Bit number	31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID	A A A A A A A A	
Reset 0x04000000	0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Baud19200	0x004EA000	19200 baud (actual rate: 19208)
Baud28800	0x0075C000	28800 baud (actual rate: 28777)
Baud31250	0x00800000	31250 baud
Baud38400	0x009D0000	38400 baud (actual rate: 38369)
Baud56000	0x00E50000	56000 baud (actual rate: 55944)
Baud57600	0x00EB0000	57600 baud (actual rate: 57554)
Baud76800	0x013A9000	76800 baud (actual rate: 76923)
Baud115200	0x01D60000	115200 baud (actual rate: 115108)
Baud230400	0x03B00000	230400 baud (actual rate: 231884)
Baud250000	0x04000000	250000 baud
Baud460800	0x07400000	460800 baud (actual rate: 457143)
Baud921600	0x0F000000	921600 baud (actual rate: 941176)
Baud1M	0x10000000	1 megabaud

6.19.9.44 RXD

RXD EasyDMA channel

6.19.9.44.1 RXD.PTR

Address offset: 0x534

Data pointer

Bit n	umber			31	30	29 2	28 2	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	C
ID				А	А	A	A	A	A	А	A	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	A	А	А	4
Rese	t 0x000	00000		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D
ID																																			
A	RW	PTR		0 0 0 Value ID Value						Data pointer																									
												See	e th	ie r	nen	nor	y cł	пар	ter	for	det	ails	s ab	out	: wł	nich	ח m	em	orie	es a	re a	vai	abl	e fo	r

EasyDMA.

6.19.9.44.2 RXD.MAXCNT

Address offset: 0x538

Maximum number of bytes in receive buffer

Bit nu	mber		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	1 0
ID			A A A A A A A A A A A A A A A A A A A	A A
Reset	0x000	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
ID				
A	RW	MAXCNT	[10x1FFF] Maximum number of bytes in receive buffer	

6.19.9.44.3 RXD.AMOUNT

Address offset: 0x53C

Number of bytes transferred in the last transaction

Bit nu	umber		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A A A A A A A A A A A A A A A A A A A
Reset	t 0x000	00000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
			[10x1FFF]	Number of bytes transferred in the last transaction

6.19.9.45 TXD

TXD EasyDMA channel

6.19.9.45.1 TXD.PTR

Address offset: 0x544

Data pointer

Bit nu	mber		31	30	29	28	27	26	25	24	23	22 2	21 2	0 1	19 1	8 1	.7 1	61	51	41	3 12	11	. 10	9	8	7	6	5	4	3	2	1	0
ID			А	А	А	А	А	А	А	А	А	A	A	Δ.	A ,	A,	4 <i>4</i>	4 /	4 A	A A	A	A	А	A	A	А	А	А	A	А	A	А	A
Reset	0x000	00000	0	0	0	0	0	0	0	0	0	0	0 (D	0	0	0 () () () (0	0	0	0	0	0	0	0	0	0	0	0	0
ID											Des																						
А	RW	PTR									Dat	a p	oint	er																			

See the memory chapter for details about which memories are available for EasyDMA.

6.19.9.45.2 TXD.MAXCNT

Address offset: 0x548

Maximum number of bytes in transmit buffer

Α	RW MAXCNT	[10x1FFF]	Maximum number of bytes in transmit buffer
ID			Description
Rese	t 0x0000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			A A A A A A A A A A A A A A A A A A A
Bit n	umber	31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.19.9.45.3 TXD.AMOUNT

Address offset: 0x54C

Number of bytes transferred in the last transaction

ID	R/W	Field	Value ID	Value	Description
Reset	0x000	00000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					A A A A A A A A A A A A A A A A A A A
Bit nu	Imber			31 30 29 28 27 26 25 2	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.19.9.46 CONFIG

Address offset: 0x56C

Configuration of parity and hardware flow control

Bit nu	umber			31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					СВВВ
Rese	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
	RW	HWFC			Hardware flow control
			Disabled	0	Disabled
			Enabled	1	Enabled
В	RW	PARITY			Parity
			Excluded	0x0	Exclude parity bit
			Included	0x7	Include even parity bit
С	RW	STOP			Stop bits
			One	0	One stop bit
			Two	1	Two stop bits

6.19.10 Electrical specification

6.19.10.1 UARTE electrical specification

Symbol	Description	Min.	Тур.	Max.	Units
f _{UARTE}	Baud rate for UARTE ²² .			1000	kbps
t _{UARTE,CTSH}	CTS high time	1			μs
t _{UARTE,START}	Time from STARTRX/STARTTX task to transmission started		0.25		μs

6.20 WDT — Watchdog timer

A countdown watchdog timer using the low-frequency clock source (LFCLK) offers configurable and robust protection against application lock-up.

The watchdog timer is started by triggering the START task.

The watchdog can be paused during long CPU sleep periods for low power applications and when the debugger has halted the CPU. The watchdog is implemented as a down-counter that generates a TIMEOUT event when it wraps over after counting down to 0. When the watchdog timer is started through the START task, the watchdog counter is loaded with the value specified in the CRV register. This counter is also reloaded with the value specified in the CRV register.

The watchdog's timeout period is given by:

```
timeout [s] = ( CRV + 1 ) / 32768
```

When started, the watchdog will automatically force the 32.768 kHz RC oscillator on as long as no other 32.768 kHz clock source is running and generating the 32.768 kHz system clock, see chapter CLOCK — Clock control on page 70.

6.20.1 Reload criteria

The watchdog has eight separate reload request registers, which shall be used to request the watchdog to reload its counter with the value specified in the CRV register. To reload the watchdog counter, the special value 0x6E524635 needs to be written to all enabled reload registers.

One or more RR registers can be individually enabled through the RREN register.

²² High baud rates may require GPIOs to be set as High Drive, see GPIO chapter for more details.

6.20.2 Temporarily pausing the watchdog

By default, the watchdog will be active counting down the down-counter while the CPU is sleeping and when it is halted by the debugger. It is however possible to configure the watchdog to automatically pause while the CPU is sleeping as well as when it is halted by the debugger.

6.20.3 Watchdog reset

A TIMEOUT event will automatically lead to a watchdog reset.

See Reset on page 56 for more information about reset sources. If the watchdog is configured to generate an interrupt on the TIMEOUT event, the watchdog reset will be postponed with two 32.768 kHz clock cycles after the TIMEOUT event has been generated. Once the TIMEOUT event has been generated, the impending watchdog reset will always be effectuated.

The watchdog must be configured before it is started. After it is started, the watchdog's configuration registers, which comprise registers CRV, RREN, and CONFIG, will be blocked for further configuration.

The watchdog can be reset from several reset sources, see Reset behavior on page 57.

When the device starts running again, after a reset, or waking up from OFF mode, the watchdog configuration registers will be available for configuration again.

6.20.4 Registers

Instances

Instance	Base address	•			Split access	Description
		Мар	Att	DMA		
WDT : S	0x50018000	LIC.	NS	NA	No	Watchdog timor
WDT : NS	0x40018000	03	INS	NA	INO	Watchdog timer

Register overview

Offset	ΤZ	Description
0x000		Start the watchdog
0x080		Subscribe configuration for task START
0x100		Watchdog timeout
0x180		Publish configuration for event TIMEOUT
0x304		Enable interrupt
0x308		Disable interrupt
0x400		Run status
0x404		Request status
0x504		Counter reload value
0x508		Enable register for reload request registers
0x50C		Configuration register
0x600		Reload request n
	0x000 0x080 0x100 0x180 0x304 0x308 0x400 0x404 0x504 0x508	0x000 0x080 0x100 0x180 0x304 0x308 0x400 0x400 0x504 0x508 0x508

6.20.4.1 TASKS_START

Address offset: 0x000

Start the watchdog

Bit nu	ımber			31 30 29 28 27 2	26 25 24	1 23 22	2 21 20) 19 1	8 17	16 1	5 14	13	12 1	1 10	9	8	7	6	5	4 3	3 2	2 1	1
ID																							- -
Reset	: 0x000	00000		0 0 0 0 0 0	000	0 0	0 0	0 0) ()	0 (0 0	0	0 (0 0	0	0	0	0	0	0 (0 () ()
ID																							
A	W	TASKS_START				Start	the wa	tchdo	og														_
			Trigger	1		Trigg	er task																

6.20.4.2 SUBSCRIBE_START

Address offset: 0x080

Subscribe configuration for task START

Bit nu	Imber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				В	A A A A A A A A
Reset	0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	CHIDX		[0255]	DPPI channel that task START will subscribe to
В	RW	EN			
			Disabled	0	Disable subscription
			Enabled	1	Enable subscription

6.20.4.3 EVENTS_TIMEOUT

Address offset: 0x100

Watchdog timeout

Bit nu	mber			31 3	30 29	28	27 2	26 25	5 24	23	22 2	21 20	0 19	18	17	16	15	14 :	13 1	2 13	L 10	9	8	7	6	5	4	3 2	2 1	0
ID																														А
Reset	0x000	00000		0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0) () ()
ID																														
А	RW	EVENTS_TIMEOUT								Wa	tchd	log t	ime	out																
			NotGenerated	0						Eve	ent n	ot g	ene	rate	d															
			Generated	1						Eve	ent g	ene	rate	d																

6.20.4.4 PUBLISH_TIMEOUT

Address offset: 0x180

Publish configuration for event TIMEOUT

Bit nu	mber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				В	A A A A A A A A A A A A A A A A A A A
Reset	0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
A	RW	CHIDX		[0255]	DPPI channel that event TIMEOUT will publish to
В	RW	EN			
			Disabled	0	Disable publishing
			Enabled	1	Enable publishing

6.20.4.5 INTENSET

Address offset: 0x304

Enable interrupt

Bit nu	umber			31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					A
Rese	t 0x000	00000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
А	RW	TIMEOUT			Write '1' to enable interrupt for event TIMEOUT
			Set	1	Enable
			Disabled	0	Read: Disabled
			Enabled	1	Read: Enabled

6.20.4.6 INTENCLR

Address offset: 0x308

Disable interrupt

Bit nu	umber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					А
Reset	t 0x0000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	TIMEOUT			Write '1' to disable interrupt for event TIMEOUT
			Clear	1	Disable
			Disabled	0	Read: Disabled
			Enabled	1	Read: Enabled

6.20.4.7 RUNSTATUS

Address offset: 0x400

Run status

Bit number		31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			
Reset 0x0000000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field			Description
R RUNSTATUSWDT			Indicates whether or not the watchdog is running
	NotRunning	0	Watchdog not running
	Running	1	Watchdog is running

6.20.4.8 REQSTATUS

Address offset: 0x404

Request status

Bit nui	mber			31 30 29 2	28 27 2	6 25 2	24 23	22 21 2	20 19	18 1	7 16	15 14	13 1	2 11 10	9	87	6	5 4	43	2	1 0
ID																Н	G	F	E D	С	ΒA
Reset	0x000	00001		0 0 0	000	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	000	0	0 0	0	0	0 0	0	0 1
ID																					
A-H	R	RR[i] (i=07)					Rec	juest st	atus	for RF	R[i] re	gister									
			DisabledOrRequest	edO			RR[i] regist	ter is	not e	enable	ed, or	are al	ready r	eque	sting	; relo	oad			
			EnabledAndUnrequ	ested			RR[i] regist	ter is	enab	led, a	nd ar	e not	yet req	uesti	ng re	load	t			

6.20.4.9 CRV

Address offset: 0x504

Counter reload value

Bit nu	ımber				31	30	29 :	28 :	27 2	26 2	5 24	4 23	22	21	20 :	19 1	8 1	7 16	15	14	13	12 1	1 10	9	8	7	6	5	4	3 2	2 1	. 0
ID					А	А	А	A	А	A A	A A	A	А	А	А	A	A A	A	А	А	А	A A	A	А	А	А	А	А	A	A	A A	A
Reset	OxFFF	FFFF	F		1	1	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1	1	1	1	1 1	. 1	1	1	1	1	1	1	1 1	L 1	1
ID																																
А	RW	CR	V		[0x	000	0000	00F.	0xl	FFFF	FFF	F]Cc	unt	er r	eloa	nd v	alue	in r	um	ber	of	cycle	s of	the	32	.768	3 k⊦	lz cl	ock			

6.20.4.10 RREN

Address offset: 0x508

Enable register for reload request registers

Bit number	31 30 2	9 28 27 26 25 24 23 22	21 20 19 18 17 16	15 14 13 12	11 10 9 8	76	54	3 2	2 1 0
ID						ΗG	FΕ	DC	СВА
Reset 0x0000001	0 0 0		0 0 0 0 0 0	0 0 0 0	0000	0 0	0 0	0 0	0 1
ID R/W Field Val									
A-H RW RR[i] (i=07)		Enab	e or disable RR[i] re	gister					
Dis	abled 0	Disab	le RR[i] register						
En	abled 1	Enab	e RR[i] register						

6.20.4.11 CONFIG

Address offset: 0x50C

Configuration register

Bit nu	mber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					C
Reset	0x000	00001		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
	RW	SLEEP			Configure the watchdog to either be paused, or kept running, while the CPU
					is sleeping
			Pause	0	Pause watchdog while the CPU is sleeping
			Run	1	Keep the watchdog running while the CPU is sleeping
С	RW	HALT			Configure the watchdog to either be paused, or kept running, while the CPU
					is halted by the debugger
			Pause	0	Pause watchdog while the CPU is halted by the debugger
			Run	1	Keep the watchdog running while the CPU is halted by the debugger

6.20.4.12 RR[n] (n=0..7)

Address offset: 0x600 + (n × 0x4)

Reload request n

Bit nu	umber			31 3	30 29	9 28	3 27	26	25	24	23	22	21 2	01	9 18	3 17	' 16	15	14	13 1	2 11	L 10	9	8	7	6	5 4	4 3	32	1	0
ID				A	ΑΑ	A	А	A	А	А	А	А	A A	A A	A A	A	А	А	А	A A	A A	А	А	А	А	A	A	4 /	4 Α	A	А
Reset	t 0x000	00000		0 (0 0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0	0	0 (0	0	0	0	0	0	0 (0 (0 0	0	0
ID																															
А	W	RR									Rel	oad	req	ues	t re	giste	er														
			Reload	0x6E	E524	1635	5				Val	ue t	o re	que	est a	rel	oad	of t	the	wato	hdo	g ti	mer								

6.20.5 Electrical specification

6.20.5.1 Watchdog Timer Electrical Specification

Symbol	Description	Min.	Тур.	Max.	Units
t _{WDT}	Time out interval	31 µs		36 h	

7 LTE modem

The nRF9161 SiP contains a Low-Power Wide-Area (LPWA) network processor with dedicated flash/RAM, which controls the radio and baseband hardware components. LTE capabilities are provided by installing Nordic Semiconductor firmware, which complies with 3GPP LTE release 14 Cat-M1 and Cat-NB1/NB2 standards.

The following is an overview of the LTE modem, with a figure showing key components:

- RF transceiver
- Modem baseband (BB)
- Embedded flash/RAM
- LPWA network processor and peripherals

They provide functions for the LTE L1, L2, and L3 (layers 1, 2, and 3 respectively) as well as IP communication layers. Peripherals provide hardware services for the LPWA network processor operating system and secure execution environment.

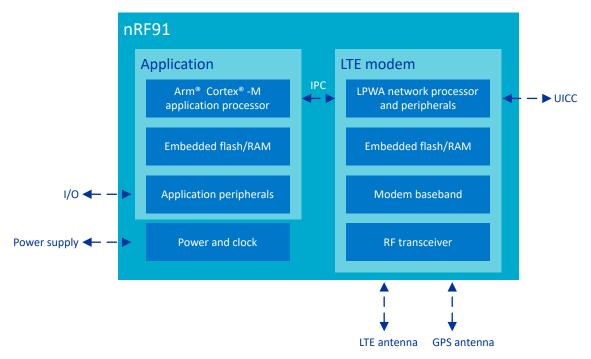


Figure 109: nRF9161 LTE modem functional overview

Application and LPWA network domains interact through the interprocessor communication (IPC) mechanism. The LTE modem is accessible to users through the modem API.

The application processor is the system master and is responsible for starting and stopping the LTE modem. The LPWA network processor enables the clocks and power required for its own operation. The platform handles shared resources, such as clocks, and does not need user participation. In cases where a hard fault is detected in the modem, the application domain will perform a hard reset of the modem.

The nRF9161 LTE modem feature set depends on the modem firmware version and the application firmware. For more information on the LTE modem API, see nRF Connect SDK API documentation and nRF91 AT Commands.

The key features of the LTE modem are:

• Complete modem with baseband and RF transceiver

- 3GPP release 14 compliant LTE categories:
 - Cat-M1 (eMTC enhanced machine type communication)
 - Cat-NB1 (NB-IoT narrowband Internet of things)
 - Cat-NB2 (NB-IoT)
- Power saving modes
- Supports LTE bands from 700 MHz to 2.2 GHz through a single 50 Ω antenna pin
 - ANT antenna pin is DC grounded
- RX sensitivity: -108 dBm for Cat-M1 and -114 dBm for Cat-NB1 and Cat-NB2
 - As defined in 3GPP conformance test specification TS 36.521-1
- 1.8 V MIPI RF Front-End (MIPI RFFE) digital control interface and MAGPIO control interface for external RF applications.
- LTE modem internal ADC that is also used for some AT command interface services, for example, for battery monitoring
- 1.8 V UICC (universal integrated circuit card) interface, based on ISO/IEC 7816-3 and compliant with:
 - UICC (ETSI TS 102 221)
 - eUICC (ETSI TS 103 383)

Note: The nRF9161 modem feature set depends on the modem firmware version and the application firmware.

7.1 SIM card interface

The LTE modem supports the universal integrated circuit card (UICC) interface.

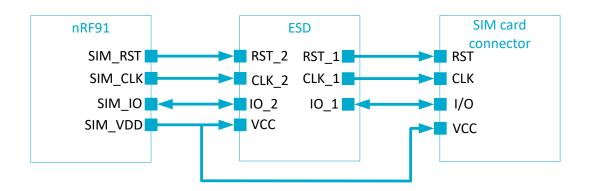
Only UICCs with electrical interfaces specified in ISO/IEC 7816-3 are supported. UICCs with IC-USB, CLF or MMC interfaces are not supported.

The supported UICC/eUICC interface is compliant with:

- ETSI TS 102 221: Smart Cards; UICC-Terminal interface; Physical and logical characteristics
- ETSI TS 103 383: Smart Cards; Embedded UICC; Requirements Specification

The physical interface towards the eUICC is the same as that towards the removable UICC.

By default, only the class C (supply voltage 1.8 V nominal) operation is supported. Support for legacy class B (supply voltage 3.0 V nominal) operation must be built with external components, including an external power supply and the level shifters towards the LTE modem UICC interface.


The LTE modem supports powering down the UICC during PSM and eDRX idle mode if the UICC supports this feature as specified in 3GPP TS 24.301. To reach the lowest total power consumption of the complete cellular IoT product, only UICCs supporting power down mode during PSM and eDRX idle mode sleep intervals should be considered.

The LTE modem controls the physical interfaces towards the UICC and implements the transport protocol over the four-pin ISO/IEC 7816-3 interface:

- VCC (power supply) LTE modem drives this
- CLK (clock signal) LTE modem drives this
- RST (reset signal) LTE modem drives this
- I/O (input/output serial data) Bi-directional

The interface between the LTE modem, the UICC (SIM card) connector, and the ESD device is shown in the following figure.

Only standard transmission speeds are supported as specified in ETSI TS 102 221.

Note: Before removing the UICC, the LTE modem must be stopped through the modem API.

An electrostatic discharge (ESD) protection device compatible with UICC cards must be used between the removable card and the LTE modem, to protect LTE modem against harmful ESD from the card connector.

7.2 LTE coexistence interface

The LTE modem uses a dedicated three-pin interface for RF interference avoidance towards a companion radio device such as an external positioning device or *Bluetooth*[®] Low Energy device.

The interface has the following outputs:

- COEX0 Output from the LTE modem to the external device. When internal GPS is used, COEX0 can be used as active high control for the external LNA component.
- COEX1 Output from the LTE modem to the external device. When internal GPS is used, COEX1
 delivers the GPS 1PPS (one pulse per second) time mark pulse. The 1PPS feature must not be used
 when LTE is enabled.
- COEX2 Output from the LTE modem to the external device. When active high, this indicates that the LTE modem transceiver is turned on. COEX2 can also be treated as an active low grant from the LTE modem to the external device, indicating permission to transmit and receive.

Note: Using the COEX2 pin requires an external pull-down resistor in the 100 k Ω size range.

The COEX interface timing in relation to the LTE modem state is shown in the following figure.

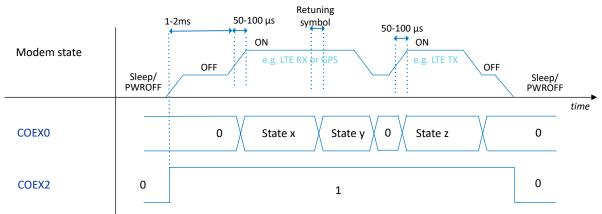
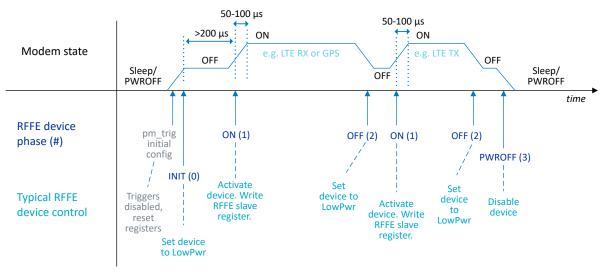


Figure 111: COEX interface timing

7.3 LTE RF control external interface

The LTE modem provides dedicated 1.8 V digital interfaces for controlling external RF applications, such as antenna tuner devices.


The LTE modem supports the following pins:

- MIPI RFFE interface pins VIO, SCLK, SDATA
- MAGPIO interface pins MAGPIO0, MAGPIO1, MAGPIO2

The LTE modem accurately drives the timing of these outputs according to the LTE protocol, to set the correct antenna tuner settings per used frequency, for example. The LTE modem API must be used to inform the LTE modem about the external RF application, so that LTE modem knows to drive it.

Note: For details regarding the modem API and supported RF external control features, see nRF91 AT Commands.

Note: The MIPI RFFE capacitive load at SCLK or SDATA pins must not exceed 15 pF.

The MIPI RFFE interface timing in relation to modem state is shown in the following figure.

Figure 112: MIPI RFFE interface timing

The MAGPIO interface timing in relation to the LTE modem state is shown in the following figure.

Figure 113: MAGPIO interface timing

7.4 RF front-end interface

The nRF9161 has a single-ended (SE) 50 Ω antenna interface to which an antenna is directly connected.

7.5 Registers

7.6 Electrical specification

7.6.1 Key RF parameters for Cat-M1

Note: For certification status, please refer to Regulatory information on page 461.

Symbol	Description	Min.	Тур.	Max.	Units
Supported LTE	Supported LTE standards		LTE Rel-14		
			Cat-M1 HD-		
			FDD		
Bands supported	Bands supported		B1, B2, B3,		
			B4, B5, B8,		
			B12, B13,		
			B18, B19,		
			B20, B25,		
			B26, B28,		
			B66, B85		
Transmission bandwidth	Maximum bandwidth		1.4		MHz

mission bandwidth Maximum bandwidth

7.6.2 Key RF parameters for Cat-NB1 and Cat-NB2

Note: For certification status, please refer to Regulatory information on page 461.

Note: There is no foreseen NB-IoT network deployment for FCC bands closer than 200 kHz from band edge, hence our device will not transmit in FCC bands on channels that are closer than 200kHz to band edge.

Symbol	Description	Min.	Тур.	Max.	Units
Supported LTE	Supported LTE standards		LTE Rel-14		
			Cat-NB1		
			and Cat-		
			NB2 HD-		
			FDD		
Bands supported	Bands supported		B1, B2, B3,		
			B4, B5, B8,		
			B12, B13,		
			B17, B19,		
			B20, B25,		
			B26, B28,		
			B65, B66,		
			B85		
Transmission bandwidth	Maximum bandwidth		200		kHz

7.6.3 Receiver parameters for Cat-M1

Symbol	Description	Min.	Тур.	Max.	Units
Freq _{range_ANT_RX}	RX operation frequency range at ANT pin	617		2200	MHz
Z _{in}	Input impedance, single-ended		50		Ω
Sensitivity, low band	LTE 1.4 MHz without coverage extension	-103	-108		dBm
Sensitivity, mid band	LTE 1.4 MHz without coverage extension	-103	-107		dBm

7.6.4 Receiver parameters for Cat-NB1 and Cat-NB2

Symbol	Description	Min.	Тур.	Max.	Units
Freq _{range_ANT_RX}	RX operation frequency range at ANT pin 617		2200	MHz	
Z _{in}	Input impedance, single-ended		50		Ω
Sensitivity, low band	NB 200 kHz without coverage extension	-108	-114		dBm
Sensitivity, mid band	NB 200 kHz without coverage extension	-108	-113		dBm

7.6.5 Transmitter parameters for Cat-M1

Symbol	Description	Min.	Тур.	Max.	Units
Freq _{range_ANT_TX}	TX operation frequency range at ANT pin	663		1980	MHz
Z _{out}	Output impedance, single-ended		50		Ω
Maximum output power	Maximum output power		23		dBm
Minimum output power	Minimum output power		-40		dBm
Pout maximum accuracy	Pout maximum accuracy		±2		dB

7.6.6 Transmitter parameters for Cat-NB1 and Cat-NB2

Symbol	Description	Min.	Тур.	Max.	Units
Freq _{range_ANT_TX}	TX operation frequency range at ANT pin	663		2010	MHz
Z _{out}	Output impedance, single-ended		50		Ω
Maximum output power	Maximum output power		23		dBm
Minimum output power	Minimum output power		-40		dBm
Pout maximum accuracy	Pout maximum accuracy		±2		dB

8 DECT NR+

The nRF9161 SiP contains a Low-Power Wide-Area (LPWA) network processor with dedicated flash/RAM, which controls the radio and baseband hardware components. DECT NR+ (NR+) capabilities are provided by installing Nordic Semiconductor firmware, that implements the physical layer (PHY) level operation of the NR+ radio protocol stack according to ETSI specifications (TS 103 636-2 and TS 103 636-3).

NR+ is a non-cellular radio standard included as part of the 5G standards by the International Telecommunication Union (ITU). It is designed for massive Machine Type Communication (mMTC) and for Ultra-Reliable Low Latency Communication (URLLC).

NR+ operates on the global and license-exempt 1.9 GHz band, which significantly cuts deployment costs by eliminating the need for frequency planning or heavy certification. The NR+ device developer can design optimal radio behavior since there is no need for third-party cellular infrastructure. Additionally, the range and dense topology properties of NR+ make it highly scalable. A square kilometer can be covered by as little as 100 devices or scaled up to over 1 million devices while maintaining the same reliable, low-latency communication.

The physical radio layer in NR+ reuses known techniques from cellular radios, reaching the same level of reliability that is proven by billions of devices already in the field.

The following are key features of NR+:

- License-exempt global band
- Built-in coexistence of multiple networks in the same location
- Flexible, low-latency system and network architectures
- High reliability, using hybrid ARQ
- Possibility of hiding the network, using AES-128 encryption and integrity protection
- Data rate up to 3.4 Mbps, depending on modulation

See ETSI TS 103 636-1 for more information.

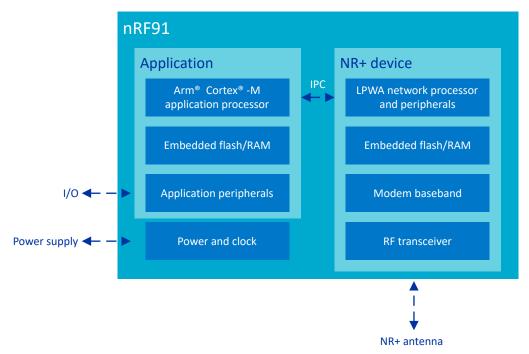


Figure 114: nRF9161 NR+ device functional overview

Application and LPWA network domains interact through the interprocessor communication (IPC) mechanism. The application processor is the system master and is responsible for starting and stopping the NR+ device. The LPWA network processor enables the clocks and power required for its own operation. The platform handles shared resources, such as clocks, and does not need user participation.

8.1 massive Machine Type Communication (mMTC)

mMTC is used for large networks with machine-type devices, connecting tens of billions of nodes that operate for many years using small batteries and transmit small amounts of data.

Typical use cases involve collecting measurements from many sensors, such as smart metering, which requires a low-maintenance and low-cost autonomous network structure.

A key feature of NR+ is its self-healing and self-organizing properties. Each node can function as a router to an access point with a connection to the internet. Nodes can change to a routing role based on the needs of the network. Multiple access points to the internet can be supported in a single network. These properties eliminates single points of failure and resolves high-traffic situations that can occur in dense IoT networks.

8.2 Ultra-Reliable Low-Latency Communication (URLLC)

URLLC enables mission-critical wireless use cases where failure is not an option.

Examples include management of self-driving factory vehicles, high-speed robots working alongside human operators in warehouses, and critical infrastructure in buildings, cities, and utilities.

NR+ is designed to reach one-millisecond latency between devices, opening the possibility for low-latency systems to consider wireless operation, even where ranges are over a kilometer. This makes NR+ an open, standardized alternative to existing proprietary technology.

8.3 DECT NR+ on the nRF9161

Nordic Semiconductor provides NR+ firmware that implements the physical layer (PHY) level operation of the NR+ radio protocol stack according to ETSI specifications (*TS 103 636-2 and TS 103 636-3*).

The NR+ standard and stack are still in development, contact the Nordic Semiconductor sales department for more information on the NR+ firmware.

The nRF9161 SiP supports NR+ bands 1, 2, and 9. The antenna interface and recommendations are the same as for the LTE modem. NR+ does not require a SIM or eSIM.

Note: While running DECT NR+ firmware, the nRF9161 SiP does not support LTE modem. See the LTE modem section for more information on alternative firmware.

8.4 Key RF Parameters

NR+ RF performance parameters are shown in the following table.

Description	Min	Тур	Max	Unit
Bands supported		1, 2, 9		
Transmission Bandwidth		1.728		MHz
Occupied Bandwidth		1.539		MHz
Antenna impedance, single-ended		50		Ω
RX: Sensitivity ²³ , modulation MCS1		-103		dBm
TX: Maximum output power		19		dBm
TX: Minimum output power		-40		dBm

Table 48: Common parameters

8.5 DECT NR+ coexistence interface

NR+ uses a dedicated two-pin coexistence interface to avoid RF interference to a companion radio device such as an external positioning device or a Bluetooth Low Energy device.

The user can configure COEX0 and COEX2 pin functions through the NR+ AT commands.

Note: Using the COEX2 pin requires an external pull-down resistor in the 100 k Ω range.

²³ The sensitivity level has not been measured using the same method as decribed in ETSI TS 103 636-2 chapter "7.2 Reference sensitivity". The reported sensitivity level is the signal level where 10% packet error rate (PER) occurs. This measurement method does not measure the throughput and does not include HARQ.

9 GPS receiver

The LPWA network processor supports GPS reception, if the onboard network protocol firmware supports it.

GPS receiver operation is time multiplexed with the LTE modem, and GPS and QZSS position can be received while the LTE modem is in RRC Idle mode, power saving mode (PSM), or completely deactivated.

The application processor is the system master and responsible for starting and stopping the GPS receiver. GPS can be run standalone or concurrently with QZSS. The GPS and QZSS reception can be configured through the GNSS interface API.

Note: For details regarding the GNSS API, refer to nRF Connect SDK API documentation.

