

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

Shayre Zhu Cion Coi

TEST REPORT

Report Reference No.....: TRE1606013302 R/C.....: 90320

FCC ID.....: 2AAA6-S125

Applicant's name.....: SENWA MEXICO, S.A.DE C.V

Address...... Av. Javier Barros Sierra 540, Torre I, Piso 5; COL. LOMAS DE

SANTA FE DELEGACION ALVARO OBREGON C.P. 01210

MEXICO, DISTRITO FEDERAL

Manufacturer..... Senwa Mobile HK Itd

Wan, NT, HK

Test item description: Mobile Phone

Trade Mark SENWA

Model/Type reference...... S125

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample...... June 23, 2016

Date of testing....... June 24, 2016 – July 06, 2016

Date of issue...... July 06, 2016

Result...... PASS

Compiled by

(position+printedname+signature)...: File administrators Shayne Zhu

Supervised by

(position+printedname+signature)....: Project Engineer Lion Cai

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No: TRE1606013302 Page: 2 of 42 Issued: 2016-07-06

Contents

<u>1.</u>	TEST STANDARDS ANDTEST DESCRIPTION	3
1.1.	Test Standards	3
1.2.	Test Description	3
<u>2.</u>	SUMMARY	4
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	Operation state	5
2.4.	EUT configuration	5
2.5.	Modifications	5
<u>3.</u>	TEST ENVIRONMENT	6_
3.1.	Address of the test laboratory	6
3.2.	Test Facility	6
3.3.	Environmental conditions	7
3.4.	Statement of the measurement uncertainty	7
3.5.	Equipments Used during the Test	8
<u>4.</u>	TEST CONDITIONS AND RESULTS	9
4.1.	Antenna requirement	9
4.2.	Conducted Emission (AC Main)	10
4.3.	Conducted Peak Output Power	13
4.4.	20dB Emission Bandwidth	16
4.5.	Carrier Frequencies Separation	19
4.6. 4.7.	Hopping Channel Number Dwell Time	21 23
4.7. 4.8.	Pseudorandom Frequency Hopping Sequence	26
4.9.	Restricted band (radiated)	27
4.10.	Bandedge and Spurious Emission (conducted)	29
4.11.	Spurious Emission (radiated)	36
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	41
<u>6.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	42

Report No: TRE1606013302 Page: 3 of 42 Issued: 2016-07-06

1. TEST STANDARDS ANDTEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devicese

1.2. Test Description

ReportSection	Test Item	Section in CFR 47	Result
4.1	Antenna Requirement	15.203/15.247 (c)	Pass
4.2	AC Power Line Conducted Emission	15.207	Pass
4.3	Conducted Peak Output Power	15.247 (b)(1)	Pass
4.4	20dB Occupied Bandwidth	15.247 (a)(1)	Pass
4.5	Carrier Frequencies Separation	15.247 (a)(1)	Pass
4.6	Hopping Channel Number	15.247 (a)(1)	Pass
4.7	Dwell Time	15.247 (a)(1)	Pass
4.8	Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
4.9	Restricted band	15.247(d)/15.205	Pass
4.10/4.11	Radiated Emission	15.247(d)/15.209	Pass

Remark: The measurement uncertainty is not included in the test result.

Report No: TRE1606013302 Page: 4 of 42 Issued: 2016-07-06

2. **SUMMARY**

2.1. Client Information

Applicant:	SENWA MEXICO,S.A.DE C.V
Address:	Av. Javier Barros Sierra 540, Torre I, Piso 5; COL. LOMAS DE SANTA FE DELEGACION ALVARO OBREGON C.P. 01210MEXICO, DISTRITO FEDERAL
Manufacturer:	Senwa Mobile HK ltd
Address:	Room 910, International Trade Centre 11-19 Sha Tsui Road, Tsuen Wan, NT, HK

2.2. Product Description

Name of EUT	Mobile Phone
Trade Mark:	SENWA
Model No.:	S125
Listed Model(s):	-
IMEI 1:	359430070000365
Power supply:	DC 3.7V From internal battery
Adapter information:	Model: S125 Input: 100-240Va.c.,50-60Hz,0.15A Output:5.0Vd.c.,500mA
Bluetooth	
Version:	Supported BT2.1+ EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number: 79	
Channel separation:	1MHz
Antenna type:	Internal Antenna
Antenna gain:	-0.2 dBi

Report No: TRE1606013302 Page: 5 of 42 Issued: 2016-07-06

2.3. Operation state

◆ Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
0	2402
1	2403
i :	:
39	2441
i i	.:
77	2479
78	2480

♦ Test mode

For RF test items:

the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions:

the EUT was set to connect with the Bluetooth under large package sizes transmission.

2.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

O - supplied by the lab

Length (m)	/
Shield:	/
Detachable :	/
Manufacturer:	/
Model No.	/

2.5. Modifications

No modifications were implemented to meet testing criteria.

Report No: TRE1606013302 Page: 6 of 42 Issued: 2016-07-06

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories

(identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Labo ratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for tec hnical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FC C is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Aust ralian C-Tick mark as a result of our A2LA accreditation.

VCCI

The 3m Semi-

anechoic chamber (12.2m×7.95m×6.7m) of Shenzhen Huatongwei International Inspection Co., Ltd.

has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2484. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 29, 2015.

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. h as been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of D NV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Di rectives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the D NV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

Report No: TRE1606013302 Page: 7 of 42 Issued: 2016-07-06

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
lative Humidity:	30~60 %
Air Pressure:	950~1050mba

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	MeasurementUncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No: TRE1606013302 Page: 8 of 42 Issued: 2016-07-06

3.5. Equipments Used during the Test

Cond	Conducted Emission (AC Main)				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2015/11/02
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2015/11/02
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2015/11/02
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A

Radia	Radiated Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal
1	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2015/11/02
2	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	2015/11/02
3	EMI TEST Software	Audix	E3	N/A	N/A
4	TURNTABLE	ETS	2088	2149	N/A
5	ANTENNA MAST	ETS	2075	2346	N/A
6	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A
7	HORNANTENNA	ShwarzBeck	9120D	1011	2015/11/02
8	Amplifer	Sonoma	310N	E009-13	2015/11/02
9	JS amplifer	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2015/11/02
10	High pass filter	Compliance Direction systems	BSU-6	34202	2015/11/02
11	HORNANTENNA	ShwarzBeck	9120D	1012	2015/11/02
12	Amplifer	Compliance Direction systems	PAP1-4060	120	2015/11/02
13	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2015/11/02
14	TURNTABLE	MATURO	TT2.0		N/A
15	ANTENNA MAST	MATURO	TAM-4.0-P		N/A
16	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2015/11/02
17	ULTRA-BROADBAND ANTENNA	Rohde&Schwarz	HL562	100015	2015/11/02

