

Transmitter Tests for Three (3) Wireless Handheld Microphones

For : Shure Inc.

Niles, IL

P.O. No. : 4500092965

Dates Tested : November 21 through December 31, 2005.

Test Personnel: Richard E. King, EMC Engineer

Specification : FCC "Code of Federal Regulations" Title 47

Part 74 and Industry Canada RSS-123

Test Report By : RICHARD & King

Richard E. King EMC Engineer

Witnessed By : Juan Casttrejon

Shure Inc.

Approved By

Raymond J. Klouda

Registered Professional Engineer of

Raymond J Klouda.

Illinois - 44894

Elite Electronic Engineering Inc. 1516 Centre Circle Downers Grove, IL 60515 Tel: (630) 495-9770 Fax: (630) 495-9785 www.elitetest.com

TABLE OF CONTENTS

PARAGRAPH	DESCRIPTION OF CONTENTS	PAGE
NO.		
1.0 INTRODUCTION		5
1.1 DESCRIPTION OF	TEST ITEM	5
1.2 PURPOSE		5
1.3 DEVIATIONS, AD	DITIONS AND EXCLUSIONS	5
1.4 APPLICABLE DO	CUMENTS	5
1.5 SUBCONTRACTO	R IDENTIFICATION	6
1.6 LABORATORY C	ONDITIONS	6
2.0 TEST ITEM SETUP A	AND OPERATION	6
2.1 POWER INPUT		6
2.2 GROUNDING		6
2.3 PERIPHERAL EQU	JIPMENT	6
3.0 TEST EQUIPMENT		6
3.1 TEST EQUIPMENT	Γ LIST	6
3.2 CALIBRATION TH	RACEABILITY	6
4.0 REQUIREMENTS, PH	ROCEDURES AND RESULTS	6
	UT MEASUREMENTS	
4.1.1 REQUIREMEN	VTS S	6
	.	
4.2 MODULATION CH	HARACTERITICS	7
4.2.1 REQUIREMEN	VTS	7
	S	
	BILITY	
4.3.1 REQUIREMEN	VTS	8
	S	
	WIDTH MEASUREMENTS	
	VTS	
	S	
	IONS AT ANTENNA TERMINAL	
	IONS AT ANTENNA TERMINALVTS	
-	OF SPURIOUS EMISSIONS	
	Y RADIATED MEASUREMENTS	
4.6.1.1 KEQUIRE	MENTS	10

THIS REPORT SHALL NOT BE REPRODUCED, EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF ELITE ELECTRONIC ENGINEERING INCORPORATED.

TABLE OF CONTENTS

PARAGRAPH	DESCRIPTION OF CONTENTS	PAGE
NO.		
4.6.1.2 PROCEDURE	S	10
4.6.1.3 RESULTS		10
4.6.2 FINAL RADIATE	D EMISSIONS	10
4.6.2.1 REQUIREME	NTS	10
4.6.2.2 PROCEDURE	S	10
4.6.2.3 RESULTS OF	OPEN FIELD RADIATED TEST	11
5.0 CONCLUSION		11
6.0 CERTIFICATION		11
7.0 ENDORSEMENT DISCL	AIMER	11
TABLE I - EOUIPMENT LIS	Γ	12

REVISION HISTORY

Revision	Date	Description
		Initial release

Transmitter Tests for Three (3) Wireless Handheld Microphones

1.0 INTRODUCTION:

1.1 DESCRIPTION OF TEST ITEM: This report presents the results of a series of transmitter tests were performed on three Shure Inc. wireless handheld microphones, (hereinafter referred to as the test items). No serial numbers were assigned to the test items. The tests were performed for Shure Incorporated of Niles, IL.

The test items are wireless microphones that operate in low power auxiliary station bands 518 to 806MHz.

Type of Equipment	Bodypack wireless microphones			
Equipment Designation	PG2-H7			
	PG2-M7			
	PG2-R12			
Test Specification Range	Low power auxiliary	band 518-865MHz		
Test Item Frequency Range	PG2-H7 536.05	MHz lowest channel available.		
	PG2-M7 671.175	5 MHz		
	PG2-R12 805.85	MHz		
Number of Channels	21			
Type of Modulation	FM			
Type of Antenna	Integral antenna			
Rated Output Power	$10dBm \pm 3dB$			
Occupied Bandwidth	max 200 kHz			
Operating Voltage	9.0 VDC			
Maximum Deviation	33kHz			
Declared Audio Input Limiting Threshold	10mV			

