# **Radio Test Report**

Report No.:STS2408307W04

Issued for

Tri plus grupa d.o.o.

Banjavciceva 11, 10000 Zagreb, Croatia

| Product Name:    | Alloy Fusion v3     |
|------------------|---------------------|
| Brand Name:      | Alloy SmartHome Hub |
| Model Name:      | af3.zw8us.mw.4G     |
| Series Model(s): | N/A                 |
| FCC ID:          | 2AAU7-AF3MW         |
| Test Standards:  | FCC Part15.247      |

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.



Page 2 of 74

#### **TEST REPORT**

| Applicant's Name     | Tri plus grupa d.o.o.                  |
|----------------------|----------------------------------------|
| Address:             | Banjavciceva 11, 10000 Zagreb, Croatia |
| Manufacturer's Name: | Tri plus grupa d.o.o.                  |
| Address:             | Banjavciceva 11, 10000 Zagreb, Croatia |
| Product Description  |                                        |
| Product Name:        | Alloy Fusion v3                        |
| Brand Name:          | Alloy SmartHome Hub                    |
| Model Name           | . af3.zw8us.mw.4G                      |
| Series Model(s)      | N/A                                    |
| Test Standards       | FCC Part15.247                         |
| Test Procedure:      | ANSI C63.10-2020                       |
|                      |                                        |

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

| Date of Test:                    |                              |
|----------------------------------|------------------------------|
| Date of receipt of test item:    | 08 Aug. 2024                 |
| Date (s) of performance of tests | 08 Aug. 2024 ~ 05 Sept. 2024 |
| Date of Issue:                   | 05 Sept. 2024                |
| Test Result                      | Pass                         |

| esting Engineer :     | Aann Bu.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 61-                   | (Aaron Bu)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| echnical Manager :    | Jundy Live TESTING ADDROVAL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                     | (Tony Liu)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uthorized Signatory : | Thomas Junes                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | (Bovey Yang)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | echnical Manager :          | echnical Manager :<br>(Aaron Bu)<br>Jenty Liv<br>(Tony Liu)<br>Uthorized Signatory :<br>(Aaron Bu)<br>Jenty Liv<br>(Tony Liu)<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction |



## Table of Contents

| Table of Contents                                            |          |
|--------------------------------------------------------------|----------|
|                                                              |          |
| 1. SUMMARY OF TEST RESULTS                                   | 6        |
| 1.1 TEST FACTORY                                             | 7        |
| 1.2 MEASUREMENT UNCERTAINTY                                  | 7        |
| 2. GENERAL INFORMATION                                       | 8        |
| 2.1 GENERAL DESCRIPTION OF THE EUT                           | 8        |
| 2.2 DESCRIPTION OF THE TEST MODES                            | 10       |
| 2.3 TEST SOFTWARE AND POWER LEVEL                            | 10       |
| 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 11       |
| 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS   | 12       |
| 2.6 EQUIPMENTS LIST                                          | 13       |
| 3. EMC EMISSION TEST                                         | 14       |
| 3.1 CONDUCTED EMISSION MEASUREMENT                           | 14       |
| 3.2 TEST PROCEDURE<br>3.3 TEST SETUP                         | 15<br>15 |
| 3.4 EUT OPERATING CONDITIONS                                 | 15<br>15 |
| 3.5 TEST RESULTS                                             | 16       |
| 4. RADIATED EMISSION MEASUREMENT                             | 18       |
| 4.1 RADIATED EMISSION LIMITS                                 | 18       |
| 4.2 TEST PROCEDURE                                           | 20       |
| 4.3 TEST SETUP                                               | 21       |
| 4.4 EUT OPERATING CONDITIONS                                 | 21       |
| 4.5 FIELD STRENGTH CALCULATION                               | 22       |
| 4.6 TEST RESULTS                                             | 23       |
| 5. CONDUCTED SPURIOUS & BAND EDGE EMISSION                   | 36       |
| 5.1 LIMIT                                                    | 36       |
| 5.2 TEST PROCEDURE                                           | 36       |
| 5.3 TEST SETUP                                               | 36       |
| 5.4 EUT OPERATION CONDITIONS                                 | 36       |
| 5.5 TEST RESULTS                                             | 36       |
| 6. POWER SPECTRAL DENSITY TEST                               | 37       |
| 6.1 LIMIT                                                    | 37       |
| 6.2 TEST PROCEDURE                                           | 37       |
| 6.3 TEST SETUP                                               | 37       |



## Table of Contents

| Table of Contents                         |    |
|-------------------------------------------|----|
|                                           |    |
| 6.4 EUT OPERATION CONDITIONS              | 37 |
| 6.5 TEST RESULTS                          | 37 |
| 7. BANDWIDTH TEST                         | 38 |
| 7.1 LIMIT                                 | 38 |
| 7.2 TEST PROCEDURE                        | 38 |
| 7.3 TEST SETUP                            | 38 |
| 7.4 EUT OPERATION CONDITIONS              | 38 |
| 7.5 TEST RESULTS                          | 38 |
| 8. PEAK OUTPUT POWER TEST                 | 39 |
| 8.1 LIMIT                                 | 39 |
| 8.2 TEST PROCEDURE                        | 39 |
| 8.3 TEST SETUP                            | 40 |
| 8.4 EUT OPERATION CONDITIONS              | 40 |
| 8.5 TEST RESULTS                          | 40 |
| 9. ANTENNA REQUIREMENT                    | 41 |
| 9.1 STANDARD REQUIREMENT                  | 41 |
| 9.2 EUT ANTENNA                           | 41 |
| APPENDIX 1-TEST DATA                      | 42 |
| 1. DUTY CYCLE                             | 42 |
| 2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER | 46 |
| 3. MAXIMUM PEAK CONDUCTED OUTPUT POWER    | 50 |
| 46DB BANDWIDTH                            | 54 |
| 5. MAXIMUM POWER SPECTRAL DENSITY LEVEL   | 58 |
| 6. BAND EDGE                              | 62 |
| 7. CONDUCTED RF SPURIOUS EMISSION         | 67 |
| APPENDIX 2- EUT TEST PHOTO                | 74 |



Page 5 of 74

Report No.: STS2408307W04

# **Revision History**

| Rev. | Issue Date    | Report No.    | Effect Page | Contents      |
|------|---------------|---------------|-------------|---------------|
| 00   | 05 Sept. 2024 | STS2408307W04 | ALL         | Initial Issue |
|      |               |               | 9           | 9             |





## **1. SUMMARY OF TEST RESULTS**

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

| FCC Part 15.247,Subpart C                             |                        |      |   |  |  |  |
|-------------------------------------------------------|------------------------|------|---|--|--|--|
| Standard<br>Section                                   | Lest Item              |      |   |  |  |  |
| 15.207                                                | Conducted Emission     | PASS |   |  |  |  |
| 15.247 (a)(2)                                         | 6dB Bandwidth          | PASS |   |  |  |  |
| 15.247 (b)(3)                                         | PASS                   |      |   |  |  |  |
| 15.209 Radiated Spurious Emission                     |                        | PASS | - |  |  |  |
| 15.247 (d) Conducted Spurious & Band Edge<br>Emission |                        | PASS |   |  |  |  |
| 15.247 (e)                                            | Power Spectral Density | PASS |   |  |  |  |
| 15.205 Restricted bands of operation                  |                        | PASS |   |  |  |  |
| Part 15.247(d)/<br>Part 15.209(a) Band Edge Emission  |                        | PASS |   |  |  |  |
| 15.203                                                | PASS                   |      |   |  |  |  |

#### NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2020.



#### 1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569

Page 7 of 74

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

#### **1.2 MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expended uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

| No. | Item                              | Uncertainty |
|-----|-----------------------------------|-------------|
| 1   | RF output power, conducted        | ±0.755dB    |
| 2   | Unwanted Emissions, conducted     | ±2.874dB    |
| 3   | All emissions, radiated 9K-30MHz  | ±3.80dB     |
| 4   | All emissions, radiated 30M-1GHz  | ±4.18dB     |
| 5   | All emissions, radiated 1G-6GHz   | ±4.90dB     |
| 6   | All emissions, radiated>6G        | ±5.24dB     |
| 7   | Conducted Emission (9KHz-150KHz)  | ±2.19dB     |
| 8   | Conducted Emission (150KHz-30MHz) | ±2.53dB     |
| 9   | Occupied Channel Bandwidth        | ±3.5%       |
| 10  | Power Spectral Density, conducted | ±1.245dB    |
| 11  | Duty Cycle                        | ±3.2%       |



#### 2. GENERAL INFORMATION

#### 2.1 GENERAL DESCRIPTION OF THE EUT

| Product Name            | Alloy Fusion v3                       |                            |  |  |
|-------------------------|---------------------------------------|----------------------------|--|--|
| Brand Name              | Alloy SmartHome Hub                   |                            |  |  |
| Model Name              | af3.zw8us.mw.4G                       |                            |  |  |
| Series Model(s)         | N/A                                   |                            |  |  |
| Model Difference        | N/A                                   |                            |  |  |
|                         | The EUT is a Alloy I                  | Fusion v3                  |  |  |
|                         | Operation<br>Frequency:               | 2402~2480 MHz              |  |  |
|                         | Modulation Type:                      | GFSK                       |  |  |
|                         | Radio Technology:                     | BLE                        |  |  |
| Product Description     | Bluetooth                             |                            |  |  |
|                         | Configuration:                        | LE(Support 1M PHY, 2M PHY) |  |  |
|                         | Number Of<br>Channel:                 | 40                         |  |  |
|                         | Antenna Type: Stamped metal antenna   |                            |  |  |
|                         | Antenna Gain (dBi) 2.45 dBi           |                            |  |  |
| Channel List            | Please refer to the N                 | Note 3.                    |  |  |
| Rating                  | Input: AC 24V 0.7A                    | r                          |  |  |
|                         | Model: CR2032                         | ~                          |  |  |
| Battery                 | Rated Voltage: 3V<br>Capacity: 220mAh |                            |  |  |
| Hardware version number |                                       |                            |  |  |
|                         | SHO2-R_V2_5                           |                            |  |  |
| Software version number | smartrent_hub-v1.28.1                 |                            |  |  |
| Connecting I/O Port(s)  | Please refer to the Note 1.           |                            |  |  |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.



| Channel List |                    |         |                    |         |                    |         |                     |
|--------------|--------------------|---------|--------------------|---------|--------------------|---------|---------------------|
| Channel      | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequenc<br>y (MHz) |
| 00           | 2402               | 10      | 2422               | 20      | 2442               | 30      | 2462                |
| 01           | 2404               | 11      | 2424               | 21      | 2444               | 31      | 2464                |
| 02           | 2406               | 12      | 2426               | 22      | 2446               | 32      | 2466                |
| 03           | 2408               | 13      | 2428               | 23      | 2448               | 33      | 2468                |
| 04           | 2410               | 14      | 2430               | 24      | 2450               | 34      | 2470                |
| 05           | 2412               | 15      | 2432               | 25      | 2452               | 35      | 2472                |
| 06           | 2414               | 16      | 2434               | 26      | 2454               | 36      | 2474                |
| 07           | 2416               | 17      | 2436               | 27      | 2456               | 37      | 2476                |
| 08           | 2418               | 18      | 2438               | 28      | 2458               | 38      | 2478                |
| 09           | 2420               | 19      | 2440               | 29      | 2460               | 39      | 2480                |
|              |                    |         |                    |         |                    |         |                     |

#### 2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

| Worst Mode | Description      | Data/Modulation |
|------------|------------------|-----------------|
| Mode 1     | TX CH00(2402MHz) | 1M PHY /GFSK    |
| Mode 2     | TX CH19(2440MHz) | 1M PHY /GFSK    |
| Mode 3     | TX CH39(2480MHz) | 1M PHY /GFSK    |

| Worst Mode | Description      | Data/Modulation |
|------------|------------------|-----------------|
| Mode 4     | TX CH00(2402MHz) | 2M PHY /GFSK    |
| Mode 5     | TX CH19(2440MHz) | 2M PHY /GFSK    |
| Mode 6     | TX CH39(2480MHz) | 2M PHY /GFSK    |

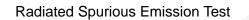
Note:

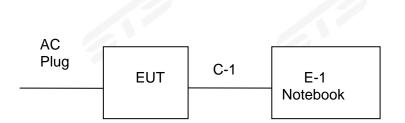
(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

(2) We have be tested for all avaiable U.S. voltage and frequencies (For 120V50/60Hz and AC 24V, 50/60Hz) for which the device is capable of operation, and the worst case of AC 24V/60Hz is shown in the report.

