned	
-70	CALLY TO THE PARTY OF THE PARTY	VIVIOLITATION TO THE								
-80										
-90										
-95.5										ļ
	Start 18 GHz 80							Stop	26 GHz	

Date: 29.OCT.2004 14:57:45

2.5.6 Test Results – continued

Spurious Conducted Emissions (9kHz – 7GHz)

EUT Tx on 580	5MHz – Maxin	6Mbps	<u> </u>						
€ An	Marker 1	[T1]		RBW	100 k	Hz R	F Att	10 dB	
Ref Lvl		-40.	55 dBm	VBW	300 k	Hz			
7.6 dBm	5.2	18439	16 GHz	SWT	10	s U	nit	dBm	
7.6 27.6 dB Offs	et.						1		
									A
0									
-10									
—D1 −14.48 dBm	η								
-20									
1VIEW									IN1 1MA
-30									IMA
						<u>1</u>			
-40						M			
		ا میک			and whom	mr /m	السببا لها	mmuh	
-50 J. Marilla 1997	word who		www.	underhalen	www.				
W									
-60									
-70									
, 0									
-80									
-92.4									
Start 9 kHz	·		699.999	91 MHz/			Sto	p 7 GHz	I

Date: 1.NOV.2004 11:52:59

2.5.6 Test Results – continued

Spurious Conducted Emissions (7GHz – 18GHz)

EUT Tx c	on 5805MHz – M	aximum Po	6Mbps						
Ŕ.	Marker	1 [T1]		RBW	100 k	Hz R	F Att	10 dB	
Ref Lvl		-62.	80 dBm	VBW	300 k	Hz			
4.1 dBm	1	1.607214	43 GHz	SWT	10	s U	nit	dBm	ı
4.1 dB	Offset								1
0 111 45	01100								A
-10									
—D1 −14.4	8 dBm								
-20									
20									
									IN1
-30 1VIEW									1MA
-40									
-50									
-60			1 ▼						
			Å	A	.d			λ	
-70 MMM	Maraman waran	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MUnur	$\square \wedge \wedge \wedge \wedge \wedge \wedge$	Myray	mm	Maria Maria	my/hle	
-80									
-90									
-95.9									ļ
Start 7 G	Hz		1.1	GHz/			Stop	18 GHz	

Date: 1.NOV.2004 09:39:45

2.5.6 Test Results – continued

Spurious Conducted Emissions (18GHz – 26GHz)

	EUT T	x on 5805	MHz – Ma	aximum Po	<u>ower</u>	6Mbps					
(r)			Marker	1 [T1]		RBW	100 k	Hz R	F Att	10 dB	
% \$/	Ref Lvl			-63.	.60 dBm	VBW	300 k	300 kHz			
	4.5 dB	m	23	3.226452	291 GHz	SWT	5	s U	nit	dBm	
4.5	4.5 d	B Offset	E								
0											A
-10											
	—D1 −14	.48 dBm				<u> </u>					
-20											
2.0	1VIEW										IN1 1MA
-30											
-40											
-50											
-60											
							▼				
		MHULLY	الدمالية	which who	Lumm	mmmm	mhhh	mmm	murum	and rumer	
-70	~~~~~~	Mmwtr	}\	•				V	1		
-80											
-90											
-95.5											
	Start 1	8 GHz			800	MHz/			Stop	26 GHz	

Date: 29.OCT.2004 14:59:01

2.5.6 Test Results – continued

Spurious Conducted Emissions (26GHz – 40GHz)

EUT Tx on 580	5MHz – Maximum F	Power_	6Mbps	1				
R	Marker 1 [T1]		RBW	100 k	Hz R	F Att	10 dB	
Ref Lvl	-51	.88 dBm	VBW	300 k	300 kHz			
4.2 dBm	34.80961	34.80961924 GHz			20 s Unit			
4.2 dB Offse	4.2 dB Offset							
0								A
-10								
—D1 −14.48 dB	m							
-20								
-30 1VIEW								IN1 1MA
-30								
-40								
-50				1				
		mlly	MMM.	who who we	Mum	M M		
-60 1	here who was							
-70 -								
-80								
-90								
-95.8								
Start 26 GHz		1.4	GHz/			Stop	40 GHz	•