Key features of the GPS receiver are as follows:

- GPS L1 C/A reception
- QZSS L1 C/A reception
- Optimized for low-power and low-cost IoT applications
- Modes of operation:
 - Single shot
 - Position fix per fixed interval, configurable to a value between 10 s to 65536 s
 - Continuous tracking
- Power saving mode:
 - Duty-cycled continuous tracking operation
- One pulse per second (1PPS) signal:
 - A pulse repeating once per second, accurately synchronized to coordinated universal time (UTC) full seconds
 - For more details on 1PPS programmability and power vs. accuracy trade-offs, see GNSS API documentation
 - Available on device COEX1 pin
 - For more details, see LTE modem on page 357, coexistence interface
- Antenna interface:
 - External low-noise amplifier (LNA) with SAW filter recommended on the GPS antenna input
 - Dedicated GPS antenna, or shared antenna with LTE
 - GPS antenna pin is DC grounded

Note: There must be minimum 27dB attenuation to out of band power to avoid blocking high power RF signals to GPS receiver input. This can be achieved by using a SAW filter, for example, at the external LNA output.

9.1 Electrical specification

The following is a summary of GPS receiver performance parameters.

Condition	Value
Environment	Open sky
Temperature	25°C
GPS sleep clock source	тсхо

Table 49: Common typical conditions

Note: Local and temporal conditions might lead to considerable variation in TTFF, positioning accuracy, 1PPS signal accuracy.

The figures in the following table assume the use of an external low-noise amplifier (LNA) with SAW filter.

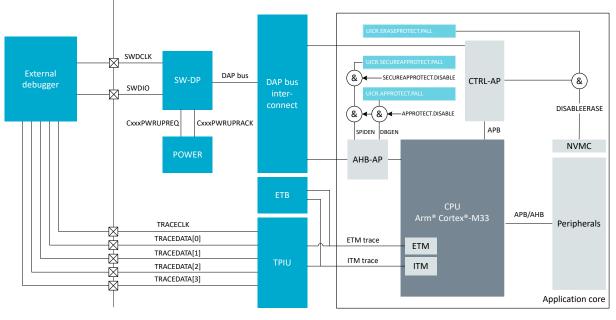

Symbol	Description	Value	Unit
Sensitivity, cold	Acquisition sensitivity, cold start	-146.5	dBm
Sensitivity, hot	Acquisition sensitivity, hot start	-152.5	dBm
Sensitivity, tracking	Tracking sensitivity	-156.5	dBm
TTFF, cold	Time to first fix (TTFF), cold start	30.5	S
TTFF, hot	TTFF, hot start	1.3	S
TTFF, A-GPS	TTFF, A-GPS start	1.3	s
Accuracy, 2D, periodic	Positioning accuracy (CEP50), periodic tracking ²⁴	3.4	m
Accuracy, 2D, periodic, A-GPS	Positioning accuracy (CEP50), periodic tracking ²⁴ with A-GPS ²⁵	3.1	m
Accuracy, 2D, continuous	Positioning accuracy (CEP50), continuous tracking	2.0	m
Accuracy, 2D, continuous, A- GPS	Positioning accuracy (CEP50), continuous tracking with A-GPS ²⁵	1.8	m
1PPS accuracy	1PPS signal accuracy, continuous tracking	±35	ns

Table 50: GPS electrical specification

²⁴ Fix interval 2 min.

²⁵ Including NeQuick ionospheric model parameters.

10 Debug and trace

The debug and trace system offers a flexible and powerful mechanism for non-intrusive debugging.

Figure 115: Debug and trace overview

The main features of the debug and trace system include:

- Two-pin serial wire debug (SWD) interface, protocol version 1
- Access port connection
 - Breakpoint unit (BPU) supports eight hardware breakpoint comparators
 - Data watchpoint and trace (DWT) unit supports four watchpoint comparators
 - Instrumentation trace macrocell (ITM)
 - Embedded trace macrocell (ETM)
 - Access protection through APPROTECT, ERASEPROTECT and SECUREAPPROTECT
 - Embedded trace buffer (ETB)
- Trace port interface unit (TPIU)
 - 4-bit parallel trace of ITM and ETM trace data

Note: When a system contains multiple CPU domains, it is important to be aware that if one domain (subsystem A) has master rights on another domain (subsystem B), the master subsystem can access some data from the slave subsytem. In this example, even if subsystem B is locked by APPROTECT or ERASEPROTECT, subsystem A can access some data for subsystem B. Consequently, even if the security permissions are managed per subsystem, it is mandatory to have a global approach to the protection. Protecting a slave subsystem does not guarantee system security if the master subsystem is not protected.

10.1 DAP - Debug access port

An external debugger can access the device via the debug access port (DAP).

The DAP implements a standard Arm CoreSight serial wire debug port (SW-DP). The SW-DP implements the serial wire debug (SWD) protocol that is a two-pin serial interface, see SWDCLK and SWDIO illustrated in figure Debug and trace overview on page 368.

In addition to the default access port in the application CPU (AHB-AP), the DAP includes a custom control access port (CTRL-AP), described in more detail in CTRL-AP - Control access port on page 437.

Note:

- The SWDIO line has an internal pull-up resistor.
- The SWDCLK line has an internal pull-down resistor.

There are several access ports that connect to different parts of the system. An overview is given in the table below.

AP ID	Туре	Description
0	AHB-AP	Application subsystem access port
3	APB-AP	CoreSight subsystem access port
4	CTRL-AP	Application subsystem control access port

Table 51: Access port overview

The standard Arm components are documented in *Arm CoreSight SoC-400 Technical Reference Manual, revision r3p2*. The control access port (CTRL-AP) is proprietary, and described in more detail in CTRL-AP - Control access port on page 437.

10.2 Access port protection

Access port protection blocks the debugger from read and write access to all CPU registers and memorymapped addresses when enabled. If needed, a debugger can be restricted to debug non-secure code only and access non-secure memory regions and peripherals using register SECUREAPPROTECT on page 41. Register APPROTECT on page 40 blocks all debugger access.

The following table gives an overview of the access port protection methods.

Debugging capability	Description
Non-secure code	The application core AHB-AP DBGEN signal controls all non-secure access through the application core AHB-AP. This can be used to provide readback protection of the flash contents. See Debugger access control for non-secure debug access on page 370. For more information about the DBGEN signal, see the <i>Arm CoreSight SoC-400 Technical Reference Manual, Revision r3p2</i> .
Secure code	The application core AHB-AP SPIDEN signal controls all secure access through the application core AHB-AP. This means that only the non-secure code can be debugged and accessed when secure accesses are blocked. To enable access to the secure access port, non-secure code must be unprotected. See Debugger access control for secure debug access on page 370. For more information about the SPIDEN signal, see the <i>Arm CoreSight SoC-400 Technical Reference Manual, Revision r3p2</i> .

Table 52: Application core access port protection overview

If a RAM or flash region has its permission set to allow code execution, the content of this region is visible to the debugger even if the read permission is not set. This allows a debugger to display the content of the code being executed. For more information on configuring permissions, see SPU — System protection unit on page 257.

Access port protection controlled by hardware and software

By default, access port protection is enabled.

The following table describes how non-secure debugger access is controlled.

Debugging capability	UICR.APPROTECT. PALL	APPROTECT. DISABLE	APPROTECT. FORCEPROTECT	Secure debug access
Non-secure code	HwUnprotected	SwUnprotected	Reset value	-
No debugging possible	Protected	Reset value	Force	-

Table 53: Debugger access control for non-secure debug access

The following table describes how secure debugger access is controlled.

Debugging capability	UICR. SECUREAPPROTECT. PALL	SECUREAPPROTECT. DISABLE	SECUREAPPROTECT. FORCEPROTECT	Non-secure debug access
Secure code	HwUnprotected	SwUnprotected	Reset value	Permitted
No debugging possible	Protected	Reset value	Force	Permitted
No debugging possible	-	-	-	Not permitted

Table 54: Debugger access control for secure debug access

Access port protection is enabled when the hardware and software disabling conditions are not present. For additional security, it is recommended to write Protected to UICR.SECUREAPPROTECT and UICR.APPROTECT, and have firmware write Force to SECUREAPPROTECT.FORCEPROTECT and APPROTECT.FORCEPROTECT.

Note: Registers SECUREAPPROTECT.FORCEPROTECT and APPROTECT.FORCEPROTECT are reset in System ON IDLE or after any reset.

Access port protection is disabled by issuing an ERASEALL command through CTRL-AP. Read ERASEALLSTATUS until the ERASEALL sequence is ready. When ERASEALL is ready, trigger and then release soft reset from the RESET register. Read APPROTECT.STATUS to ensure that access port protection is disabled. If access port is not disabled, do a reset and repeat the ERASEALL command. This command erases the flash, UICR, and RAM, including UICR.SECUREAPPROTECT and UICR.APPROTECT. CTRL-AP is described in more detail in CTRL-AP - Control access port on page 437. Access port protection remains disabled until one of the following occurs:

- Pin reset
- Power or brownout reset

- Watchdog reset
- Wake from System OFF if not in Emulated System OFF

To keep access port protection disabled, the following actions must be performed:

- Program UICR.SECUREAPPROTECT and UICR.APPROTECT to HwUnprotected. This disables the hardware part of the access port protection scheme after the first reset of any type. The hardware part of the access port protection stays disabled as long as UICR.SECUREAPPROTECT and UICR.APPROTECT are not overwritten.
- Firmware must write SECUREAPPROTECT.DISABLE and APPROTECT.DISABLE to SwUnprotected. This disables the software part of the access port protection scheme.

Note: Register SECUREAPPROTECT.DISABLE and APPROTECT.DISABLE are reset in System ON IDLE or after pin reset, power or brownout reset, watchdog reset, or wake from System OFF as mentioned above.

The following figure shows how a device with access port protection enabled is erased, programmed, and configured to allow debugging. Operations sent from the debugger and registers written by firmware affects the access port state.

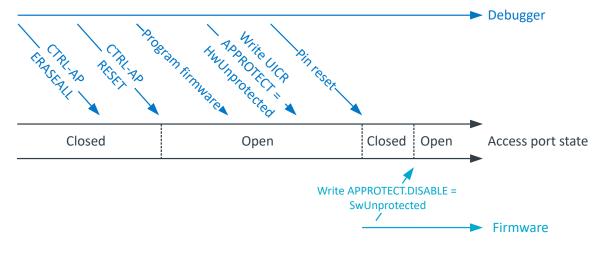


Figure 116: Access port unlocking

10.2.2 Registers

Instances

Instance	Base address	TrustZone			Split access	Description				
		Мар	Att	DMA						
APPROTECT : S	0x50039000	HF	NS	NA	Yes	APPROTECT control				
APPROTECT : NS	0x40039000	ΠF	INS	NA	res	APPROTECT CONTROL				

Register overview

Register	Offset	ΤZ	Description
SECUREAPPROTECT.DISABLE	0xE00	S	Software disable SECUREAPPROTECT mechanism
SECUREAPPROTECT.FORCEPROTECT	0xE00	S	Software force SECUREAPPROTECT mechanism
APPROTECT.DISABLE	0xE10	NS	Software disable APPROTECT mechanism
APPROTECT.FORCEPROTECT	0xE10	NS	Software force APPROTECT mechanism

10.2.2.1 SECUREAPPROTECT.DISABLE

Address offset: 0xE00

Software disable SECUREAPPROTECT mechanism

Bit nu	umber			31 30 29 28 27 26 25 24	2 3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					A A A A A A A A
Rese	t 0x0000000	1		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	DISABLE			Software disable SECUREAPPROTECT mechanism
			SwUnprotected	0x5A	Software disable SECUREAPPROTECT mechanism

10.2.2.2 SECUREAPPROTECT.FORCEPROTECT

Address offset: 0xE00

Software force SECUREAPPROTECT mechanism

Bit nu	mber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					А
Reset	0x0000000	L		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	FORCEPROTECT			Write 0x1 to force enable SECUREAPPROTECT mechanism
	W1S				
			Force	0x1	Software force enable SECUREAPPROTECT mechanism

10.2.2.3 APPROTECT.DISABLE

Address offset: 0xE10

Software disable APPROTECT mechanism

Bit n	umber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					A A A A A A A A
Rese	t 0x0000000	1		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	DISABLE			Software disable APPROTECT mechanism
			SwUnprotected	0x5A	Software disable APPROTECT mechanism

10.2.2.4 APPROTECT.FORCEPROTECT

Address offset: 0xE10

Software force APPROTECT mechanism

Bit nu	ımber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					А
Reset	0x000000	1		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
А	RW	FORCEPROTECT			Write 0x1 to force enable APPROTECT mechanism
	W1S				
			Force	0x1	Software force enable APPROTECT mechanism

10.3 Debug interface mode

Before the external debugger can access the CPU's access port (AHB-AP) or the control access port (CTRL-AP), the debugger must first request the device to power up via CxxxPWRUPREQ in the SWJ-DP.

As long as the debugger is requesting power via CxxxPWRUPREQ, the device will be in debug interface mode. Otherwise, the device is in normal mode. When a debug session is over, the external debugger must make sure to put the device back into normal mode and then a pin reset should be performed. The reason is that the overall power consumption is higher in debug interface mode compared to normal mode.

Some peripherals behave differently in debug interface mode compared to normal mode. The differences are described in more detail in the chapters of the affected peripherals.

For details on how to use the debug capabilities, please read the debug documentation of your IDE.

If the device is in System OFF when power is requested via CxxxPWRUPREQ, the system will wake up and the DIF flag in RESETREAS on page 68 will be set.

10.4 Real-time debug

The device supports real-time debugging, which allows interrupts to execute to completion in real time when breakpoints are set in thread mode or lower priority interrupts.

Real-time debugging thus enables the developer to set a breakpoint and single-step through their code without a failure of the real-time event-driven threads running at higher priority. For example, this enables the device to continue to service the high-priority interrupts of an external controller or sensor without failure or loss of state synchronization while the developer steps through code in a low-priority thread.

10.5 Registers

Register overview

Register	Offset	Description
TARGETID	0x042	The TARGETID register provides information about the target when the host is connected to a single
		device.
		The TARGETID register is accessed by a read of DP register 0x4 when the DPBANKSEL bit in the
		SELECT register is set to 0x2.

10.5.1 TARGETID

Address offset: 0x042

The TARGETID register provides information about the target when the host is connected to a single device.

The TARGETID register is accessed by a read of DP register 0x4 when the DPBANKSEL bit in the SELECT register is set to 0x2.

Bit nu	mber			31	30	29 2	8 2	27 26	5 25	24	23 2	2 21	L 20	19	18	17	16	15 1	.4 1	.3 12	11	10	9	8	7	6	5	4	3	2	1 0
ID				D	D	D) (с с	С	С	C (с с	С	С	С	С	С				В	В	В	В	В	В	В	В	В	BI	ΒA
Reset	0x100	90289		0	0	0 :	1 (0 0	0	0	0	0 0	0	1	0	0	1	0 (D (0 0	0	0	1	0	1	0	0	0	1	0 (01
ID																															
А	R	UNUSED								ł	Rese	erve	d, re	ead-	as-c	one															
В	R	TDESIGNER								i	den	tifie	s th	e de	esig	ner	of t	he p		ntinu t.	atio	n co	de	and	d id	ent	ity (cod	le. 1	'he	ID
			NordicSemi	0x1	44					I	Nord	dic S	emi	icon	duc	tor	ASA	4													
С	R	TPARTNO								I	Part	nun	nbei	r																	
D	R	TREVISION								1	Targ	et re	evisi	on																	

10.6 Electrical specification

10.6.1 Trace port

Symbol	Description	Min.	Тур.	Max.	Units
T _{cyc}	Clock period, as defined by ARM (See ARM Infocenter, Embedded Trace	62.5			ns
	Macrocell Architecture Specification, Trace Port Physical Interface, Timing				
	specifications)				

10.7 Trace

The nRF9161 supports ETM and ITM trace.

Available trace sinks:

- 2 kB internal embedded trace buffer (ETB)
- External trace port interface through TPIU

Trace data from the ETM and the ITM can be sent to an internal embedded trace buffer (ETB) or an external debugger via a 4-bit wide parallel trace port (TPIU), see TRACEDATA[0] through TRACEDATA[3], and TRACECLK in Debug and trace overview on page 368.

The following diagram shows the trace components architecture of the device's embedded Arm CoreSight subsystem.

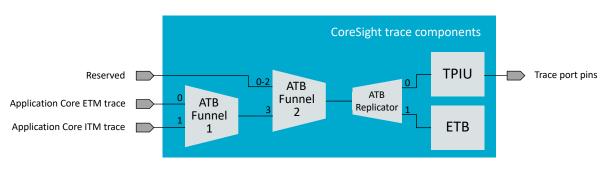


Figure 117: Trace components architecture

The standard Arm components are documented in *Arm CoreSight SoC-400 Technical Reference Manual, revision r3p2*. For details on how to use the trace capabilities, please read the debug documentation of your IDE.

TPIU's trace pins are multiplexed with GPIOs, see Pin assignments on page 450 for more information.

Note: To configure the trace data delivery to the device trace port, use the MDK system start-up file included as of MDK version 8.26.0.

Trace speed is configured in the TRACEPORTSPEED (Retained) on page 448 register. The speed of the trace pins depends on the DRIVE setting of the GPIOs that the trace pins are multiplexed with. See GPIO — General purpose input/output on page 97 for information about how to set drive settings. Only SOS1 and HOH1 drives are suitable for debugging. SOS1 is the default DRIVE at reset. If parallel or serial trace port signals are not fast enough in the debugging conditions, all GPIOs in use for tracing should be set to high drive (HOH1). The user shall make sure that DRIVE setting for these GPIOs is not overwritten by software during the debugging session.

10.7.1 ATB Funnel

The ARM[®] ATB Funnel funnels trace bus mesages from several sources into one output bus.

This document only provides a register-level description of this ARM component. See the ARM[®] CoreSight[™] SoC-400 Technical Reference Manual for more details

10.7.1.1 Registers

Instances

Instance	Base address	TrustZone			Split access	Description
		Мар	Att	DMA		
ATBFUNNEL1	0xE005A000	HF	NS	NA	No	ATBFUNNEL unit 1
ATBFUNNEL2	0xE005B000	HF	NS	NA	No	ATBFUNNEL unit 2

Register overview

The IDFILTERO register enables the programming of ID filtering for master port 0. The Priority_Ctrl_Reg register defines the order in which inputs are selected. Each 3-bit field is a priority for each particular slave interface.
is a priority for each particular slave interface.
The ITATBDATA0 register performs different functions depending on whether the access is a
read or a write.
The ITATBCTR2 register performs different functions depending on whether the access is a
read or a write.
The ITATBCTR1 register performs different functions depending on whether the access is a
read or a write.
The ITATBCTR0 register performs different functions depending on whether the access is a
read or a write.
The ITCTRL register enables the component to switch from a functional mode, which is the
default behavior, to integration mode where the inputs and outputs of the component can be
directly controlled for the purposes of integration testing and topology detection.
Software can use the claim tag to coordinate application and debugger access to trace
unit functionality. The claim tags have no effect on the operation of the component. The
CLAIMSET register sets bits in the claim tag, and determines the number of claim bits
implemented.
Software can use the claim tag to coordinate application and debugger access to trace
unit functionality. The claim tags have no effect on the operation of the component. The
CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the
claim tag.
This is used to enable write access to device registers.

Register	Offset	TZ	Description
LSR	0xFB4		This indicates the status of the lock control mechanism. This lock prevents accidental writes
			by code under debug. Accesses to the extended stimulus port registers are not affected by
			the lock mechanism. This register must always be present although there might not be any
			lock access control mechanism. The lock mechanism, where present and locked, must block
			write accesses to any control register, except the Lock Access Register. For most components
			this covers all registers except for the Lock Access Register.
AUTHSTATUS	0xFB8		Indicates the current level of tracing permitted by the system
DEVID	0xFC8		Indicates the capabilities of the component.
DEVTYPE	0xFCC		The DEVTYPE register provides a debugger with information about the component when the
			Part Number field is not recognized. The debugger can then report this information.
PIDR4	0xFD0		Coresight peripheral identification registers.
PIDR[0]	0xFE0		Coresight peripheral identification registers.
PIDR[1]	0xFE4		Coresight peripheral identification registers.
PIDR[2]	0xFE8		Coresight peripheral identification registers.
PIDR[3]	0xFEC		Coresight peripheral identification registers.
CIDR[0]	0xFF0		Coresight component identification registers.
CIDR[1]	0xFF4		Coresight component identification registers.
CIDR[2]	0xFF8		Coresight component identification registers.
CIDR[3]	0xFFC		Coresight component identification registers.

10.7.1.1.1 CTRLREG

Address offset: 0x000

The IDFILTERO register enables the programming of ID filtering for master port 0.

Bit nu	mber			31 30 29 28 27 26 25 24	2 2 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0
ID					I I I I H G F E D C B A
Reset	0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
A-H	RW	ENS[i] (i=07)			Enable slave port i.
			Disabled	0	Slave port disabled. This excludes the port from the priority selection
					scheme.
			Enabled	1	Slave port enabled.
I.	RW	НТ		[0:14]	Hold Time. The formatting scheme can become inefficient when fast
					switching occurs, and you can use this setting to minimize switching.
					When a source has nothing to transmit, then another source is selected
					irrespective of the minimum number of transactions. The ATB funnel holds
					for the minimum hold time and one additional transaction. The actual hold
					time is the register value plus 1. The maximum value that can be entered is
					0b1110 and this equates to 15 transactions. 0b1111 is reserved.

10.7.1.1.2 PRIORITYCTRLREG

Address offset: 0x004

The Priority_Ctrl_Reg register defines the order in which inputs are selected. Each 3-bit field is a priority for each particular slave interface.

A-H	H RW PRIPORT[i] (i=07)		[0:7]				/ valu		f por	tnu	mbe	er i.													
ID																									
Reset	0x000	00000		0 0 0 0 0	0 0	0 0	0	0 0	0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0 (0 0	0	0	0
ID						Н	н	НĢ	i G	G	FF	F	Е	E	E D	D	D	С	С	С	Βĺ	3 B	A	А	А
Bit nu	Imber			31 30 29 28 27	26 25 2	4 23	22	21 2	0 19	18	17 1	6 15	14	13	12 13	1 10	9	8	7	6	5 4	43	2	1	0

10.7.1.1.3 ITATBDATA0

Address offset: 0xEEC

The ITATBDATAO register performs different functions depending on whether the access is a read or a write.

Bit number			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				Q P O N M L K J I H G F E D C B A
Reset 0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W				Description
A-Q RW	ATDATA[i] (i=016)			A read access returns the value of a pin on atdatas_x of the enabled port. A
				write access writes to the corresponding atdatam pin of the enabled port.
		Low	0	Pin is logic 0.
		High	1	Pin is logic 1.
A-Q RW	ATDATA[i] (i=016)		0	write access writes to the corresponding atdatam pin of the enabled por Pin is logic 0.

10.7.1.1.4 ITATBCTR2

Address offset: 0xEF0

The ITATBCTR2 register performs different functions depending on whether the access is a read or a write.

Bit nu	Imber			31 30 29 28 27 2	26 25 2	4 23 23	2 21 2	0 19	9 18	17 1	6 15	5 14	13	12 1	1 10	9	8	7	6 !	54	3	2	1	0
ID																							В	А
Reset	0x000	00000		0 0 0 0 0	000	000	00	0 0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0 (D O	0	0	0	0
ID																								
А	RW	ATREADY				A rea	id acce	ess r	etur	ns th	e va	lue	of a	tread	dym.	Αv	vrit	e ac	cess	out	tpu	s th	ne	
						data	to afv	alids	[n],	wher	re th	ne va	lue	of th	ne C	FRLF	REG	at ()x00	00 d	efin	es r	۱.	
			Low	0		Pin is	logic	0.																
			High	1		Pin is	logic	1.																
В	RW	AFVALID				A rea	id acce	ess r	etur	ns th	e va	lue	of a	fvali	dm.	A w	rite	acc	ess	out	puts	the	e da	ita
						to at	readys	[n],	whe	re th	ie va	alue	of t	he C	TRLF	EG	at C	x00	0 de	efine	es n			
			Low	0		Pin is	logic	0.																
			High	1		Pin is	logic	1.																

10.7.1.1.5 ITATBCTR1

Address offset: 0xEF4

The ITATBCTR1 register performs different functions depending on whether the access is a read or a write.

Bit nu	ımber			31 30 29 28 27 26 25 24	2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0
ID					ААААААА
Reset	: 0x0000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	ATVALIDM0			A read returns the value of the atids[n] signals, where the value of the
					Control Register at 0x000 defines n. A write outputs the value to the atidm
					port.
			Low	0	Pin is logic 0.
			High	1	Pin is logic 1.

10.7.1.1.6 ITATBCTR0

Address offset: 0xEF8

The ITATBCTRO register performs different functions depending on whether the access is a read or a write.

Bit n	umber			31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					СС ВА
Rese	t 0x000	00000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
А	RW	ATVALID			A read returns the value of the atvalids[n] signal, where the value of the
					CTRLREG at 0x000 defines n. A write outputs the value to atvalidm.
			Low	0	Pin is logic 0.
			High	1	Pin is logic 1.
В	RW	AFREADY			A read returns the value of the afreadys[n] signal, where the value of the
					Ctrl_Reg at 0x000 defines n. A write outputs the value to afreadym.
			Low	0	Pin is logic 0.
			High	1	Pin is logic 1.
С	RW	ATBYTES			A read returns the value of the atbytess[n] signal, where the value of the
					Ctrl_Reg at 0x000 defines n. A write outputs the value to atbytesm.
			Low	0	Pin is logic 0.
			High	1	Pin is logic 1.

10.7.1.1.7 ITCTRL

Address offset: 0xF00

The ITCTRL register enables the component to switch from a functional mode, which is the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for the purposes of integration testing and topology detection.

Bit nu	ımber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					A
Reset	: 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
А	RW	IME			Integration Mode Enable.
			Disabled	0	Integration mode disabled.
			Enabled	1	Integration mode enabled.

10.7.1.1.8 CLAIMSET

Address offset: 0xFA0

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.

Bit nu	mber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D C B A
Reset	0x0000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
A-D	RW	BIT[i] (i=03)			Set claim bit i and check if bit is implemented or not.
			NotImplemented	0	Claim bit i is not implemented.
			Implemented	1	Claim bit i is implemented.
			Set	1	Set claim bit i.

10.7.1.1.9 CLAIMCLR

Address offset: 0xFA4

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.

Bit nu	mber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D C B A
Reset	0x0000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
A-D	RW	BIT[i] (i=03)			Read or clear claim bit i.
			Cleared	0	Claim bit i is not set.
			Set	1	Claim bit i is set.
			Clear	1	Clear claim bit i.

10.7.1.1.10 LAR

Address offset: 0xFB0

This is used to enable write access to device registers.

Bit nur	nber			33	1 30	0 29	9 28	8 21	7 20	62	25 2	24 2	23 2	22 2	21 3	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ID				А	A	A	A	A	A A	•	A /	A	A	A	A	A	A	А	А	А	A	A	A	A	A	A	А	А	А	А	А	А	А	A	A	A
Reset	0x0000	00000		0	0	0	0	0	0) (0 (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ID																																				
А	RW	ACCESS										A	٩w	rite	of	0x(C54	ACC	E5	5 e	nab	les	fu	the	er w	rite	ac	ces	s to	thi	s de	evic	e. A	ny		
												0	oth	er w	vrit	e r	em	ove	es v	/rit	e a	cce	ss.													
			UnLock	0)	kC5	ACO	CE5	5				υ	Jnl	ock	re	gist	er i	inte	erfa	ce.																

10.7.1.1.11 LSR

Address offset: 0xFB4

This indicates the status of the lock control mechanism. This lock prevents accidental writes by code under debug. Accesses to the extended stimulus port registers are not affected by the lock mechanism. This register must always be present although there might not be any lock access control mechanism. The lock mechanism, where present and locked, must block write accesses to any control register, except the Lock Access Register. For most components this covers all registers except for the Lock Access Register.

Bit nu	umber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					C B A
Reset	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	PRESENT			Indicates that a lock control mechanism exists for this device.
			NotImplemented	0	No lock control mechanism exists, writes to the Lock Access Register are
					ignored.
			Implemented	1	Lock control mechanism is present.
В	RW	LOCKED			Returns the current status of the Lock.
			UnLocked	0	Write access is allowed to this device.
			Locked	1	Write access to the component is blocked. All writes to control registers are
					ignored. Reads are permitted.
С	RW	TYPE			Indicates if the Lock Access Register is implemented as 8-bit or 32-bit.
			Bits32	0	This component implements a 32-bit Lock Access Register.
			Bits8	1	This component implements an 8-bit Lock Access Register.

10.7.1.1.12 AUTHSTATUS

Address offset: 0xFB8

Indicates the current level of tracing permitted by the system

Bit nu	mber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D D C C B B A A
Reset	0x000	00000		0 0 0 0 0 0 0	
ID					Description
A	RW	NSID			Non-secure Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.
В	RW	NSNID			Non-secure Non-Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.
С	RW	SID			Secure Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.
D	RW	SNID			Secure Non-Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.

10.7.1.1.13 DEVID

Address offset: 0xFC8

Indicates the capabilities of the component.

Bit nu	umber		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A A A A
Reset	t 0x000	00000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
A	R	PORTCOUNT	[2:8]	Indicates the number of input ports connected. 0x0 and 0x1 are illegal
				values.

10.7.1.1.14 DEVTYPE

Address offset: 0xFCC

The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.

Bit nu	mber			31	30	29 2	28 2	27 2	6 25	5 24	23	22	21 2	20 1	9 1	8 17	16	15	14	13	12	11 1	10 9	8	7	6	5	4	3	2	1
ID																									В	В	В	В	А	А	А
Reset	0x000	00000		0	0	0	0	0 (0 0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
ID																															
А	R	MAJOR									Th	e ma	ain t	ype	of	the	con	npo	ner	nt											
			InputOutputDevice	2							Inc	licat	es tl	hat	this	cor	npc	nei	nt h	as A	ΑТВ	inpı	uts a	nd c	utp	uts	•				
-											ть		L																		
В	R	SUB									In	e su	b-ty	pe o	or tr	ie c	om	pon	ent												

10.7.1.1.15 PIDR4

Address offset: 0xFD0

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25	2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.1.1.16 PIDR[0]

Address offset: 0xFE0

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x0000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.1.1.17 PIDR[1]

Address offset: 0xFE4

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x0000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.1.1.18 PIDR[2]

Address offset: 0xFE8

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.1.1.19 PIDR[3]

Address offset: 0xFEC

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.1.1.20 CIDR[0]

Address offset: 0xFF0

Coresight component identification registers.

Bit number	31 30	0 29 28 27 26 29	5 24 23 22	21 20 19	18 17 16	15 14 1	13 12 11	10 9	8 7	6	54	3	2 1	0
ID														
Reset 0x0000000	0 0	0 0 0 0 0	000	0 0 0	0 0 0	0 0	000	0 0	0 0	0	0 0	0	0 0	0
ID R/W Field Valu														

10.7.1.1.21 CIDR[1]

Address offset: 0xFF4

Coresight component identification registers.

Bit number	31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x0000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.1.1.22 CIDR[2]

Address offset: 0xFF8

Coresight component identification registers.

Bit number	31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6	5 4 3 2 1 0
ID			
Reset 0x0000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0

10.7.1.1.23 CIDR[3]

Address offset: 0xFFC

Coresight component identification registers.

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.7.2 ATB Replicator

The ARM[®] ATB Replicator replicates incoming trace bus mesages across its outputs.