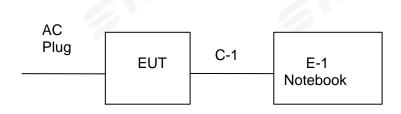
#### For AC Conducted Emission

|                       | Test Case              |
|-----------------------|------------------------|
| AC Conducted Emission | Mode 7 : Keeping BT TX |


#### 2.3 TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

| RF Function | Туре       | Mode Or<br>Modulation<br>type | ANT<br>Gain(dBi) | Power<br>Class | Software For<br>Testing |
|-------------|------------|-------------------------------|------------------|----------------|-------------------------|
| BLE(With 2M | BLE_1M PHY | GFSK                          | 2.45             | 9              | SecureCRT               |
| PHY)        | BLE_2M PHY | GFSK                          | 2.45             | 9              | SecureCRT               |




# 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED





**Conducted Emission Test** 





















#### 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

|    | Necessary accessories |           |           |                |        |      |  |  |  |  |
|----|-----------------------|-----------|-----------|----------------|--------|------|--|--|--|--|
| lt | em                    | Equipment | Mfr/Brand | Model/Type No. | Length | Note |  |  |  |  |
|    |                       | N/A       | N/A N/A   |                | N/A    | N/A  |  |  |  |  |
|    |                       |           |           |                |        |      |  |  |  |  |
|    |                       |           |           |                |        |      |  |  |  |  |
|    |                       |           |           |                |        |      |  |  |  |  |

| Item | Equipment | Mfr/Brand | Model/Type No. | Length | Note |
|------|-----------|-----------|----------------|--------|------|
| E-1  | Notebook  | DELL      | VOSTRO.3800    | N/A    | N/A  |
| C-1  | USB Cable | HUA WEI   | 100cm          | N/A    | N/A  |
|      |           |           |                |        |      |
|      | <i></i>   |           |                |        |      |

Note:

- (1) For detachable type I/O cable should be specified the length in cm in <sup>r</sup>Length <sup>a</sup> column.
- (2) "YES" is means "with core"; "NO" is means "without core".



## 2.6 EQUIPMENTS LIST

|                          | RF Rad                         | iation Test Equipmer | nt             |                     |                     |
|--------------------------|--------------------------------|----------------------|----------------|---------------------|---------------------|
| Kind of Equipment        | Manufacturer                   | Type No.             | Serial No.     | Last<br>Calibration | Calibrated<br>Until |
| Temperature & Humidity   | SW-108                         | SuWei                | N/A            | 2024.03.15          | 2025.03.14          |
| Pre-Amplifier(0.1M-3GHz) | EM                             | EM330                | 060665         | 2024.02.23          | 2025.02.22          |
| Pre-Amplifier(1G-18GHz)  | SKET                           | LNPA-01018G-45       | SK2018080901   | 2023.09.26          | 2024.09.25          |
| Pre-Amplifier(18G-40GHz) | SKET                           | LNPA_1840-50         | SK2018101801   | 2024.02.23          | 2025.02.22          |
| Active loop Antenna      | ZHINAN                         | ZN30900C             | 16035          | 2023.02.28          | 2025.02.27          |
| Bilog Antenna            | TESEQ                          | CBL6111D             | 34678          | 2022.09.30          | 2024.09.29          |
| Horn Antenna             | SCHWARZBECK                    | BBHA 9120D           | 02014          | 2023.09.24          | 2025.09.23          |
| Horn Antenna             | A-INFOMW                       | LB-180400-KF         | J211020657     | 2023.10.10          | 2025.10.09          |
| Positioning Controller   | MF                             | MF-7802              | MF-780208587   | N/A                 | N/A                 |
| Signal Analyzer          | R&S                            | FSV 40-N             | 101823         | 2023.09.26          | 2024.09.25          |
| Switch Control Box       | Switch Control Box N/A         |                      | N/A            | N/A                 | N/A                 |
| Filter Box               | BALUN Technology               | SU319E               | BL-SZ1530051   | N/A                 | N/A                 |
| Antenna Mast             | ntenna Mast MF                 |                      | N/A            | N/A                 | N/A                 |
| Turn Table               | MF                             | SC100_1              | 60531          | N/A                 | N/A                 |
| AC Power Source          | APC                            | KDF-11010G           | F214050035     | N/A                 | N/A                 |
| DC power supply          | HONGSHENGFENG                  | DPS-305AF            | 17064939       | 2023.09.26          | 2024.09.25          |
| Test SW                  | EZ-EMC                         |                      | Ver.STSLAB-03/ | A1 RE               |                     |
|                          | Condu                          | ction Test equipment |                |                     |                     |
| Kind of Equipment        | Manufacturer                   | Type No.             | Serial No.     | Last calibration    | Calibrated<br>until |
| Test Receiver            | R&S                            | ESCI                 | 101427         | 2023.09.25          | 2024.09.24          |
| Limtter                  | CYBERTEK                       | EM5010               | N/A            | 2023.09.25          | 2024.09.24          |
| LISN                     | R&S                            | ENV216               | 101242         | 2023.09.25          | 2024.09.24          |
| LISN                     | EMCO                           | 3810/2NM             | 23625          | 2023.09.25          | 2024.09.24          |
| Temperature & Humidity   | SW-108                         | SuWei                | N/A            | 2024.03.15          | 2025.03.14          |
| Test SW                  | EZ-EMC                         |                      | Ver.STSLAB-03/ | A1 CE               | S                   |
|                          | RF                             | Connected Test       |                |                     |                     |
| Kind of Equipment        | Kind of Equipment Manufacturer |                      | Serial No.     | Last calibration    | Calibrated<br>until |
| Signal Analyzer          | Agilent                        | N9020A               | MY51510623     | 2024.02.23          | 2025.02.22          |
| Power detector group     | Keysight                       | NW2021031            | N/A            | 2023.09.26          | 2024.09.25          |
| Switch control box       | ŃŴ                             | MW100-RFCB           | N/A            | N/A                 | N/A                 |
| Temperature & Humidity   | SW-108                         | SuWei                | N/A            | 2024.03.15          | 2025.03.14          |
| Test SW                  | MW                             |                      | MTS 8310_2.0   | 0.0.0               | •                   |



#### 3. EMC EMISSION TEST

### 3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

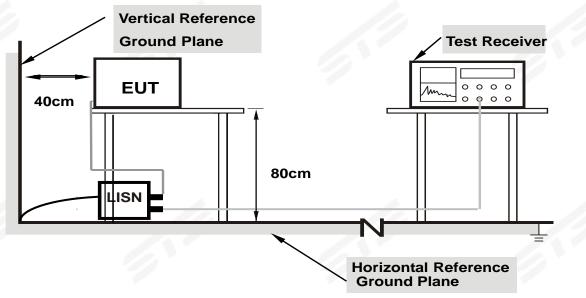
| FREQUENCY (MHz) | Conducted Emission limit (dBuV) |           |  |
|-----------------|---------------------------------|-----------|--|
|                 | Quasi-peak                      | Average   |  |
| 0.15 -0.5       | 66 - 56 *                       | 56 - 46 * |  |
| 0.50 -5.0       | 56.00                           | 46.00     |  |
| 5.0 -30.0       | 60.00                           | 50.00     |  |

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

#### The following table is the setting of the receiver


| Receiver Parameters | Setting  |  |  |
|---------------------|----------|--|--|
| Attenuation         | 10 dB    |  |  |
| Start Frequency     | 0.15 MHz |  |  |
| Stop Frequency      | 30 MHz   |  |  |
| IF Bandwidth        | 9 kHz    |  |  |



#### 3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

#### 3.3 TEST SETUP



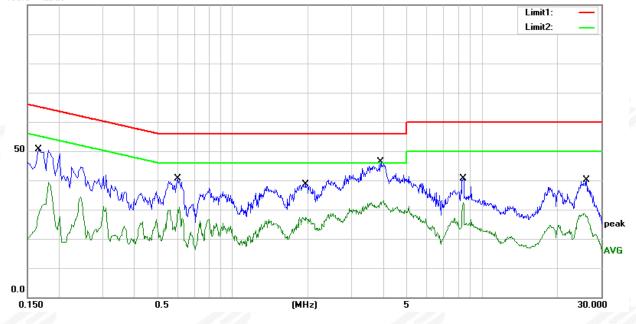
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

#### 3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.




3.5 TEST RESULTS

| Temperature:  | <b>25.1℃</b> | Relative Humidity: | 59%RH |
|---------------|--------------|--------------------|-------|
| Test Voltage: | AC 120V/60Hz | Phase:             | L     |
| Test Mode:    | Mode 7       | 9                  | 9.    |

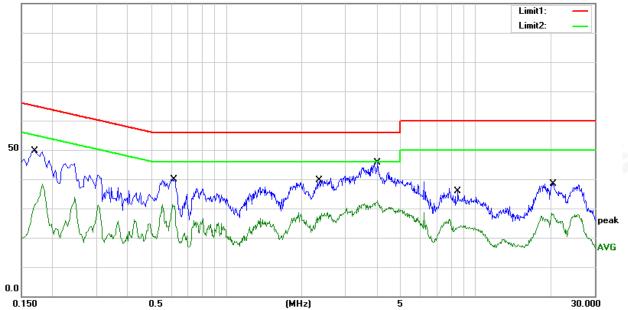
| No. | Frequency | Reading | Correct        | Result | Limit  | Margin | Remark |
|-----|-----------|---------|----------------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(d<br>B) | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1660    | 30.72   | 19.78          | 50.50  | 65.16  | -14.66 | QP     |
| 2   | 0.1660    | 16.95   | 19.78          | 36.73  | 55.16  | -18.43 | AVG    |
| 3   | 0.6020    | 20.69   | 19.91          | 40.60  | 56.00  | -15.40 | QP     |
| 4   | 0.6020    | 10.90   | 19.91          | 30.81  | 46.00  | -15.19 | AVG    |
| 5   | 1.9500    | 18.72   | 19.79          | 38.51  | 56.00  | -17.49 | QP     |
| 6   | 1.9500    | 7.56    | 19.79          | 27.35  | 46.00  | -18.65 | AVG    |
| 7   | 3.9340    | 26.60   | 19.84          | 46.44  | 56.00  | -9.56  | QP     |
| 8   | 3.9340    | 13.27   | 19.84          | 33.11  | 46.00  | -12.89 | AVG    |
| 9   | 8.3900    | 20.65   | 20.05          | 40.70  | 60.00  | -19.30 | QP     |
| 10  | 8.3900    | 12.34   | 20.05          | 32.39  | 50.00  | -17.61 | AVG    |
| 11  | 26.2180   | 19.90   | 20.15          | 40.05  | 60.00  | -19.95 | QP     |
| 12  | 26.2180   | 8.41    | 20.15          | 28.56  | 50.00  | -21.44 | AVG    |

#### Remark:

All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)
 100.0 dBuV






Page 17 of 74

Report No.: STS2408307W04

| Temperature:  | <b>25.1</b> ℃ | Relative Humidity: | 59%RH |
|---------------|---------------|--------------------|-------|
| Test Voltage: | AC 120V/60Hz  | Phase:             | N     |
| Test Mode:    | Mode 7        | 17                 | 12    |

| No. | Frequency | Reading | Correct        | Result | Limit  | Margin | Remark |
|-----|-----------|---------|----------------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(d<br>B) | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1700    | 29.91   | 19.78          | 49.69  | 64.96  | -15.27 | QP     |
| 2   | 0.1700    | 18.69   | 19.78          | 38.47  | 54.96  | -16.49 | AVG    |
| 3   | 0.6140    | 20.08   | 19.90          | 39.98  | 56.00  | -16.02 | QP     |
| 4   | 0.6140    | 11.54   | 19.90          | 31.44  | 46.00  | -14.56 | AVG    |
| 5   | 2.3660    | 19.85   | 19.81          | 39.66  | 56.00  | -16.34 | QP     |
| 6   | 2.3660    | 8.70    | 19.81          | 28.51  | 46.00  | -17.49 | AVG    |
| 7   | 4.0420    | 25.86   | 19.84          | 45.70  | 56.00  | -10.30 | QP     |
| 8   | 4.0420    | 12.74   | 19.84          | 32.58  | 46.00  | -13.42 | AVG    |
| 9   | 8.4740    | 15.76   | 20.06          | 35.82  | 60.00  | -24.18 | QP     |
| 10  | 8.4740    | 6.42    | 20.06          | 26.48  | 50.00  | -23.52 | AVG    |
| 11  | 20.4260   | 17.89   | 20.49          | 38.38  | 60.00  | -21.62 | QP     |
| 12  | 20.4260   | 7.92    | 20.49          | 28.41  | 50.00  | -21.59 | AVG    |

- All readings are Quasi-Peak and Average values
  Margin = Result (Result =Reading + Factor)–Limit
  Factor=LISN factor+Cable loss+Limiter (10dB)
  100.0 dBuV





#### 4. RADIATED EMISSION MEASUREMENT

#### **4.1 RADIATED EMISSION LIMITS**

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part 15.205(a)&209(a) limit in the table and according to ANSI C63.10-2020 below has to be followed.

