

FCC ID: 2BK7P-G1100

FCC Test Report

Applicant : NuboMed LLC

Address 16192 Coastal Highway, Lewes, Delaware 19958,

USA

Product Name : Smart Gateway

Report Date : Dec. 10, 2024

Shenzhen Anbotek 💸

Laboratory Limited

Hotline

400-003-0500 www.anbotek.com

Contents

1. General Information	6
1.1. Client Information 1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test 1.4. Operation channel list 1.5. Description of Test Modes 1.6. Measurement Uncertainty 1.7. Test Summary 1.8. Description of Test Facility 1.9. Disclaimer 1.10. Test Equipment List	
2. Conducted Emission at AC power line	
2.1. EUT Operation 2.2. Test Setup 2.3. Test Data	13
3. Duty Cycle	16
3.1. EUT Operation 3.2. Test Setup 3.3. Test Data	16
4. Emission bandwidth and occupied bandwidth	17
4.1. EUT Operation	18
5. Maximum conducted output power	19
5.1. EUT Operation	19
6. Power spectral density	20
6.1. EUT Operation 6.2. Test Setup 6.3. Test Data	20
7. Band edge emissions (Conducted)	21
7.1. EUT Operation	23
8. Band edge emissions (Radiated)	24
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data	26
9. Undesirable emission limits (below 1GHz)	
0.1 FLIT Operation	3/

9.2. Test Setup	35
9.3. Test Data	36
10. Undesirable emission limits (above 1GHz)	38
10.1. EUT Operation	40
10.2. Test Setup	40
10.3. Test Data	
APPENDIX I TEST SETUP PHOTOGRAPH	42
APPENDIX II EXTERNAL PHOTOGRAPH	
APPENDIX III INTERNAL PHOTOGRAPH	42

FCC ID: 2BK7P-G1100

TEST REPORT

Applicant : NuboMed LLC

Manufacturer : Shenzhen NuboMed Equipment Co., Ltd.

Product Name : Smart Gateway

Model No. G1100, G1100xxx(The 1st to 3th x's represent the letters A~Z or a~z or a

blank space)

Trade Mark : NuboMed

Rating(s) : DC Input: 12V= 1A POE Input: 48V= 0.35A

47 CFR Part 15E

Test Standard(s) : ANSI C63.10-2020

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Aug. 14, 2024	
Date of Test:	Aug. 14, 2024 to Sept. 03, 2024	
	Tu Tu Hong	
Prepared By:	J	
	(TuTu Hong)	
	Lingkongjin	
Approved & Authorized Signer:	1 0	
	(Kingkong Jin)	

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	Dec. 10, 2024

1. General Information

1.1. Client Information

Applicant	:	NuboMed LLC	
Address	:	16192 Coastal Highway, Lewes, Delaware 19958, USA	
Manufacturer	:	Shenzhen NuboMed Equipment Co., Ltd.	
Address	:	1212, 1213, 12th Floor, Building #4, Bangkai Science and Technology Industrial Park, South of Guanguang Road, Guangming High-tech Industrial Park, Tangjia Community, Fenghuang Street, Guangming District, Shenzhen, China	
Factory	:	Shenzhen NuboMed Equipment Co., Ltd.	
Address	1212, 1213, 12th Floor, Building #4, Bangkai Science and Technology Industrial Park, South of Guanguang Road, Guangming High-tech Industrial Park, Tangjia Community, Fenghuang Street, Guangming E Shenzhen, China		

1.2. Description of Device (EUT)

Product Name : Smart Gateway		Smart Gateway	
Model No.		G1100, G1100xxx(The 1st to 3th x's represent the letters A~Z or a~z or a blank space) (Note: All samples are the same except the model number, so we prepare "G1100" for test only.)	
Trade Mark	:	NuboMed	
Test Power Supply	:	DC 12V from adapter input AC 120V/60Hz	
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)	
Adapter	:	N/A	
RF Specification	•		
Operation Frequency	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 5180MHz to 5240MHz;; 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 5190MHz to 5230MHz; 802.11ac(VHT80)/ax(HEW80): U-NII Band 1: 5210MHz;	
Number of Channel		802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 4; 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 2; 802.11ac(VHT80)/ax(HEW80): U-NII Band 1: 1;	

