

ACCREDITED Page 51 of 77

Report No.: S24122706708001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.278.12.24 BES.A

TABLE OF CONTENTS

1	1 Device Under Test				
2	Proc	uct Description			
	2.1	General Information	4		
3	Mea	surement Method			
	3.1	Sensitivity	4		
	3.2	Linearity	5		
	3.3	Isotropy	5		
	3.4	Boundary Effect	5		
	3.5	Probe Modulation Response	6		
4	Mea	surement Uncertainty6			
5	Cali	oration Results			
	5.1	Calibration in air	6		
	5.2	Calibration in liquid	7		
6	6 Verification Results				
7	7 List of Equipment				

Page: 3/10

Certificate #4298.01 Page 52 of 77

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.278.12.24.BES.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type COMOSAR DOSIMETRIC E FIELD PR			
Manufacturer	MVG		
Model	SSE2		
Serial Number	4024-EPGO-442		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-7.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.206 MΩ		
	Dipole 2: R2=0.223 MΩ		
	Dipole 3: R3=0.235 MΩ		

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page: 4/10

Temptate_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vM

ACCREDITED Page 53 of 77

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.278.12.24.BES.A

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be} + d_{\rm step}$ along lines that are approximately normal to the surface:

$$SAR_{uncertainty} [\%] = \delta SAR_{be} \frac{(d_{be} + d_{step})^2}{2d_{step}} \frac{(e^{-d_{we}(\delta \beta)})}{\delta/2} \quad \text{for } (d_{be} + d_{step}) < 10 \text{ mm}$$

where
$$SAR_{uncertainty} \quad \text{is the uncertainty in percent of the probe boundary effect}$$

$$d_{be} \quad \text{is the distance between the surface and the closest zoom-scan measurement}$$

point, in millimetre
$$\Delta_{step} \quad \text{is the separation distance between the first and second measurement points that}$$

are closest to the phantom surface, in millimetre, assuming the boundary effect
at the second location is negligible
$$\delta \quad \text{is the minimum penetration depth in millimetres of the head tissue-equivalent}$$

liquids defined in this standard, i.e., $\delta \approx 14 \text{ mm at 3 GHz};$
in percent of SAR is the deviation between the measured SAR value, at the
distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vM

Certificate #4298.01 Page 54 of 77

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.278.12.24.BES.A

3.5 PROBE MODULATION RESPONSE

MVG's probe were evaluated experimentally with various modulated signal and the deviation from CW response were found neglectable in the used power range of the probe. So the correction to taking into account the linearization parameters for different modulation is null, therefore the CW factor given in this report can be used whatever the measured modulation

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition			
Liquid Temperature 20 +/- 1 °C			
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} (1 + \frac{V_{i}}{DCP_{i}})}{Norm_{i}}$$

Page: 6/10

Certificate #4298.01 Page 55 of 77

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 278.12.24 BES.A

where

Vi=voltage readings on the 3 channels of the probe

DCPi=diode compression point given below for the 3 channels of the probe Normi=dipole sensitivity given below for the 3 channels of the probe

Normx dipole $1 (\mu V/(V/m)^2)$	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole $3 (\mu V/(V/m)^2)$
0.73	0.79	0.78

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
105	109	103

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula. $P^2 = -\frac{\rho SAR}{\rho}$

$$E_{liquid}^2 = \frac{p \sin \sigma}{\sigma}$$

where

 σ =the conductivity of the liquid

 ρ =the volumetric density of the liquid

 ${\rm SAR}{=}{\rm the}\ {\rm SAR}\ {\rm measured}\ {\rm from}\ {\rm the}\ {\rm formula}\ {\rm that}\ {\rm depends}\ {\rm on}\ {\rm the}\ {\rm setup}\ {\rm used}.$ The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where c=the specific heat for the liquid dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4P_W}{2k_s}e^{\frac{-2z}{\delta}}$$

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vM

Certificate #4298.01 Page 56 of 77

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 278.12.24 BES A

where

a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ =the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

Liquid	Frequency	<u>ConvF</u>
	(MHz*)	
HL750	750	2.42
HL850	835	2.34
HL900	900	2.24
HL1800	1800	2.51
HL1900	1900	2.57
HL2000	2000	2.64
HL2300	2300	2.73
HL2450	2450	2.74
HL2600	2600	2.51
HL3300	3300	2.11
HL3500	3500	2.15
HL3700	3700	2.08
HL3900	3900	2.27
HL4200	4200	2.39
HL4600	4600	2.30
HL4900	4900	2.13
HL5200	5200	1.89
HL5400	5400	1.97
HL5600	5600	1.88
HL5800	5800	1.90
(*) Frequency validity	is +/-50MHz below 600MHz	+/-100MHz from 600MHz to 6GHz and +/-700MHz above 6GH