Maxin	Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF				
Emiss	Emission / Spurious RF Conducted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2015/11/02

The Cal.Interval was one year

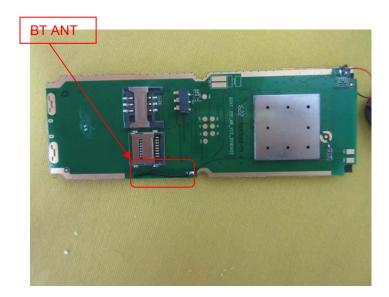
Report No: TRE1606013302 Page: 9 of 42 Issued: 2016-07-06

4. TEST CONDITIONS AND RESULTS

4.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

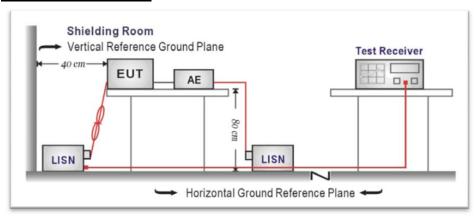
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The antenna is integralantenna, the best case gain of the antenna is -0.2dBi

Report No: TRE1606013302 Page: 10 of 42 Issued: 2016-07-06

4.2. Conducted Emission (AC Main)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguency range (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

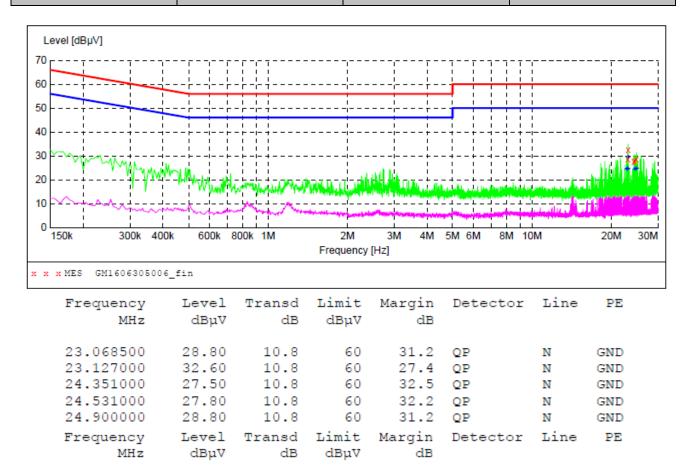
TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz.

TEST RESULTS

Report No: TRE1606013302 Page: 11 of 42 Issued: 2016-07-06


Test mode:AC 120V BT Polarization L

0				- 7 -		·			- - -	-	;		 		 ! !	<u> </u>			- T			
0	<u> </u>		i I	-			i	i								•	i		i	į	į	
0			Δ	1			-1			- 		-							- +	 		
0	$\sqrt{\sqrt{f}}$	P/	W	Ü		Μ	M7	 }	- - - -			-			 - 	+	 		-+	 		
0	\bigcup	V. (XV	\ <i>*</i>	1	Ŋ	M	M		1/1		W		Middle	all pro-		dia.		Ť			4
			!	-	٧	,	, v		¦ `	4	Manager of the Parket of the P	-	-	and the same	-	-	-	-	-			
0 L	150k	30	00k	400	k	6	00k	80	0k	11		2M	31	M 4	M 5	M 6	М	81	M 1	10M	20M	301
											Fred	quency	[Hz]									

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.168000	23.50	10.3	65	41.6	QP	L1	GND
0.235500	20.90	10.2	62	41.4	QP	L1	GND
0.276000	19.30	10.2	61	41.6	QP	L1	GND
0.307500	18.10	10.2	60	41.9	QP	L1	GND
0.411000	17.90	10.2	58	39.7	QP	L1	GND
0.483000	20.00	10.2	56	36.3	QP	L1	GND
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
		40.0					
0.253500	13.40	10.2	52	38.2	AV	L1	GND
0.280500	12.30	10.2	51	38.5	AV	L1	GND
0.402000	12.70	10.2	48	35.1	AV	L1	GND
0.460500	11.80	10.2	47	34.9	AV	L1	GND
0.487500	12.30	10.2	46	33.9	AV	L1	GND

Report No: TRE1606013302 Page: 12 of 42 Issued: 2016-07-06

Test mode: AC 120V BT Polarization N

Remark:Transd=Cable lose+ PULSE LIMITER factor+ ARTIFICIAL MAINS factor; Margin= Limit -Level