This document only provides a register-level description of this ARM component. See the ARM[®] CoreSight[™] SoC-400 Technical Reference Manual for more details

10.7.2.1 Registers

Instances

Instance	Base address	TrustZone			Split access	Description
		Мар	Att	DMA		
ATBREPLICATOR	0xE0058000	HF	NS	NA	No	ATBREPLICATOR

Register overview

Register	Offset	TZ	Description
IDFILTERO	0x000		The IDFILTER0 register enables the programming of ID filtering for master port 0.
IDFILTER1	0x004		The IDFILTER1 register enables the programming of ID filtering for master port 1.
ITATBCTR1	0xEF8		The ITATBCTR1 register returns the value of the atreadym0, atreadym1, and atvalids inputs in
			integration mode.
ITATBCTRO	OxEFC		The ITATBCTR0 register controls the value of the atvalidm0, atvalidm1, and atreadys outputs
			in integration mode.
ITCTRL	0xF00		The ITCTRL register enables the component to switch from a functional mode, which is the
			default behavior, to integration mode where the inputs and outputs of the component can be
			directly controlled for the purposes of integration testing and topology detection.
CLAIMSET	0xFA0		Software can use the claim tag to coordinate application and debugger access to trace
			unit functionality. The claim tags have no effect on the operation of the component. The
			CLAIMSET register sets bits in the claim tag, and determines the number of claim bits
			implemented.
CLAIMCLR	0xFA4		Software can use the claim tag to coordinate application and debugger access to trace
			unit functionality. The claim tags have no effect on the operation of the component. The
			CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the
			claim tag.
LAR	0xFB0		This is used to enable write access to device registers.
LSR	0xFB4		This indicates the status of the lock control mechanism. This lock prevents accidental writes
			by code under debug. Accesses to the extended stimulus port registers are not affected by
			the lock mechanism. This register must always be present although there might not be any
			lock access control mechanism. The lock mechanism, where present and locked, must block
			write accesses to any control register, except the Lock Access Register. For most components
			this covers all registers except for the Lock Access Register.
AUTHSTATUS	0xFB8		Indicates the current level of tracing permitted by the system
DEVID	0xFC8		Indicates the capabilities of the component.
DEVTYPE	0xFCC		The DEVTYPE register provides a debugger with information about the component when the
			Part Number field is not recognized. The debugger can then report this information.
PIDR4	0xFD0		Coresight peripheral identification registers.
PIDR[0]	0xFE0		Coresight peripheral identification registers.
PIDR[1]	0xFE4		Coresight peripheral identification registers.
PIDR[2]	0xFE8		Coresight peripheral identification registers.
PIDR[3]	0xFEC		Coresight peripheral identification registers.
CIDR[0]	0xFF0		Coresight component identification registers.
CIDR[1]	0xFF4		Coresight component identification registers.
CIDR[2]	0xFF8		Coresight component identification registers.
CIDR[3]	0xFFC		Coresight component identification registers.

10.7.2.1.1 IDFILTER0

Address offset: 0x000

The IDFILTER0 register enables the programming of ID filtering for master port 0.

Bit nu	mber			31 3	30 29	28	27 2	26 2	5 24	‡ 23	22 2	21 2	0 1	9 18	17	16	15 3	14 1	13 1	2 11	. 10	9	8	7	6	5	4	3	2	1 0
ID																								н	G	F	E	D	С	ΒA
Reset	0x000	00000		0	0 0	0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0	0 () 0	0	0	0	0	0	0	0	0	0	0 0
ID																														
A-H	RW	ID0_[i]0_[i]F (i=07)								Ena	able	or c	lisal	ble II	D fil	teri	ng f	or I	Ds ()xi0_	0xiF									
			NotFiltered	0						Tra	nsad	ctior	ns w	ith t	hes	e ID)s ai	re p	asse	ed oi	n to	ATE	m	aste	r p	ort	0.			
			Selected	1						Tra	nsad	ctior	ns w	ith t	hes	e IC)s ai	re d	isca	rdec	l by i	the	rep	olica	tor	:				

10.7.2.1.2 IDFILTER1

Address offset: 0x004

The IDFILTER1 register enables the programming of ID filtering for master port 1.

Bit nu	mber			31 30 29	28 27 2	26 25 2	24 23	22 21	L 20 1	19 18	3 17	16 1	5 14	13 1	2 11 1	09	8	76	5 5	54	3	2	1 0
ID																		НG	6 F	E	D	С	ΒA
Reset	0x000	00000		0 0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0) ()	0 0	00) 0	0	0 0) () 0	0	0	0 0
ID																							
A-H	RW	ID1_[i]0_[i]F (i=07)					Ena	ble o	r disa	able I	D filt	terin	g for	IDs 0	xi0_0	ciF.							
			NotFiltered	0			Tra	nsacti	ions	with	thes	e IDs	are	passe	ed on t	o AT	Bm	aster	ро	rt 1	•		
			Selected	1			Tra	nsacti	ions	with	thes	e IDs	are	disca	rded b	y the	e rep	olicat	or.				

10.7.2.1.3 ITATBCTR1

Address offset: 0xEF8

The ITATBCTR1 register returns the value of the atreadym0, atreadym1, and atvalids inputs in integration mode.

Bit nu	umber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					С ВА
Reset	t 0x0000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
А	RW	ATREADYM0			Reads the value of the atreadym0 input.
			Low	0	Pin is logic 0.
			High	1	Pin is logic 1.
В	RW	ATREADYM1			Reads the value of the atreadym1 input.
			Low	0	Pin is logic 0.
			High	1	Pin is logic 1.
С	RW	ATVALIDS			Reads the value of the atvalids input.
			Low	0	Pin is logic 0.
			High	1	Pin is logic 1.

10.7.2.1.4 ITATBCTR0

Address offset: 0xEFC

The ITATBCTRO register controls the value of the atvalidm0, atvalidm1, and atreadys outputs in integration mode.

Bit nu	umber			31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					СВА
Reset	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	ATVALIDM0			Sets the value of the atvalidm0 output.
			Low	0	Pin is logic 0.
			High	1	Pin is logic 1.
В	RW	ATVALIDM1			Sets the value of the atvalidm1 output.
			Low	0	Pin is logic 0.
			High	1	Pin is logic 1.
С	RW	ATREADYS			Sets the value of the atreadys output.
			Low	0	Pin is logic 0.
			High	1	Pin is logic 1.

10.7.2.1.5 ITCTRL

Address offset: 0xF00

The ITCTRL register enables the component to switch from a functional mode, which is the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for the purposes of integration testing and topology detection.

Bit number	31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		A
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A RW IME		Integration Mode Enable.
Disabled	0	Integration mode disabled.
Enabled	1	Integration mode enabled.

10.7.2.1.6 CLAIMSET

Address offset: 0xFA0

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.

Bit nu	mber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D C B A
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-D	RW	BIT[i] (i=03)			Set claim bit i and check if bit is implemented or not.
			NotImplemented	0	Claim bit i is not implemented.
			Implemented	1	Claim bit i is implemented.
			Set	1	Set claim bit i.

10.7.2.1.7 CLAIMCLR

Address offset: 0xFA4

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.

Bit nu	mber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D C B A
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
A-D	RW	BIT[i] (i=03)			Read or clear claim bit i.
			Cleared	0	Claim bit i is not set.
			Set	1	Claim bit i is set.
			Clear	1	Clear claim bit i.

10.7.2.1.8 LAR

Address offset: 0xFB0

This is used to enable write access to device registers.

Bit nu	umber			31 3	30 29	28	27	26 2	5 24	1 23	22	21 2	0 19	9 18	17	16	15 1	4 13	3 12	11	10 9	98	3 7	6	5	4	3	2	1
ID				А	A A	А	А	A A	A A	A	А	A A	A	А	А	А	A A	A A	Α	А	A A	A A	A	A	A	A	А	А	А
Reset	t 0x000	00000		0	0 0	0	0	0 0) O	0	0	0 0) 0	0	0	0	0 0	0 0	0	0	0 (0 0	0	0	0	0	0	0	0
А	RW	ACCESS								A١	vrit	e of ()xC5	ACC	E55	i en	able	s fu	rthe	r wr	ite a	cce	ss t	o th	nis d	levi	ce. /	٩ny	
										otl	ner	write	ren	nove	es w	rite	асс	ess.											
			UnLock	0xC	5ACC	E55				Un	locl	< regi	ster	inte	erfa	ce.													

10.7.2.1.9 LSR

Address offset: 0xFB4

This indicates the status of the lock control mechanism. This lock prevents accidental writes by code under debug. Accesses to the extended stimulus port registers are not affected by the lock mechanism. This register must always be present although there might not be any lock access control mechanism. The lock mechanism, where present and locked, must block write accesses to any control register, except the Lock Access Register. For most components this covers all registers except for the Lock Access Register.

_					
Bit n	umber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					C B A
Rese	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	PRESENT			Indicates that a lock control mechanism exists for this device.
			NotImplemented	0	No lock control mechanism exists, writes to the Lock Access Register are
					ignored.
			Implemented	1	Lock control mechanism is present.
В	RW	LOCKED			Returns the current status of the Lock.
			UnLocked	0	Write access is allowed to this device.
			Locked	1	Write access to the component is blocked. All writes to control registers are
					ignored. Reads are permitted.
С	RW	ТҮРЕ			Indicates if the Lock Access Register is implemented as 8-bit or 32-bit.
			Bits32	0	This component implements a 32-bit Lock Access Register.
			Bits8	1	This component implements an 8-bit Lock Access Register.

10.7.2.1.10 AUTHSTATUS

Address offset: 0xFB8

Indicates the current level of tracing permitted by the system

Bit n	umber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D D C C B B A A
Rese	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	NSID			Non-secure Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.
В	RW	NSNID			Non-secure Non-Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.
С	RW	SID			Secure Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.
D	RW	SNID			Secure Non-Invasive Debug
			NotImplemented	0	The feature is not implemented.

	Implemented	1	The feature is implemented.
ID R/W Field			Description
Reset 0x0000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			D D C C B B A A
Bit number		31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10.7.2.1.11 DEVID

Address offset: 0xFC8

Indicates the capabilities of the component.

Bit nu	umber		31	30 2	9 28	3 27	26 2	25 24	23	22 2	21 20) 19	18	17 :	16 1	5 14	13	12	11	10 9	Э	87	6	5	4	3	2	1	С
ID																										А	A	А	A
Reset	t 0x000	00000	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0 (0	0	0	0	0	0 (0 0	0	0	0	0	0	0	D
ID																													
A	R	PORTNUM	[0:1	15]					Inc	icat	es th	e nı	ımb	er o	of m	aste	r po	rts i	mp	eme	ente	ed.							

10.7.2.1.12 DEVTYPE

Address offset: 0xFCC

The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.

Bit nu	umber			31	30	29 2	28 2	272	62	5 24	4 2	32	2 2	1 2	20 2	19	18 :	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ID																												В	В	В	В	А	А	А	А
Rese	t 0x000	00000		0	0	0	0	0 0) (0 0	0) (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ID																																			
А	R	MAJOR									T	he	ma	in t	typ	e o	f th	e c	om	роі	nen	t													
			InputOutputDevice	2							In	ndio	cate	es t	hat	: th	is c	om	por	nen	t h	as A	ТΒ	inp	uts	an	d o	utpu	ıts.						
В	R	SUB									T	he	sub	o-ty	pe	of	the	со	mp	one	ent														
			Replicator	2							In	ndio	cate	es t	hat	: th	is c	om	por	nen	t re	epli	cate	es ti	race	e fro	om	a si	ngl	e so	our	ce	to		
											m	nult	tiple	e ta	arge	ets.																			

10.7.2.1.13 PIDR4

Address offset: 0xFD0

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.2.1.14 PIDR[0]

Address offset: 0xFE0

Coresight peripheral identification registers.

Bit number	31 30	0 29 28 27 26 29	5 24 23 22	21 20 19	18 17 16	15 14 1	13 12 11	10 9	8 7	6	54	3	2 1	0
ID														
Reset 0x0000000	0 0	0 0 0 0 0	000	0 0 0	0 0 0	0 0	000	0 0	0 0	0	0 0	0	0 0	0
ID R/W Field Valu														

10.7.2.1.15 PIDR[1]

Address offset: 0xFE4

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x0000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.2.1.16 PIDR[2]

Address offset: 0xFE8

Coresight peripheral identification registers.

Bit number ID		31 30 29 28 27 26 2	2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0
ID			
Reset 0x0000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10.7.2.1.17 PIDR[3]

Address offset: 0xFEC

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x0000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.2.1.18 CIDR[0]

Address offset: 0xFF0

Coresight component identification registers.

Bit number	31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.2.1.19 CIDR[1]

Address offset: 0xFF4

Coresight component identification registers.

Bit number	31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.2.1.20 CIDR[2]

Address offset: 0xFF8

Coresight component identification registers.

Bit number	31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x0000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		Description

10.7.2.1.21 CIDR[3]

Address offset: 0xFFC

Coresight component identification registers.

Bit number		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			
Reset 0x00000000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field			

10.7.3 ETB — Embedded trace buffer

The ARM embedded trace buffer captures trace and stores it in an on-chip RAM for later inspection.

This document only provides a register-level description of this ARM component. See the Arm[®] CoreSight SoC-400 Technical Reference Manual for more details.

10.7.3.1 Registers

Instances

Instance	Base address	TrustZone			Split access	Description
		Мар	Att	DMA		
ETB	0xE0051000	HF	NS	NA	No	ЕТВ

Register overview

Register	Offset	TZ	Description
RDP	0x4		ETB RAM Depth Register
STS	0xC		ETB Status Register
RRD	0x10		ETB RAM Read Data Register
RRP	0x14		ETB RAM Read Pointer Register
RWP	0x18		ETB RAM Write Pointer Register
TRG	0x1C		ETB Trigger Counter Register
CTL	0x20		ETB Control Register
RWD	0x24		ETB RAM Write Data Register
FFSR	0x300		ETB Formatter and Flush Status Register

Register	Offset	ΤZ	Description
FFCR	0x304		ETB Formatter and Flush Control Register
ITMISCOP0	0xEE0		Integration Test Miscellaneous Output Register 0
ITTRFLINACK	0xEE4		Integration Test Trigger In and Flush In Acknowledge Register
ITTRFLIN	0xEE8		Integration Test Trigger In and Flush In Register
ITATBDATA0	OxEEC		Integration Test ATB Data Register 0
ITATBCTR2	0xEF0		Integration Test ATB Control Register 2
ITATBCTR1	0xEF4		Integration Test ATB Control Register 1
ITATBCTRO	0xEF8		Integration Test ATB Control Register 0
ITCTRL	0xF00		Integration Mode Control Register
CLAIMSET	0xFA0		Claim Tag Set Register
CLAIMCLR	0xFA4		Claim Tag Clear Register
LAR	0xFB0		Lock Access Register
LSR	0xFB4		Lock Status Register
AUTHSTATUS	0xFB8		Authentication Status Register
DEVID	0xFC8		Device Configuration Register
DEVTYPE	0xFCC		Device Type Identifier Register
PERIPHID4	0xFD0		Peripheral ID4 Register
PERIPHIDO	0xFE0		Peripheral ID0 Register
PERIPHID1	0xFE4		Peripheral ID1 Register
PERIPHID2	0xFE8		Peripheral ID2 Register
PERIPHID3	0xFEC		Peripheral ID3 Register
COMPIDO	0xFF0		Component ID0 Register
COMPID1	0xFF4		Component ID1 Register
COMPID2	0xFF8		Component ID2 Register
COMPID3	0xFFC		Component ID3 Register

10.7.3.1.1 RDP

Address offset: 0x4

ETB RAM Depth Register

Defines the depth, in words, of the trace RAM. This value is configurable in the RTL, but fixed at synthesis. Supported depth in powers of 2 only.

Bit nu	mber		31	30	29	28	27	26	25	24	23	22 3	21 3	20 :	19 :	18 1	L7 1	.6 1	51	41	3 12	11	10	9	8	7	6	5	4	3	2	1)
ID			А	А	А	A	А	A	А	А	А	A	A	A	A	A.	A	4 /	4 <i>4</i>	4 A	A	А	А	А	А	А	A	A	A	A	A	A .	A
Reset	0x000	00000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 () (0	0	0	0	0	0	0	0	0	0	0	0)
ID																																	
A	R	ETB_RAM_DEPTH									Def	ine	s th	ie d	ept	:h, iı	n w	ord	s, o	f th	e tra	ice	RAN	Л.									

10.7.3.1.2 STS

Address offset: 0xC

ETB Status Register

This register indicates the status of the ETB.

Bit nu	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
ID				D C B A												
Reset	t 0x000	00008	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
А	R	FULL		RAM Full. The flag indicates when the RAM write pointer has wrapped												
				around.												
В	R	TRIGGERED		The Triggered bit is set when a trigger has been observed. This does												
				not indicate that a trigger has been embedded in the trace data by the												
				formatter, but is determined by the programming of the Formatter and												
				Flush Control Register.												
С	R	ACQCOMP		The acquisition complete flag indicates that capture has been completed												
				when the formatter stops because of any of the methods defined in the												
				Formatter and Flush Control Register, or TraceCaptEn = 0. This also results in												
				FtStopped in the Formatter and Flush Status Register going HIGH.												
D	R	FTEMPTY		Formatter pipeline empty. All data stored to RAM.												

10.7.3.1.3 RRD

Address offset: 0x10

ETB RAM Read Data Register

When trace capture is disabled, the contents of the ETB Trace RAM at the location addressed by the RAM Read Pointer Registers are placed in this register. Reading this register increments the RAM Read Pointer Register and triggers a RAM access cycle. If trace capture is enabled (FtStopped=0, TraceCaptEn=1), and ETB RAM reading is attempted, a read from this register outputs 0xFFFFFFFF and the RAM Read Pointer Register does not auto-increment. A constant stream of 1s being output corresponds to a synchronization output in the formatter protocol, which is not applicable to the ETB, and so can be used to signify a read error, when formatting is enabled.

A R RAM READ DATA				Data read from the ETB Trace RAM.																											
ID R/W Field Value ID																															
Reset 0x00000000				0	0 (0 (0 0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0 0	0	0
ID				А	A	4 ۸	A A	A	A	А	А	А	A	A	4 Α	A	А	А	A	A	A A	A	А	А	А	A	A	A A	A A	А	А
Bit nu	mber			31	30 2	9 2	8 27	7 26	5 25	24	23	22	21 2	20 1	.9 1	8 17	' 16	15	14	13 1	12 1	1 10	9	8	7	6	5	4 3	32	1	0

10.7.3.1.4 RRP

Address offset: 0x14

ETB RAM Read Pointer Register

The RAM Read Pointer Register sets the read pointer used to read entries from the Trace RAM over the APB interface. When this register is written to, a RAM access is initiated. The RAM Read Data Register is then updated. The register can also be read to determine the current memory location being referenced. This register must not be written to when trace capture is enabled (FtStopped=0, TraceCaptEn=1). If access is attempted, the register is not updated.

Bit n	umber		31 30 29 28 27 2	6 25 24 23	22 21 20	19 18	17 16	15 14	4 13 1	2 11 1	09	8	76	5	4	3	2	1 0
ID											А	А	A A	A	А	А	Α.	A A
Rese	et 0x0000000		0 0 0 0 0	0000	0 0 0	0 0	0 0	0 0	0 (00	0	0	0 0	0	0	0	0	0 0
ID																		
А	RW RAM_READ	_POINTER		Se	ts the rea	d point	er use	d to r	ead er	ntries f	rom	the	Trace	RA	Мo	ver	the	APB
				int	erface.													

10.7.3.1.5 RWP

Address offset: 0x18

ETB RAM Write Pointer Register

The RAM Write Pointer Register sets the write pointer used to write entries from the CoreSight bus into Trace RAM. During trace capture the pointer increments when the DataValid flag is asserted by the Formatter. When this register increments from its maximum value back to zero, the Full flag is set. This register can also be written to over APB to set the pointer for write accesses carried out through the APB interface. This register must not be written to when trace capture is enabled (FtStopped=0, TraceCaptEn=1). If access is attempted, the register is not updated. The register can also be read to determine the current memory location being referenced. It is recommended that addresses are 128-bit aligned when the formatter is used in normal or continuous modes.

Reset	t 0x000	00000	0 0 0 0	0 0 0	0 0	000	0 0	0 0	0	0 0	0 0				A A 0 0
ID															

Trace RAM

10.7.3.1.6 TRG

Address offset: 0x1C

ETB Trigger Counter Register

The Trigger Counter Register disables write access to the Trace RAM by stopping the Formatter after a defined number of words have been stored following the trigger event. The number of 32-bit words written into the Trace RAM following the trigger event is equal to the value stored in this register+1.

																														_
Bit nu	mber		31	30 2	29 28	8 27	26	25 2	24	23 2	2 2	1 20) 19	18	17	16	15 1	.4 1	3 12	2 11	10	9	B 7	6	5	4	3	2	1	0
ID																						A	4 /	A A	A	А	А	A	A	A
Reset	0x000	00000	0	0	0 0	0	0	0	0	0 0	D 0	0	0	0	0	0	0	0 0) 0	0	0	0	0 () 0	0	0	0	0	0	0
A	RW	TRIGGER_COUNTER								The	cou	nter	r is ı	used	as	foll	ows	:Tra	ce a	fter	- Th	e co	oun	er is	se	t to	a la	irge		_
										valu	e, sl	ight	ly le	ess t	har	n the	e nu	mb	er o	f en	tries	in t	he	RAIV	I. Tr	ace	be	fore	-	
										The	cou	nter	r is s	et t	o a	sma	all v	alue	e. Tra	ace	abou	t - 1	The	cou	nte	r is	set	to h	alf	
										the o	dept	th o	f th	e Tra	ace	RA	И. Т	his	regi	ster	mus	t no	ot b	e wr	itte	n to	o wl	nen	tra	ce
										capt	ure	is e	nab	led ((FtS	top	ped	=0,	Trac	eCa	ptEr	1=1)	. If	a wr	ite	is a	tten	npte	ed,	
										the r	regis	ster	is n	ot u	pda	ated	. A	read	d ac	cess	is pe	erm	itte	d wi	th t	rac	e ca	ptu	re	
										enat	oled																			
40																														

10.7.3.1.7 CTL

Address offset: 0x20

ETB Control Register

This register controls trace capture by the ETB.

Bit n	umber		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x000	00000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
А	RW	TRACECAPTEN		ETB Trace Capture Enable. This is the master enable bit forcing FtStopped
				HIGH when TraceCaptEn is LOW. When capture is disabled, any remaining
				data in the ATB formatter is stored to RAM. When all data is stored the
				formatter outputs FtStopped. Capture is fully disabled, or complete, when
				FtStopped goes HIGH. See ETB Formatter and Flush Status Register, FFSR,

0x300.

10.7.3.1.8 RWD

Address offset: 0x24

ETB RAM Write Data Register

Data written to the ETB Trace RAM.

Bit nu	mber		31	30	29	28	27	26	25	24	23 2	22 2	21 2	20 2	19	18 1	L7 1	16 1	51	14 1	.3 1	.2 1	1 10	9	8	7	6	5	4	3	2	1	0
ID			А	А	А	А	А	А	А	A	А	A	A	A	A	A.	A	A A	Υ.	A	Δ.	A A	AA	А	А	А	A	A	A	A	A	A	А
Reset	0x000	00000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0)	0 (0	0 0) ()	0	0	0	0	0	0	0	0	0	0
ID																																	
А	RW	RAM_WRITE_DATA									Data	a w	ritt	ent	to t	he l	ЕТΒ	Tra	ce	RA	И. '	Whe	en tra	ace	сар	tur	e is	dis	abl	ed,	the	è	_
											con	ten	ts c	of th	nis	regi	ster	r are	e pl	lace	d iı	nto	the E	ТВ	Trac	ce R	AN	1 wl	hen	thi	s		
										1	regi	ste	r is	wri	tte	n to	. W	/ritir	ng t	to tl	his	regi	ster	incı	rem	ent	s th	e R	AM	I W	rite	2	
											Poir	nter	^r Re	egist	ter.	lf ti	race	e ca	ptu	ıre i	s e	nabl	ed, a	and	this	s re	gist	er i	s ac	ces	sec	d,	
										t	the	n a	rea	ld fr	on	n thi	s re	egist	er	out	put	:s 0>	FFF	FFI	FF. F	lead	ls o	of th	nis r	egi	stei	r	
										I	nev	er i	ncr	em	ent	the	e RA	۱M	Nri	ite F	Poir	nter	Regi	ste	r. A	con	sta	nt s	tre	am	of	1s	
											beir	ng c	outp	put	cor	res	pon	nds t	:0 8	a syı	nch	ron	izatio	on d	outp	out	ror	n th	ne E	ТВ	. If a	а	
										,	writ	e a	cce	ess i	s at	tten	npte	ed, t	the	e dat	ta i	s no	t wr	tte	n in	to T	rac	e R	AM				

10.7.3.1.9 FFSR

Address offset: 0x300

ETB Formatter and Flush Status Register

This register indicates the implemented Trigger Counter multipliers and other supported features of the trigger system.

Bit nu	mber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				B A
Reset	0x000	00002	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
А	R	FLINPROG		Flush In Progress. This is an indication of the current state of afvalids.
В	R	FTSTOPPED		Formatter stopped. The formatter has received a stop request signal and all
				trace data and post-amble has been output. Any more trace data on the \ensuremath{ATB}
				interface is ignored and atreadys goes HIGH.

10.7.3.1.10 FFCR

Address offset: 0x304

ETB Formatter and Flush Control Register

This register controls the generation of stop, trigger, and flush events. To disable formatting and put the formatter into bypass mode, bits 1 and 0 must be clear. If both bits are set, then the formatter inserts triggers into the formatted stream. All three flush generating conditions can be enabled together. However, if a second or third flush event is generated then the current flush completes before the next flush is serviced. Flush from flushin takes priority over flush from Trigger, which in turn completes before a manually activated flush. All Trigger indication conditions can be enabled simultaneously although this can cause the appearance of multiple triggers if flush using trigger is also enabled. Both 'Stop On' settings can be enabled, although if flush on trigger, FOnTrig, is set up then none of the flushed data is stored. When the system stops, it returns ATREADY and does not store the accepted data packets. This is to avoid stalling of any other connected devices using a Trace Replicator. If an event in the Formatter and Flush Control Register is required, it must be enabled before the originating event starts. Because requests from flushes and triggers can originate in an asynchronous clock domain, the exact time the component acts on the request cannot be determined with respect to configuring the control. Note - To perform a stop on flush completion through a manually-generated flush request, two write operations to the register are required: one to enable the stop event, if it is not already enabled; one to generate the manual flush.

Bit nu	umber		З	31 30	29 2	8 27 2	26 25	24 2	23 2	2 21	20	19	18 1	71	6 15	5 14	4 13	12	11 :	10 9	9 8	37	6	5	4	3 2	1	0
ID																	J	T		нс	G F	:	Е	D	С		В	А
Reset	t 0x000	00000	C	0 0	0 0	00	0 0	0	0 0) ()	0	0	0 0	D (0 0	0	0	0	0	0 () (0 0	0	0	0	0 0	0	0
А	RW	ENFTC						0	Do n	ot er	nbe	ed Ti	igge	ers i	into	the	e for	mati	ted	stre	am	Tra	ce d	lisat	ole (cycle	s an	d
								t	rigg	ers a	re ir	ndio	ateo	d by	/ TR/	ACE	CTL	, wh	ere	fitte	ed.	Can	only	y be	cha	ange	d wł	nen
								F	tSto	pppe	d is	HIG	н. т	his	bit i	s c	lear	on r	ese	t.								
В	RW	ENFCONT						C	Cont	inuo	us n	nod	e in	the	e ETI	3 со	orres	spon	ds 1	to ne	orm	al m	ode	e wi	th t	he		
								e	emb	eddiı	ng o	of tr	igge	rs. (Can	onl	y be	cha	nge	ed w	her	n FtS	top	ped	is F	ligh	Thi	s
								b	oit is	clea	r on	n res	set.															
С	RW	FONFLIN						S	iet t	his b	it to	o en	able	us	e of	the	e flus	shin	cor	nec	tior	n. Th	is is	cle	ar c	n re	set.	
D	RW	FONTRIG						G	Gene	erate	flus	sh u	sing	Tri	ggei	rev	ent.	Set	this	s bit	to	caus	e a i	flusl	h of	data	n in t	the
								S	yste	em w	hen	n a T	rigge	er E	ven	t o	ccur	s. Th	is b	it is	cle	ar oi	n re	set.	ΑT	rigge	r Ev	ent
								i	s de	finec	d as	wh	en th	he 1	Frigg	er	cour	nter	rea	ches	ze	ro (v	vhei	re fi	tteo	l) or,	in tl	he
								c	ase	of th	ne tr	rigg	er co	oun	ter l	beir	ng ze	ero (or r	not f	itte	d), v	vhei	n tri	gin	is HI	GH.	
E	RW	FONMAN						S	etti	ng th	nis b	oit ca	ause	es a	flus	h to	o be	gen	era	ted.	Thi	s is o	lea	red	wh	en th	is flu	ush
								h	nas ł	been	serv	vice	d. T	his	bit i	s cl	ear	on re	eset	t.								
F	RW	TRIGIN						l	ndic	ate a	a trig	gge	r on	trig	gin b	ein	g as	serte	ed.									
G	RW	TRIGEVT						l	ndic	ate a	a trig	gge	r on	аT	rigge	er E	ven	t.										
н	RW	TRIGFL						l	ndic	ates	a tr	igge	er or	n Fl	ush	cor	nple	tion	(af	read	ys l	bein	g re	turr	ned)			
I	RW	STOPFL						Т	"his	force	es th	ne F	IFO 1	to c	Irair	of	fan	y pai	rt-c	omp	lete	ed p	acke	ets.	Set	ing t	his l	oit
								e	enab	oles t	his f	fund	tion	ւ Եւ	it th	is is	s cle	ar oi	n re	set	dis	able	d).					
J	RW	STOPTRIG						S	stop	the	forn	natt	er a	fter	r a T	rigg	ger E	vent	t is	obse	erve	d. R	ese	t to	disa	ablec	I	
								(zerc) .																		

10.7.3.1.11 ITMISCOP0

Address offset: 0xEE0

Integration Test Miscellaneous Output Register 0

The Integration Test Miscellaneous Output Register 0 controls the values of some outputs from the ETB.

Bit nu	mber		31	30	29	28	27	26 :	25 2	24 23	3 22	2 21	20	19 1	.8 1	L7 1	.6 1	5 14	41	3 12	2 11	10	9	8	7	6	5	4	3	2	1
ID																															В
Reset	0x000	00000	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 (0 (0 0) (0	0	0	0	0	0	0	0	0	0	0	0
ID																															
А	W	ACQCOMP								Se	et tł	ne va	lue	of a	cq	com	ıp.														
В	W	FULL								Se	et tł	ne va	lue	of f	ull	out	put	por	t.												

10.7.3.1.12 ITTRFLINACK

Address offset: 0xEE4

Integration Test Trigger In and Flush In Acknowledge Register

The Integration Test Trigger In and Flush In Acknowledge Register enables control of the triginack and flushinack outputs from the ETB.

Bit nu	ımber		31 30 29 28 27 20	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				B A
Reset	0x000	00000	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
А	W	TRIGINACK		Set the value of triginack.
В	W	FLUSHINACK		Set the value of flushinack.

10.7.3.1.13 ITTRFLIN

Address offset: 0xEE8

Integration Test Trigger In and Flush In Register

The Integration Test Trigger In and Flush In Register contains the values of the flushin and trigin inputs to the ETB.

Bit nu	umber		31 3	80 29	28	27 2	6 25	24	23	22 2	1 20	0 19	18	17 1	6 1	5 14	13	12	11 1	9	8	7	6	5	4 3	3 2	1	0
ID																											В	А
Reset	t 0x000	00000	0 (0 0	0	0 0	0	0	0	0 0) 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0 () 0	0	0
ID									Des																			
А	R	TRIGIN							Rea	d th	e va	lue	of t	igin														
В	R	FLUSHIN							Rea	d th	e va	lue	of fl	ushi	n.													

10.7.3.1.14 ITATBDATA0

Address offset: 0xEEC

Integration Test ATB Data Register 0

The Integration Test ATB Data Register 0 contains the value of the atdatas inputs to the ETB. The values are only valid when atvalids is HIGH.