Page: 8/10

Certificate #4298.01

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

mvg

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 278.12.24 BES A

VERIFICATION RESULTS 6

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

7 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2026	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025	
Multimeter	Keithley 2000	4013982	02/2023	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2026	
USB Sensor	Keysight U2000A	SN: MY62340002	10/2022	10/2025	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025	
Coaxial cell	MVG	SN 32/16 COAXCELL_1	Validated. No cal required.	Validated. No cal required.	

Page: 9/10

NTEK 北测[®]

Certificate #4298.01 Page 58 of 77

Report No.: S24122706708001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 278.12.24 BES.A

Wa∨eguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_7G000_1	Validated. No cal required.	Validated. No cal required.
emperature / Humidity Sensor	Testo 184 H1	44235403	02/2024	02/2027

Page: 10/10

SAR Reference Dipole Calibration Report

Ref : ACR.53.29.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 03/15DIP2G450-352

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/8

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.53.29.24.BES.A

	Name	Function	Date	Signature
Prepared by :	Pedro Ruiz	Measurement Responsible	2/22/2024	fedunfing
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	J25
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Yann TOUTAAN

Yann Toutain ID 08:57:39 +01'00'

*	Customer Name
Distribution :	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
Α	Pedro Ruiz	2/22/2024	Initial release

Page: 2/8

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref : ACR 53.29.24.BES A

TABLE OF CONTENTS

Certificate #4298.01 Page 61 of 77

1	Intro	duction4	
2	Devi	ce Under Test	
3	Prod	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	_5
5	Mea	surement Uncertainty	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	_5
	5.3	SAR	5
6	Calil	bration Results	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	List	of Equipment	

Page: 3/8

NTEK 北测 ilac-MR/

Report No.: S24122706708001

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref : ACR 53 29 24 BES A

INTRODUCTION 1

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

Certificate #4298.01 Page 62 of 77

DEVICE UNDER TEST 2

Device Under Test							
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE						
Manufacturer	MVG						
Model	SID2450						
Serial Number	SN 03/15DIP2G450-352						
Product Condition (new / used)	Used						

PRODUCT DESCRIPTION 3

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/8

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 53.29.24.BES.A

MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

Certificate #4298.01 Page 63 of 77

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 <u>SAR</u>

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Template_ACR.DDD.N.YY.MVGBJSSUE_SAR Reference Dipole vL

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.53.29.24.BES.A

6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L	mm	h	mm	d i	mm
Measured	Required	Measured	Required	Measured	Required
	51.50 +/- 2%		30.40 +/- 2%		3.60 +/- 2%

Certificate #4298.01 Page 64 of 77

6.2 <u>S11 PARAMETER</u>

6.2.1 S11 parameter in Head Liquid

6.3 <u>SAR</u>

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 6/8

Template_ACR.DDD.N.YY.MVGBJSSUE_SAR Reference Dipole vL

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 53.29.24.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values: eps': 42.1 sigma : 1.83
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Certificate #4298.01 Page 65 of 77

Frequency		1g SAR (W/kg	W/kg)		10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W	
2450 MHz	5.00	50.05	52.40	2.38	23.80	24.00	

Page: 7/8

SAR Reference Waveguide Calibration Report

Ref: ACR.53.31.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET,BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE WAVEGUIDE

FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 13/14 WGA 33

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference waveguide calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/9

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Certificate #4298.01 Page 67 of 77

Ref: ACR.53.31.24.BES.A

	Name	Function	Date	Signature
Prepared by :	Pedro Ruiz	Measurement Responsible	2/22/2024	fedurfluig
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	Jez
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Gann BUTAAN

Signature Yann Toutain ID Date: 2024.02.27 08:58:45 +0100' Yann

	Customer Name
Distribution :	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications	
A	Pedro Ruiz	2/22/2024	Initial release	
20 95				
10 C				0