- **1.2 PURPOSE:** The test series was performed to determine if the test item meets the technical requirements of FCC Part 74 for low power auxiliary station bands 518MHz to 806MHz and Industry Canada RSS-123 Low Power Licensed Radiocommunication Devices.
- **1.3 DEVIATIONS, ADDITIONS AND EXCLUSIONS:** There were no deviations, additions to, or exclusions from the test specification during this test series.
- **1.4 APPLICABLE DOCUMENTS:** The following documents of the exact issue designated form part of this document to the extent specified herein:
 - Federal Communications Commission "Code of Federal Regulations", Title 47, Part 74, dated 1 October 2004
 - Federal Communications Commission "Code of Federal Regulations", Title 47, Part 2, dated 1 October 2004

- RSS-123, "Radio Standards Specification Low Power Licensed Radiocommunication Devices" Issue 1, Rev. 2 November 6, 1999
- ANSI C63.4-2003, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
- **1.5 LABORTORY IDENTIFICATION:** This series of tests was performed by Elite Electronic Engineering Incorporated, of Downers Grove, Illinois. The laboratory is accredited by the National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP). NVLAP Lab Code: 100278-0.
- **1.6 LABORATORY CONDITIONS:** The temperature at the time of the test was 22°C and the relative humidity was 11%.

2.0 TEST ITEM SETUP AND OPERATION:

- **2.1 POWER INPUT:** The test item obtained 9.0VDC from a 9VDC battery.
- **2.2 GROUNDING:** The test item was ungrounded during the tests.
- **2.3 PERIPHERAL EQUIPMENT:** No peripheral equipment was submitted with the test item.

3.0 TEST EQUIPMENT:

- **3.1 TEST EQUIPMENT LIST:** A list of the test equipment used can be found on Table I. All equipment was calibrated.
- **3.2 CALIBRATION TRACEABILITY:** Test equipment is maintained and calibrated on a regular basis. All calibrations are traceable to the National Institute of Standards and Technology (NIST).

4.0 REQUIREMENTS, PROCEDURES AND RESULTS:

4.1 RF POWER OUTPUT MEASUREMENTS:

- **4.1.1 REQUIREMENTS:** In accordance with paragraph 74.861(e)(1)(ii), for low power auxiliary stations operating in the bands allocated for TV broadcasting, the power of the measured unmodulated carrier power at the output of the transmitter power amplifier (antenna input power) may not exceed 250 milliwatts in the 470-608 and 614-806MHz bands. For certification to paragraph 6.2 of Industry Canada's RSS-123 requirement the RF power output must not exceed 1 watt average power as listed in Table 1.
- **4.1.2 PROCEDURES:** Since the test item has an integral antenna, the equivalent radiated power into a dipole antenna (ERP) was determined from the field intensity levels measured at

3 meters using the substitution method. To determine the emission power another tuned dipole antenna was set in place of the test item and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was corrected to compensate for cable loss.

The measurements were performed in a 32ft. x 20ft. x 18ft. hybrid £rrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4 2003 for site attenuation.

The radiated emission test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization.
- c) The maximum meter reading was recorded.
- d) A dipole antenna tuned to the transmit frequency was placed on an adjustable height antenna mast 3 meters from the test item.
- e) The signal level was adjusted to match the meter reading.
- f) Measurements were performed with the input signal unmodulated.
- **4.1.3 RESULTS:** The output power measurements are presented on page 16. As can be seen from the data, the power output of each transmitter is within the 250 milliwatt requirement of Part 74.861(e)(1)(ii) and the 1 watt requirement of RSS-123.

4.2 MODULATION CHARACTERISTICS:

- **4.2.1 REQUIREMENTS:** In accordance with paragraph 74.861(e)(3) and paragraph 5.5 of RSS-123, for low power auxiliary stations operating in the bands allocated for TV broadcasting, any form of modulation may be used. A maximum deviation of ± 75 kHz is permitted when frequency modulation is employed.
- **4.2.2 PROCEDURES:** For the purposes of this test the test item was equipped with a temporary antenna port. The output of the antenna port of the test item was connected to a modulation analyzer. An audio generator was connected to an audio input of the test item.
 - (a) The test item was modulated with a 1000 Hz modulating signal at 60% of the test items rated frequency deviation.
 - (b) The level of the audio generator was increased by 20 dB in one step.
 - (c) The instantaneous and steady state positive peak deviations were recorded.
 - (d) Using the audio generator level obtained in step (b) the frequency range from 20Hz to 20000 Hz was slowly swept and the maximum frequency deviation recorded at several frequencies.
 - (e) Steps (a) through (d) were repeated for the negative peak deviations.

4.2.3 RESULTS: The plots of the modulation characteristics are presented on pages 17 through 19.

4.3 FREQUENCY STABILITY:

- **4.3.1 REQUIREMENTS:** In accordance with paragraph 74.861(e)(4) and paragraph 7 of RSS-123 Table 1, for low power auxiliary stations operating in the bands allocated for TV broadcasting, the frequency tolerance of the transmitter shall be 0.005 percent.
- **4.3.2 PROCEDURES:** For the purposes of this test the test item was equipped with a temporary antenna port. The test item was connected to a frequency counter through the antenna output of each transmitter. The test item was then placed in a humidity temperature chamber.
 - (a) The nominal frequency of each transmitter was measured and recorded at nominal room temperature (23°C).
 - (b) The temperature chamber was then set to -30°C.
 - (c) Once the temperature had reached -30°C the test item was allowed to soak for 30 minutes.
 - (d) After soaking at -30°C for thirty minutes the test item was turned on and the transmit frequency was measured and recorded.
 - (e) Steps (b) through (d) were repeated for each temperature in 10°C steps from -30°C to +50°C.
 - (f) Steps (b) and (e) were repeated for each transmitter.
 - (g) The test item was then removed from the temperature chamber and allowed to adjust to nominal room temperature (23°C).
 - (h) The input voltage was checked and adjusted to the nominal level. The frequency was measured and recorded.
 - (i) The input voltage was then varied to 85% of its nominal level. The frequency was measured and recorded.
 - (j) The input voltage was then varied to 115% of its nominal level. The frequency was measured and recorded.
 - (k) Steps (h) through (j) were repeated for each transmitter.
- **4.3.3 RESULTS:** The frequency stability measurements are presented on pages 20 through 22. As can be seen from the data the test frequency deviation was within the 0.005 percent limit.

4.4 OCCUPIED BANDWIDTH MEASUREMENTS:

4.4.1 REQUIREMENTS: In accordance with paragraph 74.861(d)(3), for low power auxiliary stations operating in the bands allocated for TV broadcasting, the occupied bandwidth shall not be greater than that necessary for satisfactory transmission and, in any event, an emissions appearing on any discrete frequency outside the authorized band shall be attenuated, at least, 43 + 10 log(P) dB below the mean output power of the transmitting unit. In addition to paragraph 74.861(d)(3) the test item must also meet the requirements of paragraph 74.861(e)(5), the

operating bandwidth shall not exceed 200kHz.

For certification to the RSS-123 paragraph 6.3.1, the power of unwanted emissions shall be attenuated below the mean transmitter power in accordance with the following schedule:

- (1) On any frequency removed from the carrier frequency by more than 50% up to and including 100% of the authorized bandwidth: at least 25 dB.
- On any frequency removed from the carrier frequency by more than 100% up to and including 250% of the authorized bandwidth: at least 35 dB.
- On any frequency removed from the carrier frequency by more than 250% of the authorized bandwidth: at least 55 + 10 Log (P) dB.

4.4.2 PROCEDURES:

- (a) For the purpose of this test the test items were equipped with a temporary antenna port. The test item was connected to a spectrum analyzer through 40 dB of attenuation. The unmodulated carrier signal level was measured and recorded.
- (b) The test item was modulated with a 15 kHz sine wave at an input level necessary to produce 85% of the rated system deviation. A plot of the test items response was recorded.
- (c) The test item was modulated with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of the rated system deviation. A plot of the test items response was recorded.
- (d) Steps (a) through (c) were repeated separately for each of the remaining transmitters. The bandwidth of the spectrum analyzer was set to 3kHz (greater than 1% of Authorized BW).

4.4.3 RESULTS: The plots of the occupied bandwidth measured are presented on pages 23 through 31. The limits, shown on the plots, are referenced to the power measured from the unmodulated carrier, the power when modulated with the 15 kHz sine wave at 85% of the maximum deviation and when modulated with a 2500 Hz sine wave at an input 16dB greater than that necessary to produce 50% of the rated deviation. The operating bandwidth was determined using Carson's rule:

Bn = 2M + 2DK where Bn = bandwidth, M = Maximum modulating frequency and <math>D = Peak Deviation. With K = 1, M = 500Hz and D = 60kHz resulting in an operating bandwidth of 121kHz.

As can be seen from the data, the test items met all occupied bandwidth requirements.

4.5 SPURIOUS EMISSIONS AT ANTENNA TERMINAL:

4.5.1 REQUIREMENTS: Since the test item was supplied with an integral antenna, radiated spurious emissions measurements were performed in lieu of antenna terminal measurements.

4.6 FIELD STRENGTH OF SPURIOUS EMISSIONS:

4.6.1 PRELIMINARY RADIATED MEASUREMENTS:

4.6.1.1 REQUIREMENTS: Radiated emission measurements first measured using peak detection. This data will show where significant emissions are present.

4.6.1.2 PROCEDURES: The preliminary test was performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4 2003 for site attenuation.

The preliminary measurements were performed with each test item operating with the input signal unmodulated. The broadband measuring antennas were positioned at a 3 meter distance from the test item. The frequency range from 30MHz to 10th harmonic was investigated. The measurements were taken with a peak detector function employed.

4.6.1.3 RESULTS: The preliminary plots are presented on pages 32 through 43. Factors for the antennas and cables were added to the data before it was plotted.

This data is only presented for a reference, and is not used to demonstrate compliance. All significant radiated emissions were subsequently re-measured using manual techniques.

4.6.2 FINAL RADIATED EMISSIONS:

4.6.2.1 REQUIREMENTS: The field strength of any emission on any frequency remove from the operating frequency by more than 250 percent of the authorized bandwidth: shall be attenuated by at least $43 + 10 \log (P) dB$ for the FCC and at least $55 + 10 \log (P) dB$ for RS-123.

4.6.2.2 PROCEDURES: Final radiated emission measurements were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4 2003 for site attenuation.

The final radiated emission test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The test item was tested with an integral antenna.
- c) The measurement antenna was placed on an adjustable height antenna mast 3 meters from the test item.
- d) A double-ridged waveguide antenna was used above 1 GHz.
- e) The emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization.

- f) Measurements were performed with the input signal unmodulated.
- g) The maximum meter reading was recorded.
- h) The substitution method was used to measure the equivalent power into a dipole antenna. To determine the power level, another tuned dipole antenna or double ridged waveguide antenna was set in place of the test item and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was corrected to compensate for cable loss, as required, and when the ridged waveguide antenna was used increased by the difference in gain between the dipole and the waveguide antenna.

4.6.2.3 RESULTS OF OPEN FIELD RADIATED TEST: The final open

field radiated levels are presented on pages 44 through 49. The radiated emissions were measured through the 10th harmonic. All emissions measured from the test item were within the specification limits.

5.0 CONCLUSION:

It was found that the Shure Incorporated, wireless handheld microphones, did comply with the RF power output, the modulation characteristics, the frequency stability, the occupied bandwidth, and the field strength of spurious emissions requirements of FCC Part 74 for low power auxiliary station bands 518MHz to 806MHz and Industry Canada RSS-123 Low Power Licensed Radiocommunication Devices.

6.0 CERTIFICATION:

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specification.

The data presented in this test report pertains only to the test item at the test date as operated by Shure Incorporated personnel. Any electrical or mechanical modification made to the test item subsequent to the specified test date will serve to invalidate the data and void this certification.

7.0 ENDORSEMENT DISCLAIMER:

This report must not be used to claim product endorsement by NVLAP or any agency of the US Government.

TABLE I: TEST EQUIPMENT LIST

		E	LITE ELECTRON	IC ENG. INC.				Page: 1
=====								
Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Cal Inv	Due Date
	ment Type: ACCESSORIES, MISC	CELLANEOUS						
XCN0 XCN1 XDY0 XTR2 XTRD	1000 PF CAPACITOR (1000V) 1000 PF CAPACITOR (1000V) HIGH POWER DIRECTIONAL COU ESD SIMULATOR (SIEMENS) ESD GUN (SIEMENS) ATTENUATOR/SWITCH DRIVER	MICROLAB WERLATONE NOISE LABORATOR NOISE LABORATOR	HR-10N C6934 ESS-100L TC-815D	001 002 14801 DX65088 DX65113 2223A01751	0.2-25KV 0.2-30KV	02/08/06 07/19/05 07/19/05	12	02/08/07 07/19/06 07/19/06
	ment Type: AMPLIFIERS							
ADF0 APK2	WIDE BAND RF AMP PREAMPLIFIER	IFI AGILENT TECHNOL HUGHES AIRCRAFT	8449B	F075-0401 3008A01595 004	.01-1000MHZ 1-26.5GHZ 1-2GHZ	02/11/05	N/A 12 NOTE 1	02/11/06
	ment Type: ANTENNAS							
NDQ1 NSA4 NTA0	TUNED DIPOLE ANTENNA LOG-PERIODIC ANTENNA BILOG ANTENNA	AMPLIFIER RESEA CHASE EMC LTD.	3121C-DB4 AT1080 BILOG CBL611 4105	313 13264 2057 2081	400-1000MHZ 80-1000MHZ 0.03-2GHZ 1-12.4GHZ	03/02/05 08/15/05 10/01/05	NOTE 1 12	03/02/06 08/15/06 10/01/06
	ment Type: ATTENUATORS							
T1N1 T2D9	20DB, 25W ATTENUATOR	WEINSCHEL	766-10 46-20-34 46-20-34	BH5445 BN1032	DC-4GHZ DC-18HGZ DC-18GHZ	09/07/05 12/05/05 03/10/05	12	09/07/06 12/05/06 03/10/06
	ment Type: CHAMBERS (ENV)							
ETC0	TEMPERATURE CHAMBER SINGLE CHANNEL TEMPERATURE		BTR-100350 F4SH-CCA0-01	9145-17 008389-0339	-60C TO 100C PROGRAMMABLE		NOTE 1 NOTE 1	
Equip	ment Type: CONTROLLERS							
	REPLACEMENT FOR CDD0	COMPAQ	PRESARIO	MXK3391BPJ	2.5GHZ		N/A	
	ment Type: METERS							
MFC0	MICROWAVE FREQ. COUNTER DUAL POWER METER POWER SENSOR POWER SENSOR	HEWLETT PACKARD HEWLETT PACKARD HEWLETT PACKARD	5343A EPM-442A 8482A 8482A	2133A00591 US37480150 2652A13499 3318A28808	10HZ-26GHZ 0.1MHZ-50GHZ 0.1-4200MHZ 0.1-4200MHZ	05/31/05 11/18/05 03/17/05 03/17/05	12 12	05/31/06 11/18/06 03/17/06 03/17/06
	ment Type: POWER SUPPLIES							
	DC POWER SUPPLY	INSTEK	PC-3030	PC303RP1			NOTE 1	
	ment Type: PRINTERS AND PLOT	TTERS						
	LASER JET 5P (DCC-DRFI)	HEWLETT PACKARD	LJ 6P	SUSBB43325			N/A	
	ment Type: RECEIVERS							
RAC0 RACE RAF1	SPECTRUM ANALYZER RF PRESELECTOR W/ RECEIVER QUASIPEAK ADAPTER		85685A 85650A	2449A01117 3010A01194 2043A00271 3104A03410	100HZ-22GHZ 20HZ-2GHZ 0.01-1000MHZ 0.15-1300MHZ	02/07/05 08/26/05 02/07/05 12/09/04	12 12	02/07/06 08/26/06 02/07/06 02/09/06
	ment Type: SIGNAL GENERATOR:	S						
GRD0	SIGNAL GENERATOR	HEWLETT PACKARD WAVETEK	E4432B 29	US38080222 071747	250KHZ-3.0GHZ 0.0001HZ-10MHZ	09/28/05 02/15/05		09/28/06 02/15/06

Cal. Interval: Listed in Months I/O: Initial Only N/A: Not Applicable
Note 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

Photographs of the Specific Test Setups

Output Power and Spurious Emissions Test Setup

Frequency Stability vs. Temperature

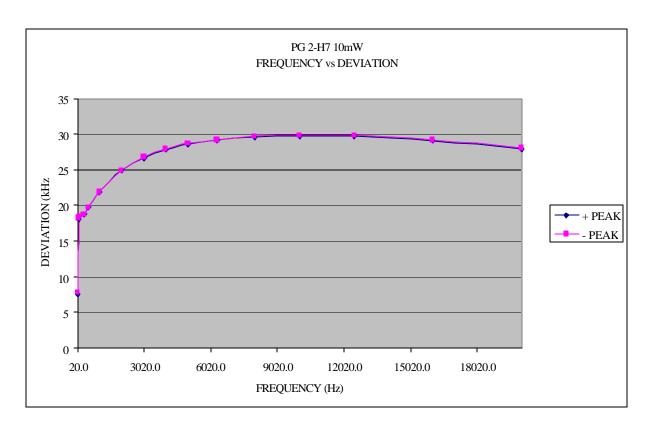
Occupied Bandwidth Test Setup

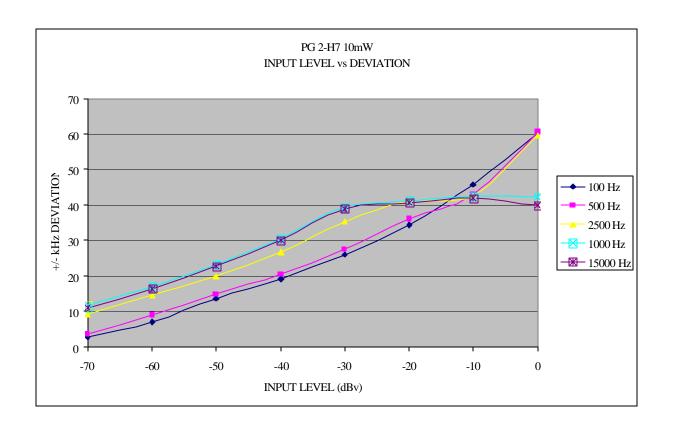
MANUFACTURER : Shure Inc.

MODEL NO. : Handheld Wireless Microphones

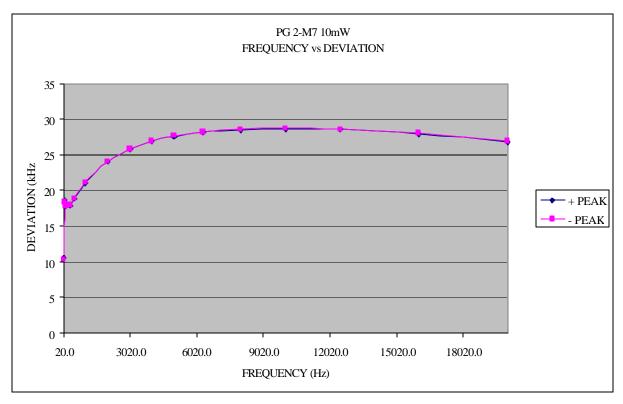
SERIAL NO. : None assigned

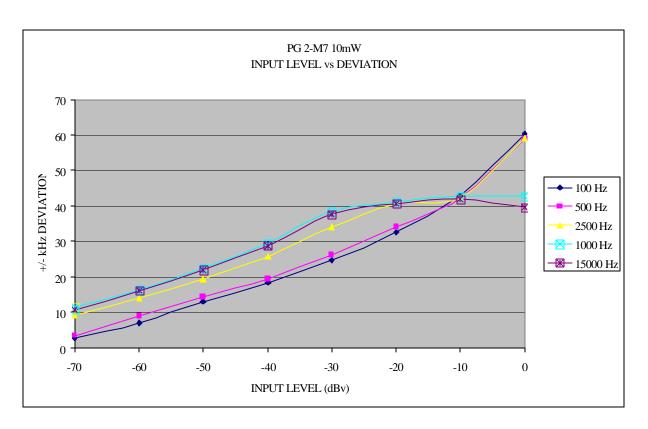
SPECIFICATION : FCC-74 and RSS-123
TEST PERFORMED : RF Output Power
DATE : November 22, 2005

