

FCC Radio Test Report

FCC ID: 2BH7FBE5000

This report concerns: Original Grant

Project No. : 2502G008

Equipment: BE5000 Dual-Band Wi-Fi 7 Router

Brand Name : tp-link

Test Model: Archer BE5000

Series Model : N/A

Applicant: TP-Link Systems Inc.

Address: 10 Mauchly, Irvine, CA 92618

Manufacturer : TP-Link Systems Inc.

Address : 10 Mauchly, Irvine, CA 92618

Date of Receipt : Feb. 11, 2025

Date of Test : Feb. 12, 2025 ~ Mar. 24, 2025

Issued Date : Apr. 09, 2025

Report Version : R01

Test Sample : Engineering Sample No.: SSL2025021135 for AC power line conducted

emissions and radiated emissions, SSL2025021134 for others.

Standard(s): FCC CFR Title 47, Part 15, Subpart E

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by

Chella Zheng

Approved by

Welly Zhou

Room 108-116, 309-310, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	5
1 . APPLICABLE STANDARDS	6
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
2.3 TEST ENVIRONMENT CONDITIONS	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 TEST MODES	12
3.3 PARAMETERS OF TEST SOFTWARE	14
3.4 DUTY CYCLE	15
3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	19
3.6 SUPPORT UNITS	19
3.7 CUSTOMER INFORMATION DESCRIPTION	19
4 . AC POWER LINE CONDUCTED EMISSIONS	20
4.1 LIMIT	20
4.2 TEST PROCEDURE	20
4.3 DEVIATION FROM TEST STANDARD	20
4.4 TEST SETUP	21
4.5 EUT OPERATION CONDITIONS 4.6 TEST RESULTS	21 21
5 . RADIATED EMISSIONS	22
5.1 LIMIT	22 24
5.2 TEST PROCEDURE 5.3 DEVIATION FROM TEST STANDARD	24 25
5.4 TEST SETUP	25 25
5.5 EUT OPERATION CONDITIONS	27
5.6 TEST RESULTS - 9 KHZ TO 30 MHZ	27
5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	27
5.8 TEST RESULTS - ABOVE 1000 MHZ	27
6 . BANDWIDTH	28
6.1 LIMIT	28
6.2 TEST PROCEDURE	28

Table of Contents	Page
6.3 DEVIATION FROM STANDARD	28
6.4 TEST SETUP	28
6.5 EUT OPERATION CONDITIONS	28
6.6 TEST RESULTS	28
7 . MAXIMUM E.I.R.P.	29
7.1 LIMIT	29
7.2 TEST PROCEDURE	29
7.3 DEVIATION FROM STANDARD	29
7.4 TEST SETUP	29
7.5 EUT OPERATION CONDITIONS	29
7.6 TEST RESULTS	29
8 . POWER SPECTRAL DENSITY (E.I.R.P.)	30
8.1 LIMIT	30
8.2 TEST PROCEDURE	30
8.3 DEVIATION FROM STANDARD	30
8.4 TEST SETUP	30
8.5 EUT OPERATION CONDITIONS	30
8.6 TEST RESULTS	30
9 . MEASUREMENT INSTRUMENTS LIST	31
10 . EUT TEST PHOTOS	34
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	40
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	43
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	48
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	51
APPENDIX E - BANDWIDTH	85
APPENDIX F - MAXIMUM E.I.R.P.	100
APPENDIX G - POWER SPECTRAL DENSITY (E.I.R.P.)	115
- (,	-

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-4-2502G008	R00	Original Report.	Apr. 01, 2025	Invalid
BTL-FCCP-4-2502G008	R01	Modified the comments of TCB.	Apr. 09, 2025	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of A2LA:

KDB 291074 D02 EMC Measurement v01

KDB 662911 D01 Multiple Transmitter Output v02r01

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart E					
Standard(s) Section	Test Item	Test Result	Judgment	Remark	
15.207 15.407(b)	AC Power Line Conducted Emissions	APPENDIX A	PASS		
15.407(b) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS		
15.407(e)	Bandwidth	APPENDIX E	PASS		
15.407(a)	Maximum e.i.r.p.	APPENDIX F	PASS		
15.407(a)	Power Spectral Density (e.i.r.p.)	APPENDIX G	PASS		
15.407(g)	Frequency Stability		NOTE (5)		
15.203	Antenna Requirements		PASS	NOTE (2)	
15.407(c)	Automatically Discontinue Transmission		PASS	NOTE (3)	

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.
- (3) During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. the EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

	transmitting nominate device and verify whether it chair recent or discontinu
(4)	Device Type:
	☐ Subordinate device (operating under the control of an indoor access point)
	☐ Client device (operating under the control of an indoor access point)
(5)	The item is declared by the manufacturer.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

For Radiated Emissions Above 30MHz Items: Room 102 & Room 702, Building 3, No.9, Jinshagang 1st Road, Dalang Town, Dongguan City, Guangdong People's Republic of China.

For Other Items: 1-2/F, 4/F, Building A, 1-2/F, Building B, 3/F, Building C, No.3, Jinshagang 1st Road, Dalang Town, Dongguan City, Guangdong People's Republic of China.

BTL's Registration Number for FCC: 747969 BTL's Designation Number for FCC: CN1377

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.88

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB01	CISPR	9kHz ~ 30MHz	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
DG-CB17 (3m) CISPR	30MHz ~ 200MHz	>	4.22	
	CISPR	30MHz ~ 200MHz	Н	3.46
		200MHz ~ 1,000MHz	V	5.02
		200MHz ~ 1,000MHz	Н	4.22

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB18	318	1GHz ~ 6GHz	4.48
(3m)	CISPR	6GHz ~ 18GHz	3.88

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB17	7 CIEDD	18 ~ 26.5 GHz	3.56
(1m)	CISPR	26.5 ~ 40 GHz	3.54

C. Other Measurement test:

Test Item	Uncertainty
Bandwidth	0.90 %
Maximum Output Power	1.3 dB
Power Spectral Density	1.4 dB
Temperature	0.8 °C
Humidity	2.2 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By	Test Date
AC Power Line Conducted Emissions	23°C	56%	AC 120V/60Hz	Hayden Chen	Mar. 04□ 2025
Radiated Emissions -9kHz to 30MHz	22°C	46%	AC 120V/60Hz	Hayden Chen	Mar. 05, 2025
Radiated Emissions -30MHz to 1000MHz	24°C	56%	A□ 120V/60Hz	Chen Mo	Mar. 24, 2025
Radiated Emissions	25°C	48%	AC 120V/60Hz	Drew Tan	Mar. 04, 2025
-Above 1000 MHz	23°C	41%	AC 120V/60Hz	Calvin Wen	Feb. 15, 2025
Bandwidth	22°C	51%	AC 120V/60Hz	Steve Zhou	Mar. 06, 2025
Maximum e.i.r.p.	23-25°C	49-52%	AC 120V/60Hz	Meers Zhang	Feb. 15, 2025- Mar. 18, 2025
Power Spectral Density (e.i.r.p.)	22°C	51%	AC 120V/60Hz	Steve Zhou	Mar. 06, 2025

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	BE5000 Dual-Band Wi-Fi 7 Router	
Brand Name	tp-link	
Test Model	Archer BE5000	
Series Model	N/A	
Model Difference(s)	N/A	
Software Version	V1	
Hardware Version	V1	
Power Source	DC voltage supplied from AC adapter.	
rower Source	Model: NBS30D120250VU	
Power Rating	I/P: 100-240V~, 50/60Hz, 0.8A O/P: 12.0V === 2.5A	
Operation Frequency Band(s)	UNII-4: 5850 MHz ~ 5895 MHz	
Modulation Type	IEEE 802.11a/n/ac: OFDM	
iviodulation Type	IEEE 802.11ax/be: OFDMA	
	IEEE 802.11a: 54/48/36/24/18/12/9/6 Mbps	
	IEEE 802.11n: up to 450 Mbps	
Bit Rate of Transmitter	IEEE 802.11ac: up to 2600 Mbps	
	IEEE 802.11ax: up to 3603 Mbps	
	IEEE 802.11be: up to 4323 Mbps	
Maximum e.i.r.p.	IEEE 802.11ac(VHT80): 33.36 dBm (2.1677 W)	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

UNII-3+UNII-4		
IEEE 802.11a / IEEE 802.11n(HT20) / IEEE 802.11ac(VHT20) / IEEE 802.11ax(HE20) / IEEE 802.11be(EHT20)		
Channel Frequency (MHz)		
169	5845	

UNII-4		
IEEE 802.11a / IEEE 802.11n(HT20) / IEEE 802.11ac(VHT20) / IEEE 802.11ax(HE20) / IEEE 802.11be(EHT20)		
Channel	Frequency (MHz)	
173	5865	
177	5885	

UNII-3+UNII-4		
IEEE 802.11n(HT40) / IEEE 802.11ac(VHT40) / IEEE 802.11ax(HE40) / IEEE 802.11be(EHT40)		
Channel	Frequency (MHz)	
167	5835	

UNII-4		
IEEE 802.11n(HT40) / IEEE 802.11ac(VHT40) / IEEE 802.11ax(HE40) / IEEE 802.11be(EHT40)		
Channel	Frequency (MHz)	
175	5875	

UNII-3+UNII-4	
IEEE 802.11ac(VHT80) / IEEE 802.11ax(HE80) / IEEE 802.11be(EHT80)	
Channel	Frequency (MHz)
171	5855

UNII-3+UNII-4		
IEEE 802.11ac(VHT160) / IEEE 802.11ax(HE160) / IEEE 802.11be(EHT160)		
Channel Frequency (MHz)		
163	5815	

3. Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	tp-link	BE5000(US)1.6	Franklin	Weld	5.28
2	tp-link	BE5000(US)1.6	Franklin	Weld	5.96
3	tp-link	BE5000(US)1.6	Franklin	Weld	6.81

Note:

- This EUT supports CDD, and all antenna gains are not equal, Directional gain = G_{ANT}+Array Gain. For power measurements, Array Gain=0dB (N_{ANT}≤4), so the Directional gain=6.81. For power spectral density measurements, Directional gain(each angle)=10log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})²/N]dBi=10log[(10^{2.35/20}+10^{3.46/20}+10^{6.81/20})²/3]dBi=9.19.
- 2) Beamforming Gain: 4.7 dB.