Bit nu	umber		31 3	0 29	28 2	27 26	5 25 2	24 2	3 22	21	20 2	19 1	8 17	7 16	15	14	13 1	2 13	L 10	9	8	7	6	5 4	13	2	1	0
ID																								E	E D	С	В	А
Rese	t 0x000	00000	0 0	0 0	0	0 0	0 (0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0
ID																												
А	R	ATDATA_0						R	ead	the v	/alu	ie of	atd	atas	[0].													
В	R	ATDATA_7						R	ead	the v	/alu	ie of	atd	atas	[7].													
С	R	ATDATA_15						R	ead	the v	/alu	ie of	atd	atas	[15].												
D	R	ATDATA_23						R	ead	the v	/alu	ie of	atd	atas	[23].												
Е	R	ATDATA_31						R	ead	the v	/alu	ie of	atd	atas	[31].												

10.7.3.1.15 ITATBCTR2

Address offset: 0xEF0

Integration Test ATB Control Register 2

The Integration Test ATB Control Register 2 enables control of the atreadys and afvalids outputs of the ETB.

Bit nu	Imber		31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				B A
Reset	0x000	00000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
А	w	ATREADYS		Set the value of atreadys.
В	W	AFVALIDS		Set the value of afvalids.

10.7.3.1.16 ITATBCTR1

Address offset: 0xEF4

Integration Test ATB Control Register 1

The Integration Test ATB Control Register 1 contains the value of the atids input to the ETB. This is only valid when atvalids is HIGH.

Bit nu	umber		31 3	0 29	28	27 20	5 25	24	23 2	2 21	20	19 1	8 17	7 16	15	14	13 1	2 1:	. 10	9	8	7	6	5 4	13	2	1	0
ID																							A	A A	A A	A	А	А
Reset	t 0x000	00000	0 0	0 (0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0
ID																												
A	R	ATID							Reac	l the	valu	le of	atio	ls.														

10.7.3.1.17 ITATBCTR0

Address offset: 0xEF8

Integration Test ATB Control Register 0

The Integration Test ATB Control Register 0 captures the values of the atvalids, afreadys, and atbytess inputs to the ETB. To ensure the integration registers work correctly in a system, the value of atbytess is only valid when atvalids, bit [0], is HIGH.

Bit nu	ımber		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				ССВА
Reset	: 0x000	00000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
А	R	ATVALID		Read the value of atvalids.
В	R	AFREADY		Read the value of afreadys.
С	R	ATBYTES		Read the value of atbytess.

10.7.3.1.18 ITCTRL

Address offset: 0xF00

Integration Mode Control Register

This register is used to enable topology detection. For more information see the CoreSight Architecture Specification. This register enables the component to switch from a functional mode, the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for the purpose of integration testing and topology solving. Note: When a device has been in integration mode, it might not function with the original behavior. After performing integration or topology detection, you must reset the system to ensure correct behavior of CoreSight and other connected system components that are affected by the integration or topology detection.

Bit nu	umber			31 3	30 29	28	27	26 2	25 2	4 23	3 22	21	20	19 1	18 1	7 16	5 15	14	13 1	.2 1	1 10	9	8	7	6	54	3	2	1 0
ID																													А
Reset	t 0x000	00000		0	0 0	0	0	0	0 (0 0	0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0 0
ID																													
А	RW	INTEGRATI	ON_MODE							Al	low	s th	e co	omp	one	nt to	o sw	itch	froi	n fu	incti	ona	l m	ode	to i	nteg	ratio	on n	node
										or	ba	ck.																	

10.7.3.1.19 CLAIMSET

Address offset: 0xFA0

Claim Tag Set Register

This is used in conjunction with Claim Tag Clear Register, CLAIMCLR. This register forms one half of the Claim Tag value. This location allows individual bits to be set, write, and returns the number of bits that can be set, read.

А	RW	CLAIMSET		This claim tag bit is implemented
ID				
Rese	t 0x000	0000F	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				АААА
Bit n	umber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10.7.3.1.20 CLAIMCLR

Address offset: 0xFA4

Claim Tag Clear Register

This register is used in conjunction with Claim Tag Set Register, CLAIMSET. This register forms one half of the Claim Tag value. This location enables individual bits to be cleared, write, and returns the current Claim Tag value, read.

Bit nu	umber		31 30 29 28 27 26 29	5 24 23 22 21 20	19 18 17	16 15 14	4 13 12	11 10	98	76	5	4	3	2 1	10
ID													А	A A	A A
Reset	t 0x000	00000	0 0 0 0 0 0	00000	0 0 0	0 0 0	0 0	0 0	0 0	0 0	0	0	0	0 0) 0
ID															
А	RW	CLAIMCLR		The value pre	esent refle	ects the o	current	setting	of th	e Claiı	n Ta	g.			

10.7.3.1.21 LAR

Address offset: 0xFB0

Lock Access Register

This is used to enable write access to device registers. External accesses from a debugger (paddrdbg31 = 1) are not subject to the Lock Registers. A debugger does not have to unlock the component in order to write and modify the registers in the component.

Bit nu	ımber		31	30) 29	28	27	26	25	24	23	22	21	20 :	19 :	18 1	17 1	16 1	51	4 13	3 12	11	10	9	8	7	6	5	4	3	2	1	b
ID			А	А	А	A	А	A	А	А	А	А	А	А	A	A	A	A	4 <i>4</i>	A A	А	A	А	А	А	А	А	А	А	А	A	А	4
Reset	: 0x000	00000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	D
ID																																	
A	w	ACCESS_W									Αv	vrite	e of	0x0	C5A	CCE	55	ena	ble	s fu	rthe	er w	rite	acc	ces	s to	thi	s de	evic	e. A	١w	rite	
											of	any	val	ue o	othe	er tl	han	0x0	C5A	CCE	55 v	vill	hav	e th	ie a	offe	ct o	of re	emo	ovin	g w	rite	
											aco	cess	•																				

10.7.3.1.22 LSR

Address offset: 0xFB4

Lock Status Register

This indicates the status of the Lock control mechanism. This lock prevents accidental writes by code under debug. When locked, write access is blocked to all registers, except the Lock Access Register. External accesses from a debugger (paddrdbg31 = 1) are not subject to the Lock Registers. This register reads as 0 when read from an external debugger (paddrdbg31 = 1).

Bit nu	umber		31 30 29 2	28 27 2	6 25 24	23 22	2 21 20	0 19	9 18	17	16 1	5 14	13	12 1	.1 10	9	8	76	55	4	3 2	2 1	. 0
ID																					(C E	3 A
Rese	t 0x000	00003	0 0 0	000	0 0 0	0 0	0 0	0 0	0	0	0 (0 0	0	0	0 0	0	0	0 (0 0	0	0 () 1	. 1
ID																							
A	R	LOCKEXIST				Indica	ates th	nat a	a loc	k cc	ontro	l me	cha	nism	exis	ts fo	or th	s de	evice	e. Th	is bit	rea	ids
						as 0 v	when r	read	d froi	m a	n ext	erna	l de	bug	ger (pad	drdb	g31	= 1)	sind	ce ex	teri	nal
						debu	gger a	icce	sses	are	not	subj	ect	to Lo	ock R	egis	ters.						
В	R	LOCKGRANT				Retur	rns the	e cu	rren	t sta	atus	of th	e Lo	ock. 1	This l	oit r	eads	as () wh	ien r	ead	fror	n an
						exter	nal de	bug	gger	(pa	ddrd	bg31	= 1	.) sin	ce ex	kteri	nal d	ebu	iggei	r acc	esse	s ar	e
						not s	ubject	to	Lock	Reg	giste	rs.											
С	R	LOCKTYPE				Indica	ates if	the	Loc	k Ac	cess	Reg	iste	r (0x	FBO)	is ir	nple	mer	nted	as 8	-bit (or 3	2-
						bit																	

10.7.3.1.23 AUTHSTATUS

Address offset: 0xFB8

Authentication Status Register

Reports what functionality is currently permitted by the authentication interface.

Bit nu	Imber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				D D C C B B A A
Reset	0x000	00000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
А	R	NSID		Indicates the security level for non-secure invasive debug
В	R	NSNID		Indicates the security level for non-secure non-invasive debug
С	R	SID		Indicates the security level for secure invasive debug
D	R	SNID		Indicates the security level for secure non-invasive debug

10.7.3.1.24 DEVID

Address offset: 0xFC8

Device Configuration Register

This register indicates the capabilities of the ETB.

Bit nu	mber		31 30 2	29 28	8 27	26 2	25 24	1 23	22	21 2	20 1	19 1	8 1	71	6 15	5 14	13	12	11	10 9	8	7	6	5	4	3	2	1 (
ID																								В	А	А	А	A A
Reset	0x000	00000	0 0	0 0	0	0	0 0	0	0	0	0	0 0	0 0) (0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0
ID																												
А	R	EXTMUXNUM						W	nen	non	-zei	ro tł	nis v	/alu	ie ir	ndica	ates	the	e typ	oe/n	umt	er c	of A	TB r	mul	ltipl	exi	ng
								pre	esen	t on	h th	e in	put	to	the	ATB												
В	R	RAMCLK						Th	s bi	t ret	turr	ns O	on	rea	ds i	ndic	atir	ng th	nat	the E	ТВІ	RAN	1 ор	era	ites			

10.7.3.1.25 DEVTYPE

Address offset: 0xFCC

Device Type Identifier Register

It provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.

Bit nu	ımber		31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				B B B A A A A
Reset	: 0x000	00021	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
А	R	MAJOR_TYPE		Major classification grouping for this debug/trace component
В	R	SUB_TYPE		Sub-classification within the major category

10.7.3.1.26 PERIPHID4

Address offset: 0xFD0

Peripheral ID4 Register

Part of the set of Peripheral Identification registers. Contains part of the designer identity and the memory footprint indicator.

Bit nu	mber		31 3	30 3	29 28	8 27	26	25 24	4 23	3 22	21	20	19	18	17	16 1	15 1	L4 1	.3 1	2 1	1 10	9	8	7	6	5	4	3	2	1	0
ID																								В	В	В	В	А	А	А	A
Reset	0x000	00004	0	0	0 0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	1	0	0
ID																															
А	R	DES_2							JE	DEC	Со	ntin	uat	tion	coc	de ir	ndio	atiı	ng ti	he c	lesig	gner	of	the	со	mpo	one	ent	(alc	ng	
									w	ith t	he	ider	ntity	у со	de)																
В	R	SIZE							Tł	his is	s a 4	1-bit	t va	lue	tha	t in	dica	ates	the	e tot	al c	onti	guo	us :	size	of	the	e m	em	ory	
									w	indo	w ı	used	d by	/ thi	s co	omp	on	ent	in p	ow	ers o	of 2	fror	n tł	ne s	stan	nda	rd 4	KB	. If	
									а	com	ро	nen	t or	nly r	equ	uires	s th	e st	and	lard	4KE	the	en t	his	shc	ould	l re	ad a	as C	x0,	
									41	КВ о	nly,	for	8K	B se	et to	0 O X	1, 1	6KE	3 ==	0x2	2, 32	KB :	== ()x3,	an	d so	0 0	n.			

10.7.3.1.27 PERIPHID0

Address offset: 0xFE0

Peripheral ID0 Register

Part of the set of Peripheral Identification registers. Contains part of the designer specific part number.

Bit n	umber		31 30 29 28 27 26	25 24 23	22 21	20 19	9 18	17 16	5 15	14 1	3 12	11 1	09	8	7	6	5	4	3 2	2 1	0
ID															А	А	А	A.	A	A A	A
Rese	t 0x000	00007	0 0 0 0 0 0	000	0 0	0 0	0	0 0	0	0 (0 0	0	0 0	0	0	0	0	0	0 :	L 1	1
ID																					
A	R	PART_0		Bi	ts [7:0]	of the	e cor	npon	ent's	par	t nur	nber.	This	is s	eleo	tec	l by	the	des	signe	er
				of	the co	npon	ent.														

10.7.3.1.28 PERIPHID1

Address offset: 0xFE4

Peripheral ID1 Register

Part of the set of Peripheral Identification registers. Contains part of the designer specific part number and part of the designer identity.

Bit nu	Imber		31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				B B B A A A A
Reset	0x000	000B9	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
ID				Description
А	R	PART_1		Bits [11:8] of the component's part number. This is selected by the designer
				of the component.
В	R	DES_0		Bits 3:0 of the JEDEC identity code indicating the designer of the component
				(along with the continuation code)

10.7.3.1.29 PERIPHID2

Address offset: 0xFE8

Peripheral ID2 Register

Part of the set of Peripheral Identification registers. Contains part of the designer identity and the product revision.

Bit nu	mber		31	30 2	9 28	8 27	26	25 2	24 2	23 2	2 22	L 20) 19	18	17	16	15 :	14 1	13 1	.2 1	11	09	8	7	6	5	4	3	2	1	0
ID																								С	С	С	С	В	A	А	A
Reset	0x000	0004B	0	0 (0	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0) (0 0	0	0	1	0	0	1	0	1	1
ID																															
А	R	DES_1							E	Bits	6:4	of tl	he J	EDE	C io	dent	ity	cod	e ir	dica	atin	g th	e de	esig	ner	of	the	e co	mp	one	۱t
									((alor	ng w	ith	the	con	ntin	uati	on	cod	e)												
В	R	JEDEC							A	Alwa	iys s	et.	Indi	icate	es t	hat	a JE	DEC	Cas	sigr	ed	valu	ie is	use	ed						
С	R	REVISION							٦	The	Revi	sior	n fie	eld is	s ar	n inc	ren	nen	tal ۱	valu	e st	arti	ng a	t 0>	(0 f	or t	he	firs	t de	esigr	i -
									C	of th	is co	omp	oon	ent.	Th	is or	ıly i	ncr	eas	es b	y 1	for	bot	n m	ajo	r ar	nd r	min	or		
									r	revis	ions	s an	d is	sim	ply	use	d a	s a	lool	k-up	o to	esta	ablis	h tł	ne e	exad	ct n	najo	or/r	ninc	r

revision.

10.7.3.1.30 PERIPHID3

Address offset: 0xFEC

Peripheral ID3 Register

Part of the set of Peripheral Identification registers. Contains the RevAnd and Customer Modified fields.

Bit nu	Imber		31 30	29 2	28 2	7 26	5 25 2	24 2	23 22	21	20	19 :	18 1	7 16	15	14 :	L3 1	2 1	1 10	9	8	6	5	4	3	2	1	0
ID																					I	3 B	В	В	А	А	А	А
Reset	0x000	00000	0 0	0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
ID																												
А	R	CMOD						١	Wher	e th	ne co	mp	one	nt is	reu	sabl	e IP	thi	s valu	ie ir	ndic	tes	if t	he c	cust	ome	er h	nas
								r	modif	fied	the	beł	navic	r of	the	con	про	nen	t. In r	nos	t ca	ses t	his	fiel	d is	zer	о.	
В	R	REVAND						٦	This fi	ield	indi	cate	es m	inor	err	ata f	ixes	spe	cific	to t	his	lesi	gn,	for	exa	npl	e	
								r	metal	fixe	es af	ter	impl	eme	nta	tion	. In	mos	t cas	es t	hist	ield	is z	zero	. It	s		
								r	recon	nme	ende	d tł	nat c	omp	one	ent o	lesi	gner	s ens	ure	thi	fiel	d c	an t	be c	han	geo	Ł
								Ł	by a n	neta	al fix	if r	equi	red,	for	exa	mpl	e by	drivi	ngi	t fro	om r	egi	ster	s th	at r	ese	t
								t	to zer	о.																		

10.7.3.1.31 COMPID0

Address offset: 0xFF0

Component ID0 Register

A component identification register, that indicates that the identification registers are present.

Bit nu	ımber		31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A A A A A A A A
Reset	: 0x000	0000D	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				Description
A	R	PRMBL_0		Contains bits [7:0] of the component identification

10.7.3.1.32 COMPID1

Address offset: 0xFF4

Component ID1 Register

A component identification register, that indicates that the identification registers are present. This register also indicates the component class.

Bit nu	mber		31 3	80 29	28	27 :	26 2	25 2	24 23	3 2	2 21	. 20	19	18	17 1	16 1	L5 1	.4 1	3 12	11	10 9	8	7	6	5	4	3	2	1 (
ID																							В	В	В	В	А	А	A A
Reset	0x000	00090	0	0 0	0	0	0	0	0 0) (0	0	0	0	0	0	0 (0 () 0	0	0 0	0 0	1	0	0	1	0	0	0 (
ID		Field																											
										esc																			
A	R	PRMBL_1	Valu	e									5 [1	1:8]	of t	the	con	npo	nent	ider	ntific	atio	n						
A B	R R		valu	e					C	ont	ains	bits	•	-				•		ider ble, C				mp	one	ent	etc.		

10.7.3.1.33 COMPID2

Address offset: 0xFF8

Component ID2 Register

A component identification register, that indicates that the identification registers are present.

		21 20 19 18 17 10 15 14 15 12 11 10 5	876543210
ID			АААААААА
Reset 0x0000005 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	000000101
ID R/W Field Value ID Valu			
A R PRMBL_2	Contain	ns bits [23:16] of the component identifi	ication

10.7.3.1.34 COMPID3

Address offset: 0xFFC

Component ID3 Register

A component identification register, that indicates that the identification registers are present.

Bit nu	umber		31 30 29 28 27 26 2	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A A A A A A A A
Reset	t 0x000	000B1	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
A	R	PRMBL_3		Contains bits [31:24] of the component identification

10.7.4 ETM — Embedded trace macrocell

The ARM embedded trace macorcell implements instruction, data and event tracing.

This document only provides a register-level description of this ARM component. See the Arm[®] Embedded Trace Macrocell Architecture Specification for more details

10.7.4.1 Registers

Instances

Instance	Base address	TrustZone			Split access	Description
		Мар	Att	DMA		
ETM	0xE0041000	HF	NS	NA	No	ETM

Register overview

Register	Offset	TZ	Description
TRCPRGCTLR	0x004		Enables the trace unit.

Register	Offset	TZ	Description
TRCPROCSELR	0x008		Controls which PE to trace.
			Might ignore writes when the trace unit is enabled or not idle.
			Before writing to this register, ensure that TRCSTATR.IDLE == 1 so that the trace unit can
			synchronize with the chosen PE.
			Implemented if TRCIDR3.NUMPROC is greater than zero.
TRCSTATR	0x00C		Idle status bit
TRCCONFIGR	0x010		Controls the tracing options
			This register must always be programmed as part of trace unit initialization.
			Might ignore writes when the trace unit is enabled or not idle.
TRCEVENTCTLOR	0x20		Controls the tracing of arbitrary events.
			If the selected event occurs a trace element is generated in the trace stream according to the
			settings in TRCEVENTCTL1R.DATAEN and TRCEVENTCTL1R.INSTEN.
TRCEVENTCTL1R	0x24		Controls the behavior of the events that TRCEVENTCTLOR selects.
			This register must always be programmed as part of trace unit initialization.
			Might ignore writes when the trace unit is enabled or not idle.
TRCSTALLCTLR	0x2C		Enables trace unit functionality that prevents trace unit buffer overflows.
			Might ignore writes when the trace unit is enabled or not idle.
TRCTSCTLR	0x30		Must be programmed if TRCIDR3.STALLCTL == 1. Controls the insertion of global timestamps in the trace streams.
incrooten a	0,00		
			When the selected event is triggered, the trace unit inserts a global timestamp into the trace streams.
			Might ignore writes when the trace unit is enabled or not idle.
			Must be programmed if TRCCONFIGR.TS == 1.
TRCSYNCPR	0x34		Controls how often trace synchronization requests occur.
			Might ignore writes when the trace unit is enabled or not idle.
			If writes are permitted then the register must be programmed.
TRCCCCTLR	0x38		Sets the threshold value for cycle counting.
			Might ignore writes when the trace unit is enabled or not idle.
			Must be programmed if TRCCONFIGR.CCI==1.
TRCBBCTLR	0x3C		Controls which regions in the memory map are enabled to use branch broadcasting.
			Might ignore writes when the trace unit is enabled or not idle.
			Must be programmed if TRCCONFIGR.BB == 1.
TRCTRACEIDR	0x40		Sets the trace ID for instruction trace. If data trace is enabled then it also sets the trace ID for
			data trace, to (trace ID for instruction trace) + 1.
			This register must always be programmed as part of trace unit initialization.
			Might ignore writes when the trace unit is enabled or not idle.
TRCQCTLR	0x44		Controls when Q elements are enabled.
			Might ignore writes when the trace unit is enabled or not idle.
			This register must be programmed if it is implemented and TRCCONFIGR.QE is set to any
			value other than 0b00.
TRCVICTLR	0x080		Controls instruction trace filtering.
			Might ignore writes when the trace unit is enabled or not idle.
			Only returns stable data when TRCSTATR.PMSTABLE == 1.
			Must be programmed, particularly to set the value of the SSSTATUS bit, which sets the state
			of the start/stop logic.

Register	Offset	ΤZ	Description
TRCVIIECTLR	0x084		ViewInst exclude control.
			Might ignore writes when the trace unit is enabled or not idle.
			This register must be programmed when one or more address comparators are implemented.
TRCVISSCTLR	0x088		Use this to set, or read, the single address comparators that control the ViewInst start/stop
			logic. The start/stop logic is active for an instruction which causes a start and remains active
			up to and including an instruction which causes a stop, and then the start/stop logic becomes
			inactive.
			Might ignore writes when the trace unit is enabled or not idle.
			If implemented then this register must be programmed.
TRCVIPCSSCTLR	0x08C		Use this to set, or read, which PE comparator inputs can control the ViewInst start/stop logic.
			Might ignore writes when the trace unit is enabled or not idle.
			If implemented then this register must be programmed.
TRCVDCTLR	0x0A0		Controls data trace filtering.
			Might ignore writes when the trace unit is enabled or not idle.
			This register must be programmed when data tracing is enabled, that is, when either
			TRCCONFIGR.DA == 1 or TRCCONFIGR.DV == 1.
TRCVDSACCTLR	0x0A4		ViewData include / exclude control.
			Might ignore writes when the trace unit is enabled or not idle.
			This register must be programmed when one or more address comparators are implemented.
TRCVDARCCTLR	0x0A8		ViewData include / exclude control.
			Might ignore writes when the trace unit is enabled or not idle.
			This register must be programmed when one or more address comparators are implemented.
TRCSEQEVR[n]	0x100		Moves the sequencer state according to programmed events.
			Might ignore writes when the trace unit is enabled or not idle.
			When the sequencer is used, all sequencer state transitions must be programmed with a valid
			event.
TRCSEQRSTEVR	0x118		Moves the sequencer to state 0 when a programmed event occurs.
			Might ignore writes when the trace unit is enabled or not idle.
			When the sequencer is used, all sequencer state transitions must be programmed with a valid
TRCSEOSTR	0x11C		event.
TRCSEQSTR	UXIIC		Use this to set, or read, the sequencer state.
			Might ignore writes when the trace unit is enabled or not idle.
			Only returns stable data when TRCSTATR.PMSTABLE == 1.
			When the sequencer is used, all sequencer state transitions must be programmed with a valid
TRCEXTINSELR	0x120		event. Use this to set, or read, which external inputs are resources to the trace unit.
	0/120		Might ignore writes when the trace unit is enabled or not idle.
			Only returns stable data when TRCSTATR.PMSTABLE == 1.
			When the sequencer is used, all sequencer state transitions must be programmed with a valid event.
TRCCNTRLDVR[n]	0x140		This sets or returns the reload count value for counter n.
			Might ignore writes when the trace unit is enabled or not idle.
TRCCNTCTLR[n]	0x150		Controls the operation of counter n.
			Might ignore writes when the trace unit is enabled or not idle.

a •••		-	
Register	Offset T		escription
TRCCNTVR[n]	0x160	Т	his sets or returns the value of counter n.
		т	he count value is only stable when TRCSTATR.PMSTABLE == 1.
		If	software uses counter n then it must write to this register to set the initial counter value.
		N	light ignore writes when the trace unit is enabled or not idle.
TRCRSCTLR[n]	0x200	C	ontrols the selection of the resources in the trace unit.
		Ν	light ignore writes when the trace unit is enabled or not idle.
		If	software selects a non-implemented resource then CONSTRAINED UNPREDICTABLE
		b	ehavior of the resource selector occurs, so the resource selector might fire unexpectedly or
		rr	ight not fire. Reads of the TRCRSCTLRn might return UNKNOWN.
TRCSSCCR0	0x280	C	ontrols the single-shot comparator.
TRCSSCSRO	0x2A0	Ir	dicates the status of the single-shot comparators. TRCSSCSR0 is sensitive to instruction
		a	ddresses.
TRCSSPCICRO	0x2C0	S	elects the processor comparator inputs for Single-shot control.
TRCPDCR	0x310	C	ontrols the single-shot comparator.
TRCPDSR	0x314	Ir	dicates the power down status of the ETM.
TRCITATBIDR	0xEE4	S	ets the state of output pins.
TRCITIATBINR	0xEF4	R	eads the state of the input pins.
TRCITIATBOUTR	OxEFC	S	ets the state of the output pins.
TRCITCTRL	0xF00	E	nables topology detection or integration testing, by putting ETM-M33 into integration mode
TRCCLAIMSET	0xFA0	S	ets bits in the claim tag and determines the number of claim tag bits implemented.
TRCCLAIMCLR	0xFA4	C	lears bits in the claim tag and determines the current value of the claim tag.
TRCAUTHSTATUS	0xFB8	Ir	dicates the current level of tracing permitted by the system
TRCDEVARCH	0xFBC	т	he TRCDEVARCH identifies ETM-M33 as an ETMv4.2 component
TRCDEVTYPE	0xFCC	C	ontrols the single-shot comparator.
TRCPIDR[n]	0xFD0	C	oresight peripheral identification registers.
TRCCIDR[n]	0xFF0	C	oresight component identification registers.

10.7.4.1.1 TRCPRGCTLR

Address offset: 0x004

Enables the trace unit.

Bit nu	ımber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					А
Reset	: 0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	EN			Trace unit enable bit
			Disabled	0	The trace unit is disabled. All trace resources are inactive and no trace is
					generated.
			Enabled	1	The trace unit is enabled.
			Enabled	1	

10.7.4.1.2 TRCPROCSELR

Address offset: 0x008

Controls which PE to trace.

Might ignore writes when the trace unit is enabled or not idle.

Before writing to this register, ensure that TRCSTATR.IDLE == 1 so that the trace unit can synchronize with the chosen PE.

Implemented if TRCIDR3.NUMPROC is greater than zero.

Bit nu	mber	31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			ААААА
Reset	0x0000000	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID			Description
	RW PROCSEL		PE select bits that select the PE to trace.

10.7.4.1.3 TRCSTATR

Address offset: 0x00C

Idle status bit

Bit nun	nber			31	30 2	29 2	8 27	26	25 24	1 23	3 22	21	20 1	.9 1	18 1	7 16	5 15	5 14	13	12 1	1 10) 9	8	7	6	54	3	2	1 0
ID																													ΒA
Reset (0x000(00000		0	0	0 0) ()	0	0 0	0	0	0	0	0 (0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0
ID																													
А	RW	IDLE								Tr	ace	unit	ena	ble	e bit														
			NotIdle	0						Tł	ne tr	ace	unit	is ı	not	idle													
			Idle	1						Tł	ne tr	ace	unit	is i	idle.														
В	RW	PMSTABLE								Pr	rogra	ımn	ners'	m	ode	sta	ble	bit											
			NotStable	0						Tł	ne pr	ogr	amn	ner	s' m	ode	el is	not	sta	ble.									
			Stable	1						Tł	ne pr	ogr	amn	ner	s' m	ode	el is	stał	ole.										

10.7.4.1.4 TRCCONFIGR

Address offset: 0x010

Controls the tracing options

This register must always be programmed as part of trace unit initialization.

Might ignore writes when the trace unit is enabled or not idle.

D:+ .				21 20 20 20 27 26 25 2	
	umber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					MLKJJIHGGGFE DCBA
Reset	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	LOADASPOINST			Instruction PO load field. This field controls whether load instructions are
					traced as P0 instructions.
			No	0	Do not trace load instructions as P0 instructions.
			Yes	1	Trace load instructions as P0 instructions.
В	RW	STOREASPOINST			Instruction PO field. This field controls whether store instructions are traced
					as PO instructions.
			No	0	Do not trace store instructions as P0 instructions.
			Yes	1	Trace store instructions as PO instructions.
С	RW	BB			Branch broadcast mode bit.
			Disabled	0	Branch broadcast mode is disabled.
			Enabled	1	Branch broadcast mode is enabled.
D	RW	CCI			Cycle counting instruction trace bit.
			Disabled	0	Cycle counting in the instruction trace is disabled.
			Enabled	1	Cycle counting in the instruction trace is enabled.
Е	RW	CID			Context ID tracing bit.
			Disabled	0	Context ID tracing is disabled.
			Enabled	1	Context ID tracing is enabled.
F	RW	VMID			Virtual context identifier tracing bit.
			Disabled	0	Virtual context identifier tracing is disabled.

Bit nu	mber			31	30	29 2	28 27	7 26	25 24	23 22	2 21	20 1	9 18	8 17	' 16	15	14	13	12	11	10	9	8 7	6	5	4	3	2 1	0
ID																							GF					ΒA	
Reset	0x000	00000		0	0	0 (0 0	0	0 0	0 0	0	0 (0 0													0	0	0 0) 0
ID																													
	_		Enabled	1			_		_	Virtu	al co	ontex	t ide	entif	fier	trac	ing	is e	enal	oled	J.	1							
G	RW	COND								Cond	itior	nal in	stru	ctio	n tr	acir	ng b	it.											
			Disabled	0						Cond	itior	nal in	stru	ctio	n tr	acir	ng is	s dis	sabl	ed.									
			LoadOnly	1						Cond	itior	nal lo	ad iı	nstr	ucti	ons	are	e tra	aced	d.									
			StoreOnly	2						Cond	itior	nal st	ore	inst	ruct	ion	s ar	e tr	ace	d.									
			LoadAndStore	3						Cond	itior	nal lo	ad a	nd	stor	e in	stru	ucti	ons	are	e tra	iceo	d.						
			All	7						All co	ndit	tional	ins	truc	tior	ns a	re t	race	ed.										
н	RW	TS								Globa	al tir	nesta	mp	tra	cing	bit													
			Disabled	0						Globa	al tir	mesta	mp	tra	cing	is c	disa	ble	d.										
			Enabled	1						Globa	al tir	mesta	mp	tra	cing	is e	enal	bled	d.										
I	RW	RS								Retur	n st	ack e	nab	le b	it.														
			Disabled	0						Retur	n st	ack is	s dis	able	ed.														
			Enabled	1						Retur	n st	ack is	s en	able	ed.														
J	RW	QE								Q ele	mer	nt ena	able	fiel	d.														
			Disabled	0						Q ele	mer	nts ar	e di	sabl	led.														
			OnlyWithoutInstCou	1						Q ele	mer	nts wi	ith i	nstr	ucti	on	cou	nts	are	en	able	ed.	Q el	eme	ents	wit	hou	t	
										instru	ictic	on coi	unts	are	e dis	abl	ed.												
			Enabled	3						Q ele	mer	nts w	ith a	and	witł	nou	t in	stru	ictio	on o	our	nts a	are e	nat	led	•			
К	RW	VMIDOPT								Contr	ol b	oit to	sele	ct tl	he V	′irtu	ual d	con	text	ide	enti	fier	valu	e us	sed	by t	he		
										trace	uni	t, bot	h fo	or tra	ace	gen	era	tior	n ar	ıd iı	n th	e V	irtua	l co	nte>	kt id	enti	fier	
										comp	arat	tors.																	
			VTTBR_EL2	0						VTTB	R_E	L2.VN	ЛID	is u	sed.	lf t	he	trac	e u	nit	sup	por	rts a	Virt	ual	con	text		
										ident	ifier	large	er th	nan	the	VTI	BR.	_EL	2.VI	MIC), th	e u	ppe	un	used	d bit	ts ar	e	
										alway	/s ze	ero. If	the	tra	ce u	nit	sup	роі	rts a	a Vi	rtua	l co	onte	kt id	enti	ifier	larg	ger	
										than	8 bi	ts and	d if t	the	VTC	R_E	L2.	VS I	oit f	orc	es u	ise	of a	n 8-l	oit V	/irtu	al c	onte	xt
										ident	ifier	; bits	[15:	:8] (of th	e ti	race	e un	it V	irtι	ial c	ont	text	der	tifie	er ar	re al	way	S
										zero.																			
			CONTEXTIDR_EL2	1						CONT	EXT	FIDR_	EL2	is u	sed														
L	RW	DA								Data	add	ress t	raci	ing ł	oit.														
			Disabled	0						Data	add	ress t	raci	ing i	s di	sab	led.												
			Enabled	1						Data	add	ress t	raci	ing i	s er	abl	ed.												
М	RW	DV								Data	valu	ie tra	cing	g bit															
			Disabled	0						Data	valu	ie tra	cing	g is c	lisal	olec	1.												
			Enabled	1						Data	valu	ie tra	cing	; is e	enat	led													

10.7.4.1.5 TRCEVENTCTLOR

Address offset: 0x20

Controls the tracing of arbitrary events.