Date: 29.OCT.2004 13:45:39

2.5.6 Test Results – continued

Spurious Conducted Emissions (9kHz – 7GHz)

EUT Tx on 5830	OMHz – Maximum F	6Mbps						
Ŕ.	Marker 1 [T1]		RBW	100 k	Hz R	F Att	10 dB	
Ref Lvl	-40	.53 dBm	VBW	300 k	Hz			
7.6 dBm	5.21843	916 GHz	SWT	10	s U	nit	dBm	
7.6 27.6 dB Offs	h+					1		
								A
0								
-10								
—D1 −15.14 dBm	n							
-20								
								IN1
1VIEW								1MA
					1			
-40					【			
		ļ.,		WANNA.	m /~	Las leman	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
-50 mmmmmm	Mandan	may have	Marin	Jum				
Viv · W								
-60		-						
-70								
70								
-80								
-92.4		1						
Start 9 kHz		699.99	91 MHz/		•	Sto	op 7 GHz	

Date: 1.NOV.2004 11:56:39

2.5.6 Test Results – continued

Spurious Conducted Emissions (7GHz – 18GHz)

	EUT T	x on 5830	MHz – Ma	aximum Po	<u>ower</u>	<u>6Mbps</u>	<u> </u>				
Ŕ)			Marker	1 [T1]		RBW	100 k	Hz R	F Att	10 dB	
V \$/	Ref Lvl			-64.	.39 dBm	VBW	300 k	Hz			
	4.1 dB	m	13	1.651302	261 GHz	SWT	10	s U	nit	dBm	ı
4.1	4.1 d	B Offse									I
C)										A
-10											
	—D1 −15	.14 dBm									
-20)										
-30	1VIEW										IN1 1MA
-4C)										
-50											
-60					1						
					1 Y						
-7C	num	-munin	manhare	mmu	meline	www	www	man	Mandan.		
70			••	• • • • • • • • • • • • • • • • • • • •						•	
-80											
-90											
-95.9											
	Start 7	GHz			1.1	GHz/			Stop	18 GHz	

Date: 1.NOV.2004 09:46:45

2.5.6 Test Results – continued

Spurious Conducted Emissions (18GHz – 26GHz)

EUT Tx on 5830MHz – Maximum Power						<u> </u>				
(c)	Marker 1 [T1]				RBW	100 }	kHz R	F Att	10 dB	
% \$/	Ref Lvl		-62.	.78 dBm	VBW	300 1	кНz			
	4.5 dBm 23.32264529 GHz			SWT	5	5 s Unit			dBm	
4.5	4.5 dB Offse	et								
0										A
-10										
	_D1 -15.14 dB	n								
-20										
2.0	1VIEW									IN1 1MA
-30										
-40										
-50										
-60						1				
						Ī				
7.0	MANANAN WALLAND	السملار مسل	mount	humm	haman	monder	hour	mm	nenne	
- / 0		War and a second								
-80										
-90										
-95.5										
	Start 18 GHz			800	MHz/			Stop	26 GHz	

Date: 29.OCT.2004 15:04:04

2.5 SPURIOUS CONDUCTED EMISSIONS ON ANTENNA PORT - continued

2.5.6 Test Results – continued

Spurious Conducted Emissions (26GHz – 40GHz)

	EUT Tx on 583	<u> 80MHz – Ma</u>	aximum Po	<u>ower</u>	6Mbps	<u> </u>				
Ŕ		Marker	1 [T1]		RBW	100 }	KHZ R	F Att	10 dB	
% \$/	Ref Lvl		-52.	29 dBm	VBW	300 }	KHZ			
	4.2 dBm	34	1.893787	58 GHz	SWT	20	s U	nit	dBm	
4.2	4.2 dB Offs	<u>-</u>						T		
C										A
-10								 		
	_D1 -15.14 dB	m								
-20										
20										
	1									IN1
-30	1VIEW									1MA
-4C								1		
-50						1				
				ıM	, MV-1/_,	why	M	M M.		
	I phonomeron was	num.	a roman		W		y ,	y Van Van	$\sim\sim$	
-60		- W	4.3							
-7C										
-80										
-90										
-95.8	Start 26 GHz	<u> </u>	<u> </u>	1 /	GHz/	<u> </u>	<u> </u>	Stor	40 GHz	I
	Deare 20 GHZ			+• -	0112/			1000	. 10 0112	