4. Table for Antenna Configuration:

Operating Mode			
TX Mode	3TX		
IEEE 802.11a	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11n(HT20)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11n(HT40)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11ac(VHT20)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11ac(VHT40)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11ac(VHT80)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11ac(VHT160)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11ax(HE20)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11ax(HE40)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11ax(HE80)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11ax(HE160)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11be(EHT20)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11be(EHT40)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11be(EHT80)	V (Ant. 1 + Ant. 2 + Ant. 3)		
IEEE 802.11be(EHT160)	V (Ant. 1 + Ant. 2 + Ant. 3)		

3.2 TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX A Mode Channel 169/173/177
Mode 2	TX AC(VHT20) Mode Channel 169/173/177
Mode 3	TX AC(VHT40) Mode Channel 167/175
Mode 4	TX AC(VHT80) Mode Channel 171
Mode 5	TX AC(VHT160) Mode Channel 163
Mode 6	TX BE(EHT20) Mode Channel 169/173/177
Mode 7	TX BE(EHT40) Mode Channel 167/175
Mode 8	TX BE(EHT80) Mode Channel 171
Mode 9	TX BE(EHT160) Mode Channel 163

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test	
Final Test Mode	Description
Mode 4	TX AC(VHT80) Mode Channel 171

Radiated Emissions Test - Below 1GHz	
Final Test Mode	Description
Mode 4	TX AC(VHT80) Mode Channel 171

Radiated Emissions Test - Above 1GHz		
Final Test Mode	Description	
Mode 1	TX A Mode Channel 169/173/177	
Mode 2	TX AC(VHT20) Mode Channel 169/173/177	
Mode 3	TX AC(VHT40) Mode Channel 167/175	
Mode 4	TX AC(VHT80) Mode Channel 171	
Mode 5	TX AC(VHT160) Mode Channel 163	
Mode 6	TX BE(EHT20) Mode Channel 169/173/177	
Mode 7	TX BE(EHT40) Mode Channel 167/175	
Mode 8	TX BE(EHT80) Mode Channel 171	
Mode 9	TX BE(EHT160) Mode Channel 163	

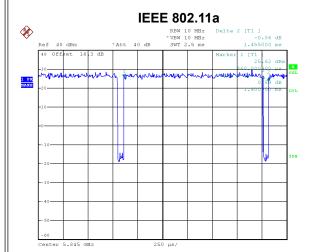
	Conducted Test		
Final Test Mode	Description		
Mode 1	TX A Mode Channel 169/173/177		
Mode 2	TX AC(VHT20) Mode Channel 169/173/177		
Mode 3	TX AC(VHT40) Mode Channel 167/175		
Mode 4	TX AC(VHT80) Mode Channel 171		
Mode 5	TX AC(VHT160) Mode Channel 163		
Mode 6	TX BE(EHT20) Mode Channel 169/173/177		
Mode 7	TX BE(EHT40) Mode Channel 167/175		
Mode 8	TX BE(EHT80) Mode Channel 171		
Mode 9	TX BE(EHT160) Mode Channel 163		

Note:

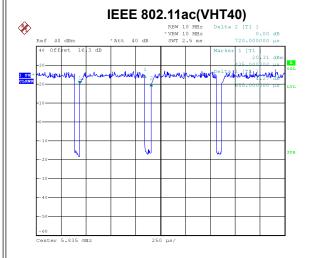
- (1) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX AC(VHT80) Mode Channel 171 is found to be the worst case and recorded.
- (2) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz and 26.5GHz~40GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (3) For radiated emission Harmonic 18-40GHz test, only tested the worst case and recorded.
- (4) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (5) VHT20/VHT40 covers HT20/HT40, due to same modulation. The power setting for 802.11n HT20 and HT40 are the same or lower than 802.11ac VHT20 and VHT40.
- (6) The RF Output Power of the Beamforming mode will be lower than that of the Non Beamforming mode. Only Non Beamforming mode will be evaluated and recorded in the report.
- (7) EHT20/EHT40/EHT80/EHT160 covers HE20/HE40/HE80/HE160, due to same modulation (in full RU). The power setting for 802.11ax HE20/HE40/HE80/HE160 are the same or lower than 802.11be EHT20/EHT40/EHT160.
- (8) For radiated emission above 1 GHz test, the polarization of Vertical and Horizontal are evaluated, the worst case is Vertical and recorded.
- (9) IEEE 802.11ax mode and IEEE 802.11be mode only support full RU, so only the full RU is evaluated and measured inside report.

3.3 PARAMETERS OF TEST SOFTWARE

UNII-4			
Test Software Version	(QATool_20231030_Extern	al
Frequency (MHz)	5845	5865	5885
IEEE 802.11a	14	14.5	14.5
IEEE 802.11ac(VHT20)	14.5	14.5	14.5
IEEE 802.11be(EHT20)	14.5	14.5	14.5
Frequency (MHz)	5835	5875	
IEEE 802.11ac(VHT40)	17	17.5	
IEEE 802.11be(EHT40)	17	17.5	
Frequency (MHz)	5855		
IEEE 802.11ac(VHT80)	20		
IEEE 802.11be(EHT80)	20		
Frequency (MHz)	5815		
IEEE 802.11ac(VHT160)	19		
IEEE 802.11be(EHT160)	18.5		

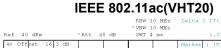


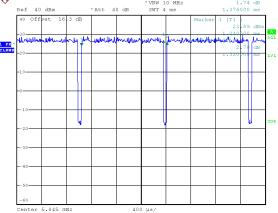
3.4 DUTY CYCLE


If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

The output power = measured power + duty factor.

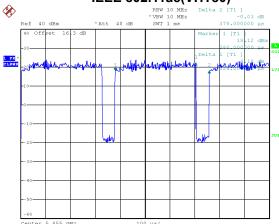
The power spectral density = measured power spectral density + duty factor.




Duty cycle = 1.400 ms / 1.464 ms = 95.63% Duty Factor = 10 log(1 / Duty cycle) = 0.19

Date: 5.MAR.2025 10:04:39

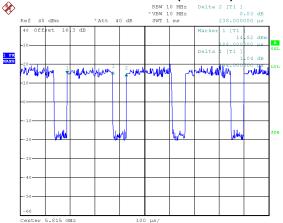
Duty cycle = 0.660 ms / 0.710 ms = 92.96% Duty Factor = 10 log(1 / Duty cycle) = 0.32



Date: 5.MAR.2025 09:58:54

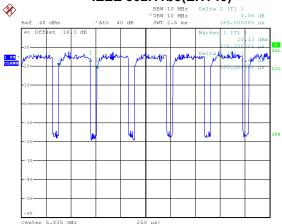
Duty cycle = 1.320 ms / 1.370 ms = 96.35% Duty Factor = 10 log(1 / Duty cycle) = 0.16

IEEE 802.11ac(VHT80)



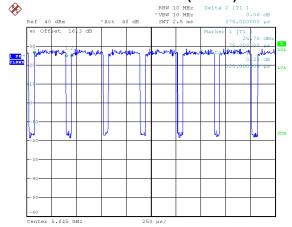
Date: 5.MAR.2025 10:05:04

Duty cycle = 0.325 ms / 0.390 ms = 83.33%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.79$



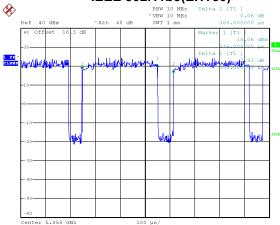
Date: 5.MAR.2025 10:07:01

Duty cycle = 0.185 ms / 0.245 ms = 75.51% Duty Factor = 10 log(1 / Duty cycle) = 1.22


IEEE 802.11be(EHT40)

Date: 5.MAR.2025 10:03:26

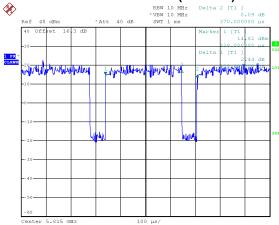
Duty cycle = 0.320 ms / 0.385 ms = 83.12% Duty Factor = 10 log(1 / Duty cycle) = 0.80


IEEE 802.11be(EHT20)

Date: 5.MAR.2025 10:08:07

Duty cycle = 0.320 ms / 0.375 ms = 85.33% Duty Factor = 10 log(1 / Duty cycle) = 0.69

IEEE 802.11be(EHT80)



Date: 5.MAR.2025 10:05:21

Duty cycle = 0.305 ms / 0.365 ms = 83.56%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.78$

Date: 5.MAR.2025 10:05:43

Duty cycle = 0.310 ms / 0.370 ms = 83.78%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.77$

NOTE:

For IEEE 802.11a:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 714 Hz (Duty cycle < 98%).

For IEEE 802.11ac(VHT20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 758 Hz (Duty cycle < 98%).

For IEEE 802.11ac(VHT40):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1515 Hz (Duty cycle < 98%).

For IEEE 802.11ac(VHT80):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3077 Hz (Duty cycle < 98%).

For IEEE 802.11ac(VHT160):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 5405 Hz (Duty cycle < 98%).

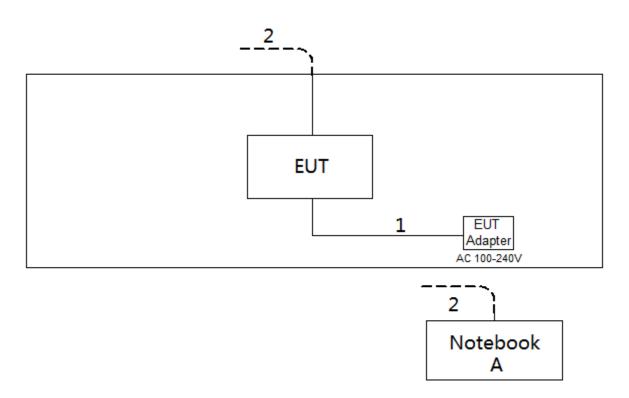
For IEEE 802.11be(EHT20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3125 Hz (Duty cycle < 98%).

For IEEE 802.11be(EHT40):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3125 Hz (Duty cycle < 98%).

For IEEE 802.11be(EHT80):


For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3279 Hz (Duty cycle < 98%).

For IEEE 802.11be(EHT160):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3226 Hz (Duty cycle < 98%).

3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
Α	Notebook	Honor	14SER5 3500	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.5m
2	RJ45 Cable	NO	NO	10m

3.7 CUSTOMER INFORMATION DESCRIPTION

- The antenna gain and beamforming gain are provided by the manufacturer.
 Except for AC power line conducted emissions and radiated emissions, the results of all test items include cable losses. Part of the cable losses (1dB) are provided by the manufacturer, while the other parts of the cable losses are provided by the testing laboratory.

4. AC POWER LINE CONDUCTED EMISSIONS

4.1 LIMIT

Frequency	Limit (dΒμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

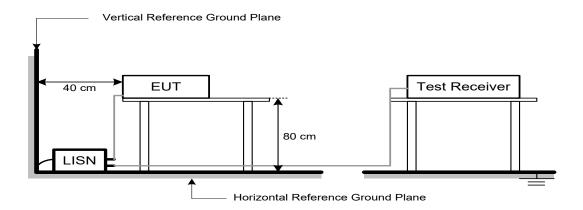
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

4.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameter	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.3 DEVIATION FROM TEST STANDARD

No deviation

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting/TX mode.

4.6 TEST RESULTS

Please refer to the APPENDIX A.

