

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202304419F01

TEST Report

Applicant: Guangdong Baixiang Environmental Technology Co., Ltd

Address of Applicant: Building H, No. 13, Rd Tongfu, Renhe Town, Baiyun Dist,

Guangzhou, Guangdong, China

Manufacturer: Guangdong Baixiang Environmental Technology Co., Ltd

Address of Building H, No. 13, Rd Tongfu, Renhe Town, Baiyun Dist,

Manufacturer: Guangzhou, Guangdong, China

Equipment Under Test (EUT)

Product Name: X500 Ceiling Scent Diffuser

Model No.: X500

Series model: X500PRO,X510,X520,X550,X560,X580,

A500, A500 PRO, A600, A800, A900

Trade Mark: BXAROMA

FCC ID: 2BA6L-X500

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Apr.28,2023

Date of Test: Apr.28,2023~May.08,2023

Date of report issued: May.08,2023

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	May.08,2023	Original

Tested/ Prepared By	Heber He	Date:	May.08,2023	
	Project Engineer			
Check By:	Bruce Zhu	Date:	May.08,2023	
	Reviewer			
Approved By :	Kerin Yang	Date:	May.08,2023	
	Authorized Signature			

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	777777
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method 6.6.2 Radiated Emission Method 6.7. ANTENNA REQUIREMENT	
7. TEST SETUP PHOTO	31
8 FUT CONSTRUCTIONAL DETAILS	31

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)		
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

Product Name:	X500 Ceiling Scent Diffuser
Model No.:	X500
Series model:	X500PRO,X510,X520,X550,X560,X580,
	A500,A500PRO,A600,A800,A900
Test sample(s) ID:	HTT202304419-1(Engineer sample)
	HTT202304419-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Power Supply:	DC 12V

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2440MHz		
The Highest channel	2480MHz		

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
	0.0.1.1.1	0		No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May 23 2022	May 22 2023
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May 23 2022	May 22 2023
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	May 23 2022	May 22 2023
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	May 23 2022	May 22 2023
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data

6.1. Conducted Emissions

	<u> </u>				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz,	Sweep time=auto			
Limit:	Fraguesov rango (MHz)	Limit	(dBuV)		
	Frequency range (MHz)	Quasi-peak		erage	
	0.15-0.5	66 to 56*	+	o 46*	
	0.5-5	56		16	
	5-30 * Decreases with the logarith	m of the frequency	5	50	
Test setup:	Reference Plan				
Test procedure:	Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.				
	 The peripheral devices ar LISN that provides a 50oh termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fi positions of equipment an according to ANSI C63.10 	nm/50uH coupling imp to the block diagram checked for maximund the maximum emis d all of the interface c	edance with of the test seem conducted sion, the related ables must be	50ohm etup and d ative pe changed	
Test Instruments:	Refer to section 6.0 for detail	ls			
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 25 °C Hu	mid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz	l .	1	1	
Test results:	Pass				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1524	27.74	10.37	38.11	65.87	-27.76	QP
2		0.1524	10.08	10.37	20.45	55.87	-35.42	AVG
3		0.3723	24.05	10.42	34.47	58.45	-23.98	QP
4		0.3723	8.23	10.42	18.65	48.45	-29.80	AVG
5	*	0.5292	29.18	10.49	39.67	56.00	-16.33	QP
6		0.5292	15.90	10.49	26.39	46.00	-19.61	AVG
7		1.0665	27.88	10.89	38.77	56.00	-17.23	QP
8		1.0665	10.55	10.89	21.44	46.00	-24.56	AVG
9		3.0093	17.84	10.84	28.68	56.00	-27.32	QP
10		3.0093	-0.16	10.84	10.68	46.00	-35.32	AVG
11		6.7332	19.22	11.39	30.61	60.00	-29.39	QP
12		6.7332	5.28	11.39	16.67	50.00	-33.33	AVG