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

|                               | (dBuV/m) (at 3M)            |                  |   |
|-------------------------------|-----------------------------|------------------|---|
| FREQUENCY (MHz)               | PEAK                        | AVERAGE          |   |
| Above 1000                    | 74 54                       |                  |   |
| Notes:                        |                             | / /              | 1 |
| (1) The limit for radiated te | est was performed according | to FCC PART 15C. |   |
| (2) The tighter limit applies | s at the band edges.        |                  |   |

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### LIMITS OF RESTRICTED FREQUENCY BANDS

| FREQUENCY (MHz)          | FREQUENCY (MHz)     | FREQUENCY (MHz) | FREQUENCY (GHz) |
|--------------------------|---------------------|-----------------|-----------------|
| 0.090-0.110 16.42-16.423 |                     | 399.9-410       | 4.5-5.15        |
| 0.495-0.505              | 16.69475-16.69525   | 608-614         | 5.35-5.46       |
| 2.1735-2.1905            | 16.80425-16.80475   | 960-1240        | 7.25-7.75       |
| 4.125-4.128              | 25.5-25.67          | 1300-1427       | 8.025-8.5       |
| 4.17725-4.17775          | 37.5-38.25          | 1435-1626.5     | 9.0-9.2         |
| 4.20725-4.20775          | 73-74.6             | 1645.5-1646.5   | 9.3-9.5         |
| 6.215-6.218              | 74.8-75.2           | 1660-1710       | 10.6-12.7       |
| 6.26775-6.26825          | 108-121.94          | 1718.8-1722.2   | 13.25-13.4      |
| 6.31175-6.31225          | 123-138             | 2200-2300       | 14.47-14.5      |
| 8.291-8.294              | 149.9-150.05        | 2310-2390       | 15.35-16.2      |
| 8.362-8.366              | 156.52475-156.52525 | 2483.5-2500     | 17.7-21.4       |
| 8.37625-8.38675          | 156.7-156.9         | 2690-2900       | 22.01-23.12     |
| 8.41425-8.41475          | 162.0125-167.17     | 3260-3267       | 23.6-24.0       |
| 12.29-12.293             | 167.72-173.2        | 3332-3339       | 31.2-31.8       |
| 12.51975-12.52025        | 240-285             | 3345.8-3358     | 36.43-36.5      |
| 12.57675-12.57725        | 322-335.4           | 3600-4400       | Above 38.6      |
| 13.36-13.41              |                     |                 |                 |



For Radiated Emission

| Spectrum Parameter              | Setting                       |
|---------------------------------|-------------------------------|
| Attenuation                     | Auto                          |
| Detector                        | Peak/QP/AV                    |
| Start Frequency                 | 9 KHz/150KHz(Peak/QP/AV)      |
| Stop Frequency                  | 150KHz/30MHz(Peak/QP/AV)      |
|                                 | 200Hz (From 9kHz to 0.15MHz)/ |
| RB / VB (emission in restricted | 9KHz (From 0.15MHz to 30MHz); |
| band)                           | 200Hz (From 9kHz to 0.15MHz)/ |
|                                 | 9KHz (From 0.15MHz to 30MHz)  |

| Spectrum Parameter              | Setting            |
|---------------------------------|--------------------|
| Attenuation                     | Auto               |
| Detector                        | Peak/QP            |
| Start Frequency                 | 30 MHz(Peak/QP)    |
| Stop Frequency                  | 1000 MHz (Peak/QP) |
| RB / VB (emission in restricted | 120 KHz / 300 KHz  |
| band)                           | 120 KHZ / 300 KHZ  |

| Spectrum Parameter              | Setting                       |  |
|---------------------------------|-------------------------------|--|
| Attenuation                     | Auto                          |  |
| Detector                        | Peak/AV                       |  |
| Start Frequency                 | 1000 MHz(Peak/AV)             |  |
| Stop Frequency                  | 10th carrier hamonic(Peak/AV) |  |
| RB / VB (emission in restricted | 1 MHz / 3 MHz(Peak)           |  |
| band)                           | 1 MHz/1/T MHz(AVG)            |  |
| or Destricted hand              |                               |  |

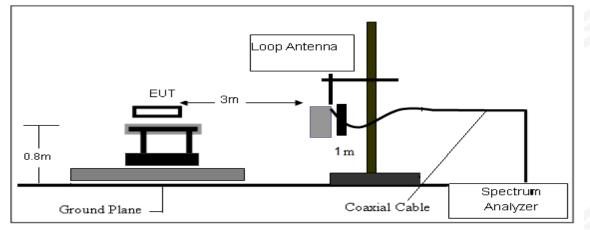
For Restricted band

|  | Spectrum Parameter   | Setting                           |  |  |
|--|----------------------|-----------------------------------|--|--|
|  | Detector             | Peak/AV                           |  |  |
|  | Start/Stop Frequency | Lower Band Edge: 2310 to 2410 MHz |  |  |
|  |                      | Upper Band Edge: 2475 to 2500 MHz |  |  |
|  | RB / VB              | 1 MHz / 3 MHz(Peak)               |  |  |
|  | RD / VD              | 1 MHz/1/T MHz(AVG)                |  |  |

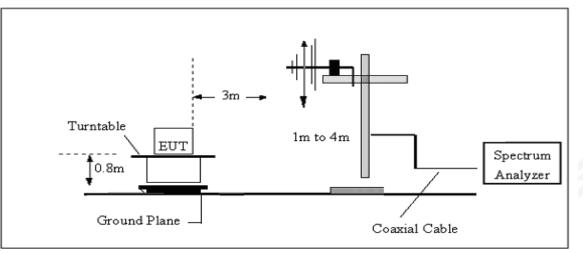


| Receiver Parameter     | Setting                              |
|------------------------|--------------------------------------|
| Start ~ Stop Frequency | 9kHz~90kHz / RB 200Hz for PK & AV    |
| Start ~ Stop Frequency | 90kHz~110kHz / RB 200Hz for QP       |
| Start ~ Stop Frequency | 110kHz~490kHz / RB 200Hz for PK & AV |
| Start ~ Stop Frequency | 490kHz~30MHz / RB 9kHz for QP        |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP     |

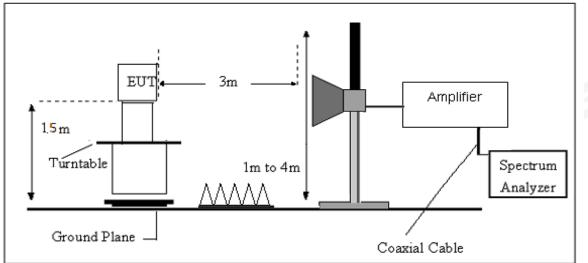
#### 4.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.




## 4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



#### (B) Radiated Emission Test-Up Frequency 30MHz~1GHz



(C) Radiated Emission Test-Up Frequency Above 1GHz



<sup>4.4</sup> EUT OPERATING CONDITIONS Please refer to section 3.4 of this report.



#### 4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor


For example

| Frequency | FS       | RA       | AF   | CL   | AG   | Factor |
|-----------|----------|----------|------|------|------|--------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB) | (dB) | (dB) | (dB)   |
| 300       | 40       | 58.1     | 12.2 | 1.6  | 31.9 | -18.1  |

Factor=AF+CL-AG











#### 4.6 TEST RESULTS

(Between 9KHz – 30 MHz)

| Temperature:  | <b>23.4</b> ℃ | Relative Humidtity: | 60%RH |
|---------------|---------------|---------------------|-------|
| Test Voltage: | AC 24V/60Hz   | Polarization:       |       |
| Test Mode:    | TX Mode       |                     |       |

| Freq. | Reading  | Limit    | Margin | State |
|-------|----------|----------|--------|-------|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   |
|       |          |          |        | PASS  |
|       |          |          |        | PASS  |

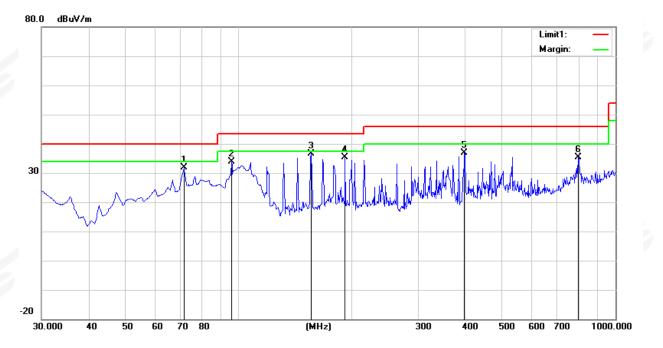
#### Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.




#### (30MHz -1000MHz)

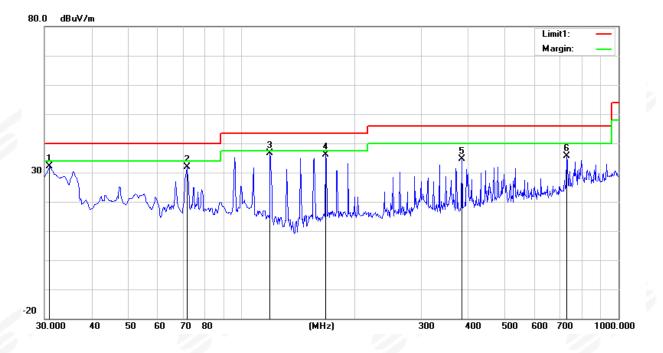
1M PHY

|               | and the second se |                    |            |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|
| Temperature:  | <b>23.4</b> ℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relative Humidity: | 60%RH      |
| Test Voltage: | AC 24V/60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phase:             | Horizontal |
| Test Mode:    | Mode 1/2/3 (Mode 1 worst mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |            |

| No. | Frequency | Reading | Correct          | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|------------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/<br>m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 71.7100   | 56.34   | -24.56           | 31.78    | 40.00    | -8.22  | peak   |
| 2   | 95.9600   | 54.48   | -20.67           | 33.81    | 43.50    | -9.69  | peak   |
| 3   | 156.1000  | 55.35   | -18.66           | 36.69    | 43.50    | -6.81  | peak   |
| 4   | 191.9900  | 56.47   | -21.04           | 35.43    | 43.50    | -8.07  | peak   |
| 5   | 398.6000  | 48.06   | -11.20           | 36.86    | 46.00    | -9.14  | peak   |
| 6   | 798.2400  | 37.50   | -2.03            | 35.47    | 46.00    | -10.53 | peak   |

- Margin = Result (Result = Reading + Factor )–Limit
  Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.





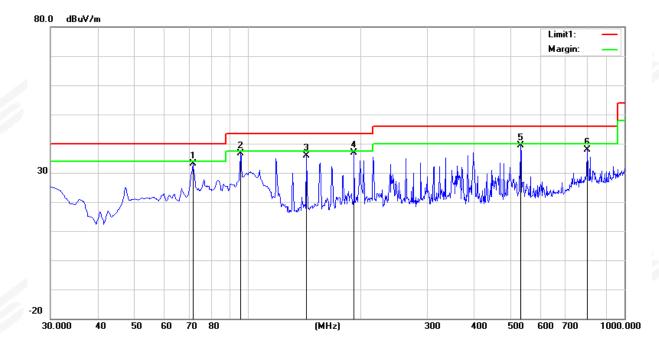

Report No.: STS2408307W04

| Temperature:  | <b>23.4</b> ℃               | Relative Humidity:             | 60%RH    |  |  |  |  |  |
|---------------|-----------------------------|--------------------------------|----------|--|--|--|--|--|
| Test Voltage: | AC 24V/60Hz                 | Phase:                         | Vertical |  |  |  |  |  |
| Test Mode:    | Mode 1/2/3 (Mode 1 worst mo | Node 1/2/3 (Mode 1 worst mode) |          |  |  |  |  |  |

| No. | Frequency | Reading | Correct          | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|------------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/<br>m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 30.9700   | 45.38   | -13.35           | 32.03    | 40.00    | -7.97  | peak   |
| 2   | 71.7100   | 56.49   | -24.56           | 31.93    | 40.00    | -8.07  | peak   |
| 3   | 119.2400  | 55.10   | -18.38           | 36.72    | 43.50    | -6.78  | peak   |
| 4   | 167.7400  | 55.81   | -19.58           | 36.23    | 43.50    | -7.27  | peak   |
| 5   | 384.0500  | 46.51   | -11.99           | 34.52    | 46.00    | -11.48 | peak   |
| 6   | 730.3400  | 38.12   | -2.46            | 35.66    | 46.00    | -10.34 | peak   |

- 1. Margin = Result (Result = Reading + Factor )–Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.






#### 2M PHY

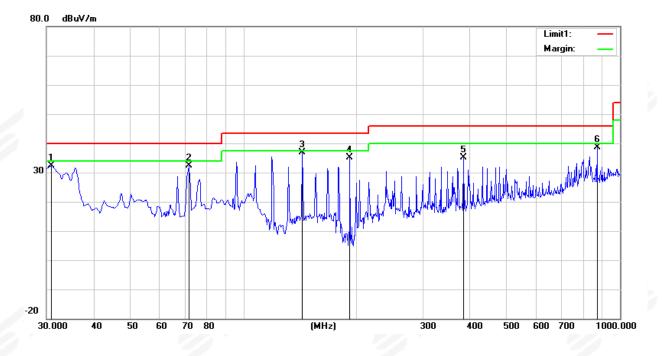
| Temperature:  | <b>23.4</b> ℃                  | Relative Humidity: | 60%RH      |  |  |  |
|---------------|--------------------------------|--------------------|------------|--|--|--|
| Test Voltage: | AC 24V/60Hz                    | Phase:             | Horizontal |  |  |  |
| Test Mode:    | Mode 4/5/6 (Mode 4 worst mode) |                    |            |  |  |  |

| No. | Frequency | Reading | Correct          | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|------------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/<br>m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 71.7100   | 57.57   | -24.56           | 33.01    | 40.00    | -6.99  | peak   |
| 2   | 95.9600   | 57.41   | -20.67           | 36.74    | 43.50    | -6.76  | peak   |
| 3   | 143.4900  | 53.99   | -18.23           | 35.76    | 43.50    | -7.74  | peak   |
| 4   | 191.9900  | 57.96   | -21.04           | 36.92    | 43.50    | -6.58  | peak   |
| 5   | 531.4900  | 46.78   | -7.37            | 39.41    | 46.00    | -6.59  | peak   |
| 6   | 796.3000  | 39.82   | -2.02            | 37.80    | 46.00    | -8.20  | peak   |

- 1. Margin = Result (Result = Reading + Factor )-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.






Page 27 of 74

Report No.: STS2408307W04

| Temperature:  | <b>23.4</b> ℃               | Relative Humidity: | 60%RH    |
|---------------|-----------------------------|--------------------|----------|
| Test Voltage: | AC 24V/60Hz                 | Phase:             | Vertical |
| Test Mode:    | Mode 4/5/6 (Mode 4 worst mo | ode)               | 12       |

| No. | Frequency | Reading | Correct          | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|------------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/<br>m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 30.9700   | 45.85   | -13.35           | 32.50    | 40.00    | -7.50  | peak   |
| 2   | 71.7100   | 56.90   | -24.56           | 32.34    | 40.00    | -7.66  | peak   |
| 3   | 143.4900  | 55.06   | -18.23           | 36.83    | 43.50    | -6.67  | peak   |
| 4   | 191.9900  | 56.18   | -21.04           | 35.14    | 43.50    | -8.36  | peak   |
| 5   | 384.0500  | 47.23   | -11.99           | 35.24    | 46.00    | -10.76 | peak   |
| 6   | 870.0200  | 39.15   | -0.53            | 38.62    | 46.00    | -7.38  | peak   |

- 1. Margin = Result (Result = Reading + Factor )–Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.





# (1GHz-25GHz) Spurious emission Requirements

1M PHY GFSK

|           |                  |           |       |                   |                     | •                 |          |        |          |            |
|-----------|------------------|-----------|-------|-------------------|---------------------|-------------------|----------|--------|----------|------------|
| Frequency | Meter<br>Reading | Amplifier | Loss  | Antenna<br>Factor | Corrected<br>Factor | Emission<br>Level | Limits   | Margin | Detector | Comment    |
| (MHz)     | (dBµV)           | (dB)      | (dB)  | (dB/m)            | (dB)                | (dBµV/m)          | (dBµV/m) | (dB)   | Туре     |            |
|           |                  |           |       | Low Cł            | nannel (GFSK/       | 2402 MHz)         |          |        |          |            |
| 3264.71   | 61.93            | 44.70     | 6.70  | 28.20             | -9.80               | 52.13             | 74.00    | -21.87 | PK       | Vertical   |
| 3264.71   | 50.30            | 44.70     | 6.70  | 28.20             | -9.80               | 40.50             | 54.00    | -13.50 | AV       | Vertical   |
| 3264.70   | 62.15            | 44.70     | 6.70  | 28.20             | -9.80               | 52.35             | 74.00    | -21.65 | PK       | Horizontal |
| 3264.70   | 50.22            | 44.70     | 6.70  | 28.20             | -9.80               | 40.42             | 54.00    | -13.58 | AV       | Horizontal |
| 4804.56   | 59.49            | 44.20     | 9.04  | 31.60             | -3.56               | 55.93             | 74.00    | -18.07 | PK       | Vertical   |
| 4804.56   | 50.33            | 44.20     | 9.04  | 31.60             | -3.56               | 46.77             | 54.00    | -7.23  | AV       | Vertical   |
| 4804.32   | 58.42            | 44.20     | 9.04  | 31.60             | -3.56               | 54.86             | 74.00    | -19.14 | PK       | Horizontal |
| 4804.32   | 49.92            | 44.20     | 9.04  | 31.60             | -3.56               | 46.36             | 54.00    | -7.64  | AV       | Horizontal |
| 5359.84   | 48.89            | 44.20     | 9.86  | 32.00             | -2.34               | 46.55             | 74.00    | -27.45 | PK       | Vertical   |
| 5359.84   | 39.27            | 44.20     | 9.86  | 32.00             | -2.34               | 36.93             | 54.00    | -17.07 | AV       | Vertical   |
| 5359.63   | 47.17            | 44.20     | 9.86  | 32.00             | -2.34               | 44.83             | 74.00    | -29.17 | PK       | Horizontal |
| 5359.63   | 38.22            | 44.20     | 9.86  | 32.00             | -2.34               | 35.88             | 54.00    | -18.12 | AV       | Horizontal |
| 7205.79   | 53.89            | 43.50     | 11.40 | 35.50             | 3.40                | 57.29             | 74.00    | -16.71 | PK       | Vertical   |
| 7205.79   | 44.06            | 43.50     | 11.40 | 35.50             | 3.40                | 47.46             | 54.00    | -6.54  | AV       | Vertical   |
| 7205.79   | 54.64            | 43.50     | 11.40 | 35.50             | 3.40                | 58.04             | 74.00    | -15.96 | PK       | Horizontal |
| 7205.79   | 43.97            | 43.50     | 11.40 | 35.50             | 3.40                | 47.37             | 54.00    | -6.63  | AV       | Horizontal |
|           |                  |           |       | Middle C          | Channel (GFSK       | (/2440 MHz)       |          |        |          |            |
| 3262.99   | 61.37            | 44.70     | 6.70  | 28.20             | -9.80               | 51.57             | 74.00    | -22.43 | PK       | Vertical   |
| 3262.99   | 51.20            | 44.70     | 6.70  | 28.20             | -9.80               | 41.40             | 54.00    | -12.60 | AV       | Vertical   |
| 3263.05   | 61.23            | 44.70     | 6.70  | 28.20             | -9.80               | 51.43             | 74.00    | -22.57 | PK       | Horizontal |
| 3263.05   | 49.86            | 44.70     | 6.70  | 28.20             | -9.80               | 40.06             | 54.00    | -13.94 | AV       | Horizontal |
| 4880.08   | 58.60            | 44.20     | 9.04  | 31.60             | -3.56               | 55.04             | 74.00    | -18.96 | PK       | Vertical   |
| 4880.08   | 49.64            | 44.20     | 9.04  | 31.60             | -3.56               | 46.08             | 54.00    | -7.92  | AV       | Vertical   |
| 4880.06   | 58.69            | 44.20     | 9.04  | 31.60             | -3.56               | 55.13             | 74.00    | -18.87 | PK       | Horizontal |
| 4880.06   | 50.23            | 44.20     | 9.04  | 31.60             | -3.56               | 46.67             | 54.00    | -7.33  | AV       | Horizontal |
| 5357.17   | 48.64            | 44.20     | 9.86  | 32.00             | -2.34               | 46.30             | 74.00    | -27.70 | PK       | Vertical   |
| 5357.17   | 38.94            | 44.20     | 9.86  | 32.00             | -2.34               | 36.60             | 54.00    | -17.40 | AV       | Vertical   |
| 5357.39   | 48.02            | 44.20     | 9.86  | 32.00             | -2.34               | 45.68             | 74.00    | -28.32 | PK       | Horizontal |
| 5356.98   | 38.19            | 44.20     | 9.86  | 32.00             | -2.34               | 35.85             | 54.00    | -18.15 | AV       | Horizontal |
| 7320.85   | 53.94            | 43.50     | 11.40 | 35.50             | 3.40                | 57.34             | 74.00    | -16.66 | PK       | Vertical   |
| 7320.85   | 43.60            | 43.50     | 11.40 | 35.50             | 3.40                | 47.00             | 54.00    | -7.00  | AV       | Vertical   |
| 7320.52   | 54.62            | 43.50     | 11.40 | 35.50             | 3.40                | 58.02             | 74.00    | -15.98 | PK       | Horizontal |
| 7320.52   | 44.38            | 43.50     | 11.40 | 35.50             | 3.40                | 47.78             | 54.00    | -6.22  | AV       | Horizontal |



#### Report No.: STS2408307W04

|         |       |       |       | High Chai | nnel (GFSK/ | 2480 MHz) |       |        |    |            |
|---------|-------|-------|-------|-----------|-------------|-----------|-------|--------|----|------------|
| 3264.69 | 62.21 | 44.70 | 6.70  | 28.20     | -9.80       | 52.41     | 74.00 | -21.59 | PK | Vertical   |
| 3264.69 | 50.39 | 44.70 | 6.70  | 28.20     | -9.80       | 40.59     | 54.00 | -13.41 | AV | Vertical   |
| 3264.66 | 61.91 | 44.70 | 6.70  | 28.20     | -9.80       | 52.11     | 74.00 | -21.89 | PK | Horizontal |
| 3264.66 | 50.39 | 44.70 | 6.70  | 28.20     | -9.80       | 40.59     | 54.00 | -13.41 | AV | Horizontal |
| 4960.37 | 58.36 | 44.20 | 9.04  | 31.60     | -3.56       | 54.80     | 74.00 | -19.20 | PK | Vertical   |
| 4960.37 | 50.05 | 44.20 | 9.04  | 31.60     | -3.56       | 46.49     | 54.00 | -7.51  | AV | Vertical   |
| 4960.55 | 59.42 | 44.20 | 9.04  | 31.60     | -3.56       | 55.86     | 74.00 | -18.14 | PK | Horizontal |
| 4960.55 | 49.12 | 44.20 | 9.04  | 31.60     | -3.56       | 45.56     | 54.00 | -8.44  | AV | Horizontal |
| 5359.80 | 49.30 | 44.20 | 9.86  | 32.00     | -2.34       | 46.96     | 74.00 | -27.04 | PK | Vertical   |
| 5359.80 | 39.95 | 44.20 | 9.86  | 32.00     | -2.34       | 37.61     | 54.00 | -16.39 | AV | Vertical   |
| 5359.76 | 47.87 | 44.20 | 9.86  | 32.00     | -2.34       | 45.53     | 74.00 | -28.47 | PK | Horizontal |
| 5359.76 | 38.88 | 44.20 | 9.86  | 32.00     | -2.34       | 36.54     | 54.00 | -17.46 | AV | Horizontal |
| 7439.79 | 54.62 | 43.50 | 11.40 | 35.50     | 3.40        | 58.02     | 74.00 | -15.98 | PK | Vertical   |
| 7439.79 | 44.63 | 43.50 | 11.40 | 35.50     | 3.40        | 48.03     | 54.00 | -5.97  | AV | Vertical   |
| 7439.69 | 54.85 | 43.50 | 11.40 | 35.50     | 3.40        | 58.25     | 74.00 | -15.75 | PK | Horizontal |
| 7439.69 | 44.80 | 43.50 | 11.40 | 35.50     | 3.40        | 48.20     | 54.00 | -5.80  | AV | Horizontal |

#### Note:

- 1) Factor = Antenna Factor + Cable Loss Pre-amplifier.
  - Emission Level = Reading + Factor.
- 2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.





2M PHY GFSK

| Frequency | Meter<br>Reading | Amplifier | Loss  | Antenna<br>Factor | Corrected<br>Factor | Emission<br>Level | Limits   | Margin | Detector | Comment    |
|-----------|------------------|-----------|-------|-------------------|---------------------|-------------------|----------|--------|----------|------------|
| (MHz)     | (dBµV)           | (dB)      | (dB)  | (dB/m)            | (dB)                | (dBµV/m)          | (dBµV/m) | (dB)   | Туре     |            |
|           |                  |           |       | Low Ch            | nannel (GFSK/2      | 2402 MHz)         |          |        |          | P          |
| 3264.77   | 62.19            | 44.70     | 6.70  | 28.20             | -9.80               | 52.39             | 74.00    | -21.61 | PK       | Vertical   |
| 3264.77   | 50.19            | 44.70     | 6.70  | 28.20             | -9.80               | 40.39             | 54.00    | -13.61 | AV       | Vertical   |
| 3264.84   | 60.82            | 44.70     | 6.70  | 28.20             | -9.80               | 51.02             | 74.00    | -22.98 | PK       | Horizontal |
| 3264.84   | 50.00            | 44.70     | 6.70  | 28.20             | -9.80               | 40.20             | 54.00    | -13.80 | AV       | Horizontal |
| 4804.43   | 58.81            | 44.20     | 9.04  | 31.60             | -3.56               | 55.25             | 74.00    | -18.75 | PK       | Vertical   |
| 4804.43   | 50.56            | 44.20     | 9.04  | 31.60             | -3.56               | 47.00             | 54.00    | -7.00  | AV       | Vertical   |
| 4804.32   | 58.35            | 44.20     | 9.04  | 31.60             | -3.56               | 54.79             | 74.00    | -19.21 | PK       | Horizontal |
| 4804.32   | 50.04            | 44.20     | 9.04  | 31.60             | -3.56               | 46.48             | 54.00    | -7.52  | AV       | Horizontal |
| 5359.75   | 48.74            | 44.20     | 9.86  | 32.00             | -2.34               | 46.40             | 74.00    | -27.60 | PK       | Vertical   |
| 5359.75   | 39.93            | 44.20     | 9.86  | 32.00             | -2.34               | 37.59             | 54.00    | -16.41 | AV       | Vertical   |
| 5359.80   | 47.58            | 44.20     | 9.86  | 32.00             | -2.34               | 45.24             | 74.00    | -28.76 | PK       | Horizontal |
| 5359.80   | 38.73            | 44.20     | 9.86  | 32.00             | -2.34               | 36.39             | 54.00    | -17.61 | AV       | Horizontal |
| 7205.69   | 54.01            | 43.50     | 11.40 | 35.50             | 3.40                | 57.41             | 74.00    | -16.59 | PK       | Vertical   |
| 7205.69   | 44.32            | 43.50     | 11.40 | 35.50             | 3.40                | 47.72             | 54.00    | -6.28  | AV       | Vertical   |
| 7205.93   | 54.03            | 43.50     | 11.40 | 35.50             | 3.40                | 57.43             | 74.00    | -16.57 | PK       | Horizontal |
| 7205.93   | 43.84            | 43.50     | 11.40 | 35.50             | 3.40                | 47.24             | 54.00    | -6.76  | AV       | Horizontal |
|           |                  |           |       | Middle C          | Channel (GFSK       | /2440 MHz)        | •        |        |          |            |
| 3262.95   | 61.64            | 44.70     | 6.70  | 28.20             | -9.80               | 51.84             | 74.00    | -22.16 | PK       | Vertical   |
| 3262.95   | 51.32            | 44.70     | 6.70  | 28.20             | -9.80               | 41.52             | 54.00    | -12.48 | AV       | Vertical   |
| 3263.14   | 60.93            | 44.70     | 6.70  | 28.20             | -9.80               | 51.13             | 74.00    | -22.87 | PK       | Horizontal |
| 3263.14   | 51.19            | 44.70     | 6.70  | 28.20             | -9.80               | 41.39             | 54.00    | -12.61 | AV       | Horizontal |
| 4880.02   | 58.69            | 44.20     | 9.04  | 31.60             | -3.56               | 55.13             | 74.00    | -18.87 | PK       | Vertical   |
| 4880.02   | 50.49            | 44.20     | 9.04  | 31.60             | -3.56               | 46.93             | 54.00    | -7.07  | AV       | Vertical   |
| 4880.19   | 58.60            | 44.20     | 9.04  | 31.60             | -3.56               | 55.04             | 74.00    | -18.96 | PK       | Horizontal |
| 4880.19   | 49.38            | 44.20     | 9.04  | 31.60             | -3.56               | 45.82             | 54.00    | -8.18  | AV       | Horizontal |
| 5357.19   | 48.89            | 44.20     | 9.86  | 32.00             | -2.34               | 46.55             | 74.00    | -27.45 | PK       | Vertical   |
| 5357.19   | 39.00            | 44.20     | 9.86  | 32.00             | -2.34               | 36.66             | 54.00    | -17.34 | AV       | Vertical   |
| 5357.39   | 47.82            | 44.20     | 9.86  | 32.00             | -2.34               | 45.48             | 74.00    | -28.52 | PK       | Horizontal |
| 5356.99   | 38.23            | 44.20     | 9.86  | 32.00             | -2.34               | 35.89             | 54.00    | -18.11 | AV       | Horizontal |
| 7320.85   | 53.62            | 43.50     | 11.40 | 35.50             | 3.40                | 57.02             | 74.00    | -16.98 | PK       | Vertical   |
| 7320.85   | 44.68            | 43.50     | 11.40 | 35.50             | 3.40                | 48.08             | 54.00    | -5.92  | AV       | Vertical   |
| 7320.55   | 54.23            | 43.50     | 11.40 | 35.50             | 3.40                | 57.63             | 74.00    | -16.37 | PK       | Horizontal |
| 7320.55   | 44.93            | 43.50     | 11.40 | 35.50             | 3.40                | 48.33             | 54.00    | -5.67  | AV       | Horizontal |