5. RADIATED EMISSIONS

5.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

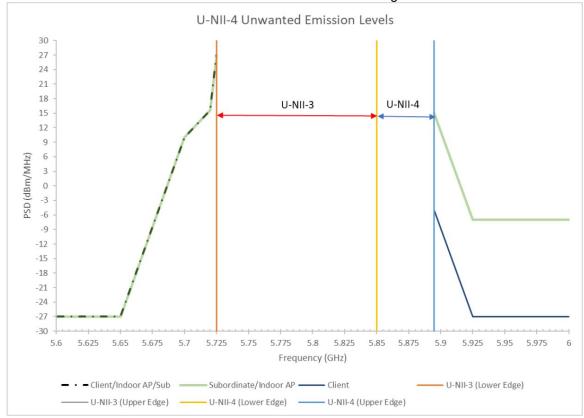
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS (Above 1000 MHz)

	ZIMITO OF CITTO ATTEMPT TO THE TELEPHONE BY AND COMMITTED		
Frequency	EIRP Limit	Band edge	Harmonic
(MHz)	(dBm/MHz)	at 3m (dBµV/m)	at 1m (dBµV/m)
	15	110.2	119.7(Note 5)
	-7	88.2	97.7(Note 5)
5725-5850 NOTE (2)	-5	90.2	99.7(Note 5)
	-27	68.2	77.7(Note 5)
	10	105.2	114.7(Note 5)
	15.6	110.8	120.3(Note 5)
	27	122.2	131.7(Note 5)

NOTE:

(1) The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:


$$E=rac{1000000\sqrt{30P}}{3}$$
µV/m, where P is the eirp (Watts)

(2) According to 15.407(b)(5)(i), for an indoor access point or subordinate device, all emissions at or above 5.895 GHz shall not exceed an e.i.r.p. of 15 dBm/MHz and shall decrease linearly to an e.i.r.p. of -7 dBm/MHz at or above 5.925 GHz.

According to 15.407(b)(5)(ii), for a client device, all emissions at or above 5.895 GHz shall not exceed an e.i.r.p. of -5 dBm/MHz and shall decrease linearly to an e.i.r.p. of -27 dBm/MHz at or above 5.925 GHz.

According to 15.407(b)(5)(iii), for a client device or indoor access point or subordinate device, all emissions below 5.725 GHz shall not exceed an e.i.r.p. of –27 dBm/MHz at 5.65 GHz increasing linearly to 10 dBm/MHz at 5.7 GHz, and from 5.7 GHz increasing linearly to a level of 15.6 dBm/MHz at 5.72 GHz, and from 5.72 GHz increasing linearly to a level of 27 dBm/MHz at 5.725 GHz.

- (3) Unwanted emissions outside of restricted bands are measured with a RMS detector.
- (4) Band Edge measurements made below 5725 MHz are to be made with a Peak detector. Band Edge measurements above 5895 MHz are to be made with a RMS detector. Band Edge measurements above 5895 MHz should also include Peak plots to show compliance with 15.35(b) where the peak emissions must be limited to no more than 20 dB above the average limit.

(5)

$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

 $20\log (d_{limit}/d_{measure})=20\log (3/1)=9.5 dB.$

FS_{limit}: Harmonic at 3m Peak and Average limit.

FS_{max}: Harmonic at 1m Peak and Average Maximum value.

d_{limit}: Harmonic at 3m test distance. d_{measure}: Harmonic Actual test distance.

5.2 TEST PROCEDURE

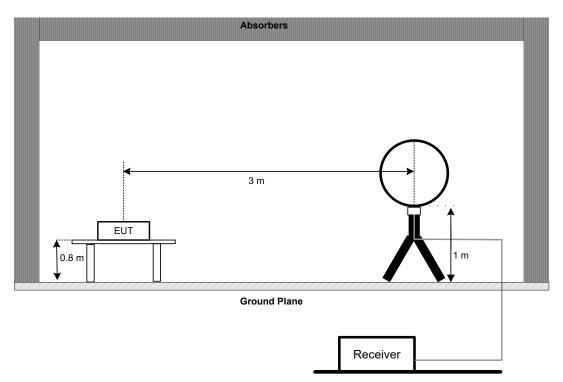
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m or 1m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.

The following table is the setting of the receiver:

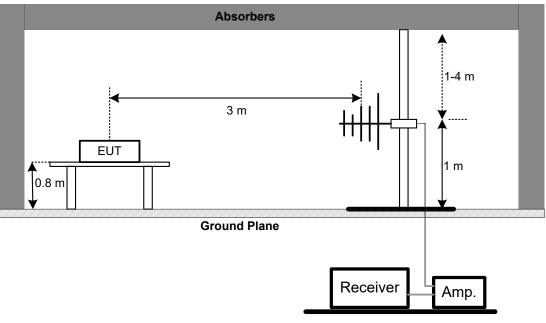
Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz

Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic or 40 GHz, whichever is lower
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value

Receiver Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~40 GHz for PK/AVG detector

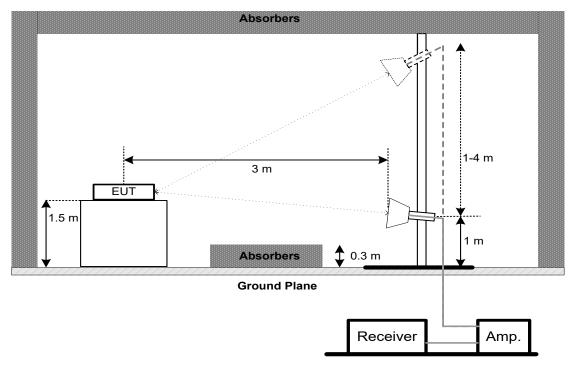


5.3 DEVIATION FROM TEST STANDARD

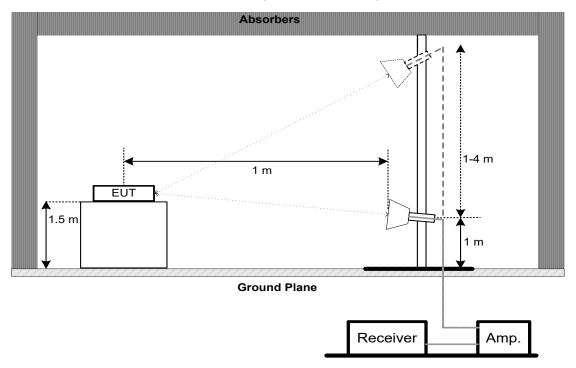

No deviation.

5.4 TEST SETUP

9 kHz to 30 MHz



30 MHz to 1 GHz



Above 1 GHz Band edge & Harmonic (1 GHz to 18 GHz)

Harmonic (18 GHz to 40 GHz)

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

5.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

6. BANDWIDTH

6.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(e)	6 dB Bandwidth	Minimum 500 kHz	5850-5895

6.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below

b. Spectrum Setting:

Spectrum Parameter	Setting
Span Frequency	> 6 dB Bandwidth
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For 99% Occupied Bandwidth:

·	,
Spectrum Parameter	Setting
Span Frequency	1.5 times to 5 times the OBW
RBW	1% to 5% of the OBW
VBW	≥3*RBW
Detector	Peak
□race	Max Hold
Sweep Time	Auto

c. Measured the spectrum width with power higher than 6 dB below carrier.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

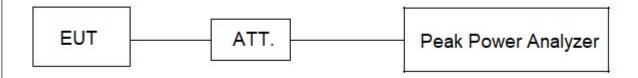
6.6 TEST RESULTS

Please refer to the APPENDIX E.

7. MAXIMUM E.I.R.P.

7.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(a)	Maximum e.i.r.p.	Indoor Access Point 36 dBm Subordinate device operating under the control of an indoor access point 36 dBm Client devices operating under the control of an indoor access point 30 dBm	5850-5895


7.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below.
- b. Test test was performed in accordance with method of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8. POWER SPECTRAL DENSITY (E.I.R.P.)

8.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(a)	Power Spectral Density (e.i.r.p.)	Indoor Access Point 20 dBm/MHz Subordinate device operating under the control of an indoor access point 20 dBm/MHz Client devices operating under the control of an indoor access point	5850-5895
		14 dBm/MHz	

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. Spectrum Setting:

Spectrum Parameter	Setting
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1 MHz
VBW	3 MHz
Detector	RMS
Trace average	100 trace
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

9. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	EMI TEST RECEIVER	R&S	ESCI	100382	Dec. 06, 2025		
2	TWO-LINE V-NETWORK	R&S	ENV216	101447	Dec. 06, 2025		
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
4	Cable	N/A	SFT205-NMNM-9M -001	9М	Nov. 11, 2025		
5	Cable	N/A	SFT205-NMNM-9M -001	9М	Nov. 11, 2025		
6	643 Shield Room	ETS	6*4*3	N/A	N/A		

	Radiated Emissions - 9 kHz to 30 MHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Active Loop Antenna	Schwarzbeck	FMZB 1513-60B	0034	Mar. 30, 2025		
2	MXE EMI Receiver	Keysight	N9038A	MY56400091	Dec. 06, 2025		
3	Cable	N/A	RW4950-3.8A-NMS M-1.5	N/A	Nov. 12, 2025		
4	Cable	N/A	LMR400-NMNM-8 M	N/A	Nov. 12, 2025		
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		

	Radiated Emissions - 30 MHz to 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	1587	Apr. 25, 2025	
2	Attenuator	EMC INSTRUMENT	EMCI-N-6-06	AT-06010	Apr. 25, 2025	
3	Preamplifier	EMC INSTRUMENT	EMC001330	980865	Oct. 29, 2025	
4	Cable	RegalWay	LMR400-NMNM-2. 5m	N/A	Jan. 07, 2026	
5	Cable	RegalWay	LMR400-NMNM-7 m	N/A	Jan. 07, 2026	
6	Cable	RegalWay	LMR400-NMNM-3 m	N/A	Jan. 07, 2026	
7	Receiver	Agilent	N9038A	MY52130039	Jan. 10, 2026	
8	Multi-Device Controller	ETS-Lindgren	N/A	N/A	N/A	
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
10	966 Chamber room	ETS	9*6*6	N/A	Jan. 02, 2026	

	Radiated Emissions - 1 - 18 GHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Multi-Device Controller	ETS-Lindgren	N/A	N/A	N/A		
2	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
3	Filter	STI	STI15-9969	N/A	Oct. 29, 2025		
4	Cable	RegalWay	RWLP50-4.0A-SMS M-1.3M	N/A	Jan. 07, 2026		
5	Cable	RegalWay	RWLP50-2.6A-3.5 M2.92MRA-3M	N/A	Jan. 07, 2026		
6	Cable	RegalWay	RWLP50-4.0A-SMS M-9M	N/A	Jan. 07, 2026		
7	966 Chamber room	ETS	RFD-100 (SVSWR)	Q2179	Jan. 07, 2026		
8	Double Ridged Horn Antenna	EMC INSTRUMENT	DRH18-E	210509A18ES	Aug. 28, 2025		
9	Preamplifier	EMC INSTRUMENT	EMC118A45SE	981001	May 31, 2025		
10	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A		