If the selected event occurs a trace element is generated in the trace stream according to the settings in TRCEVENTCTL1R.DATAEN and TRCEVENTCTL1R.INSTEN.

A	RW	EVENT	[0:255]	Select whi	ch event	should	gene	rate ti	ace el	emei	nts.						
ID																	
Rese	t 0x000	00000	0 0 0 0 0	0 0 0 0 0	000	0 0	0 0	0 0	0 0	0	0 0	0	0	0	0 0	0	D
ID											Д	A	А	A	A A	А	4
Bit n	umber		31 30 29 28 27 2	6 25 24 23 22 21 2	0 19 18	17 16	15 14	13 12	2 11 1	09	8 7	6	5	4	32	1	C

10.7.4.1.6 TRCEVENTCTL1R

Address offset: 0x24

Controls the behavior of the events that TRCEVENTCTLOR selects.

This register must always be programmed as part of trace unit initialization.

Might ignore writes when the trace unit is enabled or not idle.

Bit nu	mber			31	30	29 2	28 2	27 2	62	5 24	4 2	3 22	2 2	1 20	0 1	9 1	3 17	71	6 1	51	.4 1	3 1	.2 1	.1 1	0	9	8 7	7	6	5	4	3	2	1	0
ID																						(G	F							E	D	С	В	А
Reset	0x000	00000		0	0	0	0	0 0) (0 0	0) ()	0	0) (0	0	0) () (0 (0	0	0 (0	0	0 (0	0	0	0	0	0	0	0
ID																																			
A-D	RW	INSTEN[i] (i=03)									In	nstru	ucti	ion	eve	ent	ena	ble	e fie	ld.															
			Disabled	0							T	he t	rac	e u	nit	doe	es n	ot	gen	era	ate	an	Eve	nt e	elei	me	nt.								
			Enabled	1							T	he t	rac	e u	nit	ger	era	tes	s an	E٧	ent	ele	eme	ent	for	ev	ent	i, ir	h th	e ir	nstr	uct	ior	ı	
											tr	ace	str	rear	n.																				
E	RW	DATAEN									D	ata	eve	ent	ena	able	e bit	t.																	
			Disabled	0							T	he t	rac	e u	nit	doe	es n	ot	gen	er	ate	an	Eve	nt e	elei	me	nt if	ev	ent	0 0	occ	urs			
			Enabled	1							T	he t	rac	e u	nit	ger	era	tes	s an	E٧	ent	ele	eme	ent	in t	the	dat	a tı	race	e st	rea	m i	fe	ven	t
											0	occ	curs	5.																					
F	RW	ATB									A	MB	ΑT	race	e B	us (ATB	s) tr	rigg	er	ena	ble	e bit	t.											
			Disabled	0							A	TB t	rig	ger	is c	disa	ble	d.																	
			Enabled	1							A	TB t	rig	ger	is e	enal	olec	d. If	faO	Cor	eSi	ght	AT	B in	ter	fac	e is	im	pler	me	nte	d tl	nen	ı	
											w	her	۱e۱	vent	t 0	осс	urs	the	e tra	ice	un	it g	ene	erat	es	an	ATB	ev	ent						
G	RW	LPOVERRIDE									Lo	ow-	ро	wer	sta	ate l	beh	avi	or o	ove	erric	le l	oit.	Cor	ntro	ols I	now	at	trac	e u	init	be	hav	/es	in
											lo	ow-p	oov	ver	sta	te.																			
			Disabled	0							T	race	e ur	nit le	ow	-po	wer	sta	ate	be	hav	ior	is r	ot	affe	ecte	ed. 1	Гhа	t is	, th	e t	race	e u	nit	is
											e	nab	led	l to	ent	ter l	ow	-ро	we	r s	tate														
			Enabled	1							T	race	e ur	nit le	ow	-po	wer	sta	ate	be	hav	ior	is c	over	rid	dei	n. Th	nat	is,	ent	ry	to a	lo	w-	
											p	owe	er s	tate	e do	oes	not	af	fect	th	e tr	ace	e ur	nit r	esc	our	ces	or 1	trac	e g	en	erat	tior	۱.	

10.7.4.1.7 TRCSTALLCTLR

Address offset: 0x2C

Enables trace unit functionality that prevents trace unit buffer overflows.

Might ignore writes when the trace unit is enabled or not idle.

Must be programmed if TRCIDR3.STALLCTL == 1.

Bit nu	mber			31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					G F E D C B A A A A
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	LEVEL		[15:0]	Threshold level field.
					If LEVEL is nonzero then a trace unit might suppress the generation of:
					Global timestamps in the instruction trace stream and the data trace
					stream.
					Cycle counting in the instruction trace stream, although the cumulative
					cycle count remains correct.
			Min	0	Zero invasion. This setting has a greater risk of a FIFO overflow
			Max	15	Maximum invasion occurs but there is less risk of a FIFO overflow.

Bit nu	umber			31 3	30 :	29 2	28 2	7 26	5 25	24	23	22	2	1 2	01	.9 1	.8 1	٢7	16	15	14	13	3 12	2 1	11	0	9	8	7	6	5	4	3	2	1	0
ID																						G	F	E		2	С	В					А	A	A	A
Reset	t 0x000	00000		0	0	0 (0 (0 0	0	0	0	0	0) () (0	0	0	0	0	0	0	0	0)	D	0	0	0	0	0	0	0	0	0	0
в	RW	ISTALL									Ins	stru	icti	ion	sta	all k	it.	Со	ntr	ols	if a	a tr	ace	ur	nit	can	st	all	the	PE	wh	ien	the			
											ins	stru	cti	ion	tra	ice	but	ffe	r sp	ac	e is	s les	ss t	har	۱L	EVE	EL.									
			Disabled	0							Th	e tı	rac	e u	nit	m	ust	no	t st	all	th	e Pl	Ε.													
			Enabled	1							Th	e tı	rac	e u	nit	ca	n st	all	the	e P	E.															
С	RW	DSTALL									Da	ta	sta	ll b	it.	Соі	ntro	ols	if a	tra	ace	un	it c	an	sta	all t	he	PE	wh	en	the	e da	ita t	rac	e	
											bu	ffe	r sp	рас	e is	s le	ss t	ha	n L	EV	EL.															
			Disabled	0							Th	e ti	rac	e u	nit	m	ust	no	t st	all	th	e Pl	Ε.													
			Enabled	1							Th	e ti	rac	e u	nit	ca	n st	all	the	e P	E.															
D	RW	INSTPRIORITY									Pri	ori	tize	e in	str	uct	ior	ı tr	ace	bi	t. (Con	tro	ls i	fa	tra	ce	un	t ca	in j	orio	riti	ze			
											ins	stru	cti	ion	tra	ice	wh	en	the	e ir	isti	ruci	tior	n tr	ace	e bi	uffe	er s	pac	e i	s le	ss t	han	LE	VEL	
			Disabled	0							Th	e ti	rac	e u	nit	m	ust	no	t pi	io	iti	ze i	nst	ruc	tic	n t	rac	e.								
			Enabled	1							Th	e tı	rac	e u	nit	ca	n p	rio	riti	e i	ns	tru	ctic	n t	ra	ce.	A t	rac	e u	nit	mig	ght	pric	riti	ze	
											ins	stru	cti	ion	tra	ice	by	pro	eve	nti	ng	out	tpu	t o	f d	ata	tra	ice	, or	ot	her	me	ans	wł	nicł	ł
											en	sur	e t	hat	t th	ne i	nsti	ruc	tio	۱t	rac	e h	as	a h	igh	er	pri	ori	ty tl	har	ו th	e d	ata	trac	ce.	
E	RW	DATADISCARDLOAD									Da	ta	dis	car	d fi	ielo	l. C	on	trol	s if	a	tra	ce ı	uni	t ca	an d	diso	ar	d da	ata	tra	ce	elen	nen	ts o	nנ
											a l	oad	d w	/he	n tl	he	dat	a t	rac	e b	uf	fer	spa	ce	is l	ess	th	an	LE\	/EL	•					
			Disabled	0							Th	e ti	rac	e u	nit	m	ust	no	t di	sca	ard	an	y d	ata	tr	ace	el	em	ent	s.						
			Enabled	1							Th	e ti	ac	e u	nit	са	n d	isc	ard	P1	a	nd I	P2 e	elei	me	nts	as	so	ciat	ed	wit	h d	ata	load	ds.	
F	RW	DATADISCARDSTORE	E								Da	ta	dis	car	d fi	ielo	l. C	on	trol	s it	а	tra	ce ı	unit	t ca	an d	diso	ar	d da	ata	tra	ce	elen	nen	ts o	on
											a s	tor	e v	whe	en t	the	da	ta	trad	e l	out	ffer	sp	ace	e is	les	s tl	nar	I LE	VE	L.					
			Disabled	0							Th	e tı	rac	e u	nit	m	ust	no	t di	sca	ard	an	y d	ata	tr	ace	el	em	ent	s.						
			Enabled	1							Th	e ti	rac	e u	nit	ca	n d	isc	ard	P1	a	nd I	P2 e	elei	me	nts	as	so	ciat	ed	wit	h d	ata	sto	res	
G	RW	NOOVERFLOW									Tra	ace	ov	erf	lov	v p	ev	en	tior	bi	t.															
			Disabled	0							Tra	ace	ov	erf	lov	v p	ev	en	tior	is	di	sab	led													
			Enabled	1							Tra	ace	ov	erf	lov	v p	ev	en	tior	is	en	abl	ed.	Th	nis	mię	ght	са	use	a s	ign	ific	ant			
											pe	rfo	rm	and	ce i	imp	act	t.																		

10.7.4.1.8 TRCTSCTLR

Address offset: 0x30

Controls the insertion of global timestamps in the trace streams.

When the selected event is triggered, the trace unit inserts a global timestamp into the trace streams.

Might ignore writes when the trace unit is enabled or not idle.

Must be programmed if TRCCONFIGR.TS == 1.

Bit nu	umber		31 30 29	28 27 26	5 25 24	23 22	21 20	0 19	18 1	7 16 1	.5 14	13 1	.2 11	10 9	8	7	6	5	4 3	3 2	1	0
ID																А	A	A	4 <i>4</i>	A A	А	А
Reset	t 0x000	00000	0 0 0	0 0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0	0	0	0	0 0) 0	0	0
ID																						
A	RW	EVENT	[0:255]			Selec	t whic	h eve	ent sh	nould	gene	rate	time s	tamp	os.							

10.7.4.1.9 TRCSYNCPR

Address offset: 0x34

Controls how often trace synchronization requests occur.

Might ignore writes when the trace unit is enabled or not idle.

If writes are permitted then the register must be programmed.

Rit n	umber		31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
			51 50 25 20 27 2	
ID				A A A A
Rese	t 0x00000000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
А	RW PERIC	D	[31:0]	Controls how many bytes of trace, the sum of instruction and data, that a
				trace unit can generate before a trace synchronization request occurs. The
				number of bytes is always a power of two, calculated by 2^PERIOD
		Disabled	0	Trace synchronization requests are disabled. This setting does not disable
				other types of trace synchronization request.

10.7.4.1.10 TRCCCCTLR

Address offset: 0x38

Sets the threshold value for cycle counting.

Might ignore writes when the trace unit is enabled or not idle.

Must be programmed if TRCCONFIGR.CCI==1.

Bit n	umber		31 3	30 29	28	27 2	6 25	24	23 2	2 21	20	19 1	8 1	7 16	15	14	13 1	2 11	10	9	8	7	6	5	4	32	1	0
ID																		А	А	А	А	А	А	A	A	A A	A	А
Rese	t 0x000	00000	0	0 0	0	0 0	0	0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	0	0
ID																												
А	RW	THRESHOLD	[204	47:0]				9	Sets	the	thre	shol	d va	lue f	or i	nstr	uctio	on tr	ace	сус	cle o	oui	ntin	g.				

10.7.4.1.11 TRCBBCTLR

Address offset: 0x3C

Controls which regions in the memory map are enabled to use branch broadcasting.

Might ignore writes when the trace unit is enabled or not idle.

Must be programmed if TRCCONFIGR.BB == 1.

Bit num	nber			31 3	30 29	28	3 27	26	25 2	4	23 23	2 21	1 20	19	18	17 :	16 1	51	4 13	3 12	11	10	98	37	6	5	4	3	2	1	0
ID																								H	G	F	Е	D	С	В	А
Reset 0)x0000	00000		0	0 0	0	0	0	0	D	0 0	0	0	0	0	0	0	D () (0	0	0	0 () (0	0	0	0	0	0	0
ID											Desc																				
A-H	RW	RANGE[i] (i=07)								/	Addr	ess	rang	ge f	ield.	Se	lect	s wł	nich	ado	lres	s rar	nge (com	para	ato	r pa	irs			
										ä	are ii	n us	e wi	th l	bran	ch	broa	adca	stir	ng. E	ach	fiel	d re	ores	ent	s ar	n ad	dre	SS		
										ı	range	e co	mpa	arat	or p	air,	so f	ield	[i] (cont	rols	the	sele	ctic	n o	f ad	ldre	ss r	ang	e	
										0	comp	oara	ator (paiı	r i.																
			Disabled	0						1	The a	addi	ress	ran	nge t	hat	ado	Ires	s ra	nge	con	npar	ator	pai	r i d	lefiı	nes,	is n	ot		
										5	selec	ted																			
			Enabled	1						1	The a	addi	ress	ran	nge t	hat	ado	Ires	s ra	nge	con	npar	ator	pai	r n o	defi	ines	i, is :	sele	ecte	ed.

10.7.4.1.12 TRCTRACEIDR

Address offset: 0x40

Sets the trace ID for instruction trace. If data trace is enabled then it also sets the trace ID for data trace, to (trace ID for instruction trace) + 1.

This register must always be programmed as part of trace unit initialization.

Might ignore writes when the trace unit is enabled or not idle.

Bit nu	mber		31 30 29	9 28 27	26 25	24 2	3 22	21 20	19 1	8 17 3	16 1	5 14	13	12 1	1 10	9	8	76	5 5	4	3	2	1 0
ID																		A	A	А	А	A	A A
Reset	0x000	00000	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 (0 0	0	0	0 (0	0	0	0 0	0	0	0	0	0 0
ID																							
А	RW	TRACEID				Т	race I	ID fiel	d. Set	s the	trace	e ID v	/alu	e for	instr	ucti	on t	race	э.				
						Б	:+[0]	muct	ho =0"	o if d				nahl	- d 14	dat	- +r			hl	. d +	h	_

Bit[0] must be zero if data trace is enabled. If data trace is enabled then a trace unit sets the trace ID for data trace, to TRACEID+1.

10.7.4.1.13 TRCQCTLR

Address offset: 0x44

Controls when Q elements are enabled.

Might ignore writes when the trace unit is enabled or not idle.

This register must be programmed if it is implemented and TRCCONFIGR.QE is set to any value other than 0b00.

		31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
			I H G F E D C B A
00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RANGE[i] (i=07)			Specifies the address range comparators to be used for controlling Q
			elements.
	Disabled	0	Address range comparator i is disabled.
	Enabled	1	Address range comparator i is selected for use.
MODE			Selects whether the address range comparators selected by the RANGE
			field indicate address ranges where the trace unit is permitted to generate
			Q elements or address ranges where the trace unit is not permitted to
			generate Q elements:
	Exclude	0	Exclude mode. The address range comparators selected by the RANGE field
			indicate address ranges where the trace unit cannot generate Q elements. If
			no ranges are selected, Q elements are permitted across the entire memory
			map.
	Include	1	Include mode. The address range comparators selected by the RANGE field
			indicate address ranges where the trace unit can generate \ensuremath{Q} elements. If all
			the implemented bits in RANGE are set to 0 then Q elements are disabled.
	Include	1	indicate address ranges where the trace unit can generate Q elements. If all
		Include	include 1

10.7.4.1.14 TRCVICTLR

Address offset: 0x080

Controls instruction trace filtering.

Might ignore writes when the trace unit is enabled or not idle.

Only returns stable data when TRCSTATR.PMSTABLE == 1.

Must be programmed, particularly to set the value of the SSSTATUS bit, which sets the state of the start/ stop logic.

Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 ID L K J H G F D C B V 6 0 0 0 <th></th>	
ID LKJIHGFE DCB	
	0000
Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5	AAAA
	3 2 1 0

Bit nu	umber			31	30 2	9 28	3 27 3	26	25 24	23	22 2	21 2	01	9 18	8 17	' 16	15	14	13	12	11	10	9	8	76	55	4	3	2	1 0
ID										L	К	JI	IH	H G	i F	Е					D	С	В				A	А	А	A A
Reset	t 0x000	00000		0	0 0	0 0	0	0	0 0	0	0	0 0) (0 0	0	0	0	0	0	0	0	0	0	0	0 () 0	0	0	0	0 0
			Disabled	0						This	s ev	ent	is n	ot f	ilter	ed.														
			Enabled	1						This	s ev	ent	is fi	lter	ed.															
В	RW	SSSTATUS								Wh	en ⁻	TRCI	DR	4.NI	UM	ACP	AIR	S > C) 01	TR	CID	0R4	.NU	MP	2 > (), th	is b	it re	tur	ıs
										the	sta	tus o	of t	he s	tart	/stc	op lo	ogic.												
			Stopped	0						The	sta	art/s	top	log	ic is	in t	he	stop	pe	d st	ate									
			Started	1						The	e sta	art/s	top	log	ic is	in t	he	star	ted	sta	te.									
С	RW	TRCRESET								Cor	ntro	ls w	het	her	a tr	ace	uni	t mı	ıst	trac	ce a	a Re	eset	exc	epti	on.				
			Disabled	0						The	tra	ice u	init	doe	es n	ot ti	ace	a R	ese	et ex	kce	ptic	on ι	inle	s it	trac	est	the		
										exc	epti	ion o	or ir	nstr	ucti	on i	mm	edia	ate	ly p	rio	r to	the	Re	set (exce	ptic	on.		
			Enabled	1						The	tra	ice u	init	alw	ays	trac	ces	a Re	set	exe	сер	tio	n.							
D	RW	TRCERR								Wh	en ⁻	TRCI	DR	3.TR	CEF	R==	=1,	this	bit	cor	ntro	ols v	whe	the	at	race	un	it m	ust	trace
										a Sy	/ste	m e	rroi	r exo	cept	ion	•													
			Disabled	0						The	tra	ice u	init	doe	es n	ot ti	ace	a S	yst	em	err	ore	exce	eptio	on u	nles	is it	trac	es t	he
										exc	epti	ion d	or ir	nstr	ucti	on i	mm	edia	ate	ly p	rio	r to	the	e Sys	ten	n err	ore	exce	ptic	n.
			Enabled	1						The	tra	ice u	init	alw	ays	trac	ces	a Sy	ste	m e	rro	r ex	kce	otio	n, re	garo	dles	s of	the	
										valu	ue o	of Vie	ewl	nst.																
E-H	RW	EXLEVEL[i]_S (i=03)								In S	ecu	ire s	tate	e, ea	ach	bit d	cont	rols	wl	neth	ner	ins	tru	ctior	n tra	cing	g is (enal	oled	for
										the	cor	resp	on	ding	g Ex	cept	tion	leve	el i											
			Disabled	1						The	tra	ice u	init	doe	es n	ot g	ene	rate	in	stru	cti	on 1	trac	e, ir	Se	cure	sta	te, f	or	
										Exc	epti	ion l	eve	el i.																
			Enabled	0								ice u	init	gen	era	tes	inst	ruct	ior	l tra	ce,	in	Sec	ure	stat	e, fo	or Ex	ксер	tior	1
										leve																				
I-L	RW	EXLEVEL[i]_NS (i=0	3)																			ethe	er ir	istru	ctic	on tr	acir	ng is	ena	abled
												cori			-															
			Disabled	1								ice u			es n	ot g	ene	rate	in	stru	cti	ont	trac	e, ir	No	n-se	ecur	re st	ate,	for
												ion l																		
			Enabled	0								ice u	init	gen	era	tes	inst	ruct	ior	tra	ce,	in	Noi	1-se	cure	e sta	te,	for E	xce	ptior
										leve	el i.																			

10.7.4.1.15 TRCVIIECTLR

Address offset: 0x084

ViewInst exclude control.

Might ignore writes when the trace unit is enabled or not idle.

This register must be programmed when one or more address comparators are implemented.

Bit nu	mber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					PONMLKJI HGFEDCBA
Reset	0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-H	RW	INCLUDE[i] (i=07)			Include range field. Selects which address range comparator pairs are in use
					with ViewInst include control.
			Disabled	0	The address range that address range comparator pair i defines, is not
					selected for ViewInst include control.
			Enabled	1	The address range that address range comparator pair i defines, is selected
					for ViewInst include control.
I-P	RW	EXCLUDE[i] (i=07)			Exclude range field. Selects which address range comparator pairs are in use
					with ViewInst exclude control.
			Disabled	0	The address range that address range comparator pair i defines, is not
					selected for ViewInst exclude control.
			Enabled	1	The address range that address range comparator pair i defines, is selected
					for ViewInst exclude control.

10.7.4.1.16 TRCVISSCTLR

Address offset: 0x088

Use this to set, or read, the single address comparators that control the ViewInst start/stop logic. The start/stop logic is active for an instruction which causes a start and remains active up to and including an instruction which causes a stop, and then the start/stop logic becomes inactive.

Might ignore writes when the trace unit is enabled or not idle.

If implemented then this register must be programmed.

Bit nu	ımber			31	30 2	9 28	8 27	26	25	24 2	23 2	22 2	1 2	20 1	9 1	8 17	16	15	14 1	3 1	2 11	10	98	7	6	5	4	3	2	1 0
ID											Ρ	1 0	N I	ИI	_ k	< l	Т							Н	G	F	Е	D	С	ΒA
Reset	0x000	00000		0	0 (0	0	0	0	0	0	0 (0	0 0) (0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0
ID											Des																			
A-H	RW	START[i] (i=07)								9	Sele	ects	wh	ich	sing	gle a	ddr	ess	com	para	tors	are	in us	e w	ith '	Viev	wIn	st st	art/	/stop
										0	con	trol,	, fo	r th	e pı	urpo	se c	f st	artir	g tr	ace.									
			Disabled	0						1	The	sin	gle	add	lres	s co	mpa	rate	or i,	is no	ot se	lecte	d as	a st	art	reso	our	ce.		
			Enabled	1						1	The	sin	gle	add	lres	s co	mpa	rate	or i,	is se	lect	ed as	a st	art r	esc	ourc	e.			
I-P	RW	STOP[i] (i=07)								9	Sele	ects	wh	ich	sing	gle a	ddr	ess	com	para	tors	are	in us	e w	ith '	Viev	vIn	st st	art/	/stop
										C	con	trol,	, fo	r th	e pı	urpo	se c	f st	oppi	ng t	race									
			Disabled	0						1	The	sin	gle	add	lres	s co	mpa	rate	or i,	is no	ot se	lecte	d as	a st	ор	resc	ouro	ce.		
			Enabled	1						1	The	sin	gle	add	lres	s co	mpa	rate	or i,	is se	lect	ed as	a st	op r	eso	urc	e.			

10.7.4.1.17 TRCVIPCSSCTLR

Address offset: 0x08C

Use this to set, or read, which PE comparator inputs can control the ViewInst start/stop logic.

Might ignore writes when the trace unit is enabled or not idle.

If implemented then this register must be programmed.

Bit nu	mber			31	30 2	9 28	3 27	26	25 2	42	3 2	2 2	21 2	20 1	.9 :	18 1	L7	16	15	14	13	12	11 1	10	98	3 7	6	5	4	3	2	1	0
ID										F	PC) C	NN	V I	L	K	J	L								H	G	F	E	D	С	В	А
Reset	0x000	00000		0	0 0	0	0	0	0 () (0 (0 (0 (0 (D	0	0	0	0	0	0	0	0	0	0 0) (0	0	0	0	0	0	0
ID																																	
A-H	RW	START[i] (i=07)								S	ele	cts	wh	ich	PE	cor	пp	ara	tor	inp	uts	are	e in	use	wit	h V	ewl	nst	sta	rt/s	top)	
										C	ont	rol	, foi	r th	e p	ourp	os	e o	f st	arti	ng t	rac	e										
			Disabled	0						Т	he	sin	gle	PE	cor	npa	ira	tor	inp	ut i	, is	not	sel	ect	ed a	s a	star	t re	sou	irce	•		
			Enabled	1						Т	he	sin	gle	PE	cor	npa	ira	tor	inp	ut i	, is	sele	ecte	d a	s a s	tar	res	ou	rce.				
I-P	RW	STOP[i] (i=07)								S	ele	cts	wh	ich	PE	coi	пp	ara	tor	inp	uts	are	e in	use	wit	h V	ewl	nst	sta	rt/s	top)	
										C	ont	rol	, foi	r th	e p	ourp	os	e o	f st	opp	ing	tra	ce.										
			Disabled	0						Т	he	sin	gle	PE	cor	npa	ira	tor	inp	ut i	, is	not	sel	ect	ed a	s a	stop	o re	sou	rce			
			Enabled	1						Т	he	sin	gle	PE	cor	npa	ira	tor	inp	uti	, is	sele	ecte	d a	s a s	top	res	oui	rce.				

10.7.4.1.18 TRCVDCTLR

Address offset: 0x0A0

Controls data trace filtering.

Might ignore writes when the trace unit is enabled or not idle.

This register must be programmed when data tracing is enabled, that is, when either TRCCONFIGR.DA == 1 or TRCCONFIGR.DV == 1.

Bit nu	Imber			31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					LKJIIHGFEDCBA
Reset	: 0x000	00000		0 0 0 0 0 0	
A-H	RW	EVENT[i] (i=07)			Event unit enable bit.
			Disabled	0	The trace event is not selected for trace filtering.
			Enabled	1	The trace event is selected for trace filtering.
I	RW	SPREL			Controls whether a trace unit traces data for transfers that are relative to
					the Stack Pointer (SP).
			Enabled	0	The trace unit does not affect the tracing of SP-relative transfers.
			DataOnly	2	The trace unit does not trace the address portion of SP-relative transfers. If
					data value tracing is enabled then the trace unit generates a P1 data address
					element.
			Disabled	3	The trace unit does not trace the address or value portions of SP-relative
					transfers.
J	RW	PCREL			Controls whether a trace unit traces data for transfers that are relative to
					the Program Counter (PC).
			Enabled	0	The trace unit does not affect the tracing of PC-relative transfers.
			Disabled	1	The trace unit does not trace the address or value portions of PC-relative
					transfers.
К	RW	ТВІ			Controls which information a trace unit populates in bits[63:56] of the data
					address.
			SignExtend	0	The trace unit assigns bits[63:56] to have the same value as bit[55] of the
					data address, that is, it sign-extends the value.
			Сору	1	The trace unit assigns bits[63:56] to have the same value as bits[63:56] of
					the data address.
L	RW	TRCEXDATA			Controls the tracing of data transfers for exceptions and exception returns
					on Armv6-M, Armv7-M, and Armv8-M PEs.
			Disabled	0	Exception and exception return data transfers are not traced.
			Enabled	1	Exception and exception return data transfers are traced if the other aspects
					of ViewData indicate that the data transfers must be traced.

10.7.4.1.19 TRCVDSACCTLR

Address offset: 0x0A4

ViewData include / exclude control.

Might ignore writes when the trace unit is enabled or not idle.

This register must be programmed when one or more address comparators are implemented.

Bit nu	mber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					PONMLKJI HGFEDCBA
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
A-H	RW	INCLUDE[i] (i=07)			Selects which single address comparators are in use with ViewData include
					control.
			Disabled	0	The single address comparator i, is not selected for ViewData include
					control.
			Enabled	1	The single address comparator i, is selected for ViewData include control.
I-P	RW	EXCLUDE[i] (i=07)			Selects which single address comparators are in use with ViewData exclude
					control.
			Disabled	0	The single address comparator i, is not selected for ViewData exclude
					control.
			Enabled	1	The single address comparator i, s selected for ViewData exclude control.

10.7.4.1.20 TRCVDARCCTLR

Address offset: 0x0A8

ViewData include / exclude control.

Might ignore writes when the trace unit is enabled or not idle.

This register must be programmed when one or more address comparators are implemented.

Bit nu	mber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					PONMLKJI HGFEDCBA
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
A-H	RW	INCLUDE[i] (i=07)			Include range field. Selects which address range comparator pairs are in use
					with ViewData include control.
			Disabled	0	The address range that address range comparator i defines, is not selected
					for ViewData include control.
			Enabled	1	The address range that address range comparator i defines, is selected for
					ViewData include control.
I-P	RW	EXCLUDE[i] (i=07)			Exclude range field. Selects which address range comparator pairs are in use
					with ViewData exclude control.
			Disabled	0	The address range that address range comparator i defines, is not selected
					for ViewData exclude control.
			Enabled	1	The address range that address range comparator i defines, s selected for
					ViewData exclude control.

10.7.4.1.21 TRCSEQEVR[n] (n=0..2)

Address offset: 0x100 + (n × 0x4)

Moves the sequencer state according to programmed events.

Might ignore writes when the trace unit is enabled or not idle.

When the sequencer is used, all sequencer state transitions must be programmed with a valid event.

Bit nu	mber			31 3	0 29	28	27 2	26 2	25 24	42	3 22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ID																		Ρ	0	Ν	Μ	L	K	J	T	н	G	F	E	D	С	В	А
Reset	0x000	00000		0 (0 0	0	0 (0	0 0) (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ID																																	
A-H	RW	F[i] (i=07)								F	orw	ard	fiel	d.																			
			Disabled	0						Т	he t	race	e ev	ent	do	es r	not	aff	ect	the	se	que	ence	er.									
			Enabled	1						۷	Vher	h th	e ev	ven	t oc	cur	s tł	nen	the	e se	que	enc	er s	tat	e m	ove	s fr	om	sta	ate i	n to)	
										S	tate	n+1	L.																				
I-P	RW	B[i] (i=07)								В	ack	var	d fie	eld.																			
			Disabled	0						Т	he t	race	e ev	ent	do	es r	not	aff	ect	the	se	que	ence	er.									
			Enabled	1						V	Vher	h th	e ev	ven	t oc	cur	s tł	nen	the	e se	que	enc	er s	tat	e m	ove	s fr	om	sta	ate i	n+1	. to	
										S	tate	n.																					

10.7.4.1.22 TRCSEQRSTEVR

Address offset: 0x118

Moves the sequencer to state 0 when a programmed event occurs.

Might ignore writes when the trace unit is enabled or not idle.

When the sequencer is used, all sequencer state transitions must be programmed with a valid event.

ID R/W Field Value ID Value V	
ID Reset 0x00000000 000 0000 0 0 0 0 0 0 0 0 0	
ID	0 0 0 0 0 0 0 0
	A A A A A A A
Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0

10.7.4.1.23 TRCSEQSTR

Address offset: 0x11C

Use this to set, or read, the sequencer state.

Might ignore writes when the trace unit is enabled or not idle.

Only returns stable data when TRCSTATR.PMSTABLE == 1.

When the sequencer is used, all sequencer state transitions must be programmed with a valid event.

