APPENDIX E: TEST SEQUENCES

- 1. Test sequence is generated based on below parameters of the DUT:
 - a. Measured maximum power (P_{max})
 - b. Measured Tx power at SAR design target (Plimit)
 - c. Total_min_reserve (dB)
 - Preserve (dBm) = measured Plimit (dBm) Total_min_reserve (dB)
 - d. SAR time window (100s for FCC)

2. Test Sequence 1 Waveform:

Based on the parameters above, the Test Sequence 1 is generated with one transition between high and low Tx powers. Here, high power = P_{max} ; low power = $P_{max}/2$, and the transition occurs after 80 seconds at high power P_{max} . As long as the power enforcement is taking into effective during one 100s/60s time window, the validation test with this defined test sequence 1 is valid, otherwise, select other radio configuration (band/DSI within the same technology group) having lower Plimit for this test. The Test sequence 1 waveform is shown below:

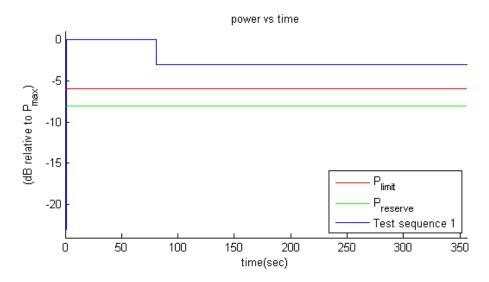


Figure E-1 Test sequence 1 waveform

FCC ID: A3LSMG766U	RF EXPOSURE PART 2 TEST REPORT	Approved by:
		Technical Manager
DUT Type:		APPENDIX E:
Portale Computing Device		Page 1 of 3

3. Test Sequence 2 Waveform:

Based on the parameters described above, the Test Sequence 2 is generated as described in Table E-1, which contains two 170 second-long sequences (yellow and green highlighted rows) that are mirrored around the center row of 20s, resulting in a total duration of 360 seconds:

Table E-1
Test Sequence 2

Time duration (seconds)	dB relative to P _{limit} or P _{reserve}	
<mark>15</mark>	P _{reserve} – 2	
<mark>20</mark>	P _{limit}	
<mark>20</mark>	$\frac{(P_{limit} + P_{max})}{2}$ averaged in mW and rounded to nearest 0.1 dB step	
<mark>10</mark>	P _{reserve} – 6	
<mark>20</mark>	P _{max}	
<mark>15</mark>	P _{limit}	
<mark>15</mark>	P _{reserve} – 5	
<mark>20</mark>	P _{max}	
<mark>10</mark>	P _{reserve} – 3	
<mark>15</mark>	P _{limit}	
<mark>10</mark>	P _{reserve} – 4	
20	$(P_{limit} + P_{max})/2$ averaged in mW and rounded to nearest 0.1 dB step	
<mark>10</mark>	P _{reserve} – 4	
<mark>15</mark>	P _{limit}	
<mark>10</mark>	P _{reserve} – 3	
20	P _{max}	
<mark>15</mark>	P _{reserve} – 5	
<mark>15</mark>	P _{limit}	
<mark>20</mark>	P _{max}	
<mark>10</mark>	P _{reserve} – 6	
20	$(P_{limit} + P_{max})/2$ averaged in mW and rounded to nearest 0.1 dB step	
20	Plimit	
15	P _{reserve} – 2	

FCC ID: A3LSMG766U	RF EXPOSURE PART 2 TEST REPORT	Approved by:
		Technical Manager
DUT Type:		APPENDIX E:
Portale Computing Device		Page 2 of 3

The Test Sequence 2 waveform is shown in Figure E-2.

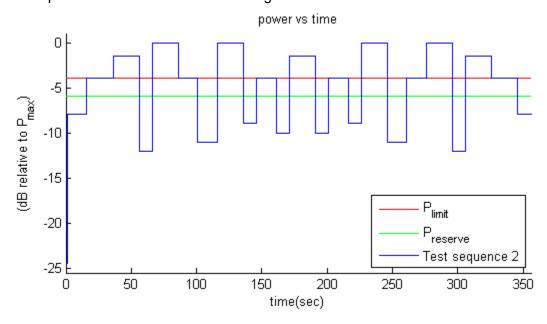


Figure E-2
Test sequence 2 waveform

4. Test sequence for WLAN Radios:

Since WLAN radios do not have closed loop power control, average Tx power level of WLAN radios is indirectly varied by transmitting at varying duty cycles (i.e., varying UL data rates). Test sequence #1 described previously can be converted into duty cycle at Pmax, i.e., duty cycle for an arbitrary Tx power level = (Tx power level / Pmax).

Table E-2 Test Sequence 1 for WLAN radio

Time duration (seconds)	Duty cycle (%)
80	100%
120	50%

NOTE: Test sequence #2 is not achievable due to current test capability. Therefore, in the interim, it is exempt.

FCC ID: A3LSMG766U	RF EXPOSURE PART 2 TEST REPORT	Approved by:
		Technical Manager
DUT Type:		APPENDIX E:
Portale Computing Device		Page 3 of 3