2.6 SPURIOUS RADIATED EMISSIONS

2.6.1 Specification Reference

FCC CFR 47: Part 15 Subpart C, Section 15.247(c)

2.6.2 Equipment Under Test

802.11a/b/g RLAN Module

2.6.3 Date of Test

25th July 2004

2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified as Section 2.6 within the Test Equipment Used table shown in Section 3.1.

2.6.5 Test Procedure

Testing to the requirements of FCC CFR 47: Part 15 Subpart C, Section 15.247(c), for Spurious Radiated Emissions was carried out on the Measurement Test Facility detailed in Annex A. Section 15.247(c) also requires Rule parts 15.205 and 15.209 to be applied.

A preliminary profile of the Spurious Radiated Emissions was obtained by operating the Equipment Under Test (EUT) on a remotely controlled turntable within a semi-anechoic chamber; measurements were taken at a 3m distance unless otherwise stated. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Using the information from the preliminary profiling of the EUT, a search was made in the frequency range 30MHz to 40GHz. The list of worst-case emissions was then confirmed or updated under Open Site conditions. Emission levels were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

30MHz – 1GHz emissions levels were then formally measured using a CISPR Quasi-Peak detector. 1GHz – 40GHz emissions levels were then formally measured using Peak and Average detectors.

(Note: Peak measurements performed using a Resolution and Video Bandwidth of 1MHz, Average measurements performed using a Resolution Bandwidth of 1MHz and a Video Bandwidth of 10Hz)

The Host Laptop was connected to a 120V 60Hz supply.

2.6.5 Test Procedure - continued

Spurious Radiated Emissions from 30MHz to 1GHz were made using a HP 8542E Test Receiver.

Spurious Radiated Emissions from 1GHz to 40GHz were made using a Rhode and Schwarz ESIB 40 Test Receiver.

The test was performed in accordance with ANSI C63.4.

The measurements were performed at a 3m distance unless otherwise stated.

The limits for Spurious Emissions Outside the Restricted Bands have been measured and calculated as shown in the table below:

Test Mode	Carrier Frequency GHz	Carrier Field Strength dBµV/m	Limit for Spurious Outside Restricted Band (Carrier F S –20dB) dBµV/m
802.11a RLAN	5.745	104.4	84.4
802.11a RLAN	5.805	104.6	84.6
802.11a RLAN	5.830	105.1	85.1

The limits for Spurious Emissions Inside the Restricted Bands are in accordance with 15.205(a) & (b), which call up the limits in 15.209 (a)

Frequency Range	Field Strength	Quasi Peak Field Strength				
MHz	μV/m	dBμV/m				
30-88	100	40.0				
88-216	150	150 43.5				
216-960	200		5.0			
960-1000	500	54.0				
		Average Field Strength dBµV/m	Peak Field Strength dBµV/m			
Above 1000	500	54.0	74.0			

2.6.6 Test Results

30MHz - 1GHz Frequency Range

Equipment Designation: Intentional Radiator.

The EUT met the requirements of FCC Part 15.247(c), 15.205 and 15.209 for Spurious Radiated Emissions (30MHz – 1GHz).

Measurements were made with the EUT in 802.11a RLAN Mode (see Section 1.3.3 for details).