50

50

50

50

50

25.7

25.1

20.5

25.6

25.2

ΑV

AV

ΑV

ΑV

AV

GND

GND

GND

GND

GND

Ν

Ν

Ν

Ν

Ν

10.8

10.8

10.8

10.8

10.8

22.884000

23.068500

23.127000

24.531000

24.900000

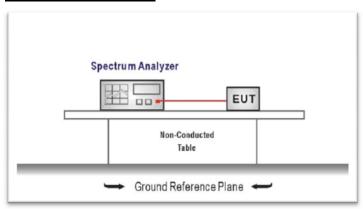
24.30

24.90

29.50

24.40

24.80


Report No: TRE1606013302 Page: 13 of 42 Issued: 2016-07-06

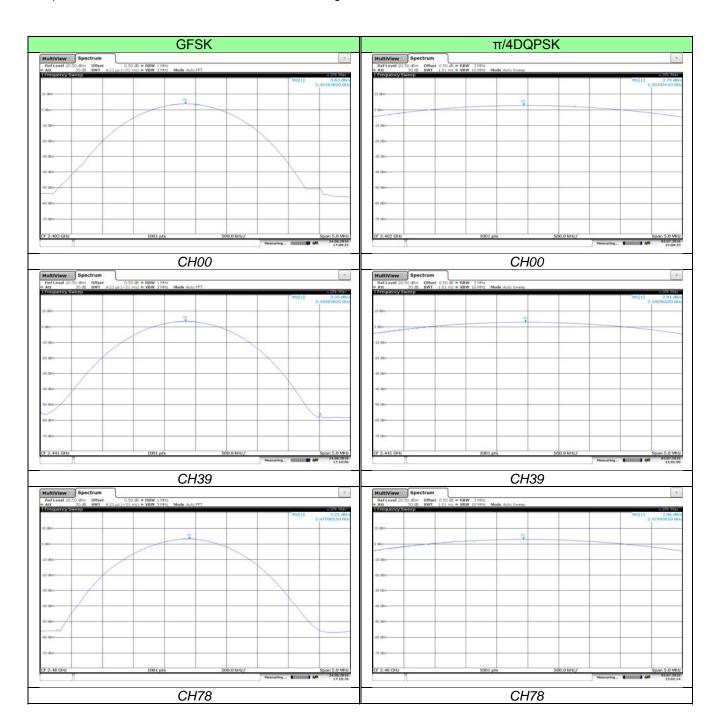
4.3. Conducted Peak Output Power

LIMIT

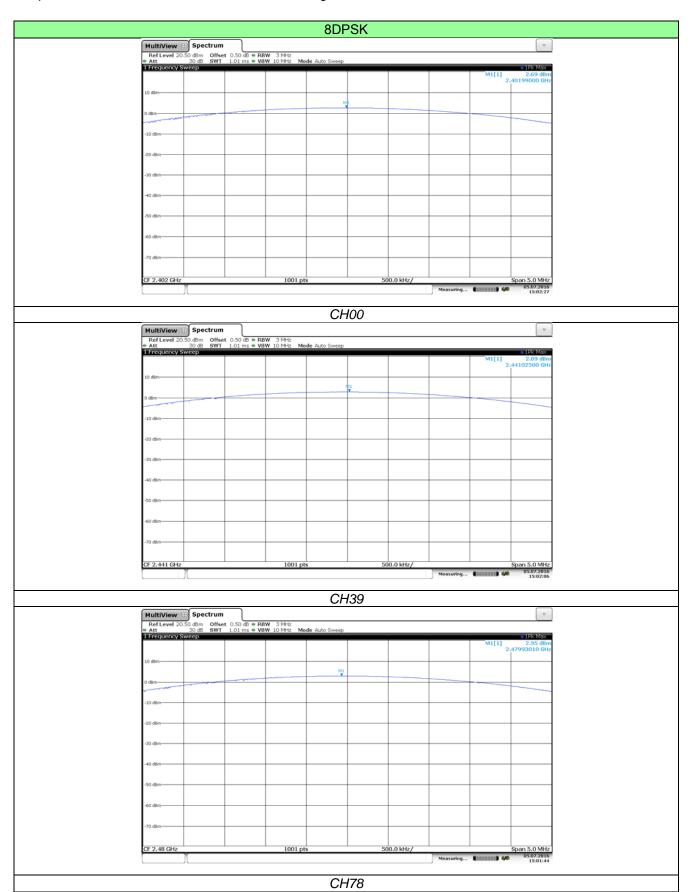
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE


Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum.

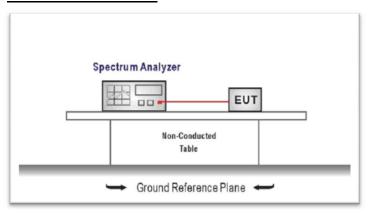
TEST RESULTS


Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result
	00	3.63		
GFSK	39	3.35	30.00	Pass
	78	3.25		
	00	2.78		
π/4DQPSK	39	2.91	21.00	Pass
	78	2.96		
	00	2.69		
8DPSK	39	2.89	21.00	Pass
	78	2.95		

Test plot as follows:

Report No: TRE1606013302 Page: 14 of 42 Issued: 2016-07-06

Report No: TRE1606013302 Page: 15 of 42 Issued: 2016-07-06


Report No: TRE1606013302 Page: 16 of 42 Issued: 2016-07-06

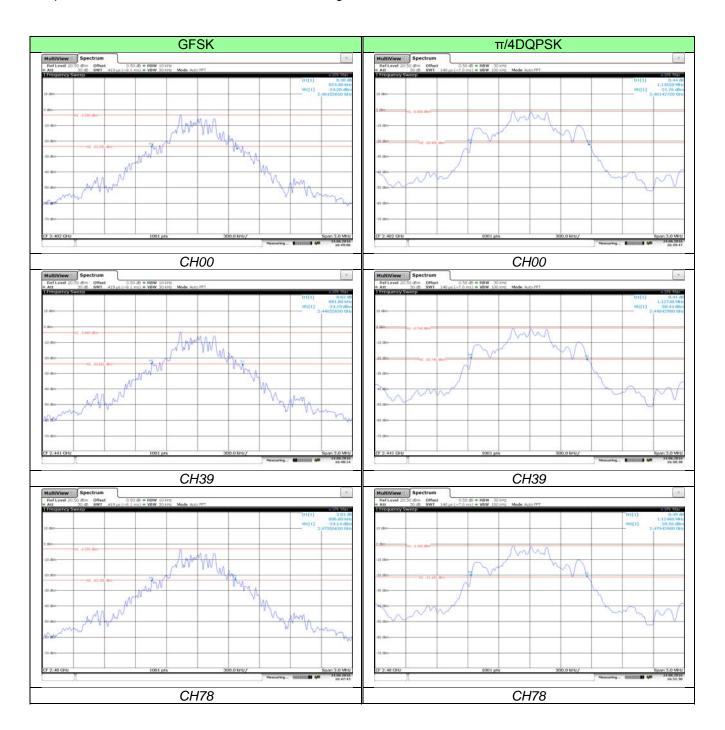
4.4. 20dB Emission Bandwidth

LIMIT

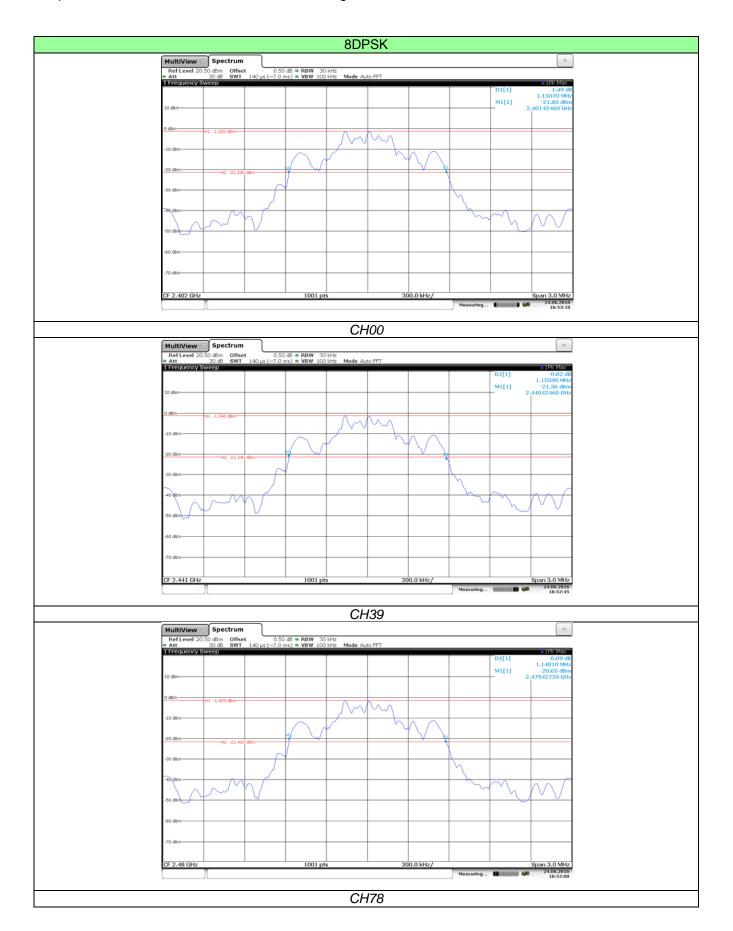
N/A

TEST CONFIGURATION

TEST PROCEDURE


- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. The bandwidth of the fundamental frequency was measured by spectrum analyzer withRBW≥1% of the 20 dB bandwidthand VBW≥RBW.
- 3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

TEST RESULTS

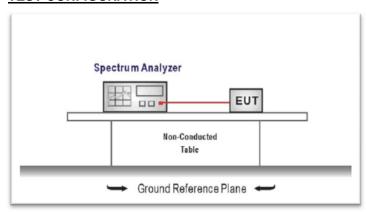

Modulation type	Channel	20dB Bandwidth (MHz)	Limit (MHz)	Result	
	00	0.825			
GFSK	39	0.882	1	Pass	
	78	0.807			
	00	1.146			
π/4DQPSK	39	1.127	1	Pass	
	78	1.125			
	00	1.151			
8DPSK	39	1.156	1	Pass	
	78	1.148			

Test plot as follows:

Report No: TRE1606013302 Page: 17 of 42 Issued: 2016-07-06

Report No: TRE1606013302 Page: 18 of 42 Issued: 2016-07-06

Report No: TRE1606013302 Page: 19 of 42 Issued: 2016-07-06


4.5. Carrier Frequencies Separation

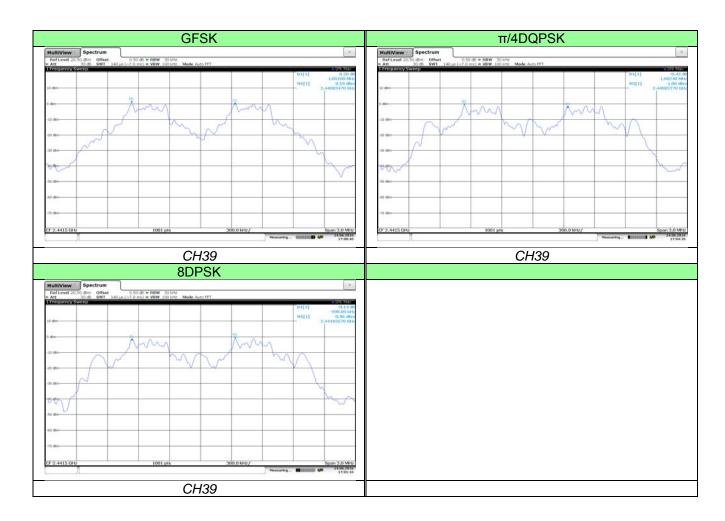
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST CONFIGURATION

TEST PROCEDURE


- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz.

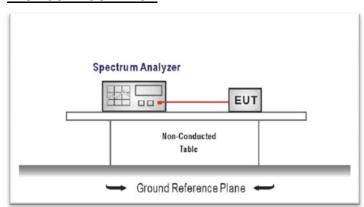
TEST RESULTS

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
GFSK	39	1.001	0.825	Pass
π/4DQPSK	39	1.002	0.764	Pass
8DPSK	39	0.998	0.767	Pass

Test plot as follows:

Report No: TRE1606013302 Page: 20 of 42 Issued: 2016-07-06

Report No: TRE1606013302 Page: 21 of 42 Issued: 2016-07-06


4.6. Hopping Channel Number

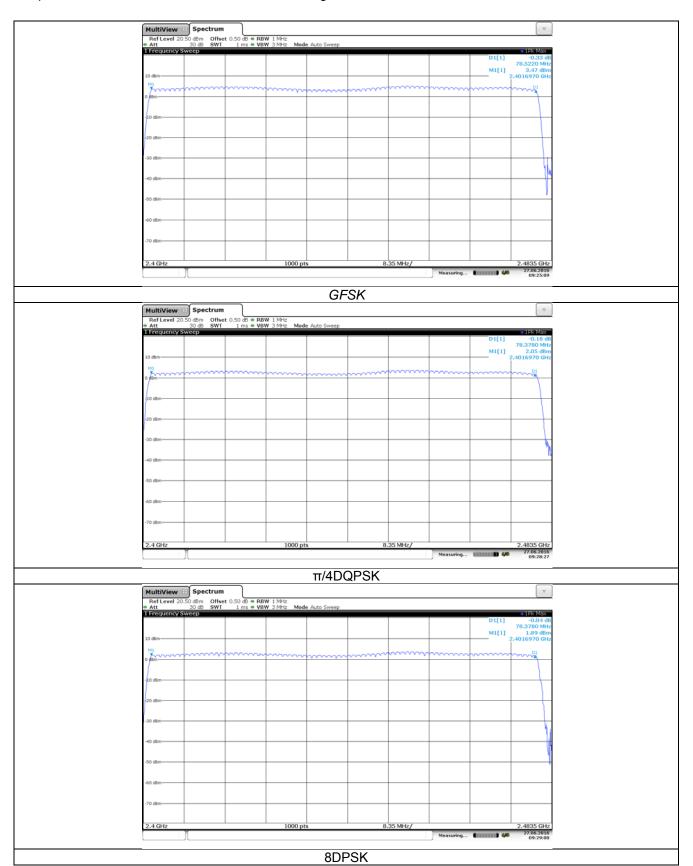
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST CONFIGURATION

TEST PROCEDURE


- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=1MHz and VBW=3MHz.

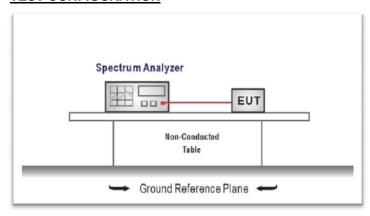
TEST RESULTS

Modulation type	Channel number	Limit (MHz)	Result
GFSK	79		
π/4DQPSK	79	15	Pass
8DPSK	79		

Test plot as follows:

Report No: TRE1606013302 Page: 22 of 42 Issued: 2016-07-06

Report No: TRE1606013302 Page: 23 of 42 Issued: 2016-07-06


4.7. Dwell Time

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

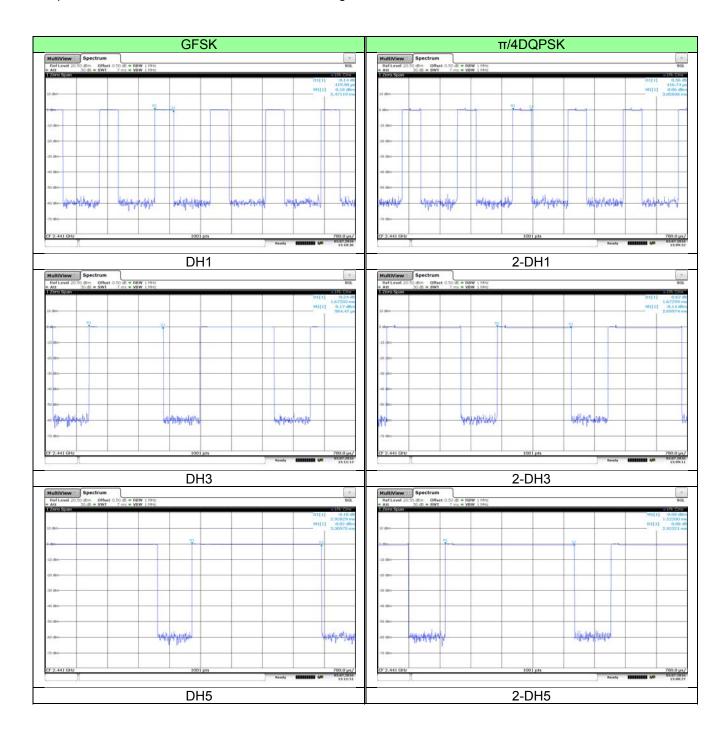
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST CONFIGURATION

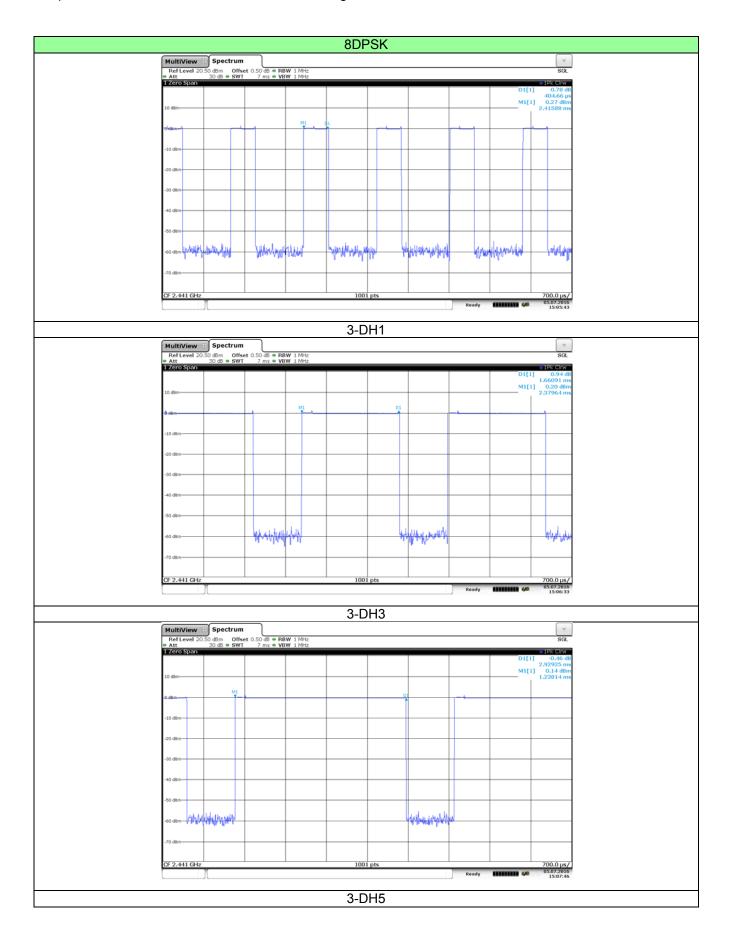
TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=1MHz,Span=0Hz.

TEST RESULTS


Modulation type	Channel	Dwell time (Second)	Limit (Second)	Result
	DH1	0.134		
GFSK	DH3	0.268	0.40	Pass
	DH5	0.312		
	2-DH1	0.133		
π/4DQPSK	2-DH3	0.268	0.40	Pass
	2-DH5	0.312		
	3-DH1	0.130		
8DPSK	3-DH3	0.266	0.40	Pass
	3-DH5	0.312		

Note:


- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- 2. Dwell time=Pulse time (ms) × $(1600 \div 2 \div 79)$ ×31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79)$ ×31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5

Test plot as follows:

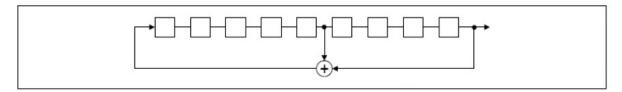
Report No: TRE1606013302 Page: 24 of 42 Issued: 2016-07-06

Report No: TRE1606013302 Page: 25 of 42 Issued: 2016-07-06

Report No: TRE1606013302 Page: 26 of 42 Issued: 2016-07-06

4.8. Pseudorandom Frequency Hopping Sequence

LIMIT


FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the friststage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

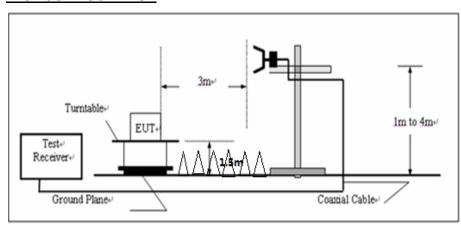
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Report No: TRE1606013302 Page: 27 of 42 Issued: 2016-07-06


4.9. Restricted band (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m @3m)	Value
Above 1GHz	54.00	Average
Above IGHZ	74.00	Peak