	Radiated Emissions - Above 18 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	MXA Signal Analyzer	KEYSIGHT	N9020B	MY63380204	Oct. 29, 2025	
2	Receiver	Agilent	N9038A	MY52130039	Jan. 10, 2026	
3	Cable	RegalWay	RWLP50-2.6A-2.92 M2.92M-2M	N/A	Jan. 07, 2026	
4	Cable	RegalWay	RWLP50-2.6A-3.5 M2.92MMRA-6M	N/A	Jan. 07, 2026	
5	Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	1227	Oct. 20, 2025	
6	Preamplifier	EMC INSTRUMENT	EMC184045SE	980905	Oct. 29, 2025	
7	966 Chamber room	ETS	9*6*6	N/A	Jan. 03, 2026	
8	Multi-Device Controller	ETS-Lindgren	N/A	N/A	N/A	
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
10	Filter	STI	STI15-9969	N/A	Oct. 29, 2025	

	Bandwidth & Power Spectral Density						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Spectrum Analyzer	R&S	FSP38	100852	May 31, 2025		
2	2 Measurement BTL BTL Conducted N/A N/A N/A						
3	Isolation attenuator	Z-Link	ASMA-16-18-2W	N/A	N/A		

Maximum Output Power					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Peak Power Analyzer	Keysight	8990B	MY51000506	May 31, 2025
2	Wideband power sensor	Keysight	N1923A	MY58310004	May 31, 2025
3	Isolation attenuator	Z-Link	ASMA-10-18-2W	N/A	N/A

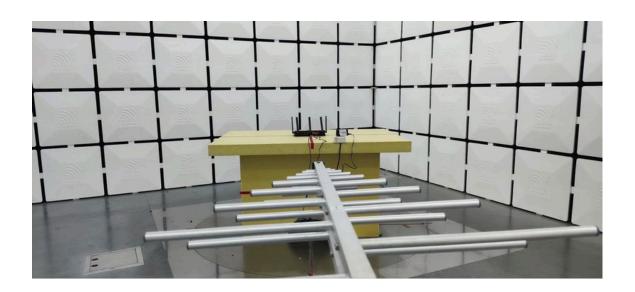
Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

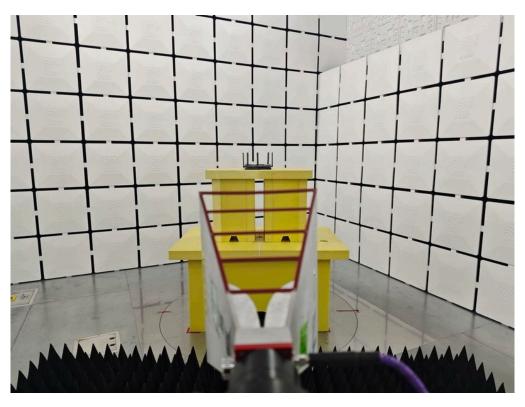
10. EUT TEST PHOTOS

Radiated Emissions Test Photos

9 kHz to 30 MHz



Radiated Emissions Test Photos 30 MHz to 1 GHz

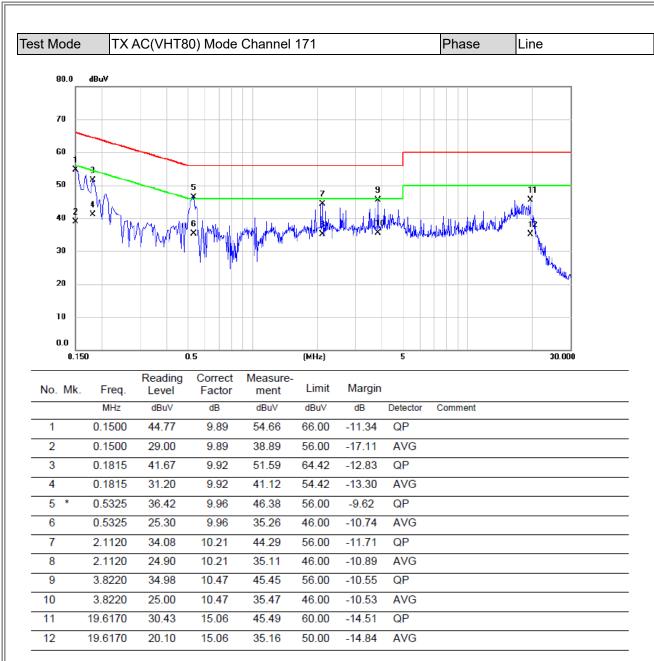


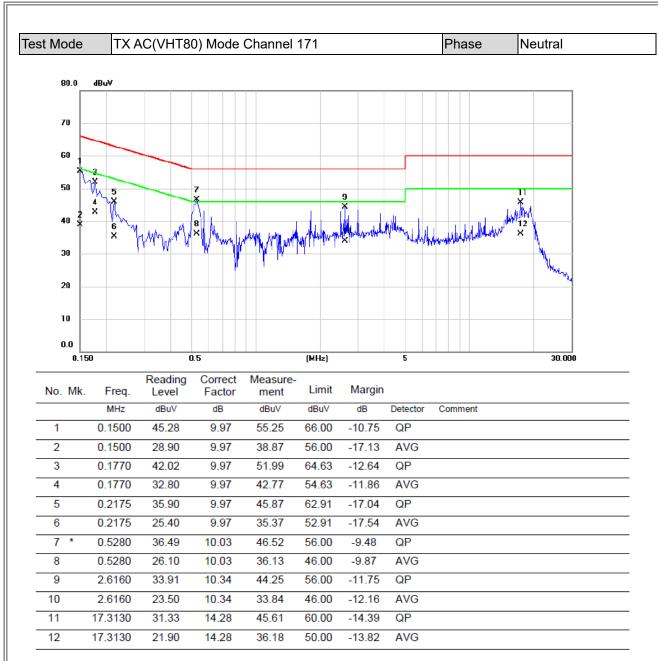
Radiated Emissions Test Photos

Band edge & Harmonic(1 GHz to 18 GHz)

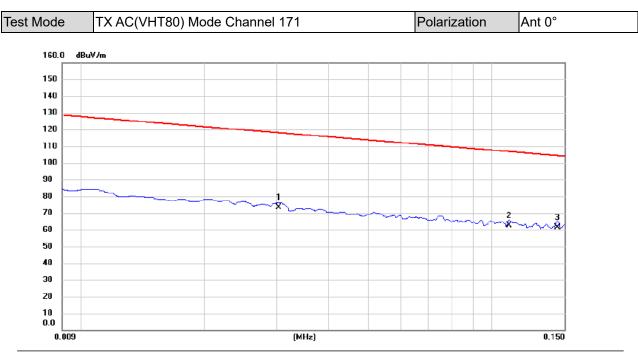
Radiated Emissions Test Photos Harmonic(18 GHz to 40 GHz)

Conducted Test Photos



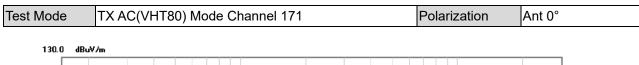

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS
Page 40 of 143

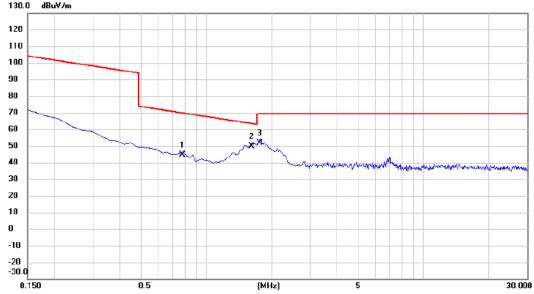
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

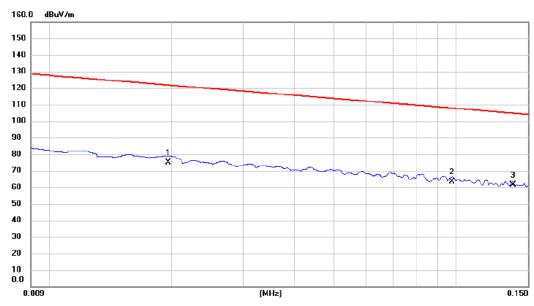
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ





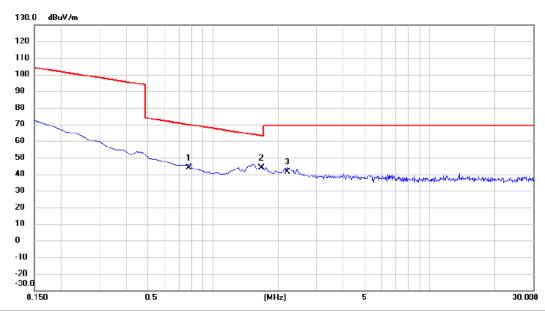
No. Mk.	Freq.		Correct Factor	Measure ment	- Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0303	52.24	21.14	73.38	117.98	-44.60	AVG	
2	0.1101	41.38	21.32	62.70	106.77	-44.07	AVG	
3 *	0.1444	40.13	21.27	61.40	104.42	-43.02	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



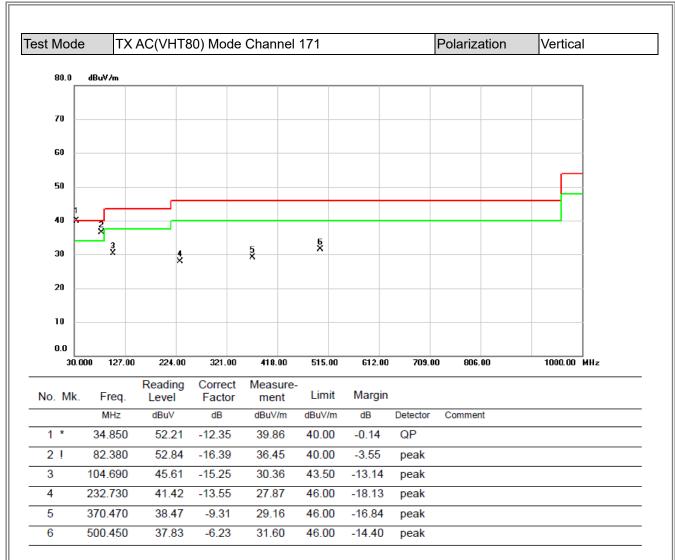
No. Mk.	Freq.		Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.7768	23.64	21.16	44.80	69.80	-25.00	QP	
2 *	1.6126	28.76	21.15	49.91	63.45	-13.54	QP	
3	1.7620	30.52	21.13	51.65	69.54	-17.89	QP	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