Bit n	umber			31 30 29 28 2	7 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					A A
Rese	t 0x000	00000		0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
A	RW	STATE			Sets or returns the state of the sequencer.
			State0	0	The sequencer is in state 0.
			State1	1	The sequencer is in state 1.
			State2	2	The sequencer is in state 2.
			State3	3	The sequencer is in state 3.

10.7.4.1.24 TRCEXTINSELR

Address offset: 0x120

Use this to set, or read, which external inputs are resources to the trace unit.

Might ignore writes when the trace unit is enabled or not idle.

Only returns stable data when TRCSTATR.PMSTABLE == 1.

When the sequencer is used, all sequencer state transitions must be programmed with a valid event.

Bit nu	umber		31	30 2	9 28	3 27	26	25	24	23	22 :	21 2	01	.9 18	3 17	7 16	15	14	13 :	12 1	1 10	9	8	7	6	5	4	3	2	1	0
ID			D	D	D	D	D	D	D	С	С	С	2 (c c	С	С	В	В	В	ΒE	3 B	В	В	А	А	А	А	A	A	А	A
Rese	t 0x000	00000	0	0 (0 0	0	0	0	0	0	0	0 () (0 0	0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0
ID																															
A-D	RW	SEL[i] (i=03)	[0:	255]						Eac	h fi	eld i	n tł	his c	olle	ectio	n se	elec	ts a	n ex	tern	al ir	npu	t as	a r	eso	urce	e fo	r th	ıe	
										trad	ce u	nit.																			

10.7.4.1.25 TRCCNTRLDVR[n] (n=0..3)

Address offset: $0x140 + (n \times 0x4)$

This sets or returns the reload count value for counter n.

Might ignore writes when the trace unit is enabled or not idle.

Bit n	umber		31 30 29	28 27 2	6 25 2	24 23	22 2	1 20	19 18	3 17	16 1	L5 14	13	12 1	1 10	9	8	76	5 5	5 4	3	2	1	0
ID												A A	А	A A	A	А	А	A A	4 A	A	А	А	А	A
Rese	t 0x000	00000	0 0 0	000	0 0	0 0	0 0	0 0	0 0	0	0	0 0	0	0 0	0	0	0	0 0) (0	0	0	0	0
ID																								
А	RW	VALUE	[0:65535]			Со	ntain	s the	e reloa	ad va	lue	for co	ount	er n.	Whe	en a	relo	oad (eve	nt o	ccui	s fo	r	
						со	unter	n th	en the	e tra	ce u	nit c	opies	the	VAL	UEn	fiel	d int	to c	oun	ter i	۱.		

10.7.4.1.26 TRCCNTCTLR[n] (n=0..3)

Address offset: $0x150 + (n \times 0x4)$

Controls the operation of counter n.

Might ignore writes when the trace unit is enabled or not idle.

Rit ni	umber			31 30 29 28 27 26 25 3	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	under			51 50 25 26 27 20 25 2	
ID					D C B B B B B B B A A A A A A A A
Reset	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	CNTEVENT		[0:255]	Selects an event, that when it occurs causes counter n to decrement.
В	RW	RLDEVENT		[0:255]	Selects an event, that when it occurs causes a reload event for counter n.
С	RW	RLDSELF			Controls whether a reload event occurs for counter n, when counter n
					reaches zero.
			Disabled	0	The counter is in Normal mode.
			Enabled	1	The counter is in Self-reload mode.
D	RW	CNTCHAIN			For TRCCNTCTLR3 and TRCCNTCTLR1, this bit controls whether counter n
					decrements when a reload event occurs for counter n-1.
			Disabled	0	Counter n does not decrement when a reload event for counter n-1 occurs.
			Enabled	1	Counter n decrements when a reload event for counter n-1 occurs. This
					concatenates counter n and counter n-1, to provide a larger count value.

10.7.4.1.27 TRCCNTVR[n] (n=0..3)

Address offset: $0x160 + (n \times 0x4)$

This sets or returns the value of counter n.

The count value is only stable when TRCSTATR.PMSTABLE == 1.

If software uses counter n then it must write to this register to set the initial counter value.

Might ignore writes when the trace unit is enabled or not idle.

Bit number 31 30 29 28 27 26 25 24 23 22 1 16 15 14 13 1 1 9 8 7 6 5 4 3 2 1 0 0 0 0 0 10 11 10 11 10 9 8 7 6 5 4 3 2 1 0 <t< th=""><th>A RW VAL</th><th>UE</th><th>[0:65535]</th><th></th><th>Cont</th><th>ains t</th><th>he co</th><th>ount</th><th>value</th><th>of c</th><th>our</th><th>iter n</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	A RW VAL	UE	[0:65535]		Cont	ains t	he co	ount	value	of c	our	iter n										
	ID R/W Field																					
	Reset 0x0000000	D	0 0 0 0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0 0) 0
Bit number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	ID									А	A	A A	А	А	A.	A	A A	А	А	A	4 <i>4</i>	A A
	Bit number		31 30 29 28 27 26	5 25 24	23 22	2 21	20 19	9 18 1	17 16	15	14	13 12	2 11	10	9	8 7	76	5	4	3	2 1	L O

10.7.4.1.28 TRCRSCTLR[n] (n=2..31)

Address offset: $0x200 + (n \times 0x4)$

Controls the selection of the resources in the trace unit.

Might ignore writes when the trace unit is enabled or not idle.

If software selects a non-implemented resource then CONSTRAINED UNPREDICTABLE behavior of the resource selector occurs, so the resource selector might fire unexpectedly or might not fire. Reads of the TRCRSCTLRn might return UNKNOWN.

Bit n	umber			31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					A
Rese	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A	RW	EN			Trace unit enable bit
			Disabled	0	The trace unit is disabled. All trace resources are inactive and no trace is
					generated.
			Enabled	1	The trace unit is enabled.

10.7.4.1.29 TRCSSCCR0

Address offset: 0x280

Controls the single-shot comparator.

Bit nu	Imber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А	N Contraction of the second
Reset	: 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
А	RW	RST			Enables the single-shot comparator resource to be reset when it occurs, to
					enable another comparator match to be detected
			Disabled	0	Multiple matches can not be detected.
			Enabled	1	Multiple matches can occur.

10.7.4.1.30 TRCSSCSR0

Address offset: 0x2A0

Indicates the status of the single-shot comparators. TRCSSCSR0 is sensitive to instruction addresses.

Bit n	umber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				E	D C B A
Rese	et 0x0000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
А	RW	INST			Instruction address comparator support
			False	0	Single-shot instruction address comparisons not supported.
			True	1	Single-shot instruction address comparisons supported.
В	RW	DA			Data address comparator support
			False	0	Data address comparisons not supported.
			True	1	Data address comparisons supported.
С	RW	DV			Data value comparator support
			False	0	Data value comparisons not supported.
			True	1	Data value comparisons supported.
D	RW	PC			Process counter value comparator support
			False	0	Process counter value comparisons not supported.
			True	1	Process counter value comparisons supported.
Е	RW	STATUS			Single-shot status. This indicates whether any of the selected comparators
					have matched.
			NoMatch	0	Match has not occurred.
			Match	1	Match has occurred at least once.

10.7.4.1.31 TRCSSPCICR0

Address offset: 0x2C0

Selects the processor comparator inputs for Single-shot control.

Bit nu	mber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D C B A
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
A-D	RW	PC[i] (i=03)			Selects processor comparator i inputs for Single-shot control
			Disabled	0	Processor comparator i is not selected for Single-shot control.
			Enabled	1	Processor comparator i is selected for Single-shot control.

10.7.4.1.32 TRCPDCR

Address offset: 0x310

Controls the single-shot comparator.

Bit nu	umber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				А	
Reset	t 0x0000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	PU			Power up request, to request that power to ETM and access to the trace
					registers is maintained.
			Disabled	0	Power not requested.
			Enabled	1	Power requested.

10.7.4.1.33 TRCPDSR

Address offset: 0x314

Indicates the power down status of the ETM.

Bit nu	umber			31 30 29 28 27 26 25 24	2 3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					B A
Reset	t 0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	POWER			Indicates ETM is powered up
			NotPoweredUp	0	ETM is not powered up. All registers are not accessible.
			PoweredUp	1	ETM is powered up. All registers are accessible.
В	RW	STICKYPD			Sticky power down state.
					This bit is set to 1 when power to the ETM registers is removed, to indicate
					that programming state has been lost. It is cleared after a read of the
					TRCPDSR
			NotPoweredDown	0	Trace register power has not been removed since the TRCPDSR was last
					read.
			PoweredDown	1	Trace register power has been removed since the TRCPDSR was last read.

10.7.4.1.34 TRCITATBIDR

Address offset: 0xEE4

Sets the state of output pins.

A-G	RW	ID[i] (i=06)		Drives the ATIDMI[i] output pin.													
ID																	
Reset	t 0x000	00000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
ID				GFEDCBA													
Bit nu	umber		31 30 29 28 27 26 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													

10.7.4.1.35 TRCITIATBINR

Address offset: 0xEF4

Reads the state of the input pins.

Bit nu	mber			31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					B A
Reset	0x000	00000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	ATVALID			Returns the value of the ATVALIDMI input pin.
В	RW	AFREADY			Returns the value of the AFREADYMI input pin.

10.7.4.1.36 TRCITIATBOUTR

Address offset: 0xEFC

Sets the state of the output pins.

Bit nu	umber			31	30	29	28	27	26	25	24 :	23 2	22 2	1 20	01	9 18	3 17	16	15	14	13	12	11 1	10 9	98	37	6	5	4	3	2	1 0
ID																																ΒA
Reset	t 0x00000	0000		0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0 0) (0	0	0	0	0	0 0
ID																																
A	RW	ATVALID									I	Driv	es t	he A	٩TV	ALI	DM	ou	tpu	t pi	n.											
В	RW /	AFREADY									I	Driv	es t	he A	١FR	EAD	ΟΥΝ	ll oi	utpi	ut p	in.											

10.7.4.1.37 TRCITCTRL

Address offset: 0xF00

Enables topology detection or integration testing, by putting ETM-M33 into integration mode.

Bit nu	umber			31 3	0 29	28 27	26 25	5 24 2	23 22	2 21	20 1	19 18	3 17	16 1	5 14	13	12 13	L 10	98	7	6	5	4	3	2	1 0
ID	ID																									А
Reset	Reset 0x00000000			0 (0 0	0 0	0 0	0	0 0	0	0	0 0	0	0	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0 0
ID																										
А	RW	IME						I	nteg	ratio	n m	ode	enal	ole												
			Disabled	0				E	TM	is no	t in	integ	grati	on m	ode											
			Enabled	1				E	TM	is in	inte	grati	on r	node												

10.7.4.1.38 TRCCLAIMSET

Address offset: 0xFA0

Sets bits in the claim tag and determines the number of claim tag bits implemented.

Bit nu	mber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D C B A
Reset	0x0000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
A-D	RW	SET[i] (i=03)			Claim tag set register
			NotSet	0	Claim tag i is not set.
			Set	1	Claim tag i is set.
			Claim	1	Set claim tag i.

10.7.4.1.39 TRCCLAIMCLR

Address offset: 0xFA4

Clears bits in the claim tag and determines the current value of the claim tag.

Bit number	31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		D C B A
Reset 0x0000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field Value ID		Description
A-D RW CLR[i] (i=03)		Claim tag clear register
NotSet	0	Claim tag i is not set.
Set	1	Claim tag i is set.
Clear	1	Clear claim tag i.

10.7.4.1.40 TRCAUTHSTATUS

Address offset: 0xFB8

Indicates the current level of tracing permitted by the system

А	RW	NSID	Non-secure Invasive Debug	
ID				
Reset	t 0x000	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
ID			D D C C B B	A A
Bit nu	umber		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0

Bit nu	Imber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
ID					D D C C B B A A				
Reset	0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
					Description				
			NotImplemented	0	The feature is not implemented.				
			Implemented	1	The feature is implemented.				
В	RW	NSNID			Non-secure Non-Invasive Debug				
	NotImple		NotImplemented	0	The feature is not implemented.				
			Implemented	1 The feature is implemented.					
С	RW	SID			Secure Invasive Debug				
			NotImplemented	0	The feature is not implemented.				
			Implemented	1	The feature is implemented.				
D	RW	SNID			Secure Non-Invasive Debug				
			NotImplemented	0	The feature is not implemented.				
			Implemented	1	The feature is implemented.				

10.7.4.1.41 TRCDEVARCH

Address offset: 0xFBC

The TRCDEVARCH identifies ETM-M33 as an ETMv4.2 component

Bit nu	umber			31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				DDDDDD	D D D D D C B B B A A A A A A A A A A A A A A A A
Reset	t 0x000	00000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	R	ARCHID			Architecture ID
			ETMv42	0x4A13	Component is an ETMv4 component
В	R	REVISION			Architecture revision
			v2	2	Component is part of architecture 4.2
С	R	PRESENT			This register is implemented
			Absent	0	The register is not implemented.
			Present	1	The register is implemented.
D	R	ARCHITECT			Defines the architect of the component
			Arm	0x23B	This peripheral was architected by Arm.

10.7.4.1.42 TRCDEVTYPE

Address offset: 0xFCC

Controls the single-shot comparator.

Bit nu	mber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					B B B A A A A
Reset	0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	R	MAJOR			The main type of the component
			TraceSource	3	Peripheral is a trace source.
В	R	SUB			The sub-type of the component
			ProcessorTrace	1	Peripheral is a processor trace source.

10.7.4.1.43 TRCPIDR[n] (n=0..7)

Address offset: $0xFD0 + (n \times 0x4)$

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		

10.7.4.1.44 TRCCIDR[n] (n=0..3)

Address offset: 0xFF0 + (n × 0x4)

Coresight component identification registers.

Bit number	31 30 29 28 27 26 2	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		

10.7.5 TPIU — Trace port interface unit

The ARM $^{\ensuremath{\mathbb{R}}}$ CoreSight $^{\ensuremath{\mathbb{T}}}$ TPIU connects an ATB to an external trace port.

This document only provides a register-level description of this ARM component. See the ARM[®] CoreSight[™] SoC-400 Technical Reference Manual for more details

10.7.5.1 Registers

Instances

Instance	Base address	TrustZone	TrustZone			Description		
		Мар	Att	DMA				
TPIU	0xE0054000	HF	NS	NA	No	TPIU		

Register overview

Register	Offset	TZ	Description
SUPPORTEDPORTSIZES	0x000		Each bit location is a single port size that is supported on the device.
CURRENTPORTSIZE	0x004		Each bit location is a single port size. One bit can be set, and indicates the current port size.
SUPPORTEDTRIGGERMODES	0x100		The Supported_trigger_modes register indicates the implemented trigger counter multipliers
			and other supported features of the trigger system.
TRIGGERCOUNTERVALUE	0x104		The Trigger_counter_value register enables delaying the indication of triggers to any external
			connected trace capture or storage devices.
TRIGGERMULTIPLIER	0x108		The Trigger_multiplier register contains the selectors for the trigger counter multiplier.
SUPPPORTEDTESTPATTERNMODES	0x200		The Supported_test_pattern_modes register provides a set of known bit sequences or
			patterns that can be output over the trace port and can be detected by the TPA or other
			associated trace capture device.
CURRENTTESTPATTERNMODES	0x204		Current_test_pattern_mode indicates the current test pattern or mode selected.
TPRCR	0x208		The TPRCR register is an 8-bit counter start value that is decremented. A write sets the initial
			counter value and a read returns the programmed value.
FFSR	0x300		The FFSR register indicates the current status of the formatter and flush features available in
			the TPIU.
FFCR	0x304		The FFCR register controls the generation of stop, trigger, and flush events.
FSCR	0x308		The FSCR register enables the frequency of synchronization information to be optimized to
			suit the Trace Port Analyzer (TPA) capture buffer size.

Register	Offset TZ	Description
EXTCTLINPORT	0x400	Two ports can be used as a control and feedback mechanism for any serializers, pin sharing
		multiplexers, or other solutions that might be added to the trace output pins either for pin
		control or a high-speed trace port solution.
EXTCTLOUTPORT	0x404	Two ports can be used as a control and feedback mechanism for any serializers, pin sharing
		multiplexers, or other solutions that might be added to the trace output pins either for pin
		control or a high speed trace port solution. These ports are raw register banks that sample of
		export the corresponding external pins.
ITTRFLINACK	0xEE4	The ITTRFLINACK register enables control of the triginack and flushinack outputs from the
		TPIU.
ITTRFLIN	0xEE8	The ITTRFLIN register contains the values of the flushin and trigin inputs to the TPIU.
ITATBDATA0	OxEEC	The ITATBDATAO register contains the value of the atdatas inputs to the TPIU. The values are
		valid only when atvalids is HIGH.
TATBCTR2	0xEF0	Enables control of the atreadys and afvalids outputs of the TPIU.
ITATBCTR1	0xEF4	The ITATBCTR1 register contains the value of the atids input to the TPIU. This is only valid
Abenti	UXLI 4	when atvalids is HIGH.
TATBCTRO	0xEF8	
HAIDCINU	UXEFO	The ITATBCTRO register captures the values of the atvalids, afreadys, and atbytess inputs to
		the TPIU. To ensure the integration registers work correctly in a system, the value of atbytess
	0.500	is only valid when atvalids, bit[0], is HIGH.
ITCTRL	0xF00	Used to enable topology detection. This register enables the component to switch from a
		functional mode, the default behavior, to integration mode where the inputs and outputs of
		the component can be directly controlled for integration testing and topology solving.
CLAIMSET	0xFA0	Software can use the claim tag to coordinate application and debugger access to trace
		unit functionality. The claim tags have no effect on the operation of the component. The
		CLAIMSET register sets bits in the claim tag, and determines the number of claim bits
		implemented.
CLAIMCLR	0xFA4	Software can use the claim tag to coordinate application and debugger access to trace
		unit functionality. The claim tags have no effect on the operation of the component. The
		CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the
		claim tag.
LAR	0xFB0	This is used to enable write access to device registers.
LSR	0xFB4	This indicates the status of the lock control mechanism. This lock prevents accidental writes
		by code under debug. Accesses to the extended stimulus port registers are not affected by
		the lock mechanism. This register must always be present although there might not be any
		lock access control mechanism. The lock mechanism, where present and locked, must block
		write accesses to any control register, except the Lock Access Register. For most components
		this covers all registers except for the Lock Access Register.
AUTHSTATUS	0xFB8	Indicates the current level of tracing permitted by the system
DEVID	0xFC8	Indicates the capabilities of the component.
DEVTYPE	0xFCC	The DEVTYPE register provides a debugger with information about the component when the
		Part Number field is not recognized. The debugger can then report this information.
PIDR4	0xFD0	Coresight peripheral identification registers.
PIDR[0]	0xFE0	Coresight peripheral identification registers.
PIDR[1]	0xFE4	Coresight peripheral identification registers.
PIDR[2]	0xFE8	Coresight peripheral identification registers.
PIDR[3]	0xFEC	Coresight peripheral identification registers.
CIDR[0]	0xFEC	Coresignt component identification registers.
CIDR[1]	OxFF4	Coresight component identification registers.
CIDR[2]	0xFF8	Coresight component identification registers.
CIDR[3]	0xFFC	Coresight component identification registers.

10.7.5.1.1 SUPPORTEDPORTSIZES

Address offset: 0x000

Each bit location is a single port size that is supported on the device.

Bit nu	mber			31	. 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ID				f	e	d	с	b	а	Ζ	Y	Х	W	V	U	Т	S	R	Q	Ρ	0	N	М	L	K	J	T	Н	G	F	E	D	С	В	A
Reset	0x000	00000		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ID																																			
A-f	RW	PORT_SIZE_[i+	1] (i=031)									Inc	lica	tes	whe	ethe	er t	he	TPI	U s	upp	or	ts p	ort	siz	e o'	f i+:	1-bi	t.						
			NotSupported	0								Ро	rt si	ize i	+1 i	is no	ot s	sup	por	ted															
			Supported	1								Ро	rt si	ize i	+1 i	is sı	upp	ort	ed.																

10.7.5.1.2 CURRENTPORTSIZE

Address offset: 0x004

Each bit location is a single port size. One bit can be set, and indicates the current port size.

Bit nu	mber			31	30	29	28	27	26	25 :	24 :	23 2	22 2	1 2	0 19	9 18	17	16	15	14	13	12 3	11 1	09	8	7	6	5	4	3	2	1 0
ID				f	e	d	с	b	а	Ζ	Y	x١	N١	/ι	JТ	S	R	Q	Ρ	0	N	М	L F	(J	Т	н	G	F	E	D	С	ΒA
Reset	0x000	00000		0	0	0	0	0	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0 0
ID												Des																				
A-f	RW	PORT_SIZE_[i+1] (i=0	031)								I	Indi	cate	es w	hich	n po	rt s	ize	is cı	urre	enth	y se	lecte	ed.								
			NotSelected	0							I	Port	: size	e i+:	1 is	not	sele	ecte	ed.													
			Selected	1							I	Port	size	e i+:	1 is	sele	cte	d.														

10.7.5.1.3 SUPPORTEDTRIGGERMODES

Address offset: 0x100

The Supported_trigger_modes register indicates the implemented trigger counter multipliers and other supported features of the trigger system.

Bit nu	mber			31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					Н G F E D C B A
Reset	0x000	00000		0 0 0 0 0 0 0	
ID					Description
A-E	RW	MULT[i] (i=04)			Indicates whether multiplying the trigger counter by 2^(i+1) is supported.
			NotSelected	0	Multiplying the trigger counter by 2 ⁽ⁱ⁺¹⁾ is supported.
			Selected	1	Multiplying the trigger counter by 2 ⁽ⁱ⁺¹⁾ is supported.
F	RW	TCOUNT8			Indicates whether an 8-bit wide counter register is implemented.
			NotImplemented	0	An 8-bit wide counter register is implemented.
			Implemented	1	An 8-bit wide counter register is implemented.
G	RW	TRIGGERED			A trigger has occurred and the counter has reached 0.
			NotOccured	0	Trigger has not occurred.
			Occured	1	Trigger has occurred.
н	RW	TRGRUN			A trigger has occurred but the counter is not at 0.
			NotOccured	0	Either a trigger has not occurred or the counter is at 0.
			Occured	1	A trigger has occurred but the counter is not at 0.

10.7.5.1.4 TRIGGERCOUNTERVALUE

Address offset: 0x104

The Trigger_counter_value register enables delaying the indication of triggers to any external connected trace capture or storage devices.

Bit n	umber		31 30 29 28 27 26 25	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A A A A A A A A
Rese	t 0x000	00000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
А	RW	TrigCount	[0:255]	8-bit counter value for the number of words to be output from the
				formatter before a trigger is inserted.

10.7.5.1.5 TRIGGERMULTIPLIER

Address offset: 0x108

The Trigger_multiplier register contains the selectors for the trigger counter multiplier.

Bit nu	mber			31 30 29 3	28 27 2	26 25 24	4 23 2	22 21 2	20 19	9 18 1	L7 16	5 15 :	14 1	13 12	11 1	09	8	76	5 5	54	3	2	1 0
ID																				E	D	С	ΒA
Reset	0x000	00000		000	000	000	0	0 0	0 0	0	0 0	0	0	0 0	0 0	0	0	0 () (0 0	0	0	0 0
ID																							
A-E	RW	MULT[i] (i=04)					Mul	tiply tl	ne Tr	igger	Cou	nter l	oy 2	2^n.									
			Disabled	0			Mul	tiplier	disa	bled.													
			Enabled	1			Mul	tiplier	enal	oled.													

10.7.5.1.6 SUPPPORTEDTESTPATTERNMODES

Address offset: 0x200

The Supported_test_pattern_modes register provides a set of known bit sequences or patterns that can be output over the trace port and can be detected by the TPA or other associated trace capture device.

Bit nu	mber			31	L 3() 29	28	27	26	25 2	4	23 2	2 2	1 2	20 1	91	L8 1	71	.6 1	51	4 1	.3 1	.2 1	11	0 9	8	7	6	5	4	3	2	1 0
ID																	F	: 1	E												D	с	ΒA
Reset	0x000	00000		0	0	0	0	0	0	0	0	0) (0	0 0)	0 0) (0 ()	0 (D	0	0 (0 0	0	0	0	0	0	0	0	0 0
A	RW	PATW1									I	ndi	cate	es v	vhet	the	er th	e v	valk	ing	g 1s	pa	tter	n is	sup	роі	ted	as	out	out	ove	r th	e
											t	trac	e po	ort.																			
			NotSupported	0							1	Test	pat	tter	n is	nc	ot su	рр	orte	ed.													
			Supported	1							1	Test	pat	tter	n is	su	рро	rte	d.														
В	RW	PATW0									I	ndi	cate	es v	vhet	the	er th	e v	valk	ing	g Os	pa	tter	n is	sup	роі	ted	as	out	out	ove	r th	e
											t	trac	e po	ort.																			
			NotSupported	0							1	Test	pat	tter	n is	nc	ot su	рр	orte	ed.													
			Supported	1							1	Test	pat	tter	n is	su	рро	rte	d.														
С	RW	PATA5									I	ndi	cate	es v	vhet	the	er th	e A	A/5	55 J	patt	err	n is	sup	por	ted	as c	utp	out o	ove	r the	e tra	ace
											ł	port																					
			NotSupported	0							1	Test	pat	tter	n is	nc	ot su	рр	orte	ed.													
			Supported	1							1	Test	pat	tter	n is	su	рро	rte	d.														
D	RW	PATFO									I	ndi	cate	es v	vhet	the	er th	e F	F/0	0 p	atte	ern	is s	upp	oort	ed a	as o	utp	ut o	ver	the	tra	ce
											ł	port	•																				
			NotSupported	0							1	Test	pat	tter	n is	nc	ot su	рр	orte	ed.													
			Supported	1							1	Test	pat	tter	n is	su	рро	rte	d.														
E	RW	PTIMEEN									I	ndi	cate	es v	vhet	the	er tir	ne	d m	od	e is	su	opo	rte	d.								
			NotSupported	0							ſ	Mod	le is	s no	ot su	nbb	oort	ed.															
			Supported	1							ſ	Mod	le is	s su	ippo	orte	ed.																
F	RW	PCONTEN									I	ndi	cate	es v	vhet	the	er co	nti	nuc	ous	mc	de	is s	upp	oort	ed.							
			NotSupported	0							I	Mod	le is	s no	ot su	hbb	oort	ed.															
			Supported	1							ſ	Mod	le is	s su	ippo	orte	ed.																

10.7.5.1.7 CURRENTTESTPATTERNMODES

Address offset: 0x204

Current_test_pattern_mode indicates the current test pattern or mode selected.

	32	3	4	٥,		6	/	1	ð	•	9	2			, ·)	U	<u> </u>	× .				_	-						^	1	2	·	1	1	·	-	1	·	9	-	-	-	-	-	2	~			-	-	۰.	-	~	+	.Э	1	.4	4	.Э	1	ю	4	1	+	.0																																								
С В А) C	D																																																												E	1	-	F																																									
000	0 0	0	0)	-	0)	C	0		0	C	((1)))		(C	0	0	0))))))	D	D	D	0	D	0	0	D	D	D	0	0	0	0	C	(0	C)	()	(D		0	(D	(0	()	0	0	C)	0	C		0	(0	(D	0		D	0		0)	0	0	()	0	0	(0	()	0	(0	0	0	Ī							
r the	ver	: 01	out	Jtp	οι	as	d a	te	ort	рс	р	up	u	u	su	su	su	su	su	su	u	up	лþ	ıр	р	pp	p	p	pp	pp	эþ	эþ	pp	p	p	р	p	р	р	p	p	p	р	р	р	p	ıŗ	u	su	5 S	is	٦i	r	te	at	p	s	; 1	ng	cir	lk	va	v	e	h	r t	e	h	tł	et	he	wh	5 W	es	ate	a	ic	di	nd	In	I																									
																																																																									rt.	01	р	e I	ce	iC	rad	tra	1																									
																																																															d.	e	ole	ak	is	d	5 0	is	n i:	rn	er	tt	at	p	t į	st	es	Te																0	0	C	(ł	d	d
																																																															d.	eo	le	ab	na	e	5 6	is	n i:	rn	er	tt	at	p	t į	st	es	Te																1	1	1							ł	d
the	ver	: 01	out	Jtp	οι	as	d a	te	ort	рс	р	up	u	u	su	su	su	su	su	su	u	up	Jp	ıp	p	pp	p	p	pp	pp	эþ	эþ	p	p	p	p	p	p	p	p	p	p	p	p	p	p	ıķ	u	su	5 S	is	n i	r	te	at	p)s	ç (ng	cir	lk	va	v	e	h	r t	e	h	tł	et	he	wh	5 W	es	ate	a	ic	di	٦d	In	I																									
																																																																									rt.	01	р	5	e	iC	rad	tra	1																									
																																																														•	d.	e	ole	ab	is	d	5 0	is	n i:	rn	er	tt	at	p	t į	st	es	Te																0	0	C	(I.	d	d
																																																															d.	eo	le	ab	na	e	5 6	is	n i:	rn	er	tt	at	p	t į	st	es	Te																1	1	1							ł	d
trace	the '	er t	ve	t o	pu	utr	οι	as	d a	ec	rt	or	or	01	0	00	ро	ро	20	0	01	or	or	rt	rt	te	te	te	te	te	te	te	t	t	t	rt	r	n	0	р	р	u	5 5	i	rn	e	t	pa	5	55	/!	١A	Α	e	h	r t	e	h	tł	et	he	wh	5 W	es	ate	a	ic	di	٦d	In	I																																			
																																																																													t.	rt	or	рс	I																									
																																																															d.	e	ole	ak	is	d	5 0	is	n i:	rn	er	tt	a	p	t į	st	es	Te	1															0	0	C	(l	d	d
																																																															d.	ec	le	ab	na	e	5 6	is	n i:	rn	er	tt	at	p	t į	st	es	Te																1	1	1							ł	d
trace	he t	r th	ver	0\	ut	itp	่วน	s (a	ed	te	ort	ort	or	or	or	or	0	or	or	or	rt	rt	te	te	e	e	e	e	e	e	e	te	rt	r	or	рс	эp	up	s	is	n	er	t	a	p	0	/0	F,	F	e	h	r t	e	h	tł	et	he	wh	5 W	es	ate	ca	ic	di	٦d	In	I																																						
																																																																												•	t.	rt	or	рс	I																									
																																																														•	d.	e	ole	ak	is	d	5 0	is	n i:	rn	er	tt	a	p	t į	st	es	Te																0	0	C	(l	d	d
																																																															ı.	eo	le	ab	na	e	5 6	is	n i:	rn	er	tt	at	p	t į	st	es	Te																1	1	1							1	d
																	١.	۱.	۱.																															d.	ec	rte	0	p	Jp	S	is	e	d	0	m	d	e	n	in	r t	e	h	tł	et	he	wh	5 W	es	ate	ca	ic	di	nd	In	I																									
																																																																		•	d.	e	le	bl	ak	isa	di	is	e i	le	d	00	Λо	M	I															0	0	C	(l	d	d
																																																																			d.	ec	le	bl	ab	na	er	is	e i	le	d	00	Λо	M	I															1	1	1							1	d
										ed	te	ort	ort	or	or	or	or	or	or	or	or	rt	rt	te	te	e	e	e	e	e	e	e	te	t	rl	or	рс	p	up	s	is	e	d	10	n	IS	οι	u	in	ti	n	:0	r c	e	h	tł	et	he	wh	5 W	es	ate	ca	ic	di	nd	In	I																																						
																																																																			d.	e	ole	bl	ak	isa	di	is	e i	le	d	00	Ло	М	I															0	0	C	(1	d	d
																																																																			d.	ec	le	bl	ab	na	er	is	e is	le	d	00	Ло	М	I															1	1	1							ł	d
									-	ed	te											rt	rt	te	te	e	e	e	e	e	:e	:e	te	t	ri														d	e	n	ir	rt rc	d. d.	h eo h	eth le le	et bl et	he ab he ab	wh isa na wh isa	di: er s w	es is is is	ate e i: e i: ate	ie le ca	ic d d ic	di oc di oc	nd /lo /lo	In M In																0 1 0	0 1 0	0 1						1	b t	ed d													

10.7.5.1.8 TPRCR

Address offset: 0x208

The TPRCR register is an 8-bit counter start value that is decremented. A write sets the initial counter value and a read returns the programmed value.

