

# **RF Exposure Report**

Report No.: SA180830E03

FCC ID: 2APLE18300394

Test Model: VMB5000

Received Date: Sep. 04, 2018

Test Date: Sep. 28, 2018

**Issued Date:** Nov. 01, 2018

Applicant: Arlo Technologies, Inc.

Address: 2200 Faraday Ave. Suite 150, Carlsbad, CA 92008, United States

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

FCC Registration / Designation Number:

723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

Report No.: SA180830E03 Page No. 1 / 7 Report Format Version: 6.1.1



## **Table of Contents**

| Rele | ase Control Record                            | . 3 |
|------|-----------------------------------------------|-----|
| 1    | Certificate of Conformity                     | . 4 |
| 2    | RF Exposure                                   | . 5 |
| 2.1  | Limits for Maximum Permissible Exposure (MPE) | . 5 |
|      | 2 MPE Calculation Formula                     |     |
| 2.3  | 3 Classification                              | . 5 |
| 2.4  | 4 Antenna Gain                                | . 6 |
| 2.5  | 5 Calculation Result                          | . 7 |



### **Release Control Record**

| Issue No.   | Description       | Date Issued   |
|-------------|-------------------|---------------|
| SA180830E03 | Original release. | Nov. 01, 2018 |



### 1 Certificate of Conformity

Product: Alro Gen5 Entry Hub

Brand: Arlo

Test Model: VMB5000

Sample Status: ENGINEERING SAMPLE

Applicant: Arlo Technologies, Inc.

Test Date: Sep. 28, 2018

Standards: FCC Part 2 (Section 2.1091)

KDB 447498 D01 General RF Exposure Guidance v06

IEEE C95.1-1992

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: Nov. 01, 2018

Phoenix Huana / Specialist

Approved by: , Date: Nov. 01, 2018

May Chen / Manager



### 2 RF Exposure

### 2.1 Limits for Maximum Permissible Exposure (MPE)

| Frequency Range<br>(MHz)                              | Electric Field<br>Strength (V/m) | Magnetic Field<br>Strength (A/m) | Power Density<br>(mW/cm <sup>2</sup> ) | Average Time (minutes) |  |  |  |  |  |
|-------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------|------------------------|--|--|--|--|--|
| Limits For General Population / Uncontrolled Exposure |                                  |                                  |                                        |                        |  |  |  |  |  |
| 0.3-1.34                                              | 614                              | 1.63                             | (100)*                                 | 30                     |  |  |  |  |  |
| 1.34-30                                               | 824/f                            | 2.19/f                           | (180/f <sup>2</sup> )*                 | 30                     |  |  |  |  |  |
| 30-300                                                | 27.5                             | 0.073                            | 0.2                                    | 30                     |  |  |  |  |  |
| 300-1500                                              |                                  |                                  | f/1500                                 | 30                     |  |  |  |  |  |
| 1500-100,000                                          |                                  |                                  | 1.0                                    | 30                     |  |  |  |  |  |

f = Frequency in MHz; \*Plane-wave equivalent power density

#### 2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$ 

where

Pd = power density in mW/cm<sup>2</sup>

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

#### 2.3 Classification

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as **Mobile Device**.