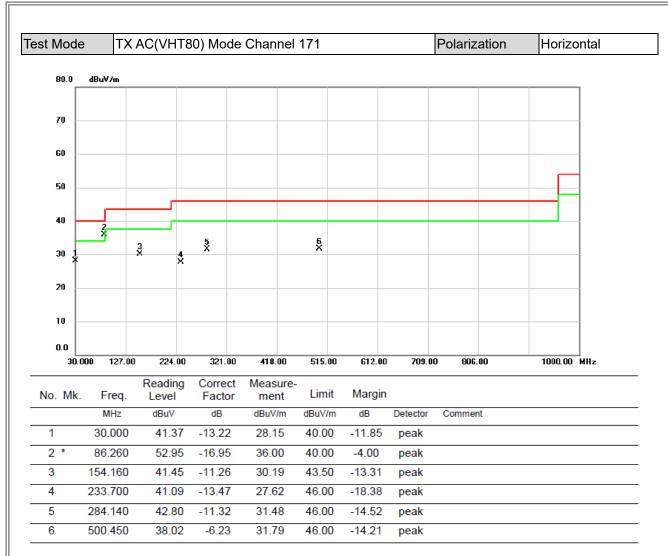


No. Mk.	Freq.	Reading Level		Measure- ment		Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0196	54.35	20.83	75.18	121.76	-46.58	AVG	
2	0.0977	42.22	21.34	63.56	107.81	-44.25	QP	
3 *	0.1377	40.09	21.28	61.37	104.83	-43.46	AVG	

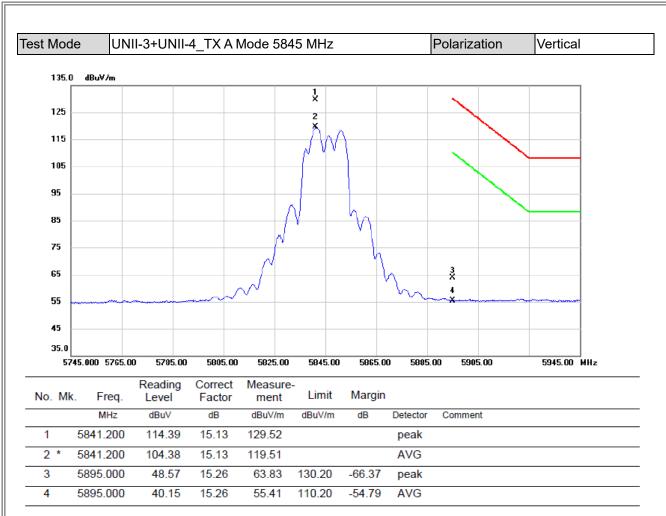
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.7768	22.81	21.16	43.97	69.80	-25.83	QP	
2 *	1.6724	22.69	21.14	43.83	63.14	-19.31	QP	
3	2.2096	20.48	21.11	41.59	69.54	-27.95	QP	

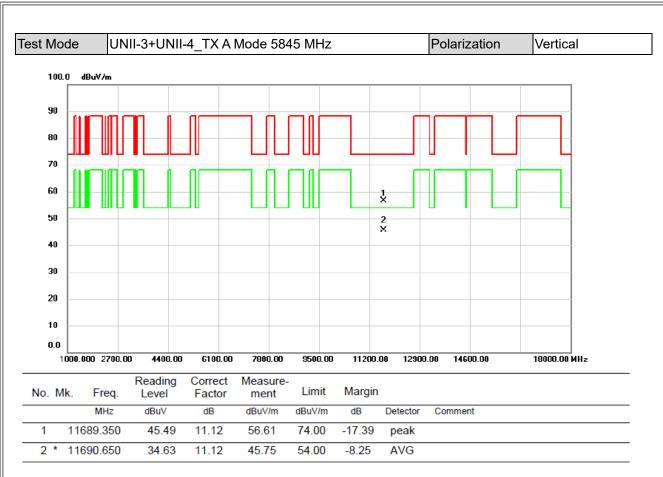
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

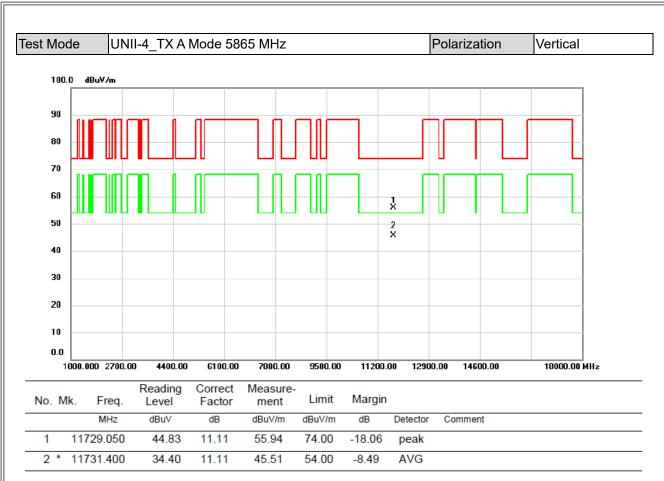

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ
Page 48 of 142

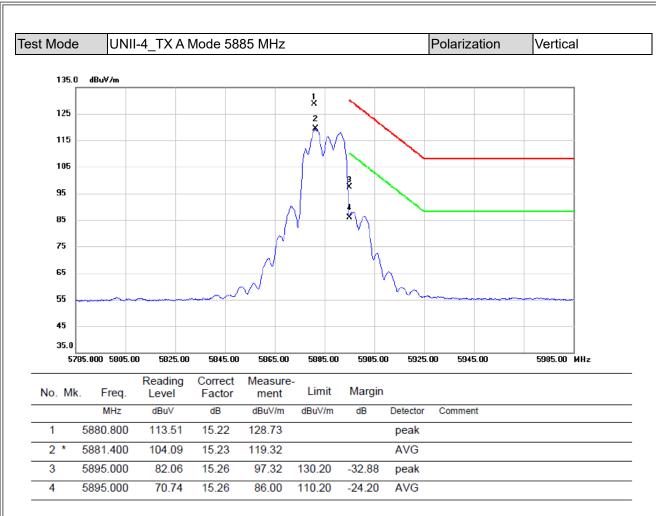
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