FCC ID: 2BK7P-G1100

Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
Device Type	:	Client Devices
Antenna Type : Shr		Shrapnel Antenna
Antenna Gain(Peak)	:	ANT1: 2.95dBi ANT2: 4.19dBi

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Only 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80), 802.11ax(HEW20), 802.11ax(HEW40), 802.11ax(HEW80) support MIMO.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.	l
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J	Ì

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230	/	/
44	5220	/	/	/	/
48	5240	1	1	1	1

FCC ID: 2BK7P-G1100

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM3	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM4	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Note: 80211ax mode only support full resource unit size.

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

FCC ID: 2BK7P-G1100

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2,3,4	Р
Duty Cycle	Mode1,2,3,4	Р
Emission bandwidth and occupied bandwidth	Mode1,2,3,4	Р
Maximum conducted output power	Mode1,2,3,4	Р
Power spectral density	Mode1,2,3,4	Р
Band edge emissions (Conducted)	Mode1,2,3,4	Р
Band edge emissions (Radiated)	Mode1,2,3,4	Р
Undesirable emission limits (below 1GHz)	Mode1,2,3,4	Р
Undesirable emission limits (above 1GHz)	Mode1,2,3,4	Р
Note: P: Pass	1	'

P: Pass

N: N/A, not applicable

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

FCC ID: 2BK7P-G1100

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

FCC ID: 2BK7P-G1100

1.10. Test Equipment List

Cond	Conducted Emission at AC power line					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	1	/
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Power spectral density

Band edge emissions (Conducted)

Duty Cycle

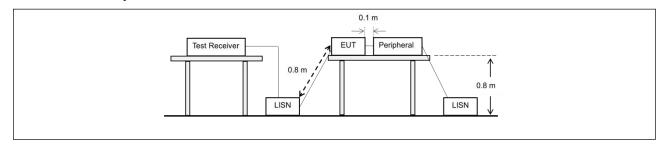
Emission bandwidth and occupied bandwidth

Maximum conducted output power

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
5	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Band edge emissions (Radiated) Undesirable emission limits (above 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	1	1
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Unde	Undesirable emission limits (below 1GHz)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/

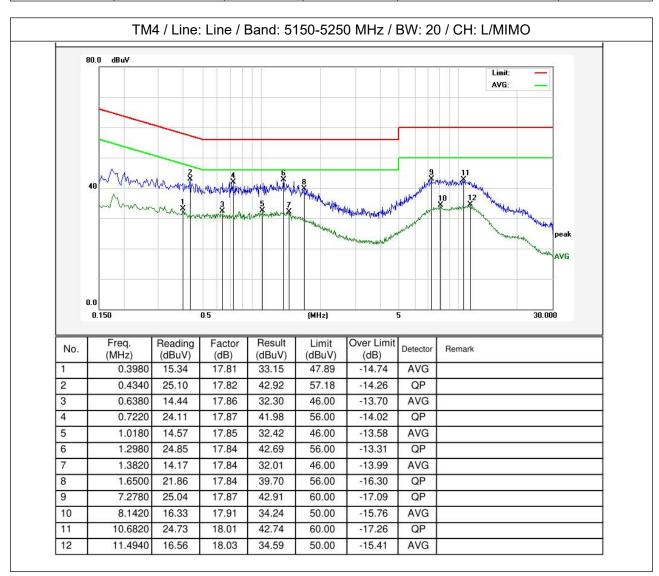

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)		
	Frequency of emission (MHz)	Conducted limit (dBµV)	
Test Limit:		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of the frequency.		
Test Method:	ANSI C63.10-2020 section 6.2		