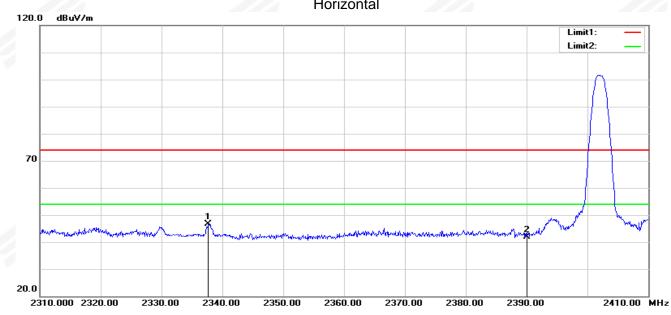


#### Report No.: STS2408307W04

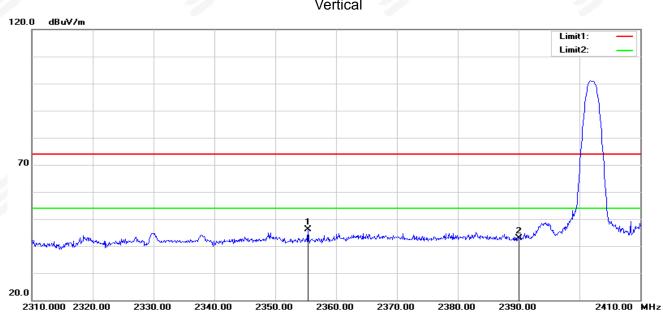
|         |       |       |       | High Chai | nnel (GFSK/ | 2480 MHz) |       |        |    |            |
|---------|-------|-------|-------|-----------|-------------|-----------|-------|--------|----|------------|
| 3264.82 | 62.13 | 44.70 | 6.70  | 28.20     | -9.80       | 52.33     | 74.00 | -21.67 | PK | Vertical   |
| 3264.82 | 49.86 | 44.70 | 6.70  | 28.20     | -9.80       | 40.06     | 54.00 | -13.94 | AV | Vertical   |
| 3264.60 | 60.94 | 44.70 | 6.70  | 28.20     | -9.80       | 51.14     | 74.00 | -22.86 | PK | Horizontal |
| 3264.60 | 51.29 | 44.70 | 6.70  | 28.20     | -9.80       | 41.49     | 54.00 | -12.51 | AV | Horizontal |
| 4960.53 | 59.20 | 44.20 | 9.04  | 31.60     | -3.56       | 55.64     | 74.00 | -18.36 | PK | Vertical   |
| 4960.53 | 49.88 | 44.20 | 9.04  | 31.60     | -3.56       | 46.32     | 54.00 | -7.68  | AV | Vertical   |
| 4960.43 | 59.41 | 44.20 | 9.04  | 31.60     | -3.56       | 55.85     | 74.00 | -18.15 | PK | Horizontal |
| 4960.43 | 49.44 | 44.20 | 9.04  | 31.60     | -3.56       | 45.88     | 54.00 | -8.12  | AV | Horizontal |
| 5359.70 | 48.73 | 44.20 | 9.86  | 32.00     | -2.34       | 46.39     | 74.00 | -27.61 | PK | Vertical   |
| 5359.70 | 39.18 | 44.20 | 9.86  | 32.00     | -2.34       | 36.84     | 54.00 | -17.16 | AV | Vertical   |
| 5359.84 | 48.40 | 44.20 | 9.86  | 32.00     | -2.34       | 46.06     | 74.00 | -27.94 | PK | Horizontal |
| 5359.84 | 38.40 | 44.20 | 9.86  | 32.00     | -2.34       | 36.06     | 54.00 | -17.94 | AV | Horizontal |
| 7439.77 | 54.24 | 43.50 | 11.40 | 35.50     | 3.40        | 57.64     | 74.00 | -16.36 | PK | Vertical   |
| 7439.77 | 43.86 | 43.50 | 11.40 | 35.50     | 3.40        | 47.26     | 54.00 | -6.74  | AV | Vertical   |
| 7439.95 | 54.84 | 43.50 | 11.40 | 35.50     | 3.40        | 58.24     | 74.00 | -15.76 | PK | Horizontal |
| 7439.95 | 44.05 | 43.50 | 11.40 | 35.50     | 3.40        | 47.45     | 54.00 | -6.55  | AV | Horizontal |

#### Note:

- 1) All modes have been measurement, only worst mode was reported.
- 2) Factor = Antenna Factor + Cable Loss Pre-amplifier.


Emission Level = Reading + Factor

3) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.



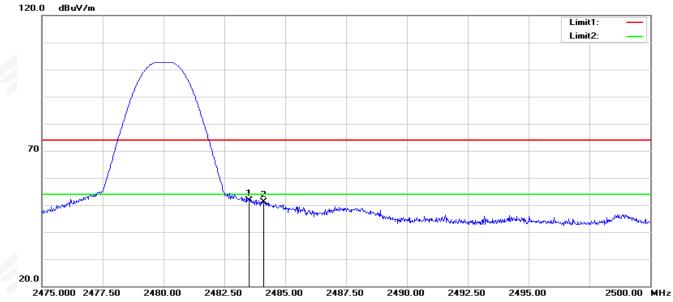

# 4.6 TEST RESULTS (Restricted Bands Requirements)



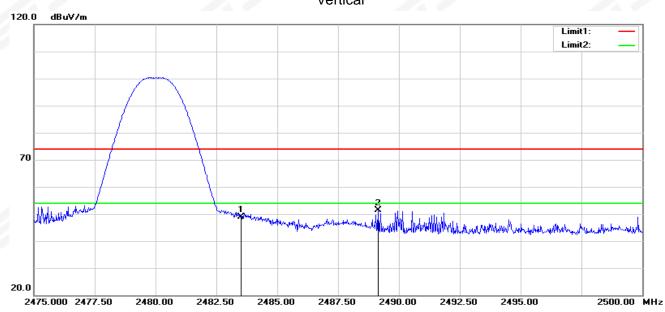


| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2337.700  | 42.92   | 3.68         | 46.60    | 74.00    | -27.40 | peak   |
| 2   | 2390.000  | 37.53   | 4.34         | 41.87    | 74.00    | -32.13 | peak   |




| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2355.400  | 42.21   | 3.82         | 46.03    | 74.00    | -27.97 | peak   |
| 2   | 2390.000  | 38.53   | 4.34         | 42.87    | 74.00    | -31.13 | peak   |

Vertical

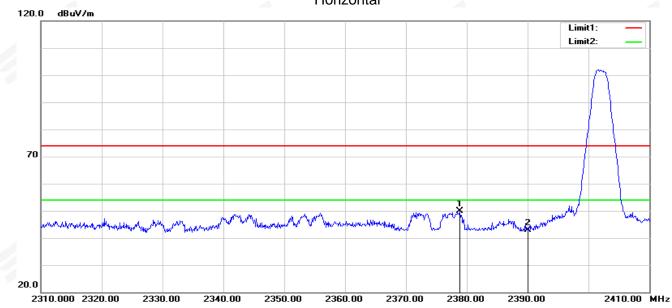



Page 33 of 74

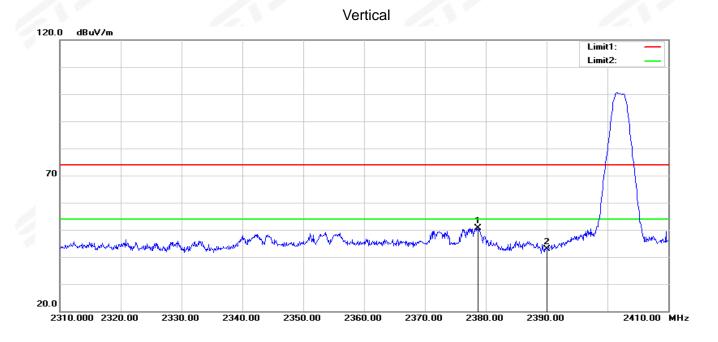
#### **GFSK-High** Horizontal



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 47.13   | 4.60         | 51.73    | 74.00    | -22.27 | peak   |
| 2   | 2484.100  | 46.56   | 4.61         | 51.17    | 74.00    | -22.83 | peak   |




| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 44.24   | 4.60         | 48.84    | 74.00    | -25.16 | peak   |
| 2   | 2489.150  | 46.68   | 4.62         | 51.30    | 74.00    | -22.70 | peak   |
|     |           |         |              |          |          |        |        |

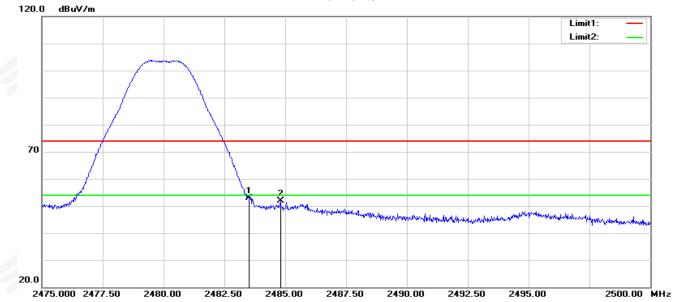

Vertical



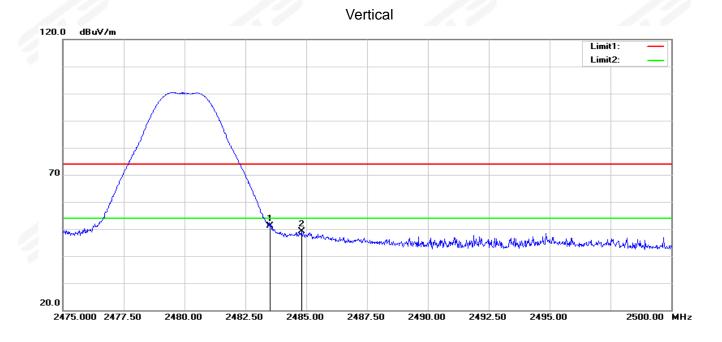
#### 2M PHY GFSK-Low Horizontal



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2378.800  | 45.78   | 4.17         | 49.95    | 74.00    | -24.05 | peak   |
| 2   | 2390.000  | 38.66   | 4.34         | 43.00    | 74.00    | -31.00 | peak   |




|   | No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|---|-----|-----------|---------|--------------|----------|----------|--------|--------|
|   |     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
|   | 1   | 2378.700  | 46.42   | 4.17         | 50.59    | 74.00    | -23.41 | peak   |
| P | 2   | 2390.000  | 38.47   | 4.34         | 42.81    | 74.00    | -31.19 | peak   |




Page 35 of 74

#### **GFSK-High** Horizontal



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 48.22   | 4.60         | 52.82    | 74.00    | -21.18 | peak   |
| 2   | 2484.800  | 47.15   | 4.61         | 51.76    | 74.00    | -22.24 | peak   |



|   | No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|---|-----|-----------|---------|--------------|----------|----------|--------|--------|
|   |     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
|   | 1   | 2483.500  | 46.55   | 4.60         | 51.15    | 74.00    | -22.85 | peak   |
| 5 | 2   | 2484.800  | 44.53   | 4.61         | 49.14    | 74.00    | -24.86 | peak   |

Note: All modes have been measurement, only worst mode was reported.