Bit n	umber		31 30 29 28 27 2	6 25 24 23	8 22 21 2	20 19 13	8 17 1	6 15	14 13	12 1	1 10	9	87	6	5	4 3	32	1	0
ID													A	А	А	A A	A A	A	А
Rese	t 0x000	00000	0 0 0 0 0	0 0 0	0 0	000	00	0	0 0	0 (0 0	0	0 0	0	0	0 0	0 0	0	0
ID																			
A	RW	PATTCOUNT	[0:255]	8-	bit coun	ter valu	e to in	dicat	e the	numt	oer o	f trac	eclk	in cy	cles	for	whi	ch a	_
				ра	ttern ru	ns befo	re it sv	vitche	es to f	he ne	ext pa	atter	n.						

10.7.5.1.9 FFSR

Address offset: 0x300

The FFSR register indicates the current status of the formatter and flush features available in the TPIU.

ыс по	Imber			31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					СВА
Reset	: 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A	RW	FLINPROG			Flush in progress.
			NotInProgress	0	A flush is not in progress.
			InProgress	1	A flush is in progress.
В	RW	FTSTOPPED			The formatter has received a stop request signal and all trace data and post-
					amble is sent. Any additional trace data on the ATB interface is ignored and
					atreadys goes HIGH.
			Running	0	Formatter has not stopped.
			Stopped	1	Formatter has stopped.
С	RW	TCPRESENT			Indicates whether the TRACECTL pin is available for use.
			NotPresent	0	TRACECTL pin is not present.
			Present	1	TRACECTL pin is present.

10.7.5.1.10 FFCR

Address offset: 0x304

The FFCR register controls the generation of stop, trigger, and flush events.

Bit nu	ımber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					КЈ ІНБГЕДСВА
Reset	: 0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A	RW	ENFTC			Do not embed triggers into the formatted stream. Trace disable cycles and
					triggers are indicated by tracectl, where present.
			Disabled	0	The formatting feature is disabled.
			Enabled	1	The formatting feature is enabled.
В	RW	ENFCONT			Is embedded in trigger packets and indicates that no cycle is using sync
					packets.
			Disabled	0	The formatting feature is disabled.
			Enabled	1	The formatting feature is enabled.
С	RW	FONFLIN			Enables the use of the flushin connection.
			Disabled	0	The formatting feature is disabled.
			Enabled	1	The formatting feature is enabled.
D	RW	FONTRIG			Initiates a manual flush of data in the system when a trigger event occurs.
			Disabled	0	The formatting feature is disabled.
			Enabled	1	The formatting feature is enabled.
E	RW	FONMANR			Generates a flush. This bit is set to 0 when this flush is serviced.
			Disabled	0	The formatting feature is disabled.
			Enabled	1	The formatting feature is enabled.
F	RW	FONMANW			Generates a flush. This bit is set to 1 when this flush is serviced.
			Disabled	0	The formatting feature is disabled.
			Enabled	1	The formatting feature is enabled.
G	RW	TRIGIN			Indicates a trigger when trigin is asserted.
			Disabled	0	The formatting feature is disabled.
			Enabled	1	The formatting feature is enabled.
н	RW	TRIGEVT			Indicates a trigger on a trigger event.
			Disabled	0	The formatting feature is disabled.
			Enabled	1	The formatting feature is enabled.
I	RW	TRIGFL			Indicates a trigger when flush completion on afreadys is returned.
			Disabled	0	The formatting feature is disabled.

Bit nu	mber			31 3	30 29 3	28 27 3	26 25 2	24 23	3 22	21 20	0 19	18 1	71	6 15	14	13	12 1	1 10	9	8	7	6	5 4	13	2	1	0
ID																К	J	I	н	G	F	E	D	2		В	А
Reset	0x000	00000		0	0 0	0 0	0 0	0 0	0	0 0	0	0	D C	0 0	0	0	0 (0 0	0	0	0	0	0 0	0 0	0	0	0
ID																											
			Enabled	1				Tł	he fo	rmatt	ting	featu	ıre i	s en	able	d.											
J	RW	STOPFL						Fo	orces	the F	IFO	to d	rain	off	any	part	-cor	nple	ted	pac	kets	5.					
			Disabled	0				Tł	he fo	rmatt	ting	featu	ire i	s dis	able	ed.											
			Enabled	1				Tł	he fo	rmatt	ting	featu	ire i	s en	able	d.											
к	RW	STOPTRIG						St	tops	the fo	orma	atter	afte	r a t	rigg	er e	vent	t is o	bse	rveo	d. Re	eset	to (disa	blec	or	0.
			Disabled	0				Tł	he fo	rmatt	ting	featu	ire i	s dis	able	ed.											
			Enabled	1				Tł	he fo	rmatt	ting	featu	ıre i	s en	able	d.											

10.7.5.1.11 FSCR

Address offset: 0x308

The FSCR register enables the frequency of synchronization information to be optimized to suit the Trace Port Analyzer (TPA) capture buffer size.

Bit nu	umber		31 30 29 28 27 2	6 25 24 23	22 21 20	0 19 18	17 16	5 15 1	4 13 1	12 11	L 10	9	8 7	6	5	4	3	2 1	. 0
ID										A	А	А	ΑA	A	А	А	A	4 <i>4</i>	A
Rese	t 0x00000000		0 0 0 0 0		0 0 0	0 0	0 0	0 (0 0	0 0	0	0	0 0	0	0	0	0 (0 0	0
ID																			
А	RW CYCCOUN	IT	[0:1024]	12	bit coun	ter relo	ad val	ue. In	dicate	es the	e nur	nbe	r of	com	plet	e fr	ame	s	
				be	tween fu	ll synch	nroniza	tion p	acket	s.									

10.7.5.1.12 EXTCTLINPORT

Address offset: 0x400

Two ports can be used as a control and feedback mechanism for any serializers, pin sharing multiplexers, or other solutions that might be added to the trace output pins either for pin control or a high-speed trace port solution.

Bit nu	mber			31 3	0 29	28	27 2	6 25	5 24	23	22 2	1 20) 19	18	17 1	6 15	5 14	13	12 1	.1 10	9	8	7	6	5	4	32	1	0
ID																							н	G	F	ΕI	D C	В	А
Reset	0x000	00000		0 (0 0	0	0 0	0 0	0	0	0 (0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0 (0 0	0	0
ID																													
A-H	RW	EXTCTLIN[i] (i=07)								EXT	CTL	inpu	ıts.																
			Low	0						Inp	ut EX	ктст	'Li is	low	ι.														
			High	1						Inp	ut EX	ктст	'Li is	hig	h.														

10.7.5.1.13 EXTCTLOUTPORT

Address offset: 0x404

Two ports can be used as a control and feedback mechanism for any serializers, pin sharing multiplexers, or other solutions that might be added to the trace output pins either for pin control or a high speed trace port solution. These ports are raw register banks that sample or export the corresponding external pins.

Bit nu	mber			31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					h g f e d c b a
Reset	0x000	00000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
A-H	RW	EXTCTLOUT[i] (i	=07)		EXTCTL outputs.
			Low	0	Output EXTCTLi is low.
			High	1	Output EXTCTLi is high.

10.7.5.1.14 ITTRFLINACK

Address offset: 0xEE4

The ITTRFLINACK register enables control of the triginack and flushinack outputs from the TPIU.

Bit nu	ımber			31 30 29 28	27 26 25 2	4 23 22	21 20	19 1	L8 17	16 1	.5 14	13	12 11	. 10	9	8	76	5	4	3	2	1 0
ID																						ΒA
Reset	: 0x000	00000		0 0 0 0	0000	0 0 0	0 0	0 (0 0	0	0 0	0	0 0	0	0	0	0 0	0	0	0	0	0 0
ID																						
А	RW	TRIGINACK				Sets th	ne valu	le of	trigir	nack.												
			Low	0		Pin is l	ogic 0															
			High	1		Pin is l	ogic 1	•														
В	RW	FLUSHINACK				Sets th	ne valu	le of	flush	inacl	٢.											
			Low	0		Pin is l	ogic 0															
			High	1		Pin is l	ogic 1	•														

10.7.5.1.15 ITTRFLIN

Address offset: 0xEE8

The ITTRFLIN register contains the values of the flushin and trigin inputs to the TPIU.

Bit nu	Imber			31	30	29 2	28 2	27 2	62	5 2	42	3 2	22	12	20 :	19	18	17	10	61	51	.4 1	.3 :	12 1	.1 1	.0	9	8	7	6	5	4	3	2	1	0
ID																																			В	А
Reset	0x000	00000		0	0	0	0	0 0) (0 0) (0 0) (D	0	0	0	0	0) () (D	D	0	0	0	0	0	0	0	0	0	0	0	0	0
ID																																				
A	RW	TRIGIN									R	leac	ls t	he	val	ue	of	tri	gin																	
			Low	0							Ρ	in i	s lo	gic	: 0.																					
			High	1							Ρ	in i	s lo	gic	: 1.																					
В	RW	FLUSHIN									R	leac	ls tl	he	val	ue	of	flu	shi	in.																
			Low	0							Ρ	in i	s lo	gic	: 0.																					
			High	1							Ρ	in i	s lo	gic	: 1.																					

10.7.5.1.16 ITATBDATA0

Address offset: 0xEEC

The ITATBDATAO register contains the value of the atdatas inputs to the TPIU. The values are valid only when atvalids is HIGH.

Bit nu	mber			31	30 2	9 2	8 27	26	25	24	23 :	22 2	1 20	0 19	18	3 17	16	15	14	13	12	11 :	10 9	8	7	6	5	4	3	2	1
ID																												Е	D	С	В
Reset	0x000	00000		0	0 0) (0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
A-E	RW	ATDATA[i] (i=04)									A re	ad	acce	ess r	etu	rns	the	va	lue	of a	ı pir	n on	atd	atas _.	_x o	f th	e e	nab	led	ро	rt. /
											wri	te a	ces	s wi	ite	s to	the	e co	rre	spo	ndir	ng a	tdat	am p	oin d	of tl	ne e	enal	blec	l po	ort.
			Low	0							Pin	is lo	gic (0.																	
			High	1							Pin	is lo	gic :	1.																	

10.7.5.1.17 ITATBCTR2

Address offset: 0xEF0

Enables control of the atreadys and afvalids outputs of the TPIU.

Bit nu	ımber			31	30 29	28	27 2	26 25	5 24	23 2	2 2	1 2	20 1	91	.8 1	7 1	5 15	5 14	13	12	11 1	10 9	Э E	37	6	5	4	3	2	1	0
ID																														В	A
Reset	: 0x000	00000		0	0 0	0	0	0 0	0	0	0 (D (0 0) (0 0	0	0	0	0	0	0	0	D () (0	0	0	0	0	0	0
ID																															
A	RW	ATREADY								Sets	the	e va	lue	of	afva	alid.															_
			Low	0						Pin i	s lo	gic	0.																		
			High	1						Pin i	s lo	gic	1.																		
В	RW	AFVALID								Sets	the	e va	lue	of	atre	ady	<i>(</i> .														
			Low	0						Pin i	s lo	gic	0.																		
			High	1						Pin i	s lo	gic	1.																		

10.7.5.1.18 ITATBCTR1

Address offset: 0xEF4

The ITATBCTR1 register contains the value of the atids input to the TPIU. This is only valid when atvalids is HIGH.

Bit nu	Imber			31 30	29 2	8 27	26 2	5 24	23	22 2	21 20) 19	18	17 1	6 15	5 14	13	12 1	1 10	9	8	7	6	5 4	13	3 2	1	0
ID																							A	A A	A A	A A	А	А
Reset	0x000	00000		0 0	0 (0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0 (0 0	0	0	0	0	0 0) (0 0	0	0
ID																												
А	RW	ATID							Rea	ads t	he v	alue	e of a	tids														
			Low	0					Pin	is lo	ogic ().																
			High	1					Pin	is lo	ogic 1	L.																

10.7.5.1.19 ITATBCTR0

Address offset: 0xEF8

The ITATBCTRO register captures the values of the atvalids, afreadys, and atbytess inputs to the TPIU. To ensure the integration registers work correctly in a system, the value of atbytess is only valid when atvalids, bit[0], is HIGH.

Bit n	umber			31 30 29 28	27 26	25 24	23 22	21 20) 19	18	17 1	16 1	5 14	13	12 1	1 10	9	8	7	6	5	4 3	2	1	0
ID																	С	С					В		А
Rese	t 0x000	00000		0 0 0 0	0 0	0 0	0 0	0 0	0	0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0
А	RW	ATVALID					Reads	s the v	alue	e of a	itva	lids.													
			Low	0			Pin is	logic C).																
			High	1			Pin is	logic 1	L.																
В	RW	AFREADY					Reads	the v	alue	e of a	frea	adys	5.												
			Low	0			Pin is	logic C).																
			High	1			Pin is	logic 1	L.																
С	RW	ATBYTES					Reads	s the v	alue	e of a	tby	tess													
			Low	0			Pin is	logic C).																
			High	1			Pin is	logic 1	L.																

10.7.5.1.20 ITCTRL

Address offset: 0xF00

Used to enable topology detection. This register enables the component to switch from a functional mode, the default behavior, to integration mode where the inputs and outputs of the component can be directly controlled for integration testing and topology solving.

Note: When a device has been in integration mode, it might not function with the original behavior. After performing integration or topology detection, you must reset the system to ensure correct behavior of CoreSight and other connected system components that are affected by the integration or topology detection.

Bit nu	umber			31 3	80 29	28	27 2	6 2	5 24	1 23	22	21	20 2	19 1	.8 1	71	6 1	5 1	4 13	3 12	2 1 1	. 10	9	8	7	6	5	4	3	2	1 (
ID																															Å
Reset	t 0x0000	00000		0	0 0	0	0 (0 (0 0	0	0	0	0	0	0 (0 (0 0) (0	0	0	0	0	0	0	0	0	0	0	0	0 0
А	RW	INTEGRATIONMODE								En	able	es th	ne c	om	oon	ent	to s	swi	tch	froi	m fu	inct	iona	al m	ode	e to	int	tegi	ati	on	mod
										an	d ba	ack.	lf n	o in	teg	rati	on f	fund	ctio	nali	ity i	s im	pler	ner	nted	l, tł	nis I	regi	ste	r m	nust
										rea	ad a	s ze	ro.																		
			Disabled	0						Int	egr	atio	n m	ode	e is o	disa	ble	d.													
			Enabled	1						Int	egr	atio	n m	ode	e is l	Ena	bled	d.													

10.7.5.1.21 CLAIMSET

Address offset: 0xFA0

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMSET register sets bits in the claim tag, and determines the number of claim bits implemented.

Bit nu	mber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D C B A
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
A-D	RW	BIT[i] (i=03)			Set claim bit i and check if bit is implemented or not.
			NotImplemented	0	Claim bit i is not implemented.
			Implemented	1	Claim bit i is implemented.
			Set	1	Set claim bit i.

10.7.5.1.22 CLAIMCLR

Address offset: 0xFA4

Software can use the claim tag to coordinate application and debugger access to trace unit functionality. The claim tags have no effect on the operation of the component. The CLAIMCLR register sets the bits in the claim tag to 0 and determines the current value of the claim tag.

Bit nu	Imber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D C B A
Reset	0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
A-D	RW	BIT[i] (i=03)			Read or clear claim bit i.
			Cleared	0	Claim bit i is not set.
			Set	1	Claim bit i is set.
			Clear	1	Clear claim bit i.

10.7.5.1.23 LAR

Address offset: 0xFB0

This is used to enable write access to device registers.

Bit nu	ımber			31	30	29	28	27	26	25	24	23	22	21 2	20 1	19 1	18 1	.7 1	6 1	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
ID				А	А	А	А	А	А	А	А	А	А	A	Α.	A.	A	4 <i>j</i>	A A	A A	A	А	А	А	А	A	А	A	А	A	A	A	A A
Reset	: 0x000	00000		0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
ID																																	
А	RW	ACCESS										Αv	vrite	e of	0xC	5A	CCE	55	ena	bles	s fui	the	r w	rite	асо	cess	s to	this	s de	vic	e. A	ny	
												oth	ner v	vrit	e re	emo	oves	wr	ite a	acce	ess.												
			UnLock	0x0	C5A	ACCE	E55	,				Un	lock	reg	giste	er ir	nter	fac	э.														

10.7.5.1.24 LSR

Address offset: 0xFB4

This indicates the status of the lock control mechanism. This lock prevents accidental writes by code under debug. Accesses to the extended stimulus port registers are not affected by the lock mechanism. This register must always be present although there might not be any lock access control mechanism. The lock mechanism, where present and locked, must block write accesses to any control register, except the Lock Access Register. For most components this covers all registers except for the Lock Access Register.

Bit n	umber			31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					СВА
Rese	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
А	RW	PRESENT			Indicates that a lock control mechanism exists for this device.
			NotImplemented	0	No lock control mechanism exists, writes to the Lock Access Register are
					ignored.
			Implemented	1	Lock control mechanism is present.
В	RW	LOCKED			Returns the current status of the Lock.
			UnLocked	0	Write access is allowed to this device.
			Locked	1	Write access to the component is blocked. All writes to control registers are
					ignored. Reads are permitted.
С	RW	ТҮРЕ			Indicates if the Lock Access Register is implemented as 8-bit or 32-bit.
			Bits32	0	This component implements a 32-bit Lock Access Register.
			Bits8	1	This component implements an 8-bit Lock Access Register.

10.7.5.1.25 AUTHSTATUS

Address offset: 0xFB8

Indicates the current level of tracing permitted by the system

Bit nu	Imber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					D D C C B B A A
Reset	: 0x000	00000		0 0 0 0 0 0 0	
ID					Description
А	RW	NSID			Non-secure Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.
В	RW	NSNID			Non-secure Non-Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.
С	RW	SID			Secure Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.
D	RW	SNID			Secure Non-Invasive Debug
			NotImplemented	0	The feature is not implemented.
			Implemented	1	The feature is implemented.

10.7.5.1.26 DEVID

Address offset: 0xFC8

Indicates the capabilities of the component.

Bit nu	mber			31	30	29	28 2	27 2	6 25	24	23	3 22	21	20 3	19	18 1	17 1	16 1	51	.4 1	3 1	2 11	. 10	9	8	7	6	5	4	3	2	1 0
ID																						F	Е	D	С	С	С	В	А	А	A	A A
Reset	0x000	00000		0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0 (D (0 (0 0	0	0	0	0	0	0	0	0	0	0	0 0
ID																																
А	R	MUXNUM		Indicates the hidden level of input multiplexing. When non-zero, this value																												
					indicates the type of multiplexing on the input to the ATB. Currently only																											
											0x	:00 is	s su	ррс	orte	d, t	hat	is, ı	10	mul	tiple	exin	g is	ore	sen	t. Tł	nis	valı	ue	help	s d	etect
											th	e AT	B st	truc	tur	e.																
В	R	CLKRELAT									Ind	dicat	es	the	rela	atio	nsh	nip b	etv	vee	n at	clk	and	trac	cecl	kin.						
			Synchronous	0							ate	clk a	nd	trac	ecl	kin	are	syn	chr	one	ous.											

Bit nu	ımber			31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0					
ID					F E D C C C B A A A A					
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
			ASynchronous	1	atclk and traceclkin are asynchronous.					
С	R	FIFOSIZE			FIFO size in powers of 2.					
			Entries4	2	FIFO size of 4 entries, that is, 16 bytes.					
D	R	TCLKDATA			Indicates whether trace clock plus data is supported.					
			Supported	0	Trace clock and data is supported.					
			NotSupported	1	Trace clock and data is not supported.					
Е	R	SWOMAN			Indicates whether Serial Wire Output, Manchester encoded format, is					
					supported.					
			NotSupported	0	Serial Wire Output, Manchester encoded format, is not supported.					
			Supported	1	Serial Wire Output, Manchester encoded format, is supported.					
F	R	SWOUARTNRZ			Indicates whether Serial Wire Output, UART or NRZ, is supported.					
			NotSupported	0	Serial Wire Output, UART or NRZ, is not supported.					
			Supported	1	Serial Wire Output, UART or NRZ, is supported.					

10.7.5.1.27 DEVTYPE

Address offset: 0xFCC

The DEVTYPE register provides a debugger with information about the component when the Part Number field is not recognized. The debugger can then report this information.

Bit nu	mber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					ВВВАААА
Reset	0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	R	MAJOR			The main type of the component
			TraceSource	1	Peripheral is a trace sink.
В	R	SUB			The sub-type of the component
			TracePort	4	Indicates that this component is a trace port component.

10.7.5.1.28 PIDR4

Address offset: 0xFD0

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field		

10.7.5.1.29 PIDR[0]

Address offset: 0xFE0

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 1	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID			
Reset 0x00000000	0 0 0 0 0 0 0		

10.7.5.1.30 PIDR[1]

Address offset: 0xFE4

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x00000000	0 0 0 0 0 0 0 0	
ID R/W Field Value ID	Value	Description

10.7.5.1.31 PIDR[2]

Address offset: 0xFE8

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID		
Reset 0x0000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID R/W Field Value ID	Value	Description

10.7.5.1.32 PIDR[3]

Address offset: 0xFEC

Coresight peripheral identification registers.

Bit number	31 30 29 28 27 26 25	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	3 2 1 0
ID			
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000

10.7.5.1.33 CIDR[0]

Address offset: 0xFF0

Coresight component identification registers.

Bit number	31 30 29 28 27 26 25	4 23 22 21 20 19 18 17 16 15 14	4 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID			
Reset 0x0000000	0 0 0 0 0 0 0		
ID R/W Field			

10.7.5.1.34 CIDR[1]

Address offset: 0xFF4

Coresight component identification registers.

Bit number	31 30 29 28 27	26 25 24 23 22 21 20 1	19 18 17 16 15 14	13 12 11 10 9	8 7 6 5	4 3 2 1 0
ID						
Reset 0x00000000	0 0 0 0 0	0 0 0 0 0 0 0		0 0 0 0 0	0 0 0 0	0 0 0 0 0
ID R/W Field						

10.7.5.1.35 CIDR[2]

Address offset: 0xFF8

Coresight component identification registers.

ID Reset 0x00000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bit number	31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	2 1 0
	ID			
	D			
ID R/W Field Value ID Value Description	Reset 0x000000	0 0 0 0 0 0 0 0		0 0 0

10.7.5.1.36 CIDR[3]

Address offset: 0xFFC

Coresight component identification registers.

Bit number	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID		
Reset 0x00000000	0 0 0 0 0 0 0	
ID R/W Field		

10.8 CTRL-AP - Control access port

The control access port (CTRL-AP) is a custom access port that enables control of the device when other debug access ports (DAP) have been disabled by the access port protection.

For an overview of the other debug access ports, see DAP - Debug access port on page 368.

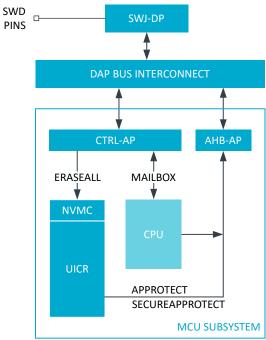


Figure 118: Control access port details

Access port protection (APPROTECT) blocks the debugger access to the AHB-AP, and prevents read and write access to all CPU registers and memory-mapped addresses. To enable port protection access for both secure and non-secure modes, use the registers SECUREAPPROTECT on page 41 and APPROTECT on

page 40 respectively. The debugger can use the register APPROTECT.STATUS on page 441 to read the status of secure and non-secure access port protection.

CTRL-AP has the following features:

- Soft reset
- Erase all
- Mailbox interface
- Debug of protected devices

10.8.1 Reset request

The debugger can request the device to perform a soft reset.

Use the register **RESET** on page 440 to request a soft reset. Once the soft reset is performed, the reset reason is accessible on the on-chip firmware through the RESETREAS register. For more information about the soft reset, see **Reset** on page 56.

10.8.2 Erase all

The erase all function lets the debugger trigger an erase of flash, user information configuration registers (UICR), RAM, all peripheral settings, and also removes the access port protection.

To trigger an erase all function, the debugger writes to the register ERASEALL on page 440. The register ERASEALLSTATUS on page 440 will read as busy for the duration of the operation. After the next reset, the access port protection is removed.

If the debugger performs an erase all function on a slave MCU, the erase sequence will always erase the application MCU first, independently of how the application is protected, before erasing the slave MCU.

Erase all protection

It is possible to prevent the debugger from performing an erase all operation by writing to the UICR.ERASEPROTECT register. Once the register is configured and the device is reset, the CTRL-AP ERASEALL operation is disabled, and all flash write and erase operations are restricted to the firmware. In addition, it is still possible to write/erase from the debugger as long as the UICR.APPROTECT register is not set.

Note: Setting the UICR.ERASEPROTECT register only affects the erase all operation and not the debugger access.

The register ERASEPROTECT.STATUS on page 441 holds the status for erase protection.

10.8.3 Mailbox interface

CTRL-AP implements a mailbox interface which enables the CPU to communicate with a debugger over the SWD interface.

The mailbox interface consists of a transmit register MAILBOX.TXDATA on page 442 with its corresponding status register MAILBOX.TXSTATUS on page 442, and a receive register MAILBOX.RXDATA on page 442 with its corresponding status register MAILBOX.RXSTATUS on page 442. Status bits in the TXSTATUS/RXSTATUS registers are set and cleared automatically when the TXDATA/RXDATA registers are written to and read from, independently of the direction.

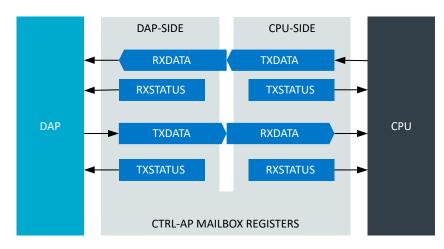


Figure 119: Mailbox register interface

Mailbox transfer sequence

- **1.** Sender writes TXDATA.
- 2. Hardware sets sender's TXSTATUS to DataPending.
- 3. Hardware sets receiver's RXSTATUS to DataPending.
- 4. Receiver reads RXDATA.
- 5. Hardware sets receiver's RXSTATUS to NoDataPending.
- 6. Hardware sets sender's TXSTATUS to NoDataPending.

10.8.4 Disabling erase protection

The erase protection mechanism can be disabled to return a device to factory default settings on next reset.

The debugger can read the erase protection status in the register ERASEPROTECT.STATUS on page 441.

If ERASEPROTECT has been enabled, both the debugger and on-chip firmware must write the same non-zero 32-bit KEY value into their respective ERASEPROTECT.DISABLE registers to disable the erase protection. When both registers have been written with the same non-zero 32-bit KEY value, the device is automatically erased as described in Erase all on page 438. The access ports will be re-enabled on the next reset once the secure erase sequence has completed.

The write-once register ERASEPROTECT.LOCK on page 444 should be set to *Locked* as early as possible in the start-up sequence, preferably as soon as the on-chip firmware has determined it does not need to communicate with a debugger over the CTRL-AP mailbox interface. Once written, it will not be possible to remove the erase protection until the next reset.

10.8.5 Debugger registers

CTRL-AP has a set of registers that can only be accessed from the debugger over the SWD interface. These are not accessible from the CPU.

10.8.5.1 Debugger registers

Register overview

Register	Offset	Description
RESET	0x000	System reset request
ERASEALL	0x004	Perform a secure erase of the device, where flash, SRAM and UICR will be erased in sequence. The
		device will be returned to factory default settings upon next reset.

Register	Offset	Description
ERASEALLSTATUS	0x008	This is the status register for the ERASEALL operation.
APPROTECT.STATUS	0x00C	This is the status register for the UICR access port protection.
ERASEPROTECT.STATUS	0x018	This is the status register for the UICR ERASEPROTECT configuration.
ERASEPROTECT. DISABLE	0x01C	This register disables ERASEPROTECT and performs ERASEALL.
MAILBOX.TXDATA	0x020	Data sent from the debugger to the CPU.
MAILBOX.TXSTATUS	0x024	This register shows a status that indicates if data sent from the debugger to the CPU has been read.
MAILBOX.RXDATA	0x028	Data sent from the CPU to the debugger.
MAILBOX.RXSTATUS	0x02C	This register shows a status that indicates if data sent from the CPU to the debugger has been read.
IDR	0x0FC	CTRL-AP Identification Register, IDR

10.8.5.1.1 RESET

Address offset: 0x000

System reset request

This register is automatically deactivated during an ERASEALL operation.

Bit nu	umber			31 30 29 28 27 26 25	5 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					А
Rese	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	RESET			System reset request and status
			NoReset	0	Write to release reset
					Reading '0' means reset is not active
			Reset	1	Write to hold reset
					Reading '1' means reset is active

10.8.5.1.2 ERASEALL

Address offset: 0x004

Perform a secure erase of the device, where flash, SRAM and UICR will be erased in sequence. The device will be returned to factory default settings upon next reset.

Bit nu	ımber			31 30 29 28 27 26 25 2	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					А
Reset	: 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	W	ERASEALL			Return device to factory default settings
			NoOperation	0	No operation
			Erase	1	Erase flash, SRAM, and UICR in sequence

10.8.5.1.3 ERASEALLSTATUS

Address offset: 0x008

This is the status register for the ERASEALL operation.

Bit nu	mber			31	30 29	28	27	26 2	25 2	24 2	3 2	2 2	1 20) 19	18	17	16 1	15 1	4 1	.3 12	2 11	10	9	8	7	6	54	3	2	1	0
ID																															А
Reset	0x000	00000		0	0 0	0	0	0	0	0 0	0 (0	0	0	0	0	0	0 (0 (0 0	0	0	0	0	0	0	0 0	0	0	0	0
ID																															
А	R	ERASEALLSTATUS								S	tatı	us b	it fo	r th	ie Ef	RAS	EAL	L op	bera	ition											
			Ready	0						E	RAS	SEA	LL is	rea	ady																
			Busy	1						E	RAS	SEA	LL is	bu	sy (c	on-g	oin	g)													

10.8.5.1.4 APPROTECT.STATUS

Address offset: 0x00C

This is the status register for the UICR access port protection.

Bit nu	mber			31 30 29 28 27 26 25 24	¹ 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					B
Reset	0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
А	R	APPROTECT			Status bit for access port protection
					Note: The reset value is auto read from the APPROTECT register in UICR.
			Enabled	0	APPROTECT is enabled
			Disabled	1	APPROTECT is disabled
В	R	SECUREAPPROTECT			Status bit for secure access port protection
					Note: The reset value is auto read from the SECUREAPPROTECT register in UICR.
			Enabled	0	SECUREAPPROTECT is enabled
			Disabled	1	SECUREAPPROTECT is disabled

10.8.5.1.5 ERASEPROTECT.STATUS

Address offset: 0x018

This is the status register for the UICR ERASEPROTECT configuration.

Bit number		31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
D		
Reset 0x00000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D R/W Field		
A R PALL		Status bit for erase protection Note: The reset value is auto read from the ERASEPROTECT
	Enabled	0 ERASEPROTECT is enabled
	Disabled	1 ERASEPROTECT is not enabled and ERASEALL can be performed

10.8.5.1.6 ERASEPROTECT.DISABLE

Address offset: 0x01C

This register disables ERASEPROTECT and performs ERASEALL.

Bit n	umber	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
ID			A A
Rese	t 0x0000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
ID			
А	RW1 KEY	The ERASEALL sequence will be initiated if value of the KEY fields are no	on-
		zero and the KEY fields match on both the CPU and debugger sides.	

10.8.5.1.7 MAILBOX.TXDATA

Address offset: 0x020

Data sent from the debugger to the CPU.

Writing to this register will automatically set a DataPending value in the TXSTATUS register.