2.1. EUT Operation

Operating Envi	ronment:
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

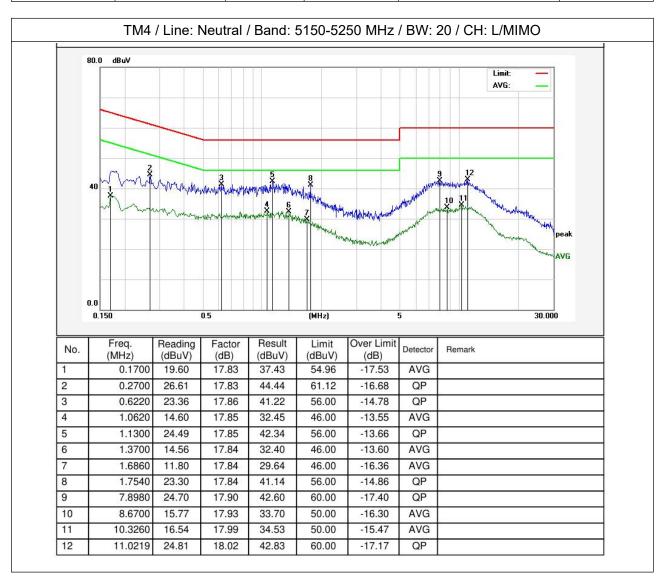
2.2. Test Setup



FCC ID: 2BK7P-G1100

2.3. Test Data

Temperature: 23.8 °C Humidity: 54 % Atmospheric Pressure: 101 kPa



FCC ID: 2BK7P-G1100

Temperature:	23.8 °C	Humidity:	54 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Note:Only record the worst data in the report.

FCC ID: 2BK7P-G1100

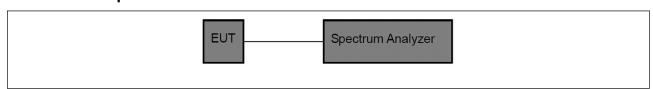
3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

3.3. Test Data

Temperature:	22.9 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

4. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal
Procedure:	from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are
	recovered and directly summed in linear power terms. The recovered amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

FCC ID: 2BK7P-G1100

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

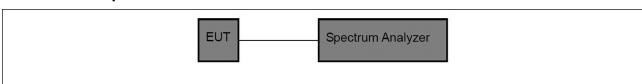
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

4.1. EUT Operation

Operating Environment:


1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

Temperat	ure: 22.9	°C Humidity:	49 %	Atmospheric Pressure:	101 kPa	
----------	-----------	--------------	------	-----------------------	---------	--

FCC ID: 2BK7P-G1100

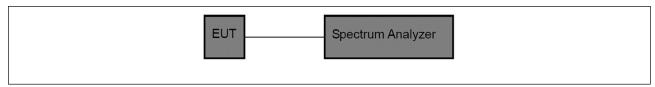
5. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2020, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

5.1. EUT Operation

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has


been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in

continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in

continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

Test mode:

5.3. Test Data

Temperature:	22.9 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

FCC ID: 2BK7P-G1100

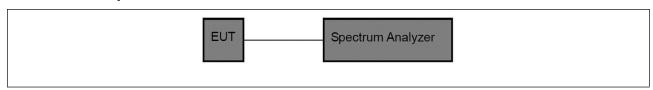
6. Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

6.1. EUT Operation

O 1:	
Operating	Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

6.2. Test Setup

6.3. Test Data

Temperature: 22.9 °C Humidity: 49 % Atmospheric Pressure	kPa
--	-----

FCC ID: 2BK7P-G1100

7. Band edge emissions (Conducted)

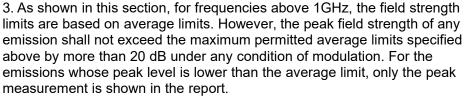
Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)					
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.					
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
Гest Limit:	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
root Ziiriiti	12.57675-12.57725	322-335.4	3600-4400	(2)		
	13.36-13.41					
	² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured					
	emissions. The provision Except as provided els intentional radiator sha following table: Frequency (MHz)	sewhere in this subpa	art, the emission d strength levels	s from an		
	0.009-0.490	2400/F(kHz)		300		
	0.400.1.705	24000/E/kH=)		20		

Shenzhen Anbotek Compliance Laboratory Limited

24000/F(kHz)

30

0.490-1.705


	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	** Except as provided in pa	ragraph (g), fundamental emiss	ions from		
Test Method:	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7				
		,			
Procedure:	meters above the ground a rotated 360 degrees to dete b. The EUT was set 3 meters which was mounted on the c. The antenna height is varying ground to determine the material polarizations of d. For each suspected emission and then the antenna was street frequency of below 30% and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum Ff. If the emission level of the limit specified, then testing would be reported. Otherwith would be re-tested one by and then reported in a data g. Test the EUT in the lower channel. h. The radiation measurem Transmitting mode, and for case. i. Repeat above procedures Remark: 1. Level= Read Level+ Cabo 2. Scan from 18GHz to 400. The points marked on above when testing, so only above	e EUT in peak mode was 10dB is could be stopped and the peak ise the emissions that did not had one using peak or average mether sheet. It channel, the middle channel, ents are performed in X, Y, Z axund the X axis positioning which is until all frequencies measured only be a lot of the country of the cou	ber. The table was st radiation. Seceiving antenna, a tower. Ers above the sth. Both horizontal e measurement. Sits worst case 4 meters (for the neights 1 meter) egrees to find the strain and Specified sower than the values of the EUT ve 10dB margin and as specified the Highest sits positioning for it is the worst was complete. The second be found to a specified strain and specified spe		

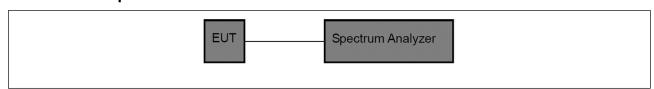
FCC ID: 2BK7P-G1100

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

7.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

7.2. Test Setup

7.3. Test Data

Temperature:	22.9 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

FCC ID: 2BK7P-G1100

8. Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)					
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.					
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	1 0.495-0.505	16.69475- 16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
Test Limit:	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
TOOL EITHE.	12.57675-12.57725	322-335.4	3600-4400	(2)		
	13.36-13.41					
	111	O 41-1	-1 -1-11 0 400	0.540.841.1		
	¹ Until February 1, 199 ² Above 38.6 The field strength of endexceed the limits sometimes and the strength of endexceed the limits sometimes are strength of endexceed the limits sometimes are strength of the strength	missions appearing values in § 15.209. As with the limits in § 1 strumentation employments, compliance with strated based on the	within these frequencies equencies equencies de	uency bands sha ual to or less tha emonstrated uasi-peak mits in § of the measured		
	² Above 38.6 The field strength of end exceed the limits so 1000 MHz, compliance using measurement in detector. Above 1000	missions appearing value in § 15.209. As e with the limits in § 1 strumentation employments at the strated based on the ions in § 15.35apply sewhere in this subparts.	within these frequencies equencies equencies equencies equencies equencies equencies equencies expension lies average value of these measures ert, the emission ld strength levels	uency bands shaual to or less tha emonstrated lasi-peak mits in § of the measured ements.		

	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
Test Method:	Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7				
Procedure:	meters above the ground a rotated 360 degrees to dete b. The EUT was set 3 meters which was mounted on the c. The antenna height is varying ground to determine the material polarizations of d. For each suspected emission and then the antenna was set test frequency of below 301 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum For the testing would be reported. Otherwith would be re-tested one by and then reported in a data g. Test the EUT in the lower channel. h. The radiation measurem Transmitting mode, and for case. i. Repeat above procedures Remark: 1. Level= Read Level+ Cata 2. Scan from 18GHz to 400 The points marked on above when testing, so only above	e EUT in peak mode was 10dB could be stopped and the peak ise the emissions that did not had one using peak or average methors sheet. It channel, the middle channel, ents are performed in X, Y, Z axound the X axis positioning which is until all frequencies measured only be a loss and the X axis positioning which is until all frequencies measured only be a loss and the highest emission is points had been displayed. The radiator which are attenuated	ber. The table was st radiation. eceiving antenna, a tower. ers above the th. Both horizontal e measurement. its worst case 4 meters (for the neights 1 meter) egrees to find the on and Specified dower than the values of the EUT ve 10dB margin and as specified the Highest is positioning for it is the worst was complete. The process of the EUT was very low. The secould be found the amplitude of		

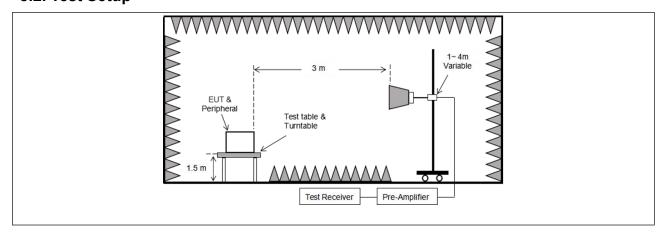
FCC ID: 2BK7P-G1100

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

8.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

8.2. Test Setup

8.3. Test Data

TM1 / Band: 5150-5250 MHz / BW: 20 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.06	15.99	53.05	68.20	-15.15	Н	Peak
5150.00	39.14	15.99	55.13	68.20	-13.07	V	Peak
5150.00	26.97	15.99	42.96	54.00	-11.04	Н	AVG
5150.00	29.05	15.99	45.04	54.00	-8.96	V	AVG
		TM1 / B	and: 5150-52	250 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.48	16.43	53.91	68.20	-14.29	Н	Peak
5250.00	40.48	16.43	56.91	68.20	-11.29	V	Peak
5250.00	28.83	16.43	45.26	54.00	-8.74	Н	AVG
5250.00	29.70	16.43	46.13	54.00	-7.87	V	AVG

Remark: 1. Result=Reading + Factor

TM2 / Band: 5150-5250 MHz / BW: 20 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	35.97	15.99	51.96	68.20	-16.24	Н	Peak	
5150.00	37.39	15.99	53.38	68.20	-14.82	V	Peak	
5150.00	26.69	15.99	42.68	54.00	-11.32	Н	AVG	
5150.00	27.68	15.99	43.67	54.00	-10.33	V	AVG	
		TM2 / B	and: 5150-52	250 MHz / BV	V: 20 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	37.81	16.43	54.24	68.20	-13.96	Н	Peak	
5250.00	38.83	16.43	55.26	68.20	-12.94	V	Peak	
5250.00	27.85	16.43	44.28	54.00	-9.72	Н	AVG	
5250.00	29.32	16.43	45.75	54.00	-8.25	V	AVG	

Remark: 1. Result=Reading + Factor

	TM2 / Band: 5150-5250 MHz / BW: 40 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	36.55	15.99	52.54	68.20	-15.66	Н	Peak	
5150.00	38.40	15.99	54.39	68.20	-13.81	V	Peak	
5150.00	27.13	15.99	43.12	54.00	-10.88	Н	AVG	
5150.00	28.78	15.99	44.77	54.00	-9.23	V	AVG	
		TM2 / B	and: 5150-52	250 MHz / BV	V: 40 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	38.13	16.43	54.56	68.20	-13.64	Н	Peak	
5250.00	36.98	16.43	53.41	68.20	-14.79	V	Peak	
5250.00	28.38	16.43	44.81	54.00	-9.19	Н	AVG	
5250.00	29.60	16.43	46.03	54.00	-7.97	V	AVG	

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5150-5250 MHz / BW: 20 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5150.00	37.02	15.99	53.01	68.20	-15.19	Н	Peak		
5150.00	38.79	15.99	54.78	68.20	-13.42	V	Peak		
5150.00	26.60	15.99	42.59	54.00	-11.41	Н	AVG		
5150.00	28.83	15.99	44.82	54.00	-9.18	V	AVG		
		TM3 / B	and: 5150-52	250 MHz / BV	V: 20 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5250.00	37.92	16.43	54.35	68.20	-13.85	Н	Peak		
5250.00	38.17	16.43	54.60	68.20	-13.60	V	Peak		
5250.00	27.85	16.43	44.28	54.00	-9.72	Н	AVG		
5250.00	28.44	16.43	44.87	54.00	-9.13	V	AVG		

Remark: 1. Result=Reading + Factor

TM3 / Band: 5150-5250 MHz / BW: 40 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.96	15.99	51.95	68.20	-16.25	Н	Peak
5150.00	36.38	15.99	52.37	68.20	-15.83	V	Peak
5150.00	26.18	15.99	42.17	54.00	-11.83	Н	AVG
5150.00	26.88	15.99	42.87	54.00	-11.13	V	AVG
		TM3 / B	and: 5150-52	250 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.10	16.43	54.53	68.20	-13.67	Н	Peak
5250.00	37.22	16.43	53.65	68.20	-14.55	V	Peak
5250.00	27.53	16.43	43.96	54.00	-10.04	Н	AVG
5250.00	27.57	16.43	44.00	54.00	-10.00	V	AVG

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5150-5250 MHz / BW: 80 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5150.00	36.06	15.99	52.05	68.20	-16.15	Н	Peak		
5150.00	36.53	15.99	52.52	68.20	-15.68	V	Peak		
5150.00	26.67	15.99	42.66	54.00	-11.34	Н	AVG		
5150.00	26.91	15.99	42.90	54.00	-11.10	V	AVG		
		TM3 / B	and: 5150-52	250 MHz / BV	V: 80 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5250.00	38.39	16.43	54.82	68.20	-13.38	Н	Peak		
5250.00	37.51	16.43	53.94	68.20	-14.26	V	Peak		
5250.00	28.90	16.43	45.33	54.00	-8.67	Н	AVG		
5250.00	28.18	16.43	44.61	54.00	-9.39	V	AVG		

Remark: 1. Result=Reading + Factor

	TM4 / Band: 5150-5250 MHz / BW: 20 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5150.00	37.05	15.99	53.04	68.20	-15.16	Н	Peak		
5150.00	38.82	15.99	54.81	68.20	-13.39	V	Peak		
5150.00	26.62	15.99	42.61	54.00	-11.39	Н	AVG		
5150.00	28.85	15.99	44.84	54.00	-9.16	V	AVG		
		TM4 / B	and: 5150-52	250 MHz / BV	V: 20 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5250.00	37.94	16.43	54.37	68.20	-13.83	Н	Peak		
5250.00	38.18	16.43	54.61	68.20	-13.59	V	Peak		
5250.00	27.87	16.43	44.30	54.00	-9.70	Н	AVG		
5250.00	28.47	16.43	44.90	54.00	-9.10	V	AVG		

Remark: 1. Result=Reading + Factor

TM4 / Band: 5150-5250 MHz / BW: 40 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.99	15.99	51.98	68.20	-16.22	Н	Peak
5150.00	36.40	15.99	52.39	68.20	-15.81	V	Peak
5150.00	26.22	15.99	42.21	54.00	-11.79	Н	AVG
5150.00	26.91	15.99	42.90	54.00	-11.10	V	AVG
		TM4 / B	and: 5150-52	250 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.12	16.43	54.55	68.20	-13.65	Н	Peak
5250.00	37.24	16.43	53.67	68.20	-14.53	V	Peak
5250.00	27.55	16.43	43.98	54.00	-10.02	Н	AVG
5250.00	27.61	16.43	44.04	54.00	-9.96	V	AVG

Remark: 1. Result=Reading + Factor

TM4 / Band: 5150-5250 MHz / BW: 80 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	36.08	15.99	52.07	68.20	-16.13	Н	Peak	
5150.00	36.56	15.99	52.55	68.20	-15.65	V	Peak	
5150.00	26.71	15.99	42.70	54.00	-11.30	Н	AVG	
5150.00	26.93	15.99	42.92	54.00	-11.08	V	AVG	
		TM4 / B	and: 5150-52	250 MHz / BV	V: 80 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	38.42	16.43	54.85	68.20	-13.35	Н	Peak	
5250.00	37.54	16.43	53.97	68.20	-14.23	V	Peak	
5250.00	28.94	16.43	45.37	54.00	-8.63	Н	AVG	
5250.00	28.20	16.43	44.63	54.00	-9.37	V	AVG	

Remark: 1. Result=Reading + Factor

9. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)					
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the					
Test Limit:		Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500 paragraph (g), fundamental erating under this section shall				
	intentional radiators operating under this section shall not be located in frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MI However, operation within these frequency bands is permitted under of sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurem employing a CISPR quasi-peak detector except for the frequency band 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2020, sec	tion 12.7.4, 12.7.5				
Procedure:	meters above the groun was rotated 360 degree b. The EUT was set 3 or antenna, which was more. The antenna height is ground to determine the and vertical polarization d. For each suspected eand then the antenna watest frequency of below and the rotatable table was maximum reading. e. The test-receiver systems and width with Maximum	detector. ANSI C63.10-2020, section 12.7.4, 12.7.5 Below 1GHz: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the				

FCC ID: 2BK7P-G1100

would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB

FCC ID: 2BK7P-G1100

below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

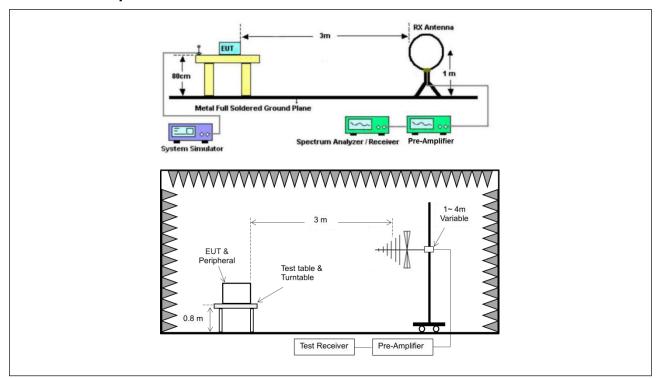
9.1. EUT Operation

Operating Environment:

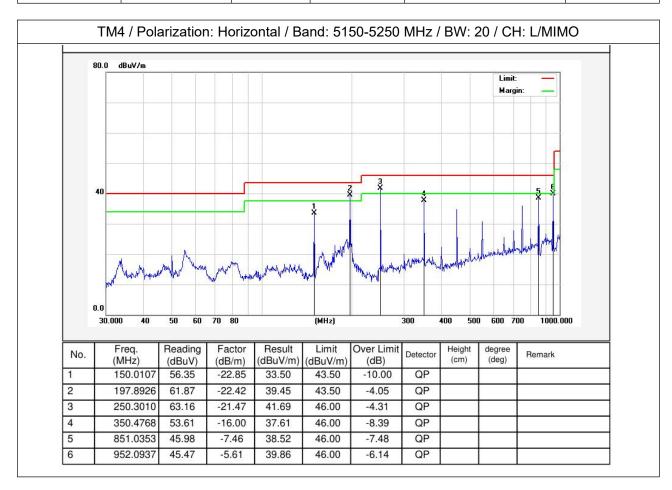
1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:


- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

9.2. Test Setup

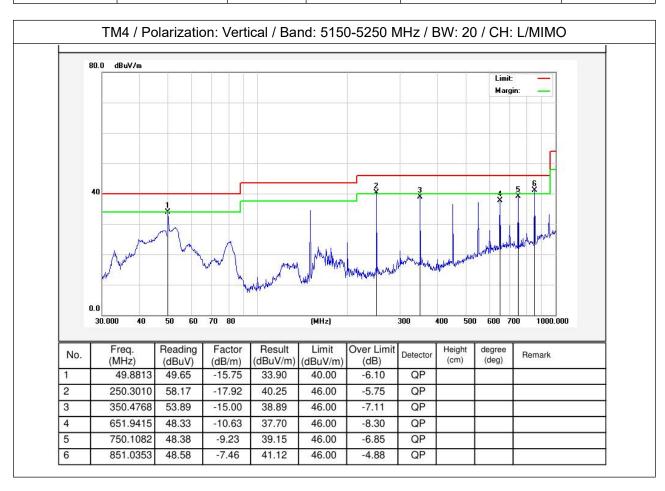


FCC ID: 2BK7P-G1100

9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature: 20.3 °C Humidity: 46 % Atmospheric Pressure: 101 kPa



Temperature: 20.3 °C Humidity: 46 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

10. Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b 47 CFR Part 15.407(b						
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.						
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46			
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75			
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4			
	6.31175-6.31225	123-138	2200-2300	14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4			
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
Test Limit:	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
TOOL EITHE.	12.57675-12.57725	322-335.4	3600-4400	(2)			
	13.36-13.41						
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured						
	emissions. The provisi						
		ons in § 15.35apply sewhere in this subpa	to these measur art, the emission ld strength levels	ements. s from an			

	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
		ragraph (g), fundamental emiss					
	intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.6, 12.7.7					
Procedure:	meters above the ground a rotated 360 degrees to dete b. The EUT was set 3 meters which was mounted on the c. The antenna height is varying ground to determine the may and vertical polarizations of d. For each suspected emission and then the antenna was street frequency of below 30N and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum F. If the emission level of the limit specified, then testing would be reported. Otherwing would be re-tested one by and then reported in a data g. Test the EUT in the lower channel. h. The radiation measurem Transmitting mode, and for case. i. Repeat above procedures Remark: 1. Level= Read Level+ Cabo 2. Scan from 18GHz to 400 The points marked on above when testing, so only above	e EUT in peak mode was 10dB could be stopped and the peak ise the emissions that did not had one using peak or average metrol sheet. It channel, the middle channel, ents are performed in X, Y, Z axund the X axis positioning which is until all frequencies measured only be a supported by the disturbance above 180 for plots are the highest emission is points had been displayed. The radiator which are attenuated	ber. The table was st radiation. eceiving antenna, a tower. ers above the th. Both horizontal e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the values of the EUT ave 10dB margin and as specified the Highest is positioning for it is the worst was complete. The Factor of the found is could be found in a specified the margin and as specified the Highest is positioning for it is the worst was complete.				

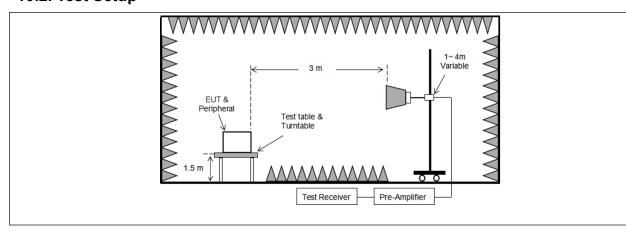
FCC ID: 2BK7P-G1100

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

10.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

10.2. Test Setup

FCC ID: 2BK7P-G1100

10.3. Test Data

TM4 / Band: 5150-5250 MHz / BW: 20 / CH: L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10360.00	31.60	23.81	55.41	68.20	-12.79	V	Peak
15540.00	33.04	28.68	61.72	68.20	-6.48	V	Peak
10360.00	32.15	23.81	55.96	68.20	-12.24	Н	Peak
15540.00	33.07	28.68	61.75	68.20	-6.45	Н	Peak
10360.00	21.089	23.81	44.90	54.00	-9.10	V	AVG
15540.00	22.274	28.68	50.95	54.00	-3.05	V	AVG
10360.00	21.337	23.81	45.15	54.00	-8.85	Н	AVG
15540.00	21.704	28.68	50.38	54.00	-3.62	Н	AVG
TM4 / Band: 5150-5250 MHz / BW: 20 / CH: M							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10400.00	30.96	23.81	54.77	68.20	-13.43	V	Peak
15600.00	32.57	29.13	61.70	68.20	-6.50	V	Peak
10400.00	31.64	23.81	55.45	68.20	-12.75	Н	Peak
15600.00	32.59	29.13	61.72	68.20	-6.48	Н	Peak
10400.00	21.359	23.81	45.17	54.00	-8.83	V	AVG
15600.00	22.394	29.13	51.52	54.00	-2.48	V	AVG
10400.00	21.327	23.81	45.14	54.00	-8.86	Н	AVG
15600.00	21.784	29.13	50.91	54.00	-3.09	Н	AVG
TM4 / Band: 5150-5250 MHz / BW: 20 / CH: H							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10480.00	30.53	23.80	54.33	68.20	-13.87	V	Peak
15720.00	32.05	30.03	62.08	68.20	-6.12	V	Peak
10480.00	31.28	23.80	55.08	68.20	-13.12	Н	Peak
15720.00	31.50	30.03	61.53	68.20	-6.67	Н	Peak
10480.00	20.03	23.80	43.83	54.00	-10.17	V	AVG
15720.00	21.15	30.03	51.18	54.00	-2.82	V	AVG
10480.00	20.54	23.80	44.34	54.00	-9.66	Н	AVG
15720.00	20.57	30.03	50.60	54.00	-3.40	Н	AVG

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ax(HEW20MIMO) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

FCC ID: 2BK7P-G1100

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

Hotline

400-003-0500 www.anbotek.com