Neutral:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1524	23.57	10.27	33.84	65.87	-32.03	QP
2	0.1524	9.15	10.27	19.42	55.87	-36.45	AVG
3 *	0.5210	30.75	10.38	41.13	56.00	-14.87	QP
4	0.5210	18.89	10.38	29.27	46.00	-16.73	AVG
5	0.7972	27.64	10.70	38.34	56.00	-17.66	QP
6	0.7972	12.89	10.70	23.59	46.00	-22.41	AVG
7	1.7295	20.89	10.82	31.71	56.00	-24.29	QP
8	1.7295	2.92	10.82	13.74	46.00	-32.26	AVG
9	4.5734	24.41	10.88	35.29	56.00	-20.71	QP
10	4.5734	8.74	10.88	19.62	46.00	-26.38	AVG
11	11.9621	18.91	11.78	30.69	60.00	-29.31	QP
12	11.9621	5.29	11.78	17.07	50.00	-32.93	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

6.2. Conducted Output Power

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	1.00		
Middle	0.47	30.00	Pass
Highest	-0.96		

6.3. Channel Bandwidth

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.661		
Middle	0.658	>500	Pass
Highest	0.664		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

6.4. Power Spectral Density

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result	
Lowest	-13.68			
Middle	-14.69	8.00	Pass	
Highest	-15.74			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

6.5. Band edges

6.5.1 Conducted Emission Method

6.5.1 Conducted Emission Method							
Test Requirement:	FCC Part15	C Section 1	5.247 (d)				
Test Method:	ANSI C63.1	0:2013 and k	KDB558074 [D01 DTS Mea	as Guidance	v05r02	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spo						
Test Instruments:	Refer to sec	ction 6.0 for d	etails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

Test plot as follows:

Lowest channel

Highest channel

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.1						
Test Frequency Range:	All of the re	strict bands lata was sho		d, only th	e wors	st band's (2	2310MHz to
Test site:		nt Distance:					
Receiver setup:	Frequenc	y Detec	tor R	BW	VBW	' \ \	/alue
·		Dog	k 1	MHz	3MHz		Peak
	Above IGI	Above 1GHz RMS 1MHz 3MHz A					
Limit:	Fre	equency	Limit	(dBuV/m	@3m	ı) V	/alue
	Abo	ve 1GHz		54.00 74.00			rerage Peak
Test Procedure:	the groundetermine The EUT antenna, tower. The antenground to horizontal measurer For each and then and the rethe maxim The test-Specified If the emillimit specified the EUT	was placed and at a 3 meters the position was set 3 meters which was menna height is a determine to a determine to a land vertical	Received on the top of the high eters away founted on the maximum polarization mission, the was tuned from turned from turned from the EUT in sting could orted. Other	of a rotating The table lest radia from the the top of	e was intion. interfer fa variater to for the fantenias arrass from the ees to to the fantenias ees to the ees	rotated 360 erence-rece iable-heigh four meters field strengt na are set to anged to its 1 meter to 360 degree t Function a as 10dB low d the peak v sions that d	eiving t antenna above the h. Both o make the worst case 4 meters es to find and wer than the values of id not have
	 average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. 						neet. positioning.
Test Instruments:		tion 6.0 for d					
Test mode:	Refer to sec	tion 5.2 for d	etails				
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

Measurement Data

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	60.33	26.20	5.72	33.30	58.95	74	-15.05	peak
2390	45.86	26.20	5.72	33.30	44.48	54	-9.52	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	59.77	26.20	5.72	33.30	58.39	74	-15.61	peak
2390	46.32	26.20	5.72	33.30	44.94	54	-9.06	AVG

Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.06	28.60	6.97	32.70	57.93	74	-16.07	peak
2483.5	41.29	28.60	6.97	32.70	44.16	54	-9.84	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.99	28.60	6.97	32.70	59.86	74	-14.14	peak
2483.5	42.36	28.60	6.97	32.70	45.23	54	-8.77	AVG