Page: 2/9

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.53.31.24.BES.A

TABLE OF CONTENTS

Certificate #4298.01 Page 68 of 77

1	Intro	duction4			
2	Devi	ce Under Test			
3	Prod	uct Description4			
	3.1	General Information	4		
4 Measurement Method					
	4.1	Mechanical Requirements	4		
	4.2	S11 parameter Requirements	4		
	4.3	SAR Requirements	5		
5	Mea	surement Uncertainty			
	5.1	Mechanical dimensions	5		
	5.2	S11 Parameter	5		
	5.3	SAR	5		
6	Calil	pration Results			
	6.1	Mechanical Dimensions	5		
	6.2	S11 parameter	6		
	6.3	SAR	6		
7	List	of Equipment9			

Page: 3/9

NTEK 北测

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref : ACR 53.31.24 BES A

INTRODUCTION 1

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 13/14 WGA 33
Product Condition (new / used)	Used

3 **PRODUCT DESCRIPTION**

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

MEASUREMENT METHOD 4

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

S11 PARAMETER REQUIREMENTS 4.2

The dipole used for SAR system validation measurements and checks must have a S11 of -8 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

Page: 4/9

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref : ACR 53 31 24 BES A

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

Certificate #4298.01 Page 70 of 77

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

The estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08with respect to measurement conditions.

5.3 <u>SAR</u>

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

CALIBRATION RESULTS 6

6.1 MECHANICAL DIMENSIONS

Frequency	L (I	nm)	W (mm)	Lf	mm)	Wf((mm)
(MHz)	Required	Measured	Required	Measured	Required	Measured	Required	Measured
5800	40.39 ± 0.13	1 5 3	20.19 ± 0.13	181	81.03 ± 0.13	1.51	61.98 ± 0.13	-

Figure 1: Validation Waveguide Dimensions

Page: 5/9

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Certificate #4298.01 Page 71 of 77

Ref : ACR.53.31.24.BES.A

6.2 <u>S11 PARAMETER</u>

6.2.1 S11 parameter In Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
5200	-9.64	-8	25.80 Ω - 6.58 jΩ
5400	-14.01	-8	51.53 Ω + 20.60 jΩ
5600	-16.83	-8	44.12 Ω - 12.35 jΩ
5800	-14.91	-8	38.53 Ω + 11.21 jΩ

6.3 <u>SAR</u>

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

6.3.1 SAR With Head Liquid

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

Page: 6/9

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vL

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.53.31.24.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values 5200 MHz: eps' :34.16 sigma : 4.42 Head Liquid Values 5400 MHz: eps' :33.63 sigma : 4.64 Head Liquid Values 5600 MHz: eps' :33.12 sigma : 4.87 Head Liquid Values 5800 MHz: eps' :32.57 sigma : 5.12
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency (MHz)	1 g SAR (W/kg)			10 g SAR (W/kg)		g)
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
5200	16.26	162.59	159.00	5.62	56.21	56.90
5400	15.98	159.81	166.40	5.50	55.00	58.43
5600	17.91	179.15	173.80	6.10	61.01	59.97
5800	18.22	182.20	181.20	6.13	61.32	61.50

SAR MEASUREMENT PLOTS @ 5200 MHz

Page: 7/9

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.53.31.24.BES.A

SAR MEASUREMENT PLOTS @ 5400 MHz

Certificate #4298.01 Page 73 of 77

SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 8/9

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Certificate #4298.01 Page 74 of 77

Ref: ACR.53.31.24.BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No. Current Calibration Date		Next Calibration Date		
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024		
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025		
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025		
Reference Probe	MVG	3623-EPGO-431	11/2023	11/2024		
Multimeter	Keithley 2000	4013982	02/2023	02/2026		
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025		
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	NI-USB 5680	170100013	06/2021	06/2024		
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025		
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021 06/2024			

Page: 9/9

<Justification of the extended calibration>

Iac-MR

NTEK 北测

If dipoles are verified in return loss (<-20dB, within 20% of prior calibration for below 3GHz, and <-8dB, within 20% of prior calibration for 5GHz to 6GHz), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

ACCREDITED Certificate #4298.01 Page 75 of 77

<Head 2450MHz>

Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	Date of Measurement
-29.27	-	53.6	-	Feb. 21, 2024
-25.738	12.07	55.969	2.369	Feb. 13, 2025

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

<head 5200mhz=""></head>				
Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	Date of Measurement
-9.64	-	25.8	-	Feb. 21, 2024
-9.494	1.51	26.574	0.774	Feb. 13, 2025

The return loss is <-8dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

<head 5800mhz=""></head>				
Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	Date of Measurement
-14.91	-	38.53	-	Feb. 21, 2024
-15.039	0.865	40.791	2.261	Feb. 13, 2025

The return loss is <-8dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