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow:
 - RBW=1MHz, VBW=3MHz for Peak value
 - RBW=1MHz, VBW=10Hz for Average value.
- 6. Pre-scan 2310-2390MHz,2483.5-2500MHz,and only mark the worst case data in the test report

TEST RESULTS

Report No: TRE1606013302 Page: 28 of 42 Issued: 2016-07-06

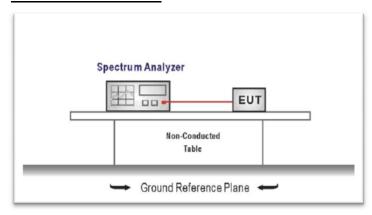
	CH00												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value				
2390	48.22	27.51	6.83	37.28	45.28	74.00	-29.48	Vertical	Peak				
2390	51.46	27.51	6.83	37.28	48.52	74.00	-30.26	Horizontal	reak				
2390	42.58	27.51	6.83	37.28	39.64	54.00	-15.42	Vertical	Average				
2390	45.69	27.51	6.83	37.28	42.75	54.00	-16.37	Horizontal	Average				

	CH78													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value					
2483.5	49.58	27.83	6.95	37.91	46.45	74.00	-28.75	Vertical	Dook					
2483.5	50.89	27.83	6.95	37.91	47.76	74.00	-30.32	Horizontal	Peak					
2483.5	44.07	27.83	6.95	37.91	40.94	54.00	-15.24	Vertical	Average					
2483.5	45.21	27.83	6.95	37.91	42.08	54.00	-16.48	Horizontal	Average					

Note:1.Level= Read+ Antenna Factor+ Cable Loss- Preamp Factor

^{2.} Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.

Report No: TRE1606013302 Page: 29 of 42 Issued: 2016-07-06

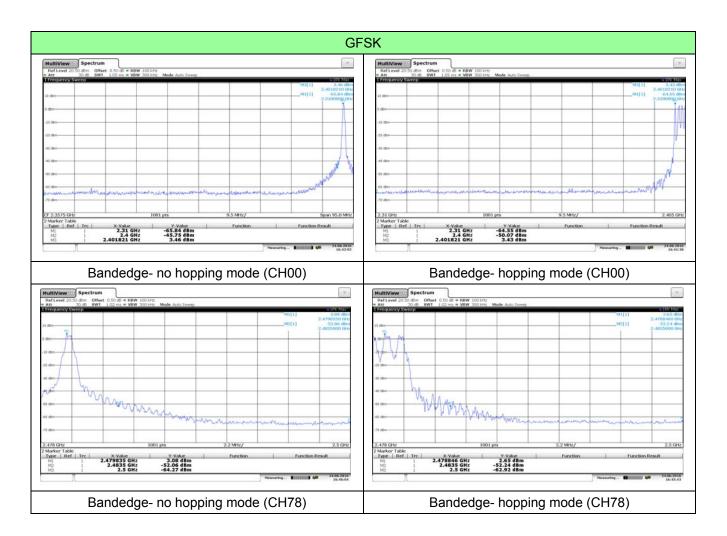

4.10. Bandedge and Spurious Emission (conducted)

LIMIT

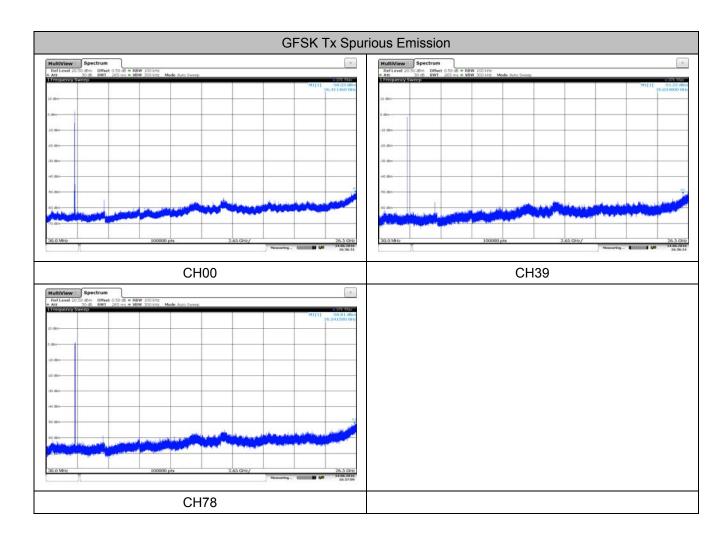
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

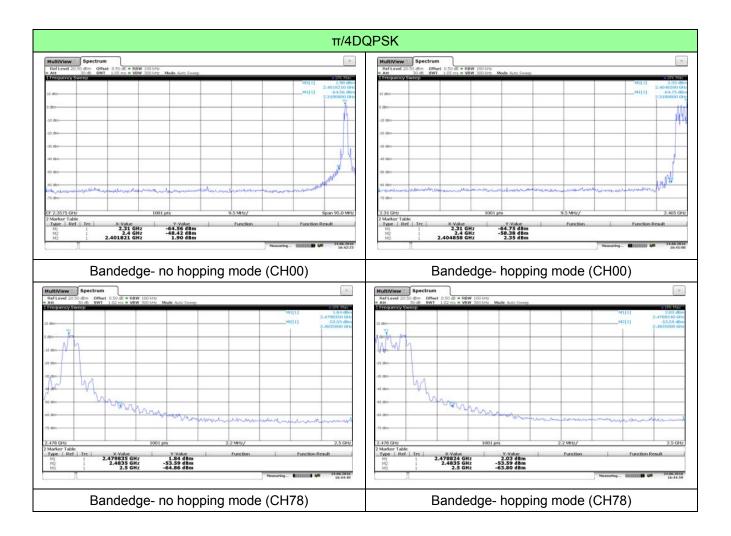
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