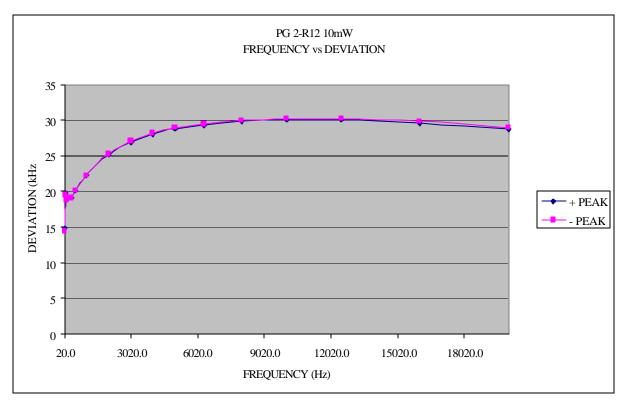

NOTES : Test Distance is 3 Meters

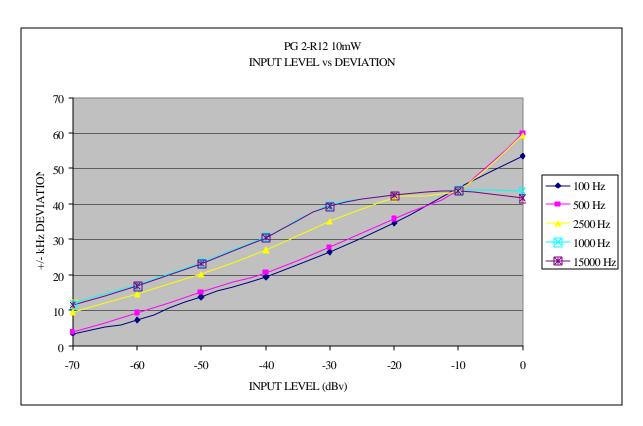

UNIT	Rated Power* (Watts)	Frequency (MHz)	Matched Sig. Gen Reading (dBm)	ERP (dBm)	Limit* (dBm)	ERP (Watts)	Limit* (Watts)
PG2-H7	.010	536.05	10.2	8.7	24.0	0.0074	0.250
PG2-M7	.010	671.18	9.1	7.3	24.0	0.0054	0.250
PG2-R12	.010	805.85	8.3	6.4	24.0	0.0043	0.250

^{*} Limit and rated power listed are for conducted power at the antenna port. Since the measurements are effective radiated power (ERP) measurements, they include the integral antenna gain (loss).


Checked BY: RICHARD E. King







MANUFACTURER : Shure Inc.

MODEL NO. : PG2-H7 and PG2-M7

SERIAL NO. : None assigned

SPECIFICATION : FCC-74 and RSS-123

TEST PERFORMED : Frequency Stability vs. Temperature

DATE : December 12, 2005

NOTES :

PG2-H7 10mW

Temperature	Measured Frequency (MHz)	Nominal Frequency (MHz)	Deviation (%)	Limit (%)	Deviation (Hz)	Limit (Hz)
+50°C	53604902	53605055	0.00029	0.005	-153	2680
+40°C	53604972	53605055	0.00015	0.005	-83	2680
+30°C	53605049	53605055	0.00001	0.005	-6	2680
+20°C	53605128	53605055	-0.00014	0.005	73	2680
+10°C	53605155	53605055	-0.00019	0.005	100	2680
+0°C	53605221	53605055	-0.00031	0.005	166	2680
-10°C	53605196	53605055	-0.00026	0.005	141	2680
-20°C	53605016	53605055	0.00007	0.005	-39	2680
-30°C	53605035	53605055	0.00004	0.005	-20	2680

PG2-M7 10mW

	Measured Frequency	Nominal Frequency	Deviation	Limit	Deviation	Limit
Temperature	(Hz)	(Hz)	(%)	(%)	(Hz)	(Hz)
+50°C	67117430	67117567	0.00020	0.005	-137	3355
+40°C	67117476	67117567	0.00014	0.005	-91	3355
+30°C	67117563	67117567	0.00001	0.005	-4	3355
+20°C	67117637	67117567	-0.00010	0.005	70	3355
+10°C	67117654	67117567	-0.00013	0.005	87	3355
+0°C	67117657	67117567	-0.00013	0.005	90	3355
-10°C	67117661	67117567	-0.00014	0.005	94	3355
-20°C	67117286	67117567	0.00042	0.005	-281	3355
-30°C	67117364	67117567	0.00030	0.005	-203	3355

Checked BY: RICHARD E. King

: Shure Inc. **MANUFACTURER** : PG1-R12 MODEL NO.

: None assigned **SERIAL NO.**

: FCC-74 and RSS-123 **SPECIFICATION**

: Frequency Stability vs. Temperature **TEST PERFORMED**

DATE : December 12, 2005

NOTES

PG2-R12 10mW

	Measured Frequency	Nominal Frequency	Deviation	Limit	Deviation	Limit
Temperature	(Hz)	(Hz)	(%)	(%)	(Hz)	(Hz)
+50°C	80584935	80585074	0.00017	0.005	-139	4029
+40°C	80585056	80585074	0.00002	0.005	-18	4029
+30°C	80585164	80585074	-0.00011	0.005	90	4029
+20°C	80585205	80585074	-0.00016	0.005	131	4029
+10°C	80585283	80585074	-0.00026	0.005	209	4029
+0°C	80585140	80585074	-0.00008	0.005	66	4029
-10°C	80584973	80585074	0.00013	0.005	-101	4029
-20°C	80584969	80585074	0.00012	0.005	-105	4029
-30°C	80584985	80585074	0.00011	0.005	-89	4029

Checked BY: RICHARD E. King

MANUFACTURER : Shure Inc.