6.6. Spurious Emission

6.6.1 Conducted Emission Method

	0.0.1 Conducted Emission Method						
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

Test plot as follows:

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	ice: 3	3m					
Receiver setup:	Frequency	Detector	RBW		VBW	Value		
	9KHz-150KHz Qu		ıasi-peak	200	Hz	600Hz	z Quasi-peak	
	150KHz-30MHz	Qı	ıasi-peak	9Kł	Ηz	30KH	z Quasi-peak	
	30MHz-1GHz	Qi	ıasi-peak	120k	Ήz	300KH	Iz Quasi-peak	
	Above 1GHz		Peak	1MI	Ηz	3MHz	z Peak	
	Above 10112		Peak	1MI	Ηz	10Hz	Average	
Limit:	Frequency		Limit (u\	//m)	V	'alue	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP	30m	
	1.705MHz-30MH	Z	30	30		QP	30m	
	30MHz-88MHz		100			QP		
	88MHz-216MHz		150			QP		
	216MHz-960MH	Z	200			QP	3m	
	960MHz-1GHz			500		QP		
	Above 1GHz		500		Average			
			5000		ŀ	Peak		
Test setup:	For radiated emissio	ns fr	om 9kHz to	30MH	Z			
	Turn Table E		< 3m > Tes	st Antenna 1m				

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Above 1-25GHz

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	50.28	31.40	8.18	32.10	57.76	74.00	-16.24	peak
4804	35.70	31.40	8.18	32.10	43.18	54.00	-10.82	AVG
7206	44.12	35.80	10.83	31.40	59.35	74.00	-14.65	peak
7206	29.26	35.80	10.83	31.40	44.49	54.00	-9.51	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	51.67	31.40	8.18	32.10	59.15	74.00	-14.85	peak
4804	36.09	31.40	8.18	32.10	43.57	54.00	-10.43	AVG
7206	43.60	35.80	10.83	31.40	58.83	74.00	-15.17	peak
7206	29.13	35.80	10.83	31.40	44.36	54.00	-9.64	AVG
-								
Remark: Facto	or = Antenna Fac	tor + Cable Los	s – Pre-amplifie	r.				

CH Middle (2440MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4880	51.37	31.40	9.17	32.10	59.84	74.00	-14.16	peak
4880	35.66	31.40	9.17	32.10	44.13	54.00	-9.87	AVG
7320	43.92	35.80	10.83	31.40	59.15	74.00	-14.85	peak
7320	29.71	35.80	10.83	31.40	44.94	54.00	-9.06	AVG
Daniel Caste	or – Antonno Ego	4 · O-bl- I	- D!!f	_				

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4880	49.76	31.40	9.17	32.10	58.23	74.00	-15.77	peak
4880	35.69	31.40	9.17	32.10	44.16	54.00	-9.84	AVG
7320	44.21	35.80	10.83	31.40	59.44	74.00	-14.56	peak
7320	29.35	35.80	10.83	31.40	44.58	54.00	-9.42	AVG
Pomark: Facto	or – Antenna Fac	tor i Cabla Las	c Pro amplifica					l

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	49.87	31.40	9.17	32.10	58.34	74.00	-15.66	peak
4960	36.59	31.40	9.17	32.10	45.06	54.00	-8.94	AVG
7440	44.51	35.80	10.83	31.40	59.74	74.00	-14.26	peak
7440	29.68	35.80	10.83	31.40	44.91	54.00	-9.09	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	51.60	31.40	9.17	32.10	60.07	74.00	-13.93	peak
4960	35.67	31.40	9.17	32.10	44.14	54.00	-9.86	AVG
7440	43.67	35.80	10.83	31.40	58.90	74.00	-15.10	peak
7440	28.54	35.80	10.83	31.40	43.77	54.00	-10.23	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 0.0 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----