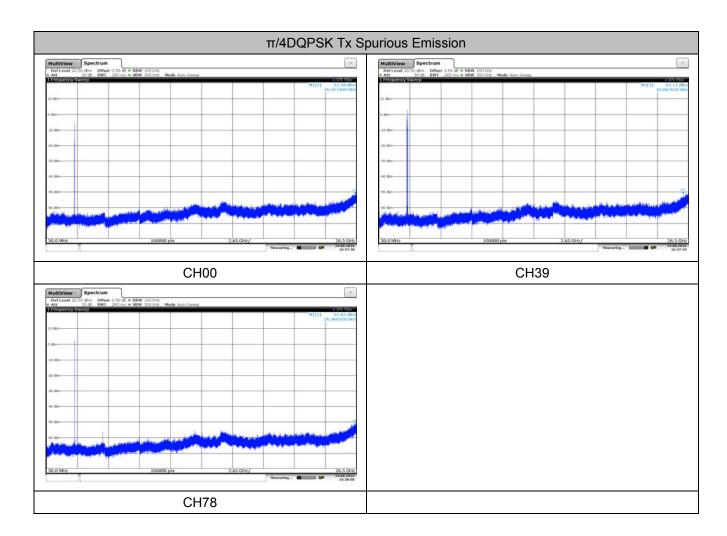


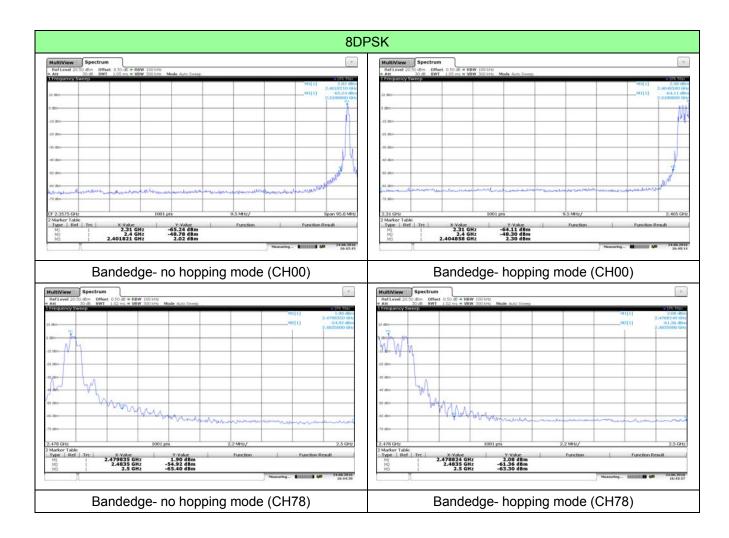
TEST PROCEDURE

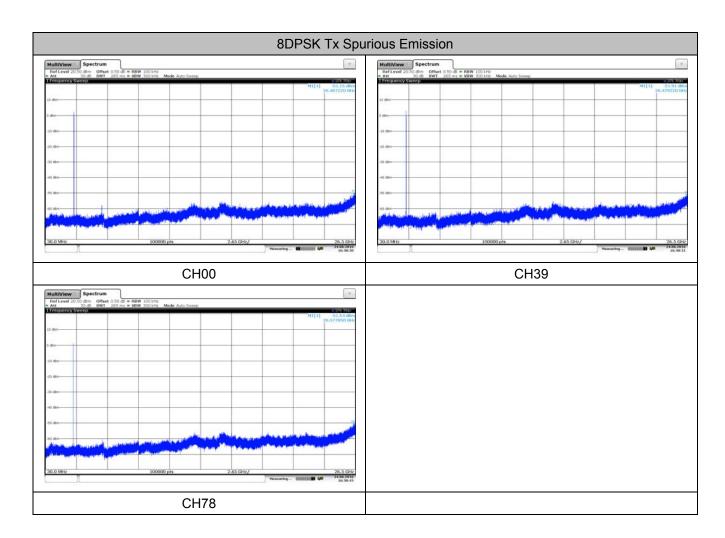

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Conducted spurious emission the bandwidth of the fundamental frequency was measured by spectrum analyzer withRBW=100 KHz and VBW=300KHz.
- 3. Below -20dB of the highest emission level in operating band.


TEST RESULTS

Test plot as follows:




Report No: TRE1606013302 Page: 31 of 42 Issued: 2016-07-06

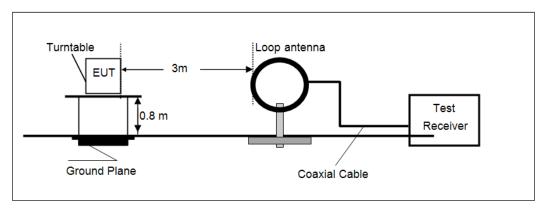


Report No: TRE1606013302 Page: 33 of 42 Issued: 2016-07-06

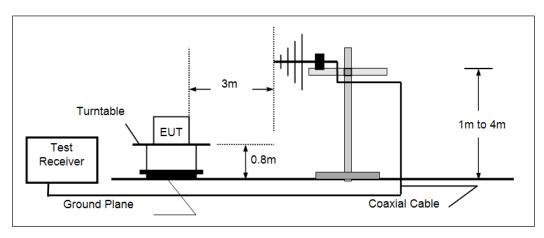
Report No: TRE1606013302 Page: 35 of 42 Issued: 2016-07-06

Report No: TRE1606013302 Page: 36 of 42 Issued: 2016-07-06

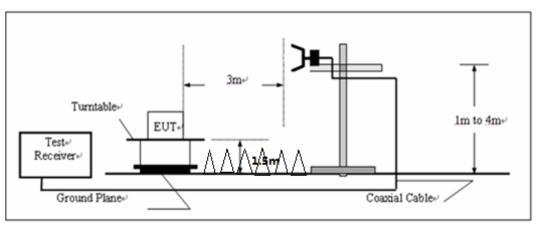
4.11. Spurious Emission (radiated)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above IGHZ	74.00	Peak

TEST CONFIGURATION


♦ Below 30MHz

♦ 30MHz~1000MHz

◆ Above 1GHz

Report No: TRE1606013302 Page: 37 of 42 Issued: 2016-07-06

TEST PROCEDURE

1. The EUT was placed on the top of a rotating table 0.8 meter above ground for below 1GHz, and 1.5m for above 1GHz at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

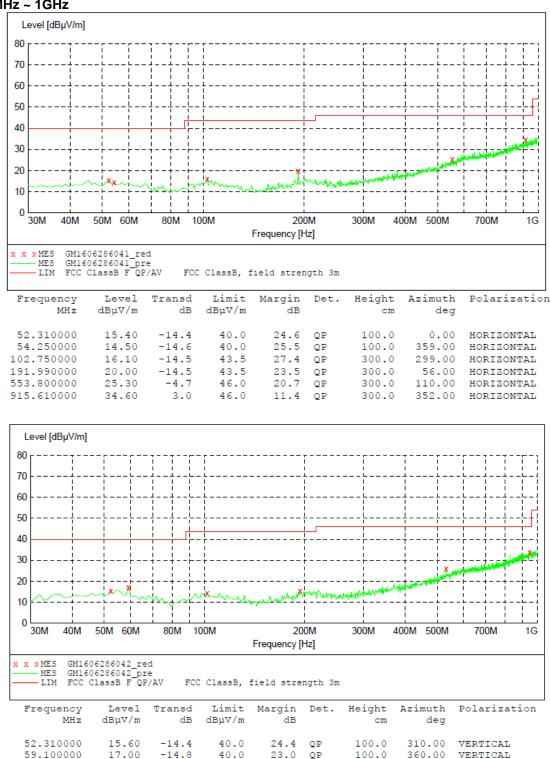
- 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1GHz, RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
 - c) Above 1GHz, RBW=1MHz, VBW=3MHz for Peak value

RBW=1MHz, VBW=10Hz for Average value.