## 5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

#### 5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### 5.2 TEST PROCEDURE

| Spectrum Parameter                    | Setting                         |
|---------------------------------------|---------------------------------|
| Detector                              | Peak                            |
| Start/Stop Frequency                  | 30 MHz to 10th carrier harmonic |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                 |
| Trace-Mode:                           | Max hold                        |

For Band edge

| Spectrum Parameter                    | Setting                          |  |  |
|---------------------------------------|----------------------------------|--|--|
| Detector                              | Peak                             |  |  |
| Stort/Stop Frequency                  | Lower Band Edge: 2300 – 2407 MHz |  |  |
| Start/Stop Frequency                  | Upper Band Edge: 2475 – 2500 MHz |  |  |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                  |  |  |
| Trace-Mode:                           | Max hold                         |  |  |

5.3 TEST SETUP



The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna termina is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

#### 5.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.



# 6. POWER SPECTRAL DENSITY TEST

# 6.1 LIMIT

| FCC Part 15.247,Subpart C |                        |                      |                          |        |  |  |
|---------------------------|------------------------|----------------------|--------------------------|--------|--|--|
| Section                   | Test Item              | Limit                | Frequency Range<br>(MHz) | Result |  |  |
| 15.247(e)                 | Power Spectral Density | ≤8 dBm<br>(RBW≥3KHz) | 2400-2483.5              | PASS   |  |  |

# 6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz  $\ge$  RBW  $\ge$  3 kHz.
- 4. Set the VBW  $\geq$  3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

# 6.3 TEST SETUP



6.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

# 6.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.



7.1 LIMIT

| FCC Part 15.247,Subpart C |           |                              |                          |        |  |
|---------------------------|-----------|------------------------------|--------------------------|--------|--|
| Section                   | Test Item | Limit                        | Frequency Range<br>(MHz) | Result |  |
| 15.247(a)(2)              | Bandwidth | >= 500KHz<br>(6dB bandwidth) | 2400-2483.5              | PASS   |  |

# 7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

# 7.3 TEST SETUP



7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

# 7.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.



# 8. PEAK OUTPUT POWER TEST

8.1 LIMIT

| FCC Part 15.247,Subpart C |              |                          |             |      |  |  |
|---------------------------|--------------|--------------------------|-------------|------|--|--|
| Section Test Item Limit   |              | Frequency Range<br>(MHz) | Result      |      |  |  |
| 15.247(b)(3)              | Output Power | 1 watt or 30dBm          | 2400-2483.5 | PASS |  |  |

### 8.2 TEST PROCEDURE

One of the following procedures may be used to determine the averaging conducted output powe r of a DTS EUT.

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, foll owed by duty cycle correction. The procedure for this method is as follows:

a) Measure the duty cycle D of the transmitter output signal as described in 11.6.

b) Set span to at least 1.5 times the OBW.

c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.

d) Set VBW  $\geq$  [3 × RBW].

e) Number of points in sweep  $\geq$  [2 × span / RBW]. (This gives bin-to-bin spacing  $\leq$  RBW / 2, so th at narrowband signals are not lost between frequency bins.)

f) Sweep time = auto.

g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode . h) Do not use sweep triggering. Allow the sweep to "free run."

i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of trac es to be averaged shall be increased above 100 as needed such that the average accurately re presents the true average over the ON and OFF periods of the transmitter.

j) Compute power by integrating the spectrum across the OBW of the signal using the instrument 's band power measurement function with band limits set equal to the OBW band edges. If the in strument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average o ver both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW  $\geq$  DTS bandwidth.

b) Set VBW  $\geq$  [3 × RBW].

c) Set span  $\geq$  [3  $\times$  RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

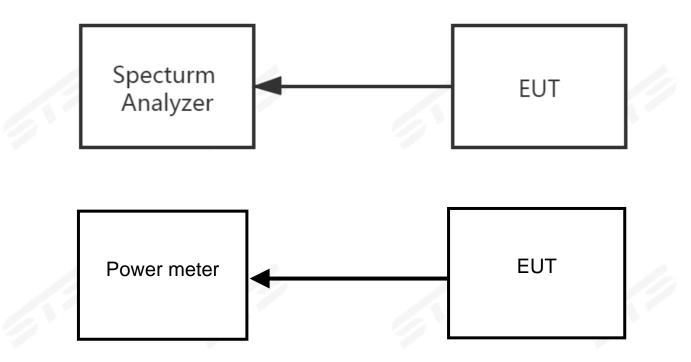
h) Use peak marker function to determine the peak amplitude level.



Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:


- a) Set the RBW = 1 MHz.
- b) Set the VBW  $\geq$  [3 × RBW].
- c) Set the span  $\geq$  [1.5 × DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP



8.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

# 8.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.



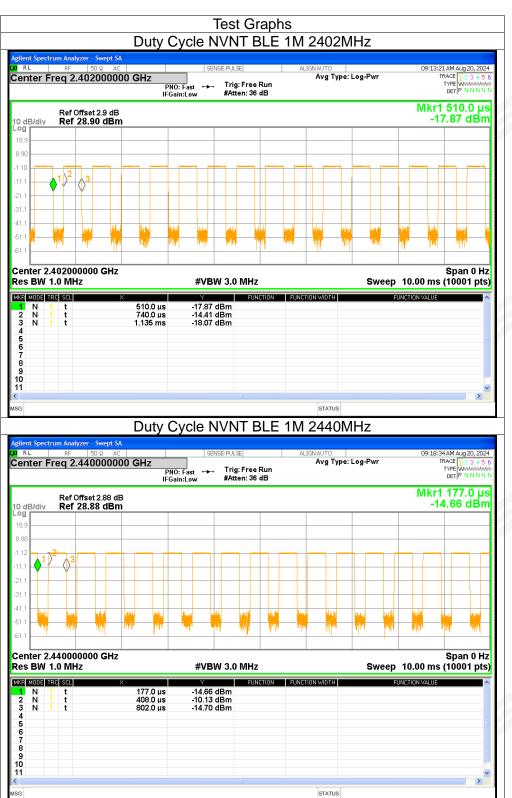
# 9. ANTENNA REQUIREMENT

# 9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

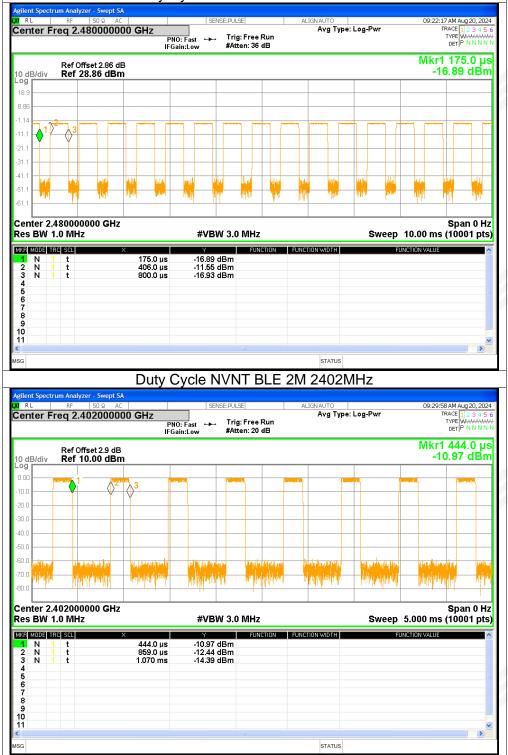
# 9.2 EUT ANTENNA

The EUT antenna is Stamped metal antenna Antenna. It comply with the standard requirement.




# 1. Duty Cycle

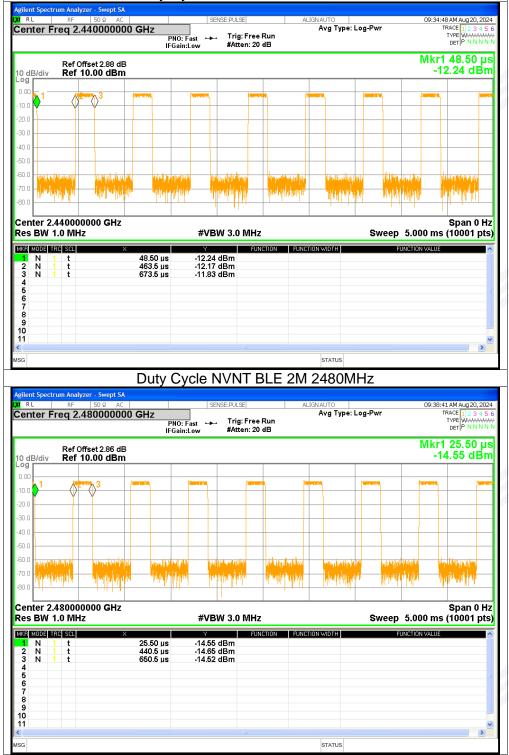
|           | - /    |                 |                |                        |           |
|-----------|--------|-----------------|----------------|------------------------|-----------|
| Condition | Mode   | Frequency (MHz) | Duty Cycle (%) | Correction Factor (dB) | 1/T (kHz) |
| NVNT      | BLE 1M | 2402            | 63.2           | 1.99                   | 2.53      |
| NVNT      | BLE 1M | 2440            | 63.04          | 2                      | 2.54      |
| NVNT      | BLE 1M | 2480            | 63.04          | 2                      | 2.54      |
| NVNT      | BLE 2M | 2402            | 33.65          | 4.73                   | 4.75      |
| NVNT      | BLE 2M | 2440            | 33.6           | 4.74                   | 4.76      |
| NVNT      | BLE 2M | 2480            | 33.6           | 4.74                   | 4.76      |




Page 43 of 74






### Duty Cycle NVNT BLE 1M 2480MHz

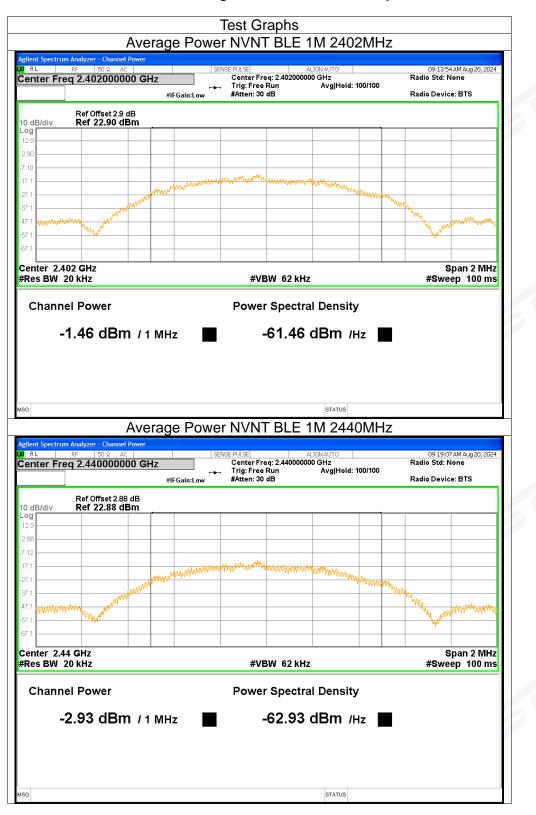


4



### Duty Cycle NVNT BLE 2M 2440MHz




19

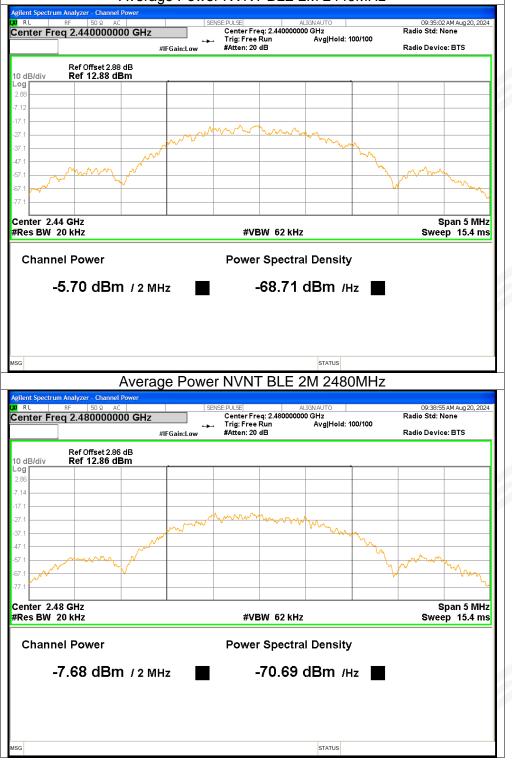


# 2. Maximum Average Conducted Output Power


| Condition | Mode   | Frequency<br>(MHz) | Conducted<br>Power (dBm) | Duty<br>Factor<br>(dB) | Total<br>Power<br>(dBm) | Limit<br>(dBm) | Verdict |
|-----------|--------|--------------------|--------------------------|------------------------|-------------------------|----------------|---------|
| NVNT      | BLE 1M | 2402               | -1.46                    | 1.99                   | 0.53                    | <=30           | Pass    |
| NVNT      | BLE 1M | 2440               | -2.93                    | 2                      | -0.93                   | <=30           | Pass    |
| NVNT      | BLE 1M | 2480               | -4.87                    | 2                      | -2.87                   | <=30           | Pass    |
| NVNT      | BLE 2M | 2402               | -4.77                    | 4.73                   | -0.04                   | <=30           | Pass    |
| NVNT      | BLE 2M | 2440               | -5.7                     | 4.74                   | -0.96                   | <=30           | Pass    |
| NVNT      | BLE 2M | 2480               | -7.68                    | 4.74                   | -2.94                   | <=30           | Pass    |