EUT Tx on Bottom Channel (5745MHz)

Emission Frequency	Pol	Hgt	Azm	Field Stre 3m	_	Specification Limit		
MHz	H/V	cm	deg	dBµV/m	μV/m	dBµV/m	μV/m	
99.43	V	100	087	24.0	15.8	43.5	150.0	
99.43	Н	260	195	29.3	29.2	43.5	150.0	
147.00	Н	178	173	26.4	20.9	46.0	200.0	
440.00	Н	204	185	29.6	30.2	46.0	200.0	
480.00	Н	210	170	32.2	40.7	46.0	200.0	
524.00	Н	199	211	31.5	37.6	46.0	200.0	

EUT Tx on Middle Lower Channel (5805MHz)

Emission Frequency	Pol	Hgt	Azm	Field Stre 3m	•	Specifica	tion Limit
MHz	H/V	cm	deg	dBµV/m	μV/m	dBµV/m	μV/m
99.70	Н	179	200	28.7	27.2	43.5	150.0
147.50	Н	179	191	26.3	20.7	43.5	150.0
440.00	Н	225	174	29.1	28.5	46.0	200.0
480.00	Н	176	162	31.7	28.5	46.0	200.0
520.20	V	100	127	28.4	26.3	46.0	200.0
524.90	Н	170	199	30.8	34.7	46.0	200.0

2.6.6 Test Results – continued

30MHz - 1GHz Frequency Range

EUT Tx on Top Channel (5830MHz)

Emission Frequency	Pol	Hgt	Azm	Field Stre 3m	-	Specification Limit	
MHz	H/V	cm	deg	dBµV/m	μV/m	dBµV/m	μV/m
99.70	Н	169	195	28.3	26.0	43.5	150.0
147.40	Н	172	198	25.8	19.5	43.5	150.0
440.00	Н	221	176	29.0	28.2	46.0	200.0
480.00	Н	184	170	32.0	39.8	46.0	200.0
520.20	V	100	134	29.0	28.2	46.0	200.0
524.70	Н	179	197	31.1	35.9	46.0	200.0

ABBREVIATIONS FOR ABOVE TABLES

H Horizontal Polarisation V Vertical Polarisation

Pol Polarisation Hgt Height deg degree Azm Azimuth

2.6.6 Test Results - continued

1GHz - 40GHz Frequency Range

Equipment Designation: Intentional Radiator.

The EUT met the requirements of FCC Part 15.247(c)), 15.205 and 15.209 for SPURIOUS RADIATED Emissions (30MHz – 25GHz).

Measurements were made with the EUT in 802.11a RLAN Mode (see Section 1.3.3 for details).

EUT Tx on Bottom Channel (5745MHz)

Frequency -	Antenna		Azm	Peak Field	Peak Limit	Average Field	Average
rrequency	Pol	Hgt	AZIII	Strength	Feak Lillin	Strength	Limit
GHz	H/V	cm	deg	dBμV/m	dBμV/m	dBμV/m	dBμV/m
1.040	V	100	062	48.5	74.0	41.3	54.0
5.147	V	100	229	63.6	74.0	49.7	54.0
11.491	V	100	000	56.4	74.0	42.3	54.0
22.680*	V	100	181	61.4	94.4	N/A	N/A

EUT Tx on Middle Channel (5805MHz)

Frequency	Antenna		Azm	Peak Field	Peak Limit	Average Field	Average	
rrequency	Pol	Hgt	AZIII	Strength	reak Lilliit	Strength	Limit	
GHz	H/V cm		deg	dBμV/m	dBμV/m	dBμV/m	dΒμV/m	
1.040	V	100	062	48.7	74.0	41.4	54.0	
5.147	٧	100	225	63.0	74.0	49.5	54.0	
23.220*	V	100	317	62.6	94.6	N/A	N/A	

^{*} Measurement made at 1m, limit increased by 10dB.

EIRP Results are only taken for frequencies that fall Outside the Restricted Band in accordance 15.247(c.)

Note: The Average Measurements in the above tables marked N/A are Not Applicable because the frequency does not fall within the Restricted Band (15.205) and hence Average Measurements are not required.

2.6.6 Test Results – continued

1GHz - 40GHz Frequency Range

The EUT met the requirements of FCC Part 15.247(c), 15.205 and 15.209 for Spurious Radiated Emissions (30MHz – 40GHz).