TEST RESULTS

Noted:

Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.


Measurement data:

■ 9kHz ~ 30MHz

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Report No: TRE1606013302 Page: 38 of 42 Issued: 2016-07-06

■ 30MHz ~ 1GHz

59.100000 17.00 -14.8 40.0 23.0 QP 100.0 360.00 VERTICAL 101.780000 14.40 -14.4 43.5 29.1 QP 100.0 237.00 VERTICAL 193.930000 15.30 -14.3 43.5 28.2 100.0 202.00 QP VERTICAL 531.490000 -5.7 46.0 100.0 274.00 26.00 20.0 QP VERTICAL 12.0 QP 948.590000 34.00 3.7 46.0 100.0 310.00 VERTICAL

Remark:Transd=Cable lose+ Antenna factor- Pre-amplifier:Margin=Limit -Level

Report No: TRE1606013302 Page: 39 of 42 Issued: 2016-07-06

■ Above 1GHz

				CH0) for GFSK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
4804.00	37.80	31.28	5.66	35.29	39.45	74.00	-34.55	Vertical	
7206.00	34.42	36.22	6.87	35.15	42.36	74.00	-31.64	Vertical	
9608.00	35.75	37.85	8.80	35.55	46.85	74.00	-27.15	Vertical	
11264.26	*							Vertical	Dook
4804.00	39.18	31.28	5.66	35.29	40.83	74.00	-33.17	Horizontal	Peak
7206.00	35.50	36.22	6.87	35.15	43.44	74.00	-30.56	Horizontal	
9608.00	35.88	37.85	8.80	35.55	46.98	74.00	-27.02	Horizontal	
11264.26	*							Horizontal	
4804.00	31.87	31.28	5.66	35.29	33.52	54.00	-20.48	Vertical	
7206.00	28.93	36.22	6.87	35.15	36.87	54.00	-17.13	Vertical	
9608.00	28.48	37.85	8.80	35.55	39.58	54.00	-14.42	Vertical	
11264.26	*							Vertical	A.,
4804.00	33.11	31.28	5.66	35.29	34.76	54.00	-19.24	Horizontal	Average
7206.00	29.74	36.22	6.87	35.15	37.68	54.00	-16.32	Horizontal	
9608.00	28.92	37.85	8.80	35.55	40.02	54.00	-13.98	Horizontal	
11264.26	*							Horizontal	

CH39 for GFSK									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
4882.00	38.94	30.88	5.70	35.27	40.25	74.00	-33.75	Vertical	Peak
7323.00	34.87	35.82	6.91	35.13	42.47	74.00	-31.53	Vertical	
9764.00	35.60	37.45	8.84	35.53	46.36	74.00	-27.64	Vertical	
12247.62	*							Vertical	
4882.00	39.21	30.88	5.70	35.27	40.52	74.00	-33.48	Horizontal	
7323.00	35.84	35.82	6.91	35.13	43.44	74.00	-30.56	Horizontal	
9764.00	36.19	37.45	8.84	35.53	46.95	74.00	-27.05	Horizontal	
12247.62	*							Horizontal	
4882.00	32.74	30.88	5.70	35.27	34.05	54.00	-19.95	Vertical	
7323.00	28.92	35.82	6.91	35.13	36.52	54.00	-17.48	Vertical	
9764.00	28.52	37.45	8.84	35.53	39.28	54.00	-14.72	Vertical	
12247.62	*							Vertical	Average
4882.00	33.33	30.88	5.70	35.27	34.64	54.00	-19.36	Horizontal	Average
7323.00	29.92	35.82	6.91	35.13	37.52	54.00	-16.48	Horizontal	
9764.00	28.67	37.45	8.84	35.53	39.43	54.00	-14.57	Horizontal	
12247.62	*							Horizontal	

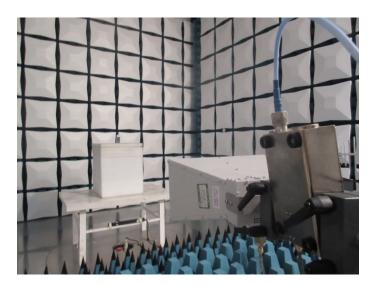
Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No: TRE1606013302 Page: 40 of 42 Issued: 2016-07-06

CH78 for GFSK									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
4960.00	37.86	30.98	5.73	35.32	39.25	74.00	-34.75	Vertical	Peak
7440.00	34.76	35.92	6.94	35.18	42.44	74.00	-31.56	Vertical	
9920.00	35.51	37.55	8.87	35.58	46.35	74.00	-27.65	Vertical	
13214.26	*							Vertical	
4960.00	40.04	30.98	5.73	35.32	41.43	74.00	-32.57	Horizontal	
7440.00	35.97	35.92	6.94	35.18	43.65	74.00	-30.35	Horizontal	
9920.00	35.20	37.55	8.87	35.58	46.04	74.00	-27.96	Horizontal	
13214.26	*							Horizontal	
4960.00	33.08	30.98	5.73	35.32	34.47	54.00	-19.53	Vertical	
7440.00	28.84	35.92	6.94	35.18	36.52	54.00	-17.48	Vertical	- Average
9920.00	28.92	37.55	8.87	35.58	39.76	54.00	-14.24	Vertical	
13214.26	*							Vertical	
4960.00	32.89	30.98	5.73	35.32	34.28	54.00	-19.72	Horizontal	
7440.00	29.98	35.92	6.94	35.18	37.66	54.00	-16.34	Horizontal	
9920.00	28.24	37.55	8.87	35.58	39.08	54.00	-14.92	Horizontal	
13214.26	*							Horizontal	

Remark:


- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No: TRE1606013302 Page: 41 of 42 Issued: 2016-07-06

5. Test Setup Photos of the EUT

Radiated Emission

Conducted Emission (AC Mains)

Report No: TRE1606013302 Page: 42 of 42 Issued: 2016-07-06

6. External and Internal Photos of the EUT

Reference to Test Report TRE16	306013301
	End of Report