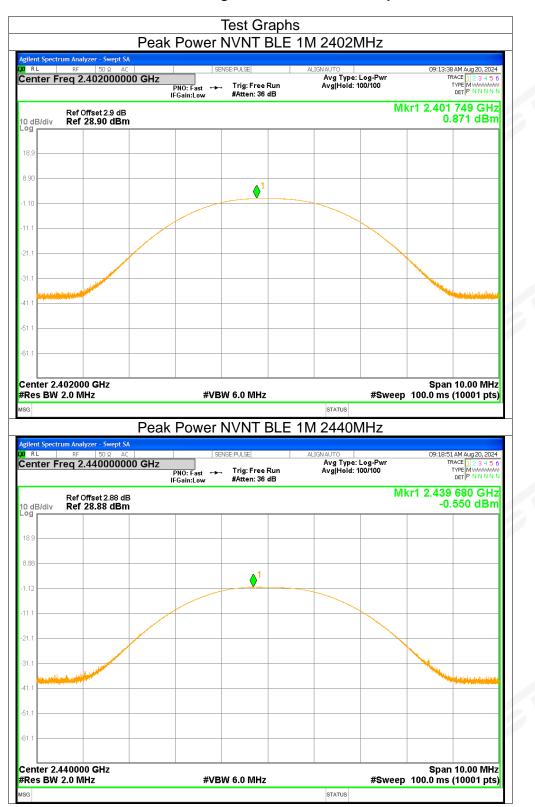

### Average Power NVNT BLE 1M 2480MHz





### Average Power NVNT BLE 2M 2440MHz






# 3. Maximum Peak Conducted Output Power

| Condition | Mode   | Frequency (MHz) | Conducted Power (dBm) | Limit (dBm) | Verdict |
|-----------|--------|-----------------|-----------------------|-------------|---------|
| NVNT      | BLE 1M | 2402            | 0.87                  | <=30        | Pass    |
| NVNT      | BLE 1M | 2440            | -0.55                 | <=30        | Pass    |
| NVNT      | BLE 1M | 2480            | -2.54                 | <=30        | Pass    |
| NVNT      | BLE 2M | 2402            | 0.27                  | <=30        | Pass    |
| NVNT      | BLE 2M | 2440            | -0.48                 | <=30        | Pass    |
| NVNT      | BLE 2M | 2480            | -2.49                 | <=30        | Pass    |



Page 51 of 74



1

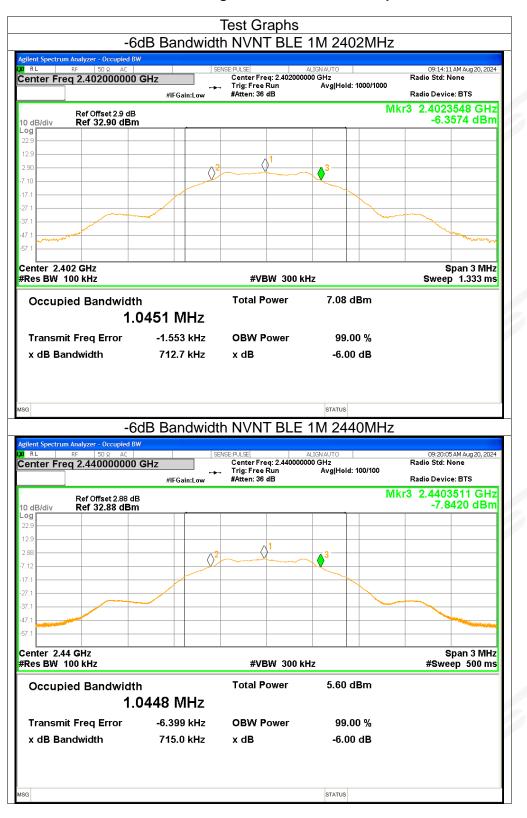


### Page 52 of 74

# Peak Power NVNT BLE 1M 2480MHz 34 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N R L Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.479 752 GHz Ref Offset 2.86 dB Ref 28.86 dBm -2.537 dBm 10 dB/div 31 41. 61 Center 2.480000 GHz Span 10.00 MHz #VBW 6.0 MHz #Sweep 100.0 ms (10001 pts) #Res BW 2.0 MHz STATUS ISG Peak Power NVNT BLE 2M 2402MHz gilent Spectrum Analyzer - Swept SA 09:34:00 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N R L Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.401 520 GHz Ref Offset 2.9 dB Ref 28.90 dBm 0.272 dBm 10 dB/div 89 31.1 -41.1 -51 61. Center 2.402000 GHz Span 10.00 MHz #Res BW 2.0 MHz #VBW 6.0 MHz Sweep 1.333 ms (10001 pts) STATUS SG

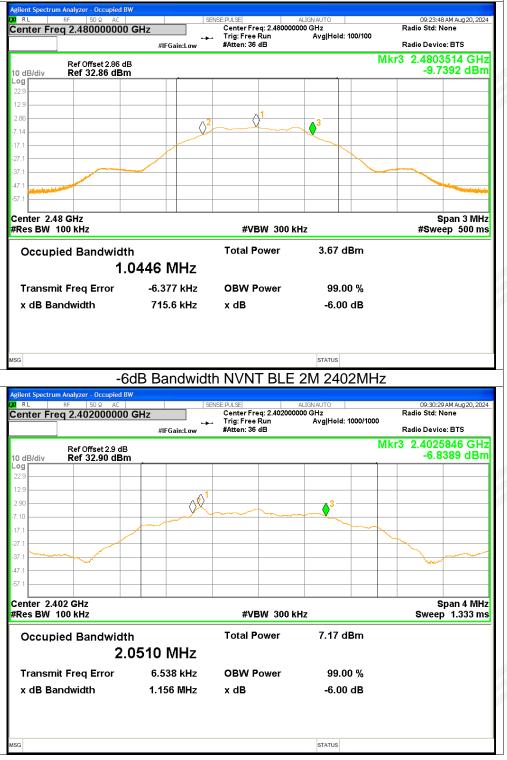


# Page 53 of 74


### Peak Power NVNT BLE 2M 2440MHz D9:34:54 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N R L Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.439 407 GHz Ref Offset 2.88 dB Ref 28.88 dBm -0.484 dBm 10 dB/div 8.8 31 41.1 61 Center 2.440000 GHz Span 10.00 MHz #VBW 6.0 MHz Sweep 1.333 ms (10001 pts) #Res BW 2.0 MHz STATUS ISG Peak Power NVNT BLE 2M 2480MHz gilent Spectrum Analyzer - Swept SA 09:38:48 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N R L Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.479 453 GHz -2.493 dBm Ref Offset 2.86 dB Ref 28.86 dBm 10 dB/div 8.8 ۵ 31.1 -41.1 -51 61. Center 2.480000 GHz Span 10.00 MHz #Res BW 2.0 MHz #VBW 6.0 MHz Sweep 1.333 ms (10001 pts) STATUS SG

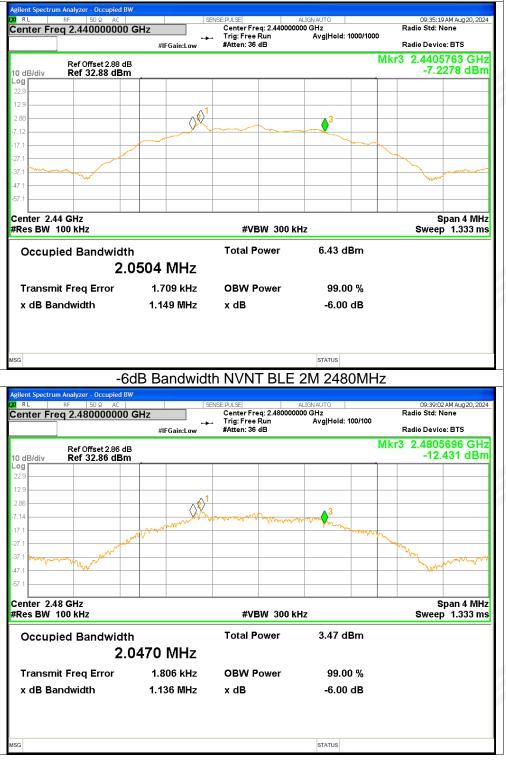


# 4. -6dB Bandwidth


| Condition | Mode   | Frequency<br>(MHz) | -6 dB Bandwidth<br>(MHz) | Limit -6 dB Bandwidth<br>(MHz) | Verdict |
|-----------|--------|--------------------|--------------------------|--------------------------------|---------|
| NVNT      | BLE 1M | 2402               | 0.7127                   | >=0.5                          | Pass    |
| NVNT      | BLE 1M | 2440               | 0.715                    | >=0.5                          | Pass    |
| NVNT      | BLE 1M | 2480               | 0.7156                   | >=0.5                          | Pass    |
| NVNT      | BLE 2M | 2402               | 1.1561                   | >=0.5                          | Pass    |
| NVNT      | BLE 2M | 2440               | 1.1491                   | >=0.5                          | Pass    |
| NVNT      | BLE 2M | 2480               | 1.1356                   | >=0.5                          | Pass    |







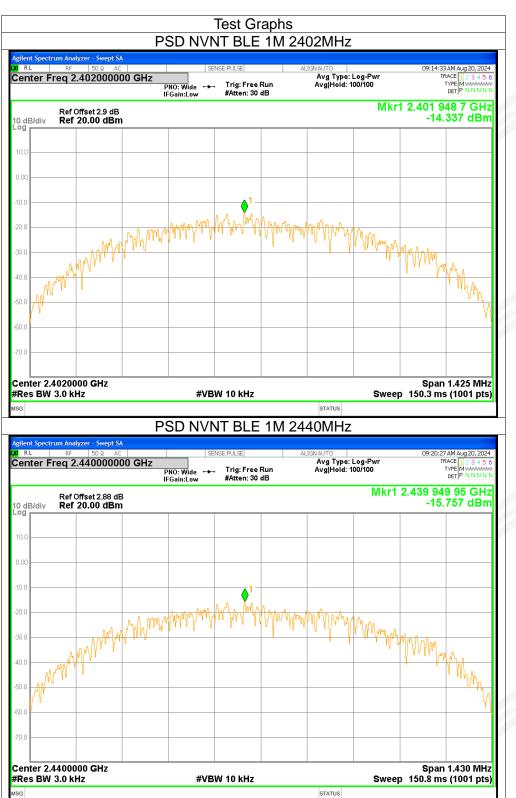

### -6dB Bandwidth NVNT BLE 1M 2480MHz





### -6dB Bandwidth NVNT BLE 2M 2440MHz



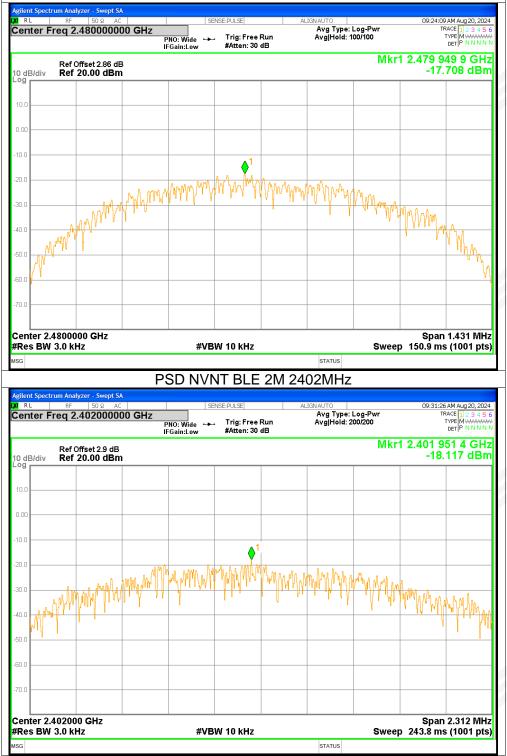



# 5. Maximum Power Spectral Density Level

|           |        | •               |                |                  |         |
|-----------|--------|-----------------|----------------|------------------|---------|
| Condition | Mode   | Frequency (MHz) | PSD (dBm/3kHz) | Limit (dBm/3kHz) | Verdict |
| NVNT      | BLE 1M | 2402            | -14.34         | <=8              | Pass    |
| NVNT      | BLE 1M | 2440            | -15.76         | <=8              | Pass    |
| NVNT      | BLE 1M | 2480            | -17.71         | <=8              | Pass    |
| NVNT      | BLE 2M | 2402            | -18.12         | <=8              | Pass    |
| NVNT      | BLE 2M | 2440            | -18.97         | <=8              | Pass    |
| NVNT      | BLE 2M | 2480            | -20.97         | <=8              | Pass    |



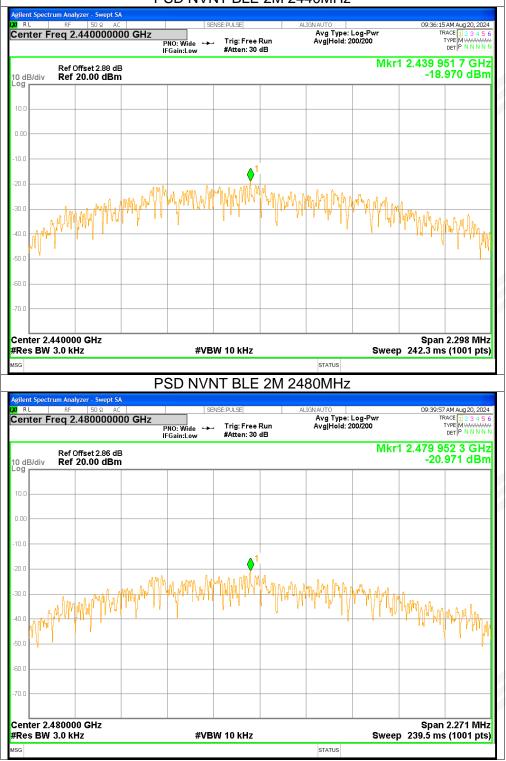
Page 59 of 74




1



### Page 60 of 74


# PSD NVNT BLE 1M 2480MHz



19



# PSD NVNT BLE 2M 2440MHz





# 6. Band Edge

| Condition | Mode   | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|--------|-----------------|-----------------|-------------|---------|
| NVNT      | BLE 1M | 2402            | -49.47          | <=-20       | Pass    |
| NVNT      | BLE 1M | 2480            | -45.25          | <=-20       | Pass    |
| NVNT      | BLE 2M | 2402            | -32.18          | <=-20       | Pass    |
| NVNT      | BLE 2M | 2480            | -45.97          | <=-20       | Pass    |

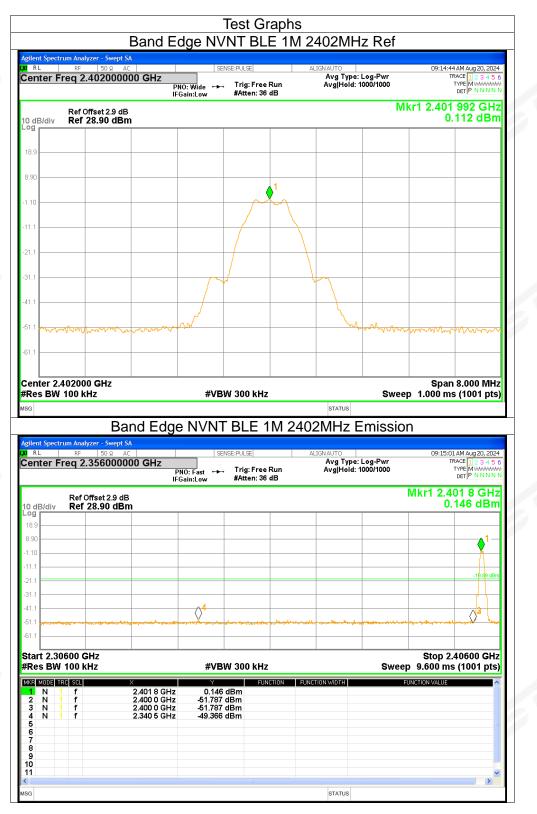



















Page 63 of 74





### Page 64 of 74

#### 9:24:20 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N R L Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide 🔸 Mkr1 2.479 992 GHz Ref Offset 2.86 dB Ref 28.86 dBm -3.367 dBm 10 dB/div 31 41. 61 Center 2.480000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Band Edge NVNT BLE 1M 2480MHz Emission gilent Spectrum Analyzer - Swept SA B L Center Freq 2.526000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.480 0 GHz Ref Offset 2.86 dB -3.235 dBm 10 dB/div Ref 28.86 dBm 18 ' 8.8 31. -41. $\langle \rangle^3$ Ŵ 61. Stop 2.57600 GHz Start 2.47600 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.600 ms (1001 pts) FUNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH -3.235 dBm -51.720 dBm -50.053 dBm -48.623 dBm 2.480 0 GHz 2.483 5 GHz 2.500 0 GHz 2.484 2 GHz N N N 1 2 3 4 5 6 7 8 9 10 11 STATUS SG

# Band Edge NVNT BLE 1M 2480MHz Ref



### Page 65 of 74

#### 37 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N R L Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide 🔸 Mkr1 2.401 504 GHz Ref Offset 2.9 dB Ref 28.90 dBm -0.022 dBm 10 dB/div **≬**<sup>1</sup> 31 41. Center 2.402000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Band Edge NVNT BLE 2M 2402MHz Emission gilent Spectrum Analyzer - Swept SA B L Center Freg 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.401 5 GHz Ref Offset 2.9 dB 0.045 dBm 10 dB/div Ref 28.90 dBm 18 ' 8.9 21 31.1 41.1 51. -61. Stop 2.40600 GHz Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.600 ms (1001 pts) FUNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH 0.045 dBm -32.204 dBm -32.204 dBm -32.204 dBm 2.401 5 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz N N N 1 2 3 4 5 6 7 8 9 10 11 STATUS SG

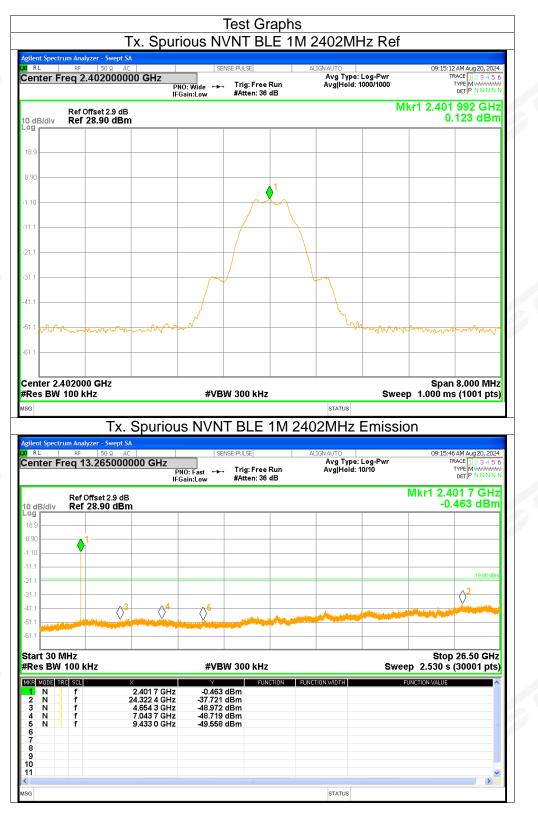
Band Edge NVNT BLE 2M 2402MHz Ref



### Page 66 of 74

### 08 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N R L Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide 🔸 Mkr1 2.479 496 GHz Ref Offset 2.86 dB Ref 28.86 dBm -2.836 dBm 10 dB/div 31 41. Center 2.480000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Band Edge NVNT BLE 2M 2480MHz Emission gilent Spectrum Analyzer - Swept SA 09:40:25 AM Aug 20, 2024 B L Center Freq 2.526000000 GHz TRACE 1 2 3 4 5 ( TYPE MWWWW DET P N N N N 1 Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.479 5 GHz Ref Offset 2.86 dB -2.664 dBm 10 dB/div Ref 28.86 dBm 18 ' 8.8 31. 41. ∩₿ 61. Stop 2.57600 GHz Start 2.47600 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.600 ms (1001 pts) FUNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH -2.664 dBm -51.569 dBm -51.081 dBm -48.813 dBm 2.479 5 GHz 2.483 5 GHz 2.500 0 GHz 2.485 1 GHz N N N 1 2 3 4 5 6 7 8 9 10 11 STATUS SG

Band Edge NVNT BLE 2M 2480MHz Ref




# 7. Conducted RF Spurious Emission

| Condition | Mode   | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|--------|-----------------|-----------------|-------------|---------|
| NVNT      | BLE 1M | 2402            | -37.84          | <=-20       | Pass    |
| NVNT      | BLE 1M | 2440            | -37.25          | <=-20       | Pass    |
| NVNT      | BLE 1M | 2480            | -34.44          | <=-20       | Pass    |
| NVNT      | BLE 2M | 2402            | -38.29          | <=-20       | Pass    |
| NVNT      | BLE 2M | 2440            | -36.71          | <=-20       | Pass    |
| NVNT      | BLE 2M | 2480            | -35.32          | <=-20       | Pass    |



Page 68 of 74





### Page 69 of 74

#### 38 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N R L Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.439 992 GHz Ref Offset 2.88 dB Ref 28.88 dBm -1.394 dBm 10 dB/div 31 41. 61 Center 2.440000 GHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz #Res BW 100 kHz STATUS ISG Tx. Spurious NVNT BLE 1M 2440MHz Emission gilent Spectrum Analyzer - Swept SA 09:21:08 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N B L Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.439 7 GHz Ref Offset 2 88 dB -2.581 dBm 10 dB/div Ref 28.88 dBm 18 ' 21.39 $\Diamond^2$ 31. \$⁴-41. ⊘⁵ $\langle \rangle$ -61. Stop 26.50 GHz Sweep 2.530 s (30001 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH -2.581 dBm -38.648 dBm -49.190 dBm -49.053 dBm -50.603 dBm 2.439 7 GHz 25.686 5 GHz 4.991 4 GHz 7.163 7 GHz 9.636 8 GHz 1 2 3 4 5 6 7 8 9 10 11 N N N N N f STATUS SG

# Tx. Spurious NVNT BLE 1M 2440MHz Ref



### Page 70 of 74

#### Tx. Spurious NVNT BLE 1M 2480MHz Ref 9:24:49 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N R L Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.479 992 GHz Ref Offset 2.86 dB Ref 28.86 dBm -3.343 dBm 10 dB/div 31 41. 51. Center 2.480000 GHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz #Res BW 100 kHz STATUS ISG Tx. Spurious NVNT BLE 1M 2480MHz Emission gilent Spectrum Analyzer - Swept SA 09:25:19 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N B L Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.480 2 GHz Ref Offset 2 86 dB -3.710 dBm 10 dB/div Ref 28.86 dBm 18 ' 8.8 $\Diamond^2$ 31. 41. $\Diamond^{5}$ () $\langle \rangle$ -61. Stop 26.50 GHz Sweep 2.530 s (30001 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH 2.480 2 GHz 24.243 9 GHz 4.991 4 GHz 7.549 2 GHz 10.016 2 GHz -3.710 dBm -37.783 dBm -49.000 dBm -48.961 dBm -50.472 dBm 1 2 3 4 5 6 7 8 9 10 11 N N N N f STATUS SG



#### 01 AM Aug 20, 2024 TRACE 1 2 3 4 5 ( TYPE M WWWW DET P N N N N R L Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 200/200 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.401 512 GHz Ref Offset 2.9 dB Ref 28.90 dBm -0.073 dBm 10 dB/div **∆**¹ 31 41. 51. m m M. an Center 2.402000 GHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz #Res BW 100 kHz STATUS ISG Tx. Spurious NVNT BLE 2M 2402MHz Emission gilent Spectrum Analyzer - Swept SA 09:32:31 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N B L Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.401 7 GHz Ref Offset 2.9 dB -1.942 dBm 10 dB/div Ref 28.90 dBm 18 ' 8.9 31. \_\_\_\_5\_ 41. $\langle \rangle^4$ Ô 61. Stop 26.50 GHz Sweep 2.530 s (30001 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH -1.942 dBm -38.366 dBm -48.947 dBm -48.347 dBm -48.506 dBm 2.401 7 GHz 26.489 4 GHz 4.976 4 GHz 7.074 5 GHz 9.424 2 GHz 1 2 3 4 5 6 7 8 9 10 11 N N N N STATUS SG

# Tx. Spurious NVNT BLE 2M 2402MHz Ref



### 26 AM Aug 20, 2024 TRACE 1 2 3 4 5 ( TYPE M WWWW DET P N N N N R L Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.439 520 GHz Ref Offset 2.88 dB Ref 28.88 dBm -1.106 dBm 10 dB/div 41. Center 2.440000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Tx. Spurious NVNT BLE 2M 2440MHz Emission gilent Spectrum Analyzer - Swept SA 09:37:24 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N B L Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 20/20 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.439 7 GHz Ref Offset 2 88 dB -1.686 dBm 10 dB/div Ref 28.88 dBm 18 ' -21.11 dE +⊘<sup>2</sup> 31. \$⁵-41. () $\langle \rangle$ -61. Stop 26.50 GHz Sweep 2.530 s (30001 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH -1.686 dBm -37.825 dBm -48.144 dBm -48.825 dBm -49.383 dBm 2.439 7 GHz 24.146 8 GHz 4.964 0 GHz 7.482 2 GHz 9.603 3 GHz 1 2 3 4 5 6 7 8 9 10 11 N N N N STATUS SG

# Tx. Spurious NVNT BLE 2M 2440MHz Ref



### 37 AM Aug 20, 2024 TRACE 1 2 3 4 5 ( TYPE M WWWW DET P N N N N R L Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.479 512 GHz Ref Offset 2.86 dB Ref 28.86 dBm -2.734 dBm 10 dB/div 31 41. Center 2.480000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz STATUS ISG Tx. Spurious NVNT BLE 2M 2480MHz Emission gilent Spectrum Analyzer - Swept SA 09:41:35 AM Aug 20, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N B L Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 20/20 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.479 4 GHz Ref Offset 2 86 dB -4.427 dBm 10 dB/div Ref 28.86 dBm 18 ' 8.8 $\Diamond^2$ 31. 41. $\Diamond$ $\langle \rangle$ -61. Stop 26.50 GHz Sweep 2.530 s (30001 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz MKR MODE TRC SCL FUNCTION VALUE FUNCTION FUNCTION WIDTH -4.427 dBm -38.051 dBm -48.651 dBm -48.751 dBm -49.577 dBm 2.479 4 GHz 25.607 1 GHz 4.981 7 GHz 7.524 5 GHz 10.059 5 GHz 1 2 3 4 5 6 7 8 9 10 11 N N N N STATUS SG

# Tx. Spurious NVNT BLE 2M 2480MHz Ref



# APPENDIX 2- EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

\* \* \* \* \* END OF THE REPORT \* \* \* \*