### 2.4 Antenna Gain

| Sub-GHz    |           |                       |                              |        |                       |                  |                         |          |                |                     |               |                |   |
|------------|-----------|-----------------------|------------------------------|--------|-----------------------|------------------|-------------------------|----------|----------------|---------------------|---------------|----------------|---|
| Ant        | Brand     |                       | Model                        |        | Antenna Gain          |                  | Frequency rang          |          |                |                     | nector        |                |   |
| No.        |           |                       |                              |        | (dBi)                 |                  | (MHz)                   |          | type           |                     | /pe           |                |   |
| 1          |           | NA                    | 902P00214N                   | 10     | 1.5                   |                  | 860~                    | ·930     | PIFA           | 1 1                 | NA            |                |   |
|            | Z-Wave    |                       |                              |        |                       |                  |                         |          |                |                     |               |                |   |
| Ant<br>No. | Brand     |                       | Model                        |        | Antenna Gain<br>(dBi) |                  | Frequency rang<br>(MHz) |          | Anteni<br>type | na Con<br>ty        | nector<br>/pe |                |   |
| 1          |           | NA                    | 902P00213N                   | 10     | 2.5                   |                  | 860~                    | 930      | PIFA           | . 1                 | NΑ            |                |   |
|            | •         |                       |                              | Zigbe  | e                     |                  |                         |          |                | •                   |               |                |   |
| Ant<br>No. | No. Brand |                       |                              | Model  |                       | nna<br>in<br>Bi) | Frequency rang          |          | Anteni<br>type |                     | nector<br>/pe |                |   |
| 1          | INPAQ TE  | CHNOLOGY CO.,<br>LTD. | ACA-5036-A2                  | :-CC-8 | C-S 3.5               |                  | 2.4~2.4835              |          | CHIE           | 1                   | NA            |                |   |
|            |           |                       |                              | WLA    | N                     |                  |                         |          |                |                     |               |                |   |
| Ant<br>No. | Brand     | Model                 | Antenna Net<br>Gain<br>(dBi) | r      | quency<br>ang<br>GHz) | Ante             | nna type                | a type i |                | type Connector type |               | Cable L<br>(mr | • |
|            |           |                       | 2.5                          | 2.4~   | -2.4835               |                  |                         |          |                |                     |               |                |   |
|            | NA        | 9 07X01052X0          | 1.8                          | 5.18   | 5~5.25                |                  |                         |          |                |                     |               |                |   |
| 1          |           |                       | 2                            | 5.2    | 5~5.35                | D                | ipole                   | i-pe     | ex             | 75                  | 5             |                |   |
|            |           |                       | 2.2                          | 5.47   | <b>7~</b> 5.725       |                  |                         |          |                |                     |               |                |   |
|            |           |                       | 1.6                          | 5.72   | 25~5.85               |                  |                         |          |                |                     |               |                |   |
|            | NA        | 9 07X00747X19         | 2.5                          | 2.4~   | 1~2.4835              |                  |                         |          |                |                     |               |                |   |
|            |           |                       | 2.2                          | 5.18   | 5~5.25                |                  |                         |          |                |                     |               |                |   |
| 2          |           |                       | 1.2                          | 5.2    | 5~5.35                | D                | ipole                   | i-pex    |                | 90                  |               |                |   |
|            |           |                       | 3.2                          | 5.47   | 7~5.725               | 1                |                         |          |                |                     |               |                |   |
|            |           |                       | 3.5                          | 5.72   | 725~5.85              |                  |                         |          |                |                     |               |                |   |



#### 2.5 Calculation Result

For Zigbee: The Maximum power was refer to the FCC test report (Report No.: RF180830E02A-3) For Z-Wave: The Maximum power was refer to the FCC test report (Report No.: RF180830E02A-4) For Sub-GHz: The Maximum power was refer to the FCC test report (Report No.: RF180830E02A-5)

| Operation<br>Mode | Evaluation<br>Frequency<br>(MHz) | Max Power<br>(mW) | Antenna Gain<br>(dBi) | Distance<br>(cm) | Power Density (mW/cm²) | Limit<br>(mW/cm²) |
|-------------------|----------------------------------|-------------------|-----------------------|------------------|------------------------|-------------------|
| WLAN 2.4GHz       | 2437                             | 508.821           | 5.51                  | 20               | 0.35999                | 1                 |
| WLAN U-NII-1      | 5200                             | 571.179           | 5.01                  | 20               | 0.36016                | 1                 |
| WLAN U-NII-3      | 5745                             | 490.624           | 5.61                  | 20               | 0.35520                | 1                 |
| Zigbee            | 2405                             | 90.991            | 3.5                   | 20               | 0.04053                | 1                 |
| Sub-GHz           | 915                              | 92.89             | 1.5                   | 20               | 0.02610                | 0.61              |

Note:

2.4GHz: The directional gain = 2.5dBi + 10log(2) = 5.51dBi

5GHz

For U-NII-1 band: The directional gain =  $10 \log[(10^{\text{Chain1/20}} + 10^{\text{Chain2/20}})^2 / 2] = 5.01 dBi$  For U-NII-3 band: The directional gain =  $10 \log[(10^{\text{Chain1/20}} + 10^{\text{Chain2/20}})^2 / 2] = 5.61 dBi$ 

**Z-Wave Field Strength Conversion:** 

| Frequency<br>(MHz) | Field Strength<br>of Fundamental<br>(dBuV/m) @3m | (dRm) | EIRP<br>(mW) | Distance<br>(cm) | Power Density<br>(mW/cm²) | Limit<br>(mW/cm <sup>2</sup> ) |
|--------------------|--------------------------------------------------|-------|--------------|------------------|---------------------------|--------------------------------|
| 908.4              | 93.9                                             | -1.33 | 0.7362       | 20               | 0.00015                   | 0.6056                         |

Note: 1. Pout EIRP (dBm) = Field Strength of Fundamental (dBuV/m) - 95.23 (dB)

2. Power Density Limit = F/1500

#### Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 + .....etc. < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN 2.4GHz + WLAN 5GHz + Zigbee + Sub-GHz + Z-Wave = 0.35999 / 1 + 0.36016 / 1 + 0.04053 / 1 + 0.02610 / 0.61 + 0.00015 / 0.6056 = 0.80371

Therefore the maximum calculations of above situations are less than the "1" limit.

--- END ---