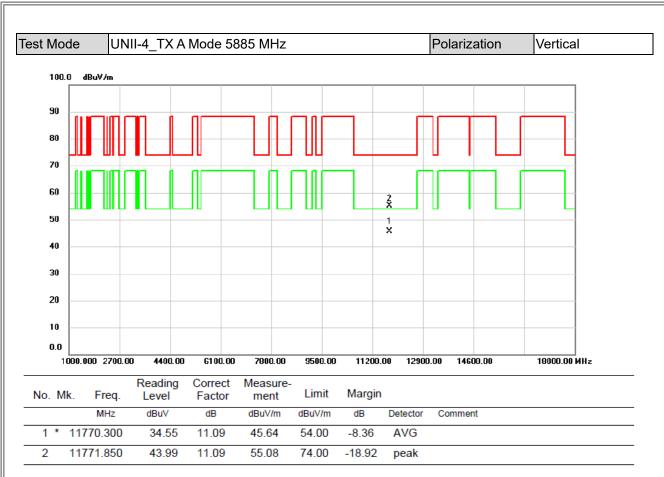


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

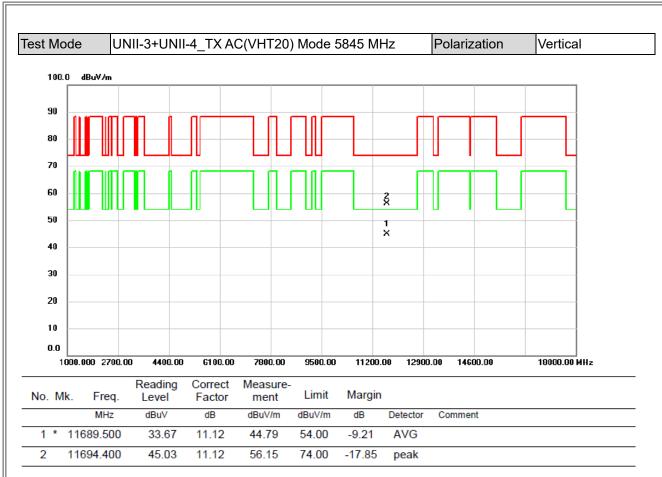

APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ

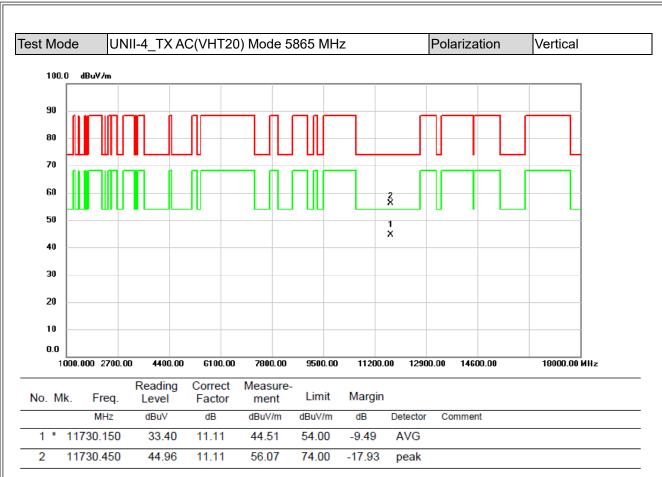

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

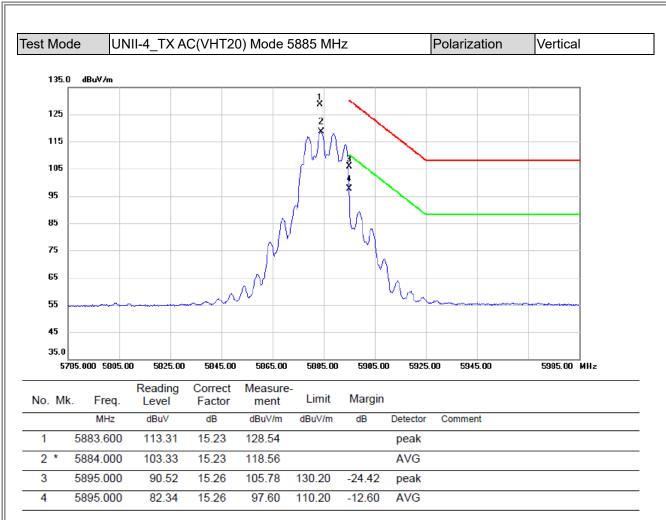

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

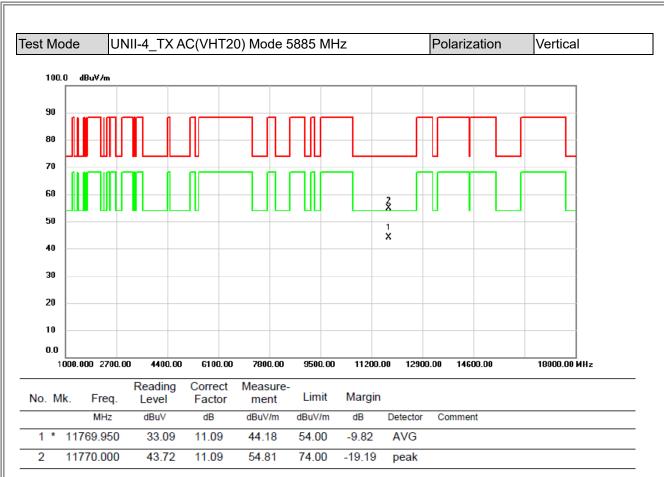

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

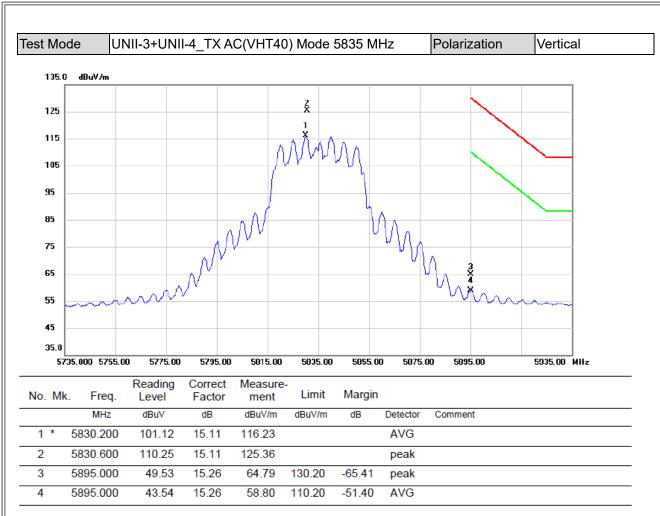
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

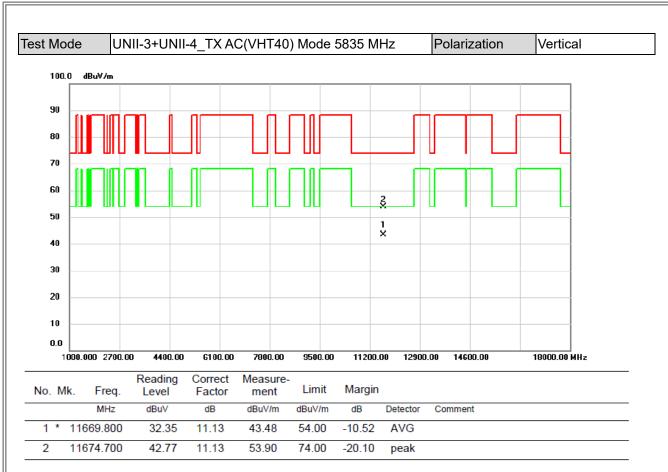

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

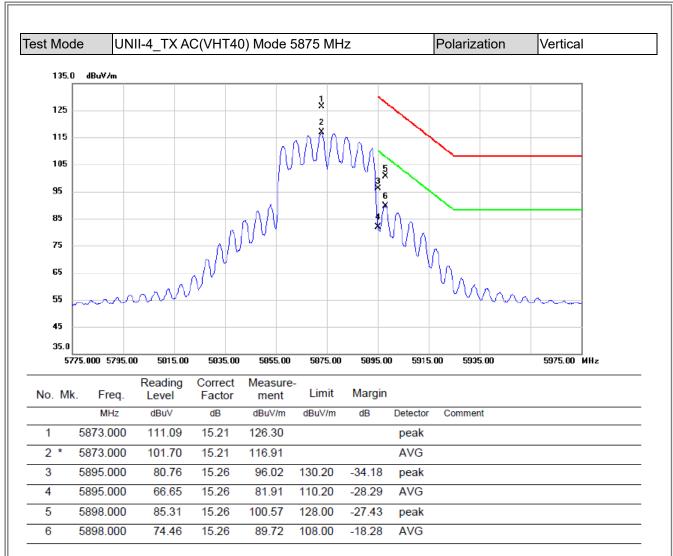

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

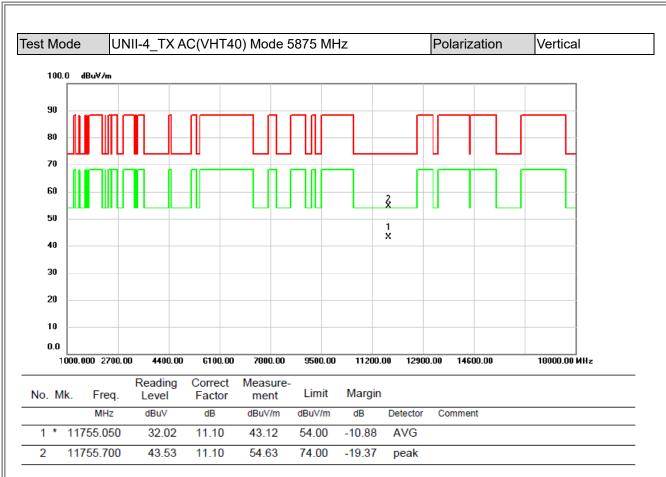

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

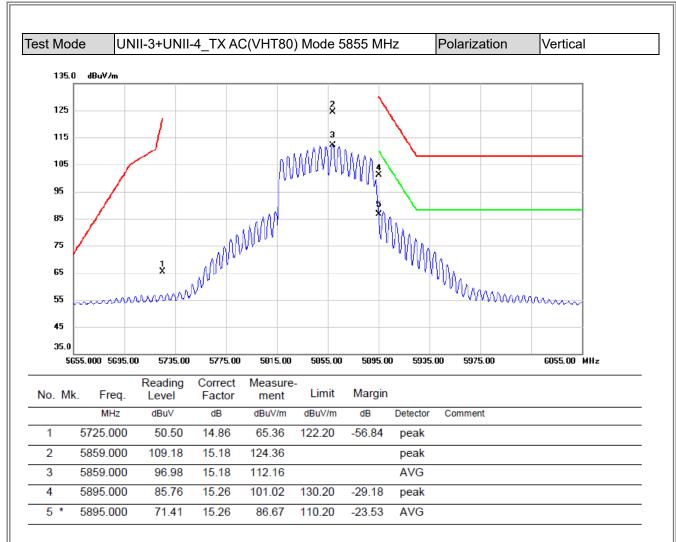

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

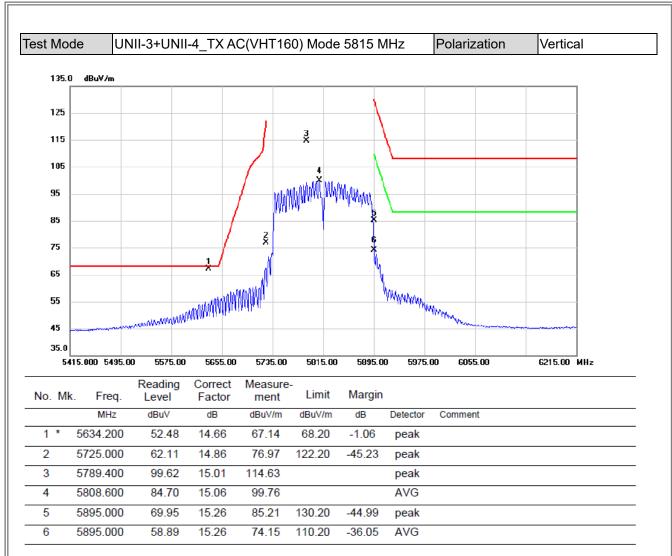

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

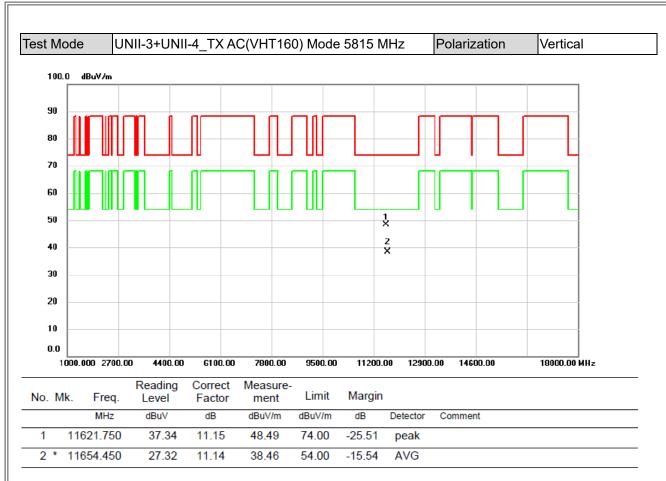

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

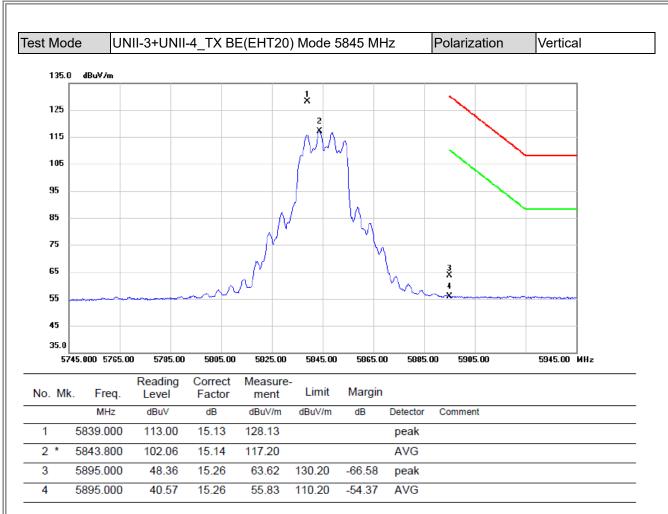

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

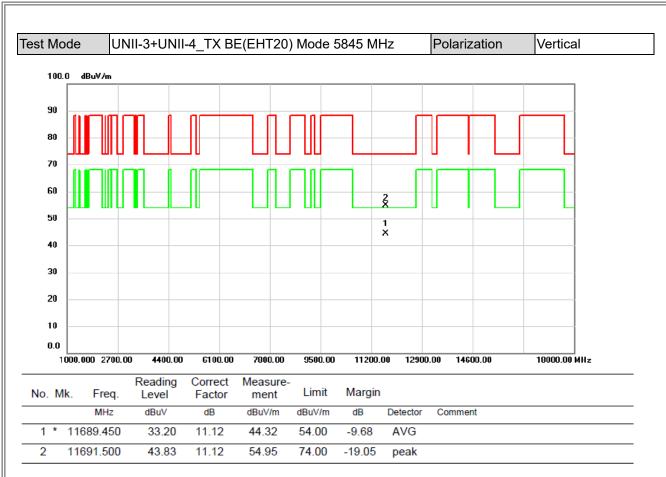

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

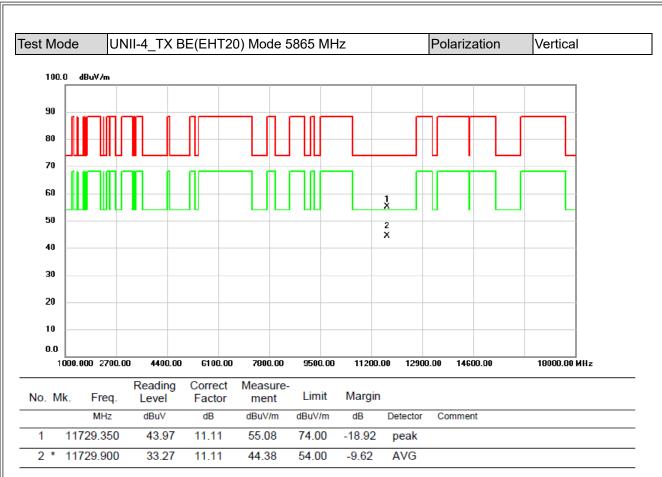
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

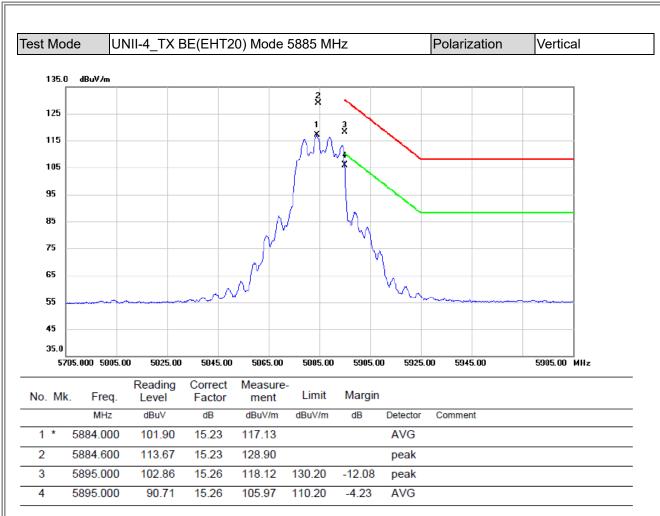

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

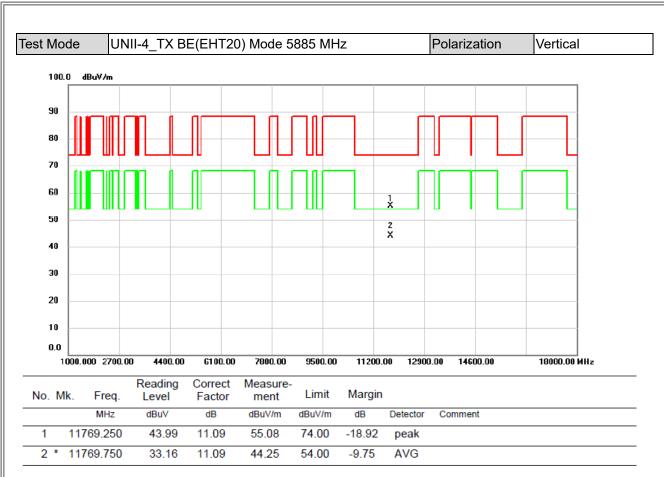

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

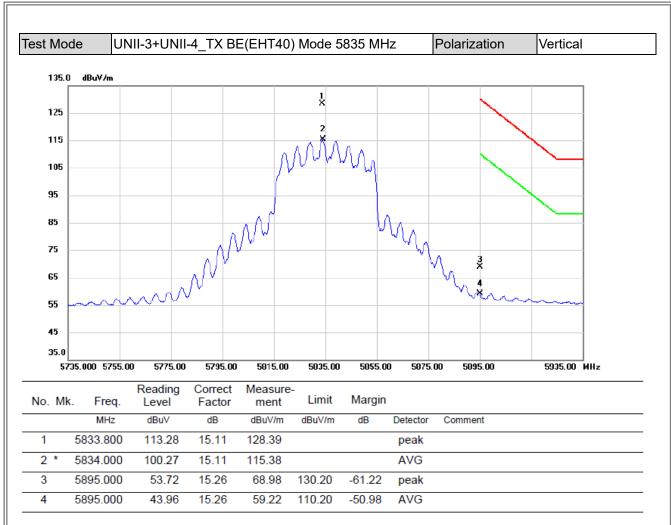

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

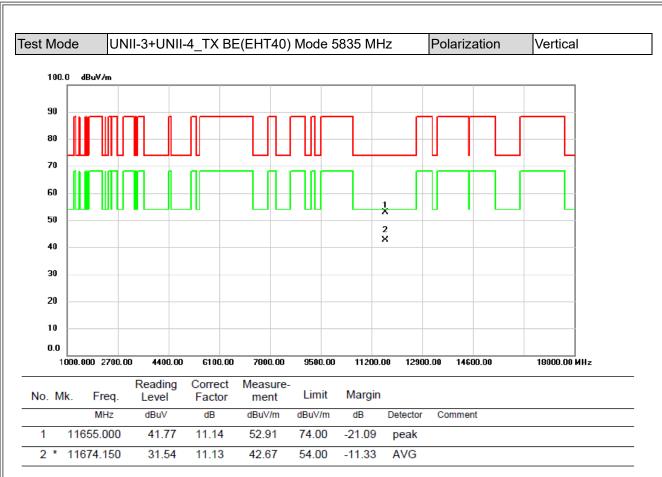

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

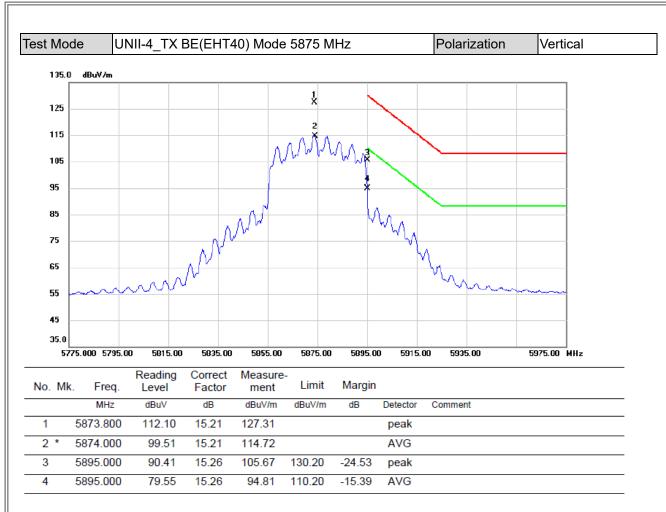

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

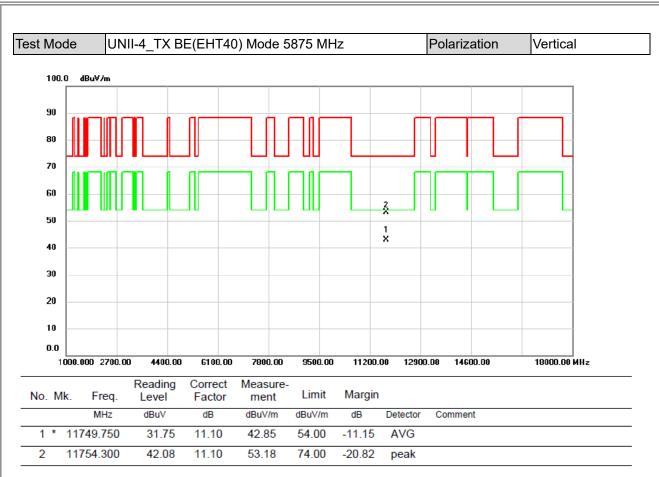

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

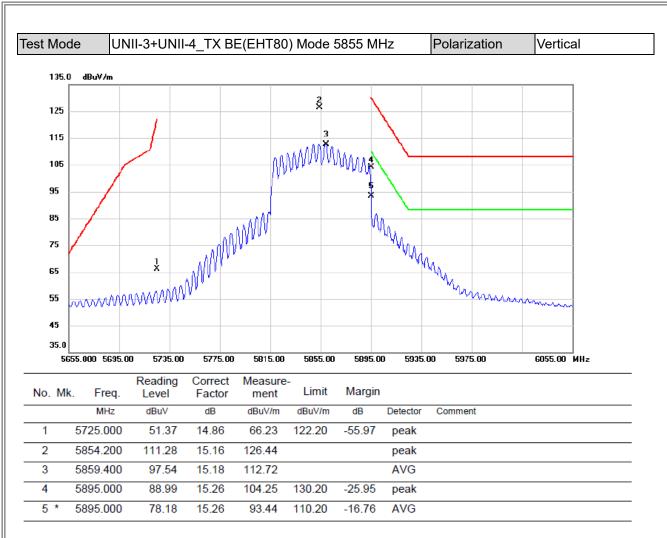

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

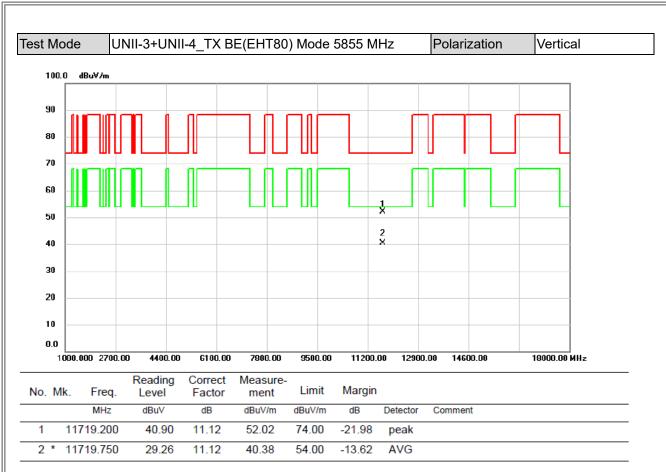

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

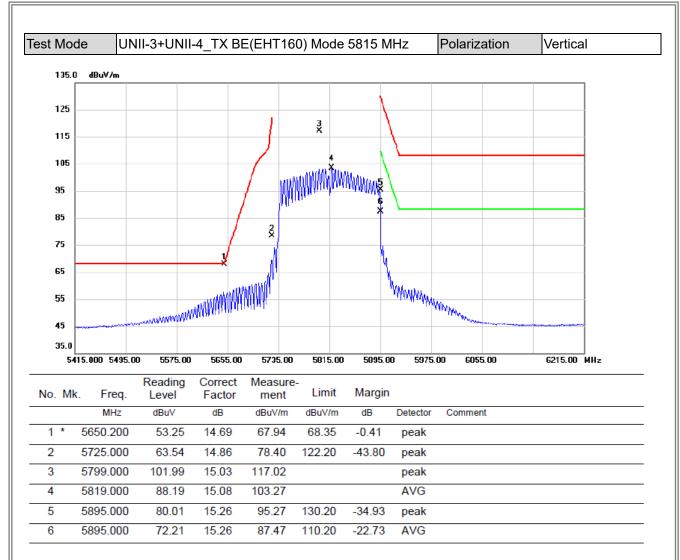

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

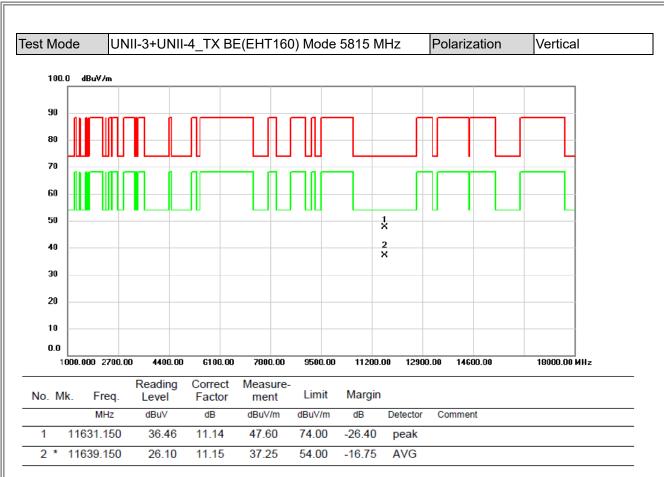

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

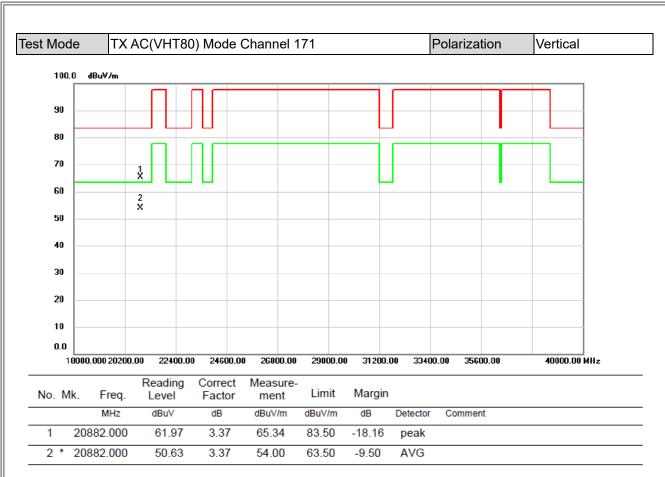

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

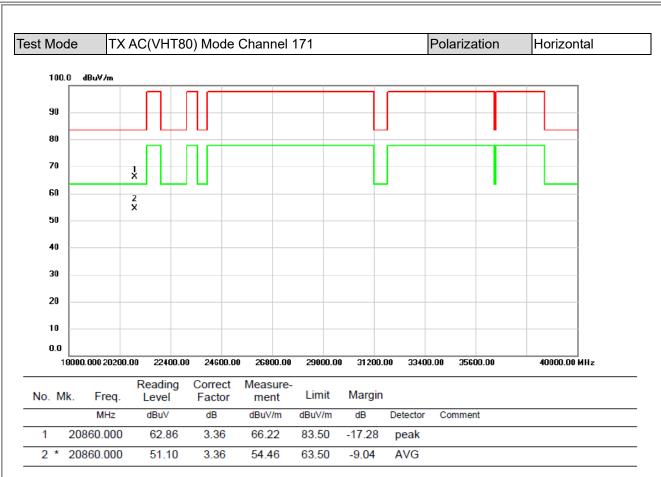

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

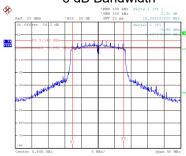

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

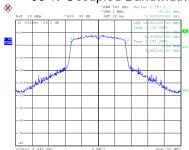

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


APPENDIX E - BANDWIDTH
Page 95 of 1/12

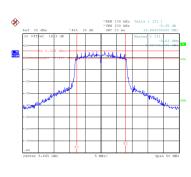
Test Mode	UNII-3+UNII-4	TX A Mode

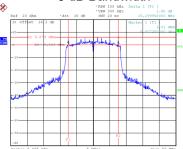

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
169	5845	15.499	16.500	0.5	Complies

CH169 6 dB Bandwidth

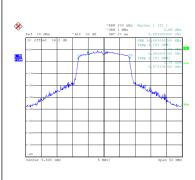
Date: 5.MAR.2025 11:51:08

99 % Occupied Bandwidth

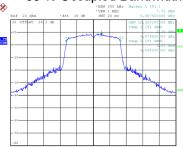

Date: 5.MAR.2025 11:49:42


T+ N/	LINIU 4 TV A Mada
Test Mode	UNII-4 TX A Mode

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
173	5865	15.688	16.400	0.5	Complies
177	5885	15.300	16.400	0.5	Complies

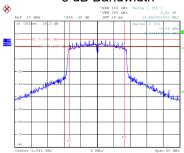


CH177
6 dB Bandwidth

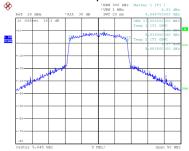


Date: 5.MAR.2025 11:51:46

Date: 5.MAR.2025 11:51:54


Date: 5.MAR.2025 11:53:27

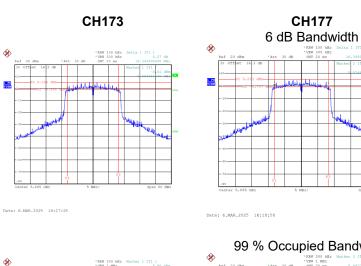
Test Mode UNII-3+UNII-4 TX AC(VHT20) Mod	Test Mode	UNII-3+UNII-4_TX AC(VHT20) Mode
---	-----------	---------------------------------

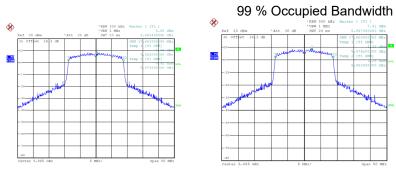

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
169	5845	16.650	17.500	0.5	Complies

CH169 6 dB Bandwidth

Date: 6.MAR.2025 16:15:12

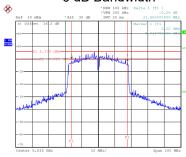
99 % Occupied Bandwidth




Date: 6.MAR.2025 16:13:28

Test Mode	UNII-4_	TX AC	(VHT20) Mode
lest Mode	UNII-4	IX AC	(VH120) Mod

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