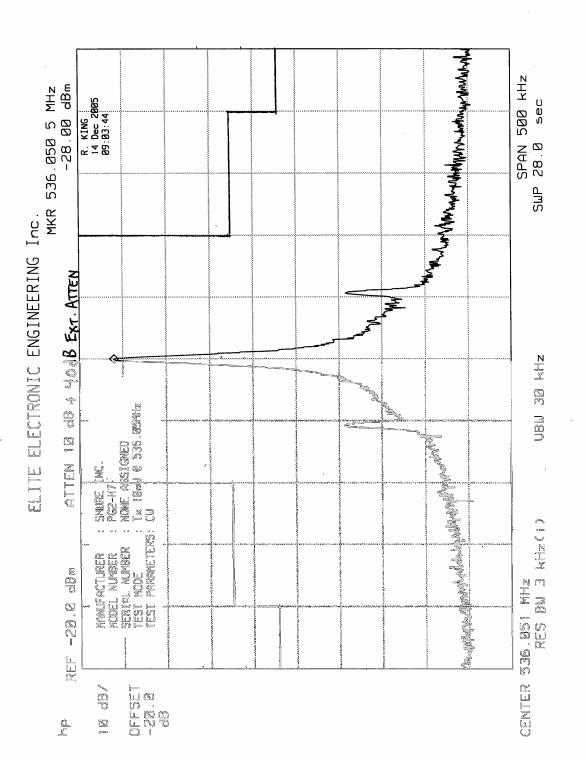
MODEL NO. : Wireless Handheld Microphones

SERIAL NOs. : None assigned

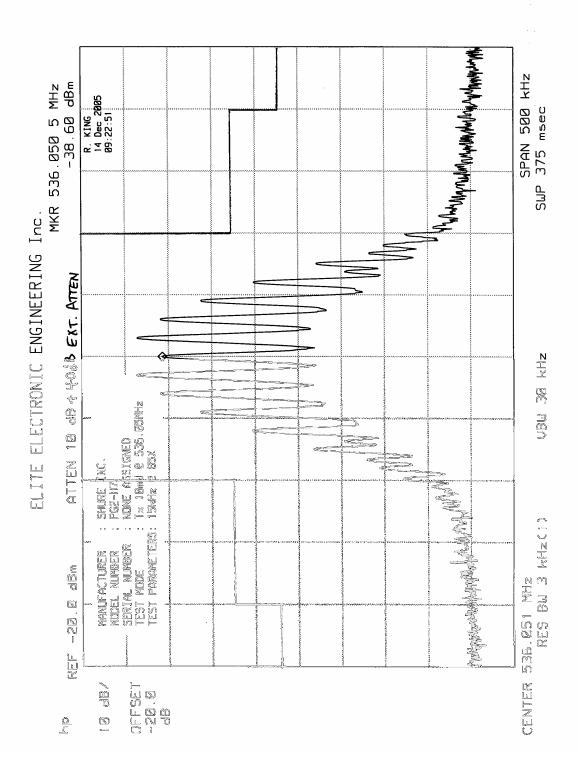
SPECIFICATION : FCC-74 and RSS-123

TEST PERFORMED : Frequency Stability vs. Voltage

DATE : December 12, 2005


NOTES :

Test Item	Nominal Frequency (Hz)	7.7VDC Measured Frequency (Hz)	10.3VDC Measured Frequency (Hz)	7.7VDC Deviation (%)	10.3VDC Deviation (%)	Limit (%)
PG2-H7	53605055	53605072	53605076	-0.00003	-0.00004	0.005
PG2-M7	67117567	67117574	67117572	-0.00001	-0.00001	0.005
PG2-R12	80585074	80585070	80585067	0.00000	0.00001	0.005


Test Item	Nominal Frequency (Hz)	7.7VDC Measured Frequency (Hz)	10.3VDC Measured Frequency (Hz)	7.7VDC Deviation (Hz)	10.3VDC Deviation (Hz)	Limit (Hz)
PG2-H7	53605055	53605072	53605076	17	21	2680
PG2-M7	67117567	67117574	67117572	7	5	3355
PG2-R12	80585074	80585070	80585067	-4	-7	4029

Checked BY: RICHARD E. King