EUT Tx on Top Channel (5830MHz)

Fraguanay	Antenna		Azm	Peak Field	Peak Limit	Average Field	Average	
Frequency	Pol	Hgt	AZIII	Strength	reak Lilliit	Strength	Limit	
GHz	H/V cm		deg	dBμV/m	dBμV/m	dBμV/m	dBμV/m	
1.040	V 100		065	48.4	74.0	41.1	54.0	
5.098	98 V 100		229	64.0	74.0	49.8	54.0	
23.320*	V 115		168	60.0	95.1	N/A	N/A	

^{*} Measurement made at 1m, limit increased by 10dB.

Note: The Average Measurements in the above tables marked N/A are Not Applicable because the frequency does not fall within the Restricted Band (15.205) and hence Average Measurements are not required.

ABBREVIATIONS FOR ABOVE TABLES

H Horizontal Polarisation V Vertical Polarisation

Pol Polarisation Hgt Height deg degree Azm Azimuth

2.7 PEAK POWER SPECTRAL DENSITY

2.7.1 Specification Reference

FCC CFR 47: Part 15 Subpart C, Section 15.247(d)

2.7.2 Equipment Under Test

802.11a/b/g RLAN Module

2.7.3 Date of Test

1st November 2004

2.7.4 Test Equipment Used

The major items of test equipment used for the above tests are identified as "Section 2.7" within the Test Equipment Used table shown in Section 3.1.

2.7.5 Test Procedure

The EUT was connected to the Spectrum Analyser via a 20dB Attenuator. The EUT was set to transmit at maximum output power on all three channels and at a 6Mbps data rate.

With the EUT transmitting, the trace was adjusted to display the 6dB bandwidth of the fundamental. The RBW was adjusted to 3kHz and VBW to 10kHz. The spectrum analyser detector was set to Max Peak. The trace was then set to Max Hold where the peak response was identified and centered on the trace. With the peak centered the span was adjusted to 1.5MHz, and the sweep time adjusted to 500s.

Two sweeps with the trace set to Max Hold were taken, and then view marker peak was used to find the peak power density result. One plot of each channel was taken, and the results are given in the table below.

Test Performed In Accordance With 15.247(d).

2.7.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 15 Subpart C, 15.247(d) for Peak Power Spectral Density).

Measurements were made with the EUT in 802.11a RLAN Mode (see Section 1.3.3 for details).

The results are recorded in the table below.

Frequency (MHz)	Data Rate (Mbps)	Measurement Bandwidth (kHz)	Result (dBm)
5745	6	3	-9.75
5805	6	3	-9.80
5830	6	3	-9.66

LITTIL S TOUDITI/3KHZ

Remarks

The EUT met the requirements specified in Clause 15.247(d). The Peak Power Spectral Density was below the +8dBm/3kHz limit.

2.7.6 Test Results - continued

<u>5745MHz</u>	– Maximum Pow	<u>/er</u>	6Mbp	<u>s</u>					
Ref Lvl 26.5 dBm	Marker (5 dBm 2 GHz		3 k 10 k 500	Hz	- Att	10 dB dBm	1
26.5 dB	Offset								*
10									
1V1EU									 1M
10 WHOMPHYLL	Mary was the last	"MMM"				"UV-VIIV-II	ሌነስ <mark>በ</mark> ነላጊ	print of the control	
.30		Ĭγ			J _P r ²				d
40									
-50									
60									
.70 Center 5 7	'44951904 GHz		150	kHz/			Snan	1.5 MHz]

Date: 5.NOV.04 14:27:52

2.7.6 Test Results - continued

5805MHz -	- Maximum Power	6Mbp	<u>os</u>					
	Marker 1			3 k		Att	10 dB	
Ref Lvl 26.4 dBm	5.8	-9.80 dBm 0496393 GHz	VBW SWT	10 k 500		nit	dBm	Π
26.4 dB 0								1
								ď
								l
								1
								l
								1
1VIEW		1						ļ
www.ht/ph	hour pour linker lings	what.		May March	Mary Mary	17 July 1-1/1/1/1	MANUTAN	
								1
								4
								l
								ł
								l
								1
 Center 5.80		 150					1.5 MHz	J

Date: 5.NOV.04 14:01:15

2.7.6 Test Results - continued

<u>5830</u>	MHz – Ma	<u>ximum Po</u>	<u>wer</u>	<u>6Mbp</u>	<u>os</u>				
		Marker	1 [T1]		RBW	3 k	Hz RF	- Att	10 dB
Ref Lv	1		-9.	66 dBm	VBW	10 k	Hz		
26.5	dBm	E	. 829962	42 GHz	SWT	500	s Ur	nit	dBm
26.5	dB Offs	e t							
1V]EW					1				
sault	1.M	I.A.	74			al.	What a		art al .
Physological	^Վ ԻՆԱԻՆ _Ա	l'Irandiano w	"Mulli	. 1			na hally	ĸŊŊIJ ^Į ŗĸſ	JU 67 ም _ህ ሚ
				7744 (11) 64	¹ Կոհոյհ ¹ Մ	P [*]			
				I Ja	UF)				
					U				
Center									

Date: 5.NOV.04 12:19:10

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

Instrument	Manufacturer	Type No	EMC / INV No	Cal. Due		
Section 2.1						
Turntable Controller	H-D	HD 050	2528	TU		
Antenna Mast 6m	EMC	1051-2	2182	TU		
Screened Room 5	SIE	EAC54300	2533	TU		
EMI Receiver	HEW	8542E	2286	09/12/2004		
Bilog Antenna	SCH	CBL6143	2965	19/09/2005		
EMI Test Receiver	ROH	ESIB40	2917	11/02/2005		
EMI Test Receiver	ROH	ESIB40	2989	08/04/2005		
Low Noise Amplifier	MIQ	AMF-3d-001080-18-13P	2457	TU		
Solid State Amplifier	AVA	AWT-18036	1081	26/06/2005		
LNA 18-40GHz	NAR	NARDA DB02-0447	2936	28/04/2005		
1-18GHz DRG Horn Ant	EMC	3115	2297	07/07/2005		
1-18GHz DRG Horn Ant	EMC	3115	2397	07/07/2005		
Signal Generator	ROH	SWM02	2477	10/11/2005		
Signal Generator	MAR	2031	2199	29/09/2004		
Signal Generator	HEW	8673B	2551	19/06/2005		
Attenuator Fixed	NAR	4768-3	2961	TU		
Digital Barometer	ORE	BAA913HG	Room 5	TU		
Drg Horn Antenna	LML	AM180-HA-K-TU2	2945	24/06/2005		
Section 2.2						
Screened Room 5	SIE	EAC54300	2533	TU		
Test Receiver	ROH	ESH3	1020	16/09/2004		
Spectrum Analyser	ROH	EZM	1416	TU		
LISN	ROH	ESH2-Z5	1584	02/10/2004		
Transient Limiter	HEW	11947A	2243	24/01/2005		
Digital Barometer	ORE	BAA913HG	Room 5	TU		
Section 2.3 & 2.7						
Signal Generator	ROH	SWM02	INV2477	10/01/2005		
Power Meter Sensor	HEW	8481A	295	25/08/2005		
Power Meter	HEW	8495H	755	10/06/2005		
20dB Attenuator	WEI	45-20-43	2843	TU		
Hygrometer	ROT	I-1000	INV 3232	07/04/2005		
Spectrum Analyser	ROH	ESIB40	2972	08/11/2004		
Section 2.4						
Power Supply	HEW	6253A	992	-		
Meter	FLU	70	INV 3550	18/02/2005		
Hygrometer	ROT	I-1000	INV 3232	07/04/2005		
Attenuator	WEI	1	INV 2651	08/10/2004		
Analyser	HEW	8990A	1670	14/08/2004		
Signal Generator	HEW	8673B	953	10/06/2005		

3.1 TEST EQUIPMENT USED – continued

Instrument	Manufacturer	Type No	EMC / INV No	Cal. Due		
Section 2.5						
Hygrometer	ROT	I-1000	INV 3232	07/04/2005		
20dB Attenuator	WEI	45-20-43	2843	TU		
Test Equipment	ROH	ESIB40	2972	08/11/2004		
HP Filter	LOR	5HP7-2500-5R	INV3998	15/10/2005		
26-40GHZ Cable	UTI	FB142A0010M2020	-	TU		
HPF Waveguide	FMI	206935	-	TU		
HPF Waveguide	FMI	22093KF	-	TU		
Section 2.6						
Turntable Controller	H-D	HD 050	2528	TU		
Antenna Mast 6m	EMC	1051-2	2182	TU		
Screened Room 5	SIE	EAC54300	2533	TU		
EMI Test Receiver	ROH	ESIB40	2917	11/02/2005		
EMI Receiver	HEW	8542E	2286	09/12/2004		
Bilog Antenna	SCH	CBL6143	2965	19/09/2005		
Low Noise Amplifier	MIQ	AMF-3d-001080-18-13P	2457	TU		
Solid State Amplifier	AVA	AWT-18036	1081	26/06/2005		
LNA 18-40GHz	NAR	NARDA DB02-0447	2936	28/04/2005		
Drg Horn Ant	EMC	3115	2297	07/07/2005		
Signal Generator	HEW	8672A	411	02/03/2005		
Thermo Stirrer	GAL	WATER 85	1494	TU		
Digital Barometer	ORE	BAA913HG	Room 5	TU		
Dual PSU	THU	PL320	1582	TU		
Attenuator Fixed	NAR	4768-3	2961	TU		
Signal Generator	MAR	2031	2199	29/09/2004		
Section 2.7						
Power Supply	HEW	6253A	992	-		
Meter	FLU	70	INV 3550	18/02/2005		
Hygrometer	ROT	I-1000	INV 3232	07/04/2005		
Attenuator	WEI	1	INV 2651	08/10/2004		
Sensor	HEW	8482A	777	21/06/2005		
Analyser	HEW	8990A	1670	14/08/2004		
Meter	HEW	436A	757	10/06/2005		
Signal Generator	ROH	SWM02	2477	10/01/2005		
Spectrum Analyser	ROH	FSEM	4034	05/01/2005		

Key To Manufacturers

AVA	Avantek	EMC	Emco
FMI	FMI UK	GAL	Gallenkamp
H-D	No Data	HEW	Hewlett Packard
LML	Link Microtek Ltd	LOR	Lortech
MAR	Marconi	MIQ	Miteq Corp
NAR	Narda	ORE	Oregan Scientific
ROH	Rohde & Schwarz	SIE	Siemens
THU	Thurlby	UTI	Utiflex

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are: -

Test Discipline	Frequency / Parameter	MU
For 6dB Bandwidth	±210.894kHz	±0.5dB
For Maximum Output Power	Not Applicable	±0.5dB
Radiated Emissions, Bilog Antenna, AOATS	30MHz to 1GHz Amplitude	5.1dB*
Radiated Emissions, Horn Antenna, AOATS	1GHz to 40GHz Amplitude	6.3dB*
Conducted Emissions, LISN	150kHz to 30MHz Amplitude	3.2dB*
Substitution Antenna, Radiated Field	30MHz to 18GHz Amplitude	2.6dB
For Peak Power Spectral Density	Not Applicable	±1.8dB
For Effective Radiated Power (ERP) measurements	Not Applicable	±1.45dBm

Worst case error for both Time and Frequency measurement 12 parts in 10⁶.

* In accordance with CISPR 16-4



SECTION 4

EUT PHOTOGRAPH

4.1 EUT PHOTOGRAPH

Front View

SECTION 5

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV Product Service Limited

© 2004 TÜV Product Service Limited

APPENDIX A

TITCHFIELD FCC SITE COMPLIANCE LETTER

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21646

October 18, 2002

Registration Number: 90987

TUV Product Service Ltd Segensworth Road Titchfield Fareham, Hampshire, PO15 5RH United Kingdom

Attention:

Kevan Adsetts

Re:

Measurement facility located at Titchfield

Anechoic chamber (3 meters) and 3 & 10 meter OATS

Date of Listing: October 18, 2002

Gentlemen:

Your request for registration of the subject measurement facility has been reviewed and found to be in compliance with the requirements of Section 2.948 of the FCC rules. The information has, therefore, been placed on file and the name of your organization added to the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely, "Thomas M: Chillyp

Thomas W Phillips Electronics Engineer