173	5865	16.349	17.600	0.5	Complies
177	5885	16.390	17.600	0.5	Complies



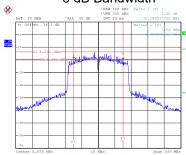
	Test Mode	UNII-3+UNII-4_TX AC	(VHT40) Mode
ı	100t Wodo	01111 0 01111 1_171710	v v i i i i o j ivio a o

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
167	5835	33.900	35.600	0.5	Complies

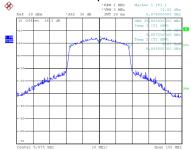
CH167 6 dB Bandwidth

Date: 6.MAR.2025 16:32:33

99 % Occupied Bandwidth


Date: 6.MAR.2025 16:30:43

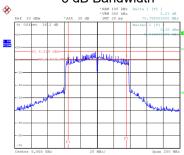
Test Mode UNII-4_TX AC(VHT40) Mo


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
175	5875	30.200	35.800	0.5	Complies

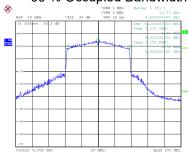
CH175 6 dB Bandwidth

Date: 6.MAR.2025 16:34:57

99 % Occupied Bandwidth


Date: 6.MAR.2025 16:32:52

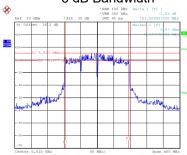
Test Mode UNII-3+UNII-4_TX AC(VHT80) Mod	Test Mode
--	-----------


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
171	5855	70.798	75.200	0.5	Complies

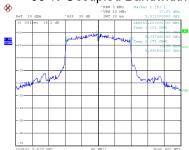
CH171 6 dB Bandwidth

Date: 6.MAR.2025 16:51:39

99 % Occupied Bandwidth


Date: 6.MAR.2025 16:53:39

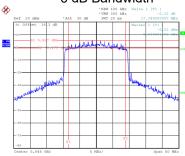
Т	est Mode	UNII-3+UNII-4	TX AC	(VHT160) Mode


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
163	5815	153.590	155.200	0.5	Complies

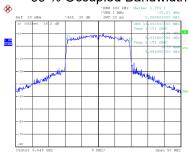
CH163 6 dB Bandwidth

Date: 6.MAR.2025 17:03:23

99 % Occupied Bandwidth


Date: 6.MAR.2025 17:02:34

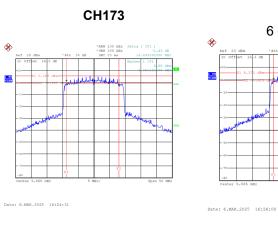
Test Mode	UNII-3+UNII-4	TX BE	(EHT20) Mode
Test Mode	UNII-3+UNII-4	IX BE	(EH120) Mod

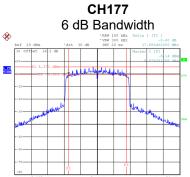

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
169	5845	17.349	18.800	0.5	Complies

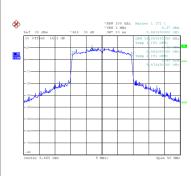
CH169 6 dB Bandwidth

Date: 6.MAR.2025 16:22:50

99 % Occupied Bandwidth



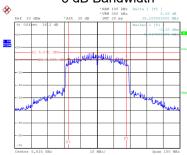

Date: 6.MAR.2025 16:19:48



Test Mode	UNII-4	TX BE	(EHT20) Mode
TEST MIDGE	OINII-4		(LIII 20	, iviout

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
173	5865	16.899	18.800	0.5	Complies
177	5885	17.588	18.800	0.5	Complies

Date: 6.MAR.2025 16:23:10


Date: 6.MAR.2025 16:24:56

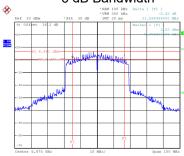
Test Mode	UNII-3+UNII-4	TX BE	(EHT40) Mode
rest Mode	UNII-3+UNII-4	IX BE	(EH140) ivioc

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
167	5835	35.100	37.600	0.5	Complies

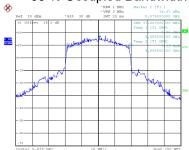
CH167 6 dB Bandwidth

Date: 6.MAR.2025 16:45:25

99 % Occupied Bandwidth


Date: 6.MAR.2025 16:44:25

Test Mode UNII-4_TX BE(EHT40) Mod


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result
175	5875	31.599	37.600	0.5	Complies

CH175 6 dB Bandwidth

Date: 6.MAR.2025 16:47:38

99 % Occupied Bandwidth

Date: 6.MAR.2025 16:46:27