Bit nu	ımber			31	30	29	28	27	26	25	24	23 :	22 2	21 2	01	9 18	3 17	7 16	15	14	13 1	.2 1	1 10	9	8	7	6	5	4	3	2	1 0
ID				А	А	А	А	А	A	А	А	A	A .	A A	4 A	A A	A	А	А	А	A	A A	A	А	А	А	А	А	A	А	A	A A
Reset	: 0x000	00000		0	0	0	0	0	0	0	0	0	0	0 0) (D 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
ID																																
A	RW	Data									I	Dat	a se	nt f	ron	n de	bug	ger														

10.8.5.1.8 MAILBOX.TXSTATUS

Address offset: 0x024

This register shows a status that indicates if data sent from the debugger to the CPU has been read.

Bit nu	umber			31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					А
Reset	t 0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	R	Status			Status of register DATA
			NoDataPending	0	No data pending in register TXDATA
			DataPending	1	Data pending in register TXDATA

10.8.5.1.9 MAILBOX.RXDATA

Address offset: 0x028

Data sent from the CPU to the debugger.

Reading from this register will automatically set a NoDataPending value in the RXSTATUS register.

Reset 0x00000000 Value ID Value Description	Bit number		4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 A A A A A A A A A A A A A A A A A A A
ID R/W Field Value ID Value Description	Reset 0x0000000		

A R Data

Data sent from CPU

10.8.5.1.10 MAILBOX.RXSTATUS

Address offset: 0x02C

This register shows a status that indicates if data sent from the CPU to the debugger has been read.

Bit nu	mber			31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
ID					А												
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
ID																	
А	R	Status			Status of register DATA												
			NoDataPending	0	No data pending in register RXDATA												
			DataPending	1	Data pending in register RXDATA												

10.8.5.1.11 IDR

Address offset: 0x0FC

CTRL-AP Identification Register, IDR

Bit nu	mber			31	30	29 2	28 2	7 26	25	24	23	22 2	1 20	0 19	Ə 18	17	16	15	14	13 1	2 11	. 10	9	8	76	5	5 4	4 3	32	1	0
ID				Е	Е	ΕI	ΕC	D D	D	D	С	С	c c	C	C	С	В	В	В	В					A A	Δ.	A A	4 ،	4 Α	Á	A
Reset	0x128	80000		0	0	0	1 (0 0	1	0	1	0 0	0 0	1	0	0	0	0	0	0 (0	0	0	0	0 0	D	0 0) (0 0	0	0
ID											Des																				
А	R	APID									AP I	den	tific	atic	on																
В	R	CLASS									Acc	ess l	Port	(AF	P) cl	ass															
			NotDefined	0x	0						No	defi	ned	cla	ss																
			MEMAP	0x	8						Me	mor	y Ac	ces	is Po	ort															
С	R	JEP106ID									JED	EC J	EP1	06 i	den	tity	coc	le													
D	R	JEP106CONT									JED	EC J	EP1	06 d	cont	inu	atio	n c	ode												
E	R	REVISION									Rev	isior	ı																		

10.8.6 Registers

Instances

Instance	Base address	TrustZone			Split access	Description
		Мар	Att	DMA		
CTRL_AP_PERI	0x50006000	HF	S	NA	No	CTRL-AP-PERI

Register overview

Register	Offset	TZ	Description
MAILBOX.RXDATA	0x400		Data sent from the debugger to the CPU.
MAILBOX.RXSTATUS	0x404		This register shows a status that indicates if data sent from the debugger to the CPU has been
			read.
MAILBOX.TXDATA	0x480		Data sent from the CPU to the debugger.
MAILBOX.TXSTATUS	0x484		This register shows a status that indicates if the data sent from the CPU to the debugger has
			been read.
ERASEPROTECT.LOCK	0x500		This register locks the ERASEPROTECT.DISABLE register from being written until next reset.
ERASEPROTECT. DISABLE	0x504		This register disables the ERASEPROTECT register and performs an ERASEALL operation.

10.8.6.1 MAILBOX.RXDATA

Address offset: 0x400

Data sent from the debugger to the CPU.

Reading from this register will automatically set a NoDataPending value in the RXSTATUS register.

A R RXDATA	Data received from debugger							
ID R/W Field								
Reset 0x00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
ID	A A A A A A A							
Bit number	31 30 29 28 27 26 25 2	¹ 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						

10.8.6.2 MAILBOX.RXSTATUS

Address offset: 0x404

This register shows a status that indicates if data sent from the debugger to the CPU has been read.

Bit nu	mber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					А
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					
А	R	RXSTATUS			Status of data in register RXDATA
			NoDataPending	0	No data pending in register RXDATA
			DataPending	1	Data pending in register RXDATA

10.8.6.3 MAILBOX.TXDATA

Address offset: 0x480

Data sent from the CPU to the debugger.

Writing to this register will automatically set a DataPending value in the TXSTATUS register.

Bit nu	mber			31	30	29	28	27	26 2	25 2	4 23	3 23	2 21	20	19	18	17	16 3	15 1	14 1	3 1	2 11	10	9	8	7	6	5	4	3	2	1 0
ID	ID				А	A	A	А	A	A	A Α	A	. Α	А	А	А	A	А	A	A	A A	A	A	А	А	А	А	А	А	А	A	A A
Reset	Reset 0x0000000				0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0 () (0	0	0	0	0	0	0	0	0	0	0 0
ID																																
A	RW	TXDATA		Data sent to debugger																												

10.8.6.4 MAILBOX.TXSTATUS

Address offset: 0x484

This register shows a status that indicates if the data sent from the CPU to the debugger has been read.

Bit nu	mber			31 30 29 28 27 26 25 2	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
ID					А													
Reset	0x000	00000		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
ID					Description													
А	R	TXSTATUS			Status of data in register TXDATA													
			NoDataPending	0	No data pending in register TXDATA													
			DataPending	1	Data pending in register TXDATA													

10.8.6.5 ERASEPROTECT.LOCK

Address offset: 0x500

This register locks the ERASEPROTECT.DISABLE register from being written until next reset.

Bit n	umber		31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID				A
Rese	t 0x0000000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID				
A	RW1 LOCK			Lock ERASEPROTECT.DISABLE register from being written until next reset
		Unlocked	0	Register ERASEPROTECT.DISABLE is writeable
		Locked	1	Register ERASEPROTECT.DISABLE is read-only

10.8.6.6 ERASEPROTECT.DISABLE

Address offset: 0x504

This register disables the ERASEPROTECT register and performs an ERASEALL operation.

Bit n	umber		31 30	29	28 2	7 2	6 25	24	23 2	2 22	L 20	19 1	L8 1	7 16	15	14	13 1	2 13	L 10	9	8	7	6	5	4	3	2	1	С
ID			A A	А	A	4 A	A A	А	A	A A	А	A	A	A A	А	А	A	A A	А	А	А	А	А	А	A	А	A	A	A
Rese	t 0x0000000		0 0	0	0 (0 0	0 0	0	0	0 0	0	0	0 0	0 0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	D
ID									Deso																				
А	RW1 KEY								The	ERA	SEA	LL se	que	nce	is in	itia	ed i	f the	e val	ue d	of tl	ne k	ΈY	fiel	ds a	are	nor	1-	
									zero	and	the	KEY	fiel	ds m	atc	h or	bot	h th	e CF	PU a	and	deb	ug	ger	sid	es.			

10.9 TAD - Trace and debug control

Configuration interface for trace and debug

Please refer to the Trace section for more information about how to configure the trace and debug interface.

Note: Although there are PSEL registers for the trace port, each function can only be mapped to a single pin due to pin speed requirements. Setting the PIN field to anything else will not have any effect. See Pin assignment chapter for more information

10.9.1 Registers

Instances

Instance	Base address	TrustZone			Split access	Description
		Мар	Att	DMA		
TAD	0xE0080000	HF	S	NA	No	Trace and debug control

Register overview

Register	Offset	TZ	Description
TASKS_CLOCKSTART	0x000		Start all trace and debug clocks.
TASKS_CLOCKSTOP	0x004		Stop all trace and debug clocks.
ENABLE	0x500		Enable debug domain and aquire selected GPIOs
PSEL.TRACECLK	0x504		Pin configuration for TRACECLK
PSEL.TRACEDATA0	0x508		Pin configuration for TRACEDATA[0]
PSEL.TRACEDATA1	0x50C		Pin configuration for TRACEDATA[1]
PSEL.TRACEDATA2	0x510		Pin configuration for TRACEDATA[2]
PSEL.TRACEDATA3	0x514		Pin configuration for TRACEDATA[3]
TRACEPORTSPEED	0x518		Clocking options for the Trace Port debug interface
			Reset behavior is the same as debug components

This register is retained.

10.9.1.1 TASKS_CLOCKSTART

Address offset: 0x000

Start all trace and debug clocks.

Note: The TASKS_CLOCKSTART task asserts the CTRL/STAT.CSYSPWRUPACK and CTRL/ STAT.CDBGPWRUPACK registers high (see *Arm CoreSight SoC-400 Technical Reference Manual, revision r3p2*).

Bit nu	mber			31	30 2	9 28	8 27	7 26	62	5 24	42	3 2	2 2	21 2	20 1	19 :	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	C
ID																																			Α
Reset	0x000	00000		0	0 0) 0	0	0) (0 (0	0 0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ID																																			
A	W	TASKS_CLOCKSTART									St		N	ote	: т	he	TAS	SKS	5_C	LOC	CKS	TAF			ass										
													hi		(see	e A	rm	Со							chni						-	ters <i>al,</i>			
			Trigger	1							Т	rigg	ger	tas	k																				

10.9.1.2 TASKS_CLOCKSTOP

Address offset: 0x004

Stop all trace and debug clocks.

Bit nu	mber			31	30	29	28	27 :	26 2	25 3	24 2	3 2	2 2	1 20) 19) 18	17	16	15	14	13 1	2 1	.1 10	9	8	7	6	5	4	3 2	2 2	1 0
ID																																А
Reset	0x000	00000		0	0	0	0	0	0	0	0 (0 (0 0	0 0	0	0	0	0	0	0	0	D	0 0	0	0	0	0	0	0) () (0 0
ID																																
А	W	TASKS_CLOCKSTOP									S	top	all	trac	e a	nd o	leb	ug o	locl	ĸs.												
			Trigger	1							Т	rigg	ger	task																		

10.9.1.3 ENABLE

Address offset: 0x500

Enable debug domain and aquire selected GPIOs

Bit nu	umber			31 30 29 28 27 26 2	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					А
Reset	t 0x000	00000		0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	ENABLE			
			DISABLED	0	Disable debug domain and release selected GPIOs
			ENABLED	1	Enable debug domain and aquire selected GPIOs

10.9.1.4 PSEL.TRACECLK

Address offset: 0x504

Pin configuration for TRACECLK

Bit nu	Imber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID				В	A A A A
Reset	OxFFF	FFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
А	RW	PIN			Pin number
			Traceclk	21	TRACECLK pin
					Note: Only this pin is valid
В	RW	CONNECT			Connection
			Disconnected	1	Disconnect
			Connected	0	Connect

10.9.1.5 PSEL.TRACEDATAO

Address offset: 0x508

Pin configuration for TRACEDATA[0]

Bit nu	mber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID				В	АААА
Reset	OxFFFF	FFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A	RW	PIN			Pin number
			Tracedata0	22	TRACEDATA0 pin
					Note: Only this pin is valid
В	RW	CONNECT			Connection
			Disconnected	1	Disconnect
			Connected	0	Connect

10.9.1.6 PSEL.TRACEDATA1

Address offset: 0x50C

Pin configuration for TRACEDATA[1]

Bit n	umber			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID				В	АААА
Rese	t OxFFFF	FFFF		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A	RW	PIN			Pin number
			Tracedata1	23	TRACEDATA1 pin
					Note: Only this pin is valid
В	RW	CONNECT			Connection
			Disconnected	1	Disconnect
			Connected	0	Connect

10.9.1.7 PSEL.TRACEDATA2

Address offset: 0x510

Pin configuration for TRACEDATA[2]

Bit number			31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																									
ID			В																					A	A	A	A	1
Reset 0xFFFFFF	FFF		1 1	1 1	1	1 :	1 1	1	1	1 1	1	1	1	1	1 :	1 :	L 1	1	1	1	1	1	1	1 1	1	1	1	
A RW P	PIN							Pin	nur	nber																		
		Tracedata2	24					TRA	CEL	DATA	2 pi	in																
									N	ote:	On	ly th	nis p	oin is	s val	id												
B RW C	CONNECT							Con	neo	tion																		
		Disconnected	1					Disc	coni	nect																		
		Connected	0					Con	neo	t																		

10.9.1.8 PSEL.TRACEDATA3

Address offset: 0x514

Pin configuration for TRACEDATA[3]

Bit nu	number			31 30 29 28 27 26 25 24	4 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ID				В	A A A A
Reset	OxFFFF	FFFF		1 1 1 1 1 1 1 1	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A	RW	PIN			Pin number
			Tracedata3	25	TRACEDATA3 pin
					Note: Only this pin is valid
В	RW	CONNECT			Connection
			Disconnected	1	Disconnect
			Connected	0	Connect

10.9.1.9 TRACEPORTSPEED (Retained)

Address offset: 0x518

Clocking options for the Trace Port debug interface

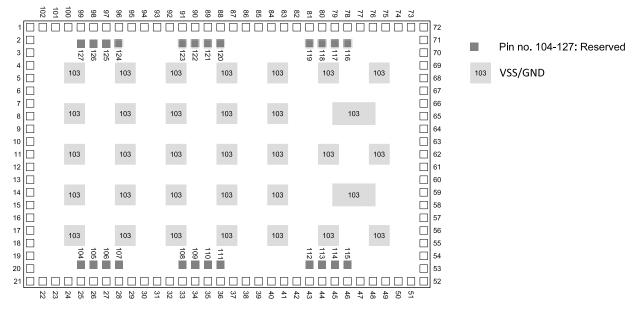
Reset behavior is the same as debug components

This register is retained.

Bit nu	mber			31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID					A A
Reset	0x000	00000		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ID					Description
А	RW	TRACEPORTSPEED			Speed of Trace Port clock. Note that the TRACECLK pin output will be divided
					again by two from the Trace Port clock.
			32MHz	0	Trace Port clock is:
					32MHz
			16MHz	1	Trace Port clock is:
					16MHz
			8MHz	2	Trace Port clock is:
					8MHz
			4MHz	3	Trace Port clock is:
					4MHz

11 Hardware and layout

The following sections describe nRF9161 hardware and layout specifications.


11.1 Pin assignments

This section describes the pin assignment and the pin functions of the nRF9161.

The device provides flexibility when it comes to routing and configuration of the GPIO pins. However, for some pins there are recommendations on pin usage and configuration. See following table for more information about this.

11.1.1 LGA pin assignments

The pin assignment table and figure describe the assignments.

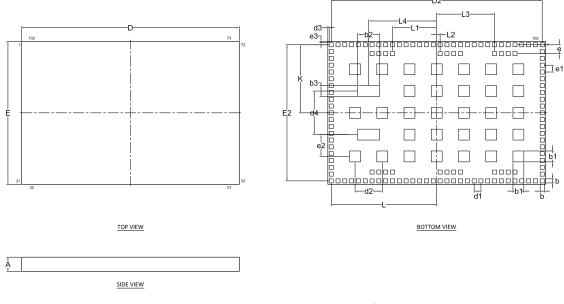
Pin no	Pin name	Function	Description
1	GND	Power	Ground
2	P0.05	Digital I/O (SoC)	General purpose I/O
3	P0.06	Digital I/O (SoC)	General purpose I/O
4	P0.07	Digital I/O (SoC)	General purpose I/O
5	GND	Power	Ground
6	GND	Power	Ground
7	GND	Power	Ground
8	GND	Power	Ground
9	GND	Power	Ground
10	RES		Do not connect/reserved for future use
11	GND	Power	Ground
12	VDD_GPIO	Power	GPIO power supply input and logic level
13	DECO	Power	Power supply decoupling. Reserved for Nordic use.
14	GND	Power	Ground

Pin no	Pin name	Function	Description
.5	P0.08	Digital I/O (SoC)	General purpose I/O
.6	P0.09	Digital I/O (SoC)	General purpose I/O
7	GND	Power	Ground
8	P0.10	Digital I/O (SoC)	General purpose I/O
.9	P0.11	Digital I/O (SoC)	General purpose I/O
0	P0.12	Digital I/O (SoC)	General purpose I/O
21	GND	Power	Ground
22	VDD2	Power	Supply voltage input
.3	P0.13	Digital I/O (SoC)	General purpose I/O.
	AIN0	Analog input	Analog input.
24	P0.14	Digital I/O (SoC)	General purpose I/O.
	AIN1	Analog input	Analog input.
25	P0.15	Digital I/O (SoC)	General purpose I/O.
	AIN2	Analog input	Analog input.
26	P0.16	Digital I/O (SoC)	General purpose I/O.
	AIN3	Analog input	Analog input.
.7	GND	Power	Ground
8	P0.17	Digital I/O (SoC)	General purpose I/O.
	AIN4	Analog input	Analog input.
9	P0.18	Digital I/O (SoC)	General purpose I/O.
	AIN5	Analog input	Analog input.
0	P0.19	Digital I/O (SoC)	General purpose I/O.
	AIN6	Analog input	Analog input.
1	GND	Power	Ground
2	nRESET	Digital I/O (SoC)	SoC reset pin ^{26,27}
3	SWDCLK	Digital input	Serial wire debug clock input for debug and programming
4	SWDIO	Digital I/O	Serial wire debug I/O for debug and programming
15	P0.20	Digital I/O (SoC)	General purpose I/O.
	AIN7	Analog input	Analog input.
6	GND	Power	Ground
37	P0.21	Digital I/O (SoC)	General purpose I/O.
	TRACECLK	Trace clock	Trace buffer clock (optional).
38	P0.22	Digital I/O (SoC)	General purpose I/O.
	TRACEDATA[0]	Trace data	Trace buffer TRACEDATA[0] (optional).
39	P0.23	Digital I/O (SoC)	General purpose I/O.
	TRACEDATA[1]	Trace data	Trace buffer TRACEDATA[1] (optional).
0	P0.24	Digital I/O (SoC)	General purpose I/O.
	TRACEDATA[2]	Trace data	Trace buffer TRACEDATA[2] (optional).
1	GND	Power	Ground
2	P0.25	Digital I/O (SoC)	General purpose I/O.
	TRACEDATA[3]	Trace data	Trace buffer TRACEDATA[3] (optional).
3	SIM_RST	Digital I/O (SoC)	SIM reset
4	GND	Power	Ground
5	SIM_DET	Digital I/O (SoC)	SIM detect
			Not used. Must be left floating.

 ²⁶ External pull-up not allowed.
 ²⁷ For implementations that require the ERASEALL functionality, enable access to the nRESET pin. See Erase all on page 438 for more information.

Pin no	Pin name	Function	Description
46	SIM_CLK	Digital I/O (SoC)	SIM clock
47	GND	Power	Ground
18	SIM_IO	Digital I/O (SoC)	SIM data
19	SIM_1V8	Power	SIM 1.8 V power supply output
50	GND	Power	Ground
51	RES		Do not connect/reserved for future use
52	GND	Power	Ground
53	MAGPIO2	Digital I/O (SoC)	1.8 V general purpose I/O
54	MAGPIO1	Digital I/O (SoC)	1.8 V general purpose I/O
55	MAGPI00	Digital I/O (SoC)	1.8 V general purpose I/O
56	GND	Power	Ground
57	VIO	Power	MIPI RFFE control interface
58	SCLK	Digital I/O (SoC)	MIPI RFFE control interface
59	SDATA	Digital I/O (SoC)	MIPI RFFE control interface
50	GND	Power	Ground
51	ANT	RF	Single-ended 50 Ω LTE antenna pin
52	GND	Power	Ground
53	GND	Power	Ground
54	AUX	RF	Single-ended 50 Ω ANT loop-back pin
55	GND	Power	Ground
56	GND	Power	Ground
57	GPS	RF	Single-ended 50 Ω GPS input pin
58	GND	Power	Ground
59	GND	Power	Ground
70	RES	Fower	Do not connect/reserved for future use
71	RES		Do not connect/reserved for future use
72	GND	Power	Ground
73	RES	Power	Do not connect/reserved for future use
74	GND	Power	Ground
			Ground
75	GND	Power	
76	GND	Power	Ground
77	GND	Power	Ground
78	GND	Power	Ground
79	GND	Power	Ground
30	GND	Power	Ground
81	GND	Power	Ground
32	GND	Power	Ground
33	P0.26	Digital I/O (SoC)	General purpose I/O
34	P0.27	Digital I/O (SoC)	General purpose I/O
35	GND	Power	Ground
86	P0.28	Digital I/O (SoC)	General purpose I/O
87	P0.29	Digital I/O (SoC)	General purpose I/O
38	P0.30	Digital I/O (SoC)	General purpose I/O
39	P0.31	Digital I/O (SoC)	General purpose I/O
90	GND	Power	Ground
91	COEX2	Digital I/O (SoC)	Coexistence interface
92	COEX1	Digital I/O (SoC)	Coexistence interface
93	COEX0	Digital I/O (SoC)	Coexistence interface
94	GND	Power	Ground
95	P0.00	Digital I/O (SoC)	General purpose I/O
96	P0.01	Digital I/O (SoC)	General purpose I/O
€7	P0.02	Digital I/O (SoC)	General purpose I/O

Pin no	Pin name	Function	Description				
99	P0.03	Digital I/O (SoC) General purpose I/O					
100	P0.04	Digital I/O (SoC)	General purpose I/O				
101	ENABLE		Enable for the SiP internal regulator for the nRF91 SoC.				
			Note: The nRF91 will not start until this pin is enabled.				
102	VDD1	Power	Supply voltage				
103	GND	Power	Ground				
104-127	RES		Do not connect/reserved for future use				


Table 55: LGA pin assignments

11.2 Mechanical specifications

The mechanical specifications show the package dimensions in millimeters.

11.2.1 16.0 x 10.5 mm package

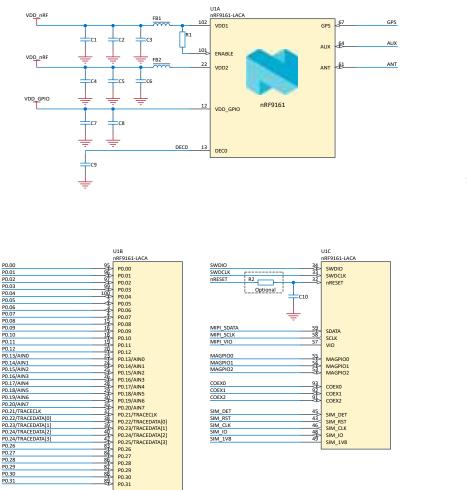
Dimensions in millimeters for the nRF9161 LGA 16.0 x 10.5 x 1.04 mm package.

	Α	b	b1	D	E	e	d1	e1	D2	E2	b2	d2	e2	b3	d3	e3	d4	к	L	L1	L2	L3	L4
Min.	0.98			15.90	10.40																		
Nom.	1.04	0.30	0.80	16.00	10.50	0.65	0.50	0.50	15.50	10.00	1.60	2.00	1.60	0.80	0.10	0.10	3.20	5.00	7.75	3.25	0.25	4.25	5.00
Max.	1.10			16.10	10.60																		

Table 56: LGA dimensions in millimeters

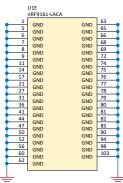
11.3 Reference circuitry

To ensure good RF performance when designing PCBs, using the PCB layouts and component values provided by Nordic Semiconductor is highly recommended .


Documentation for the different package reference circuits, including Altium Designer files, PCB layout files, and PCB production files can be downloaded from the product page at www.nordicsemi.com.

This section contains reference circuitry showing the components to support the design of on-chip features.

Note: This is not a complete list of configurations, but all required circuitry is shown for further configurations.


11.3.1 nRF9161 reference design

Circuit configuration schematic for the nRF9161 SiP.

COEX0 COEX1

SIM_DE SIM_RS SIM_CLI SIM_IO SIM_1V

MAGPIO MAGPIO1 MAGPIO2

COEX0 COEX1 COEX2

SIM_DET SIM_RST SIM_CLK SIM_IO SIM_1V8

For Bill of Materials (BOM), PCB layout and thermal design, see the nRF9161 Hardware Design Guidelines.

11.4 Reflow conditions

A4A6A7A8A99

The recommended reflow profile is JEDEC J-STD-020D. The maximum amount of reflows is three.

11.5 Shelf and floor life

If floor life is exceeded, see Shelf Life of Dry Packed Integrated Circuits for shelf and floor life and recommended baking (drying of parts) requirements.

15/AIN2 16/AIN3 17/AIN4 18/AIN5 19/AIN6 20/AIN7 21/TRACEC 22/TRACEC

22/TRACEDATA[0] 23/TRACEDATA[1] 24/TRACEDATA[2] 24/TRACEDATA[3]

12 Operating conditions

The operating conditions are the physical parameters that the chip can operate within.

Symbol	Parameter	Notes	Min.	Nom.	Max.	Units
VDD	Battery input voltage	Including voltage drop, ripple and spikes.	3.0	3.7	5.5	V
VDD_GPIO	GPIO input voltage		1.7		3.6	V
GPIO _H	GPIO high level voltage				VDD_GPIO	V
MAGPIO _H	MAGPIO high level voltage	Supply from internal LDO	1.7	1.8	1.9	V
VIO	VIO high level voltage	Supply from internal LDO	1.7	1.8	1.9	V
TA	Operating temperature		-40	25	85	°C
COEX	COEX high level voltage				VDD_GPIO	V
SIMIF	SIMIF output high level	Supply from internal LDO	1.7	1.8	1.9	V
	voltage					

Table 57: Operating conditions

Note: There can be excessive leakage at VDD and/or VDD_GPIO if any of these supply voltages is outside its range given in the table above.

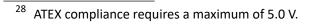
Note: It is not recommended to use high voltage, high drive GPIO outputs ($V_{OH,HDH}$ and $V_{OH,HDL}$) with high frequency, high capacitance loads unless needed, as this may increase noise level and affect radio receiver performance. High drive/high load should especially be avoided on GPIO pins close to the radio front end.

12.1 VDD_GPIO considerations

VDD_GPIO is the supply to the general purpose I/O.

The following restrictions should be taken into considerations:

- VDD_GPIO should be applied after VDD has been supplied
- VDD_GPIO should be removed before removing VDD
- If VDD is supplied and VDD_GPIO is grounded, an extra current consumption can be generated on VDD
- If ENABLE is low, VDD_GPIO should also be low


13 Absolute maximum ratings

Maximum ratings are the extreme limits to which the chip can be exposed for a limited amount of time without permanently damaging it. Exposure to absolute maximum ratings for prolonged periods of time may affect the reliability of the device.

	Note	Min.	Max.	Unit
Supply voltages				
VDD		-0.3	5.5 ²⁸	V
VDD_GPIO		-0.3	3.9	V
SIM_1V8		1.65	1.95	V
VSS			0	V
I/O pin voltage				
$V_{I/O}$, VDD_GPIO \leq 3.6 V		-0.3	VDD_GPIO + 0.3	V
V _{I/O} , VDD_GPIO > 3.6 V		-0.3	3.9	V
Radio				
ANT antenna input level			10	dBm
GPS antenna input level	LNA turned on, max gain		-15	dBm
RF port ruggedness	Maximum deviation from		10:1	VSWR
	50Ω without damaging the			
	module			
Environmental (LGA package)				
Storage temperature		-40	95	°C
MSL	Moisture Sensitivity Level		3	
ESD HBM	Human Body Model		1.5	kV
ESD HBM Class	Human Body Model Class		1C	
ESD CDM	Charged Device Model		250	V
Flash memory				
Endurance		10 000		Write/erase cycles
Retention		10 years at 85°C		
ATEX compliance				
Ci			83	μF
Li			9.0	μН
Ui			5.0	V
li			600	mA

No internal voltage boost converters

Table 58: Absolute maximum ratings

14 Ordering information

This chapter contains information on IC marking, ordering codes, and container sizes.

14.1 SiP marking

The nRF9161 package is marked as shown in the following figure.

	-	-											
n	R	F	9	1	6	1	<l< th=""><th>A></th><th><c< th=""><th>A></th><th></th><th><h></h></th><th><p></p></th></c<></th></l<>	A>	<c< th=""><th>A></th><th></th><th><h></h></th><th><p></p></th></c<>	A>		<h></h>	<p></p>
							<y< th=""><th>Y></th><th><w< th=""><th>W></th><th><l< th=""><th>L></th><th></th></l<></th></w<></th></y<>	Y>	<w< th=""><th>W></th><th><l< th=""><th>L></th><th></th></l<></th></w<>	W>	<l< th=""><th>L></th><th></th></l<>	L>	

Figure 123: SiP package marking

14.2 Box labels

The following figures show the box labels used for the nRF9161.

Figure 124: Inner box label

FROM:	TO:			
PART NO: (1P) <nordic device="" ord<="" td=""><td>er code> <h><p><f></f></p></h></td></nordic>	er code> <h><p><f></f></p></h>			
CUSTOMER PO NO: (K) <customer no.="" order="" purchase=""></customer>				
Delivery line no.>				
QUANTITY: (Q) <total quantity=""></total>				
COUNTRY OF ORIGIN.: 4L <2- character code of COO>	CARTON NO: x/n			
DELIVERY NO.: (9K) <shipper's no.)<="" shipment="" td=""><td>GROSS WEIGHT:</td></shipper's>	GROSS WEIGHT:			

Figure 125: Outer box label

14.3 Order code

The following are the order codes and definitions for the nRF9161.

n R	F	9	1	6	1	-	<l< th=""><th>A></th><th><c< th=""><th>A></th><th>-</th><th><h></h></th><th><p></p></th><th><f></f></th><th>-</th><th><c< th=""><th>C></th></c<></th></c<></th></l<>	A>	<c< th=""><th>A></th><th>-</th><th><h></h></th><th><p></p></th><th><f></f></th><th>-</th><th><c< th=""><th>C></th></c<></th></c<>	A>	-	<h></h>	<p></p>	<f></f>	-	<c< th=""><th>C></th></c<>	C>
-----	---	---	---	---	---	---	---	----	---	----	---	---------	---------	---------	---	-------------------------------	----

Figure 126: Order code

Abbreviation	Definition and implemented codes
N91/nRF91	nRF91 Series product
61	Part code
<la></la>	Package variant code
<ca></ca>	Function variant code
<h><p><f></f></p></h>	Build code H - Hardware version code P - Production configuration code (production site, etc.) F - Firmware version code (only visible on shipping container label)
<yy><ww><ll></ll></ww></yy>	Tracking code YY - Year code WW - Assembly week number LL - Wafer lot code
<cc></cc>	Container code

Table 59: Abbreviations

14.4 Code ranges and values

The nRF9161 code ranges and values are defined here.

<pp></pp>	Package	Size (mm)	Pin/Ball count	Pitch (mm)
LA	LGA	16.00 x 10.50	127	0.50

Table 60: Package variant codes

<h></h>	Description
[A Z]	Hardware version/revision identifier (incremental)

Table 61: Hardware version codes

<p></p>	Description
[09]	Production device identifier (incremental)
[A Z]	Engineering device identifier (incremental)

Table 62: Production configuration codes

<f></f>	Description
[A N, P Z]	Version of preprogrammed firmware
[0]	Delivered without preprogrammed firmware

Table 63: Production version codes

<yy></yy>	Description
[23 99]	Production year: 2023 to 2099

Table 64: Year codes

<ww></ww>	Description
[0152]	Week of production

Table 65: Week codes

<ll></ll>	Description
[AA ZZ]	Wafer production lot identifier

Table 66: Lot codes

<cc></cc>	Description
R7	7" Reel
R	13" Reel

Table 67: Container codes

14.5 Ordering options

The nRF9161 SiP ordering codes and minimum ordering quantity are described in the following table.

Order code	Minimum ordering quantity (MOQ)	Comment
nRF9161-LACA-R	2500	
nRF9161-LACA-R7	100	

Table 68: nRF9161 order codes

15 Regulatory information

The nRF9161 undergoes regulatory certifications, ensuