RF EXPOSURE STATEMENT ### 1. LIMITS According to §1.1310 and §2.1091 RF exposure is calculated. #### (B) Limits for General Population/Uncontrolled Exposures | Frequency range (MHz) | Electric field
Strength (V/m) | Magnetic field
Strength (A/m) | Power density
(mW/cm²) | Averaging time (minutes) | |-----------------------|----------------------------------|----------------------------------|--|----------------------------------| | 0.3 - 1.34 | 614
824/f
27.5 | 1.63
2.19/f
0.073 | *(100)
*(180/ f²)
0.2
f/1500
1.0 | 30
30
30
30
30
30 | F = frequency in MHz ## 2. MAXIMUM PERMISSIBLE EXPOSURE Prediction Prediction of MPE limit at a given distance #### $S = PG/4\pi R^2$ S = Power density P = power input to antenna G = power gain of the antenna in the direction of interest relative to an isotropic radiator R = distance to the center of radiation of the antenna ^{* =} Plane-wave equivalent power density # 2-1 Limit (CDMA & EVDO) | Max Peak output Power at antenna input terminal | 44.09 | dBm | |---|-----------|--------------------| | Max Peak output Power at antenna input terminal | 256.44840 | mW | | Prediction distance | 500.0000 | cm | | Prediction frequency | 893.250 | MHz | | Antenna Gain(typical) | 14.800 | dBi | | Antenna Gain(numeric) | 30.200 | - | | Power density at prediction frequency(S) | 0.24652 | mW/cm ² | | MPE limit for uncontrolled exposure at prediction frequency | 0.596 | mW/cm ² | # 2-2 Limit (WCDMA) | Max Peak output Power at antenna input terminal | 44.03 | dBm | |---|-----------|--------------------| | Max Peak output Power at antenna input terminal | 25292.980 | mW | | Prediction distance | 500.000 | cm | | Prediction frequency | 878.000 | MHz | | Antenna Gain(typical) | 14.800 | dBi | | Antenna Gain(numeric) | 30.200 | - | | Power density at prediction frequency(S) | 0.24314 | mW/cm ² | | MPE limit for uncontrolled exposure at prediction frequency | 0.585 | mW/cm ² | # 2-3 Limit (GSM &EDGE) | <u>= 0 21111 (021 042 02)</u> | | | |---|-----------|--------------------| | Max Peak output Power at antenna input terminal | 44.050 | dBm | | Max Peak output Power at antenna input terminal | 25409.727 | mW | | Prediction distance | 500.000 | cm | | Prediction frequency | 893.600 | MHz | | Antenna Gain(typical) | 14.800 | dBi | | Antenna Gain(numeric) | 30.200 | - | | Power density at prediction frequency(S) | 0.24426 | mW/cm ² | | MPE limit for uncontrolled exposure at prediction frequency | 0.596 | mW/cm ² | ## 2-4 Limit (LTE 5MHz) | Max Peak output Power at antenna input terminal | 44.020 | dBm | |---|-----------|--------------------| | Max Peak output Power at antenna input terminal | 25234.808 | mW | | Prediction distance | 500.000 | cm | | Prediction frequency | 891.500 | MHz | | Antenna Gain(typical) | 14.800 | dBi | | Antenna Gain(numeric) | 30.200 | - | | Power density at prediction frequency(S) | 0.24258 | mW/cm ² | | MPE limit for uncontrolled exposure at prediction frequency | 0.594 | mW/cm ² | ## 3. RESULTS The power density level at 500 cm is 0.24652 mW/cm², which is below the uncontrolled exposure limit of 0.596 mW/cm² at CDMA& EVDO The power density level at 500 cm is 0.24314 mW/cm^2 , which is below the uncontrolled exposure limit of 0.585 mW/cm^2 at WCDMA The power density level at 500 cm is 0.24426 mW/cm^2 , which is below the uncontrolled exposure limit of 0.596 mW/cm^2 at GSM & EDGE The power density level at 500 cm is 0.24258 mW/cm^2 , which is below the uncontrolled exposure limit of 0.594mW/cm^2 at LTE Note: ""RF exposure will be addressed at time of installation and the use of higher gain antennas may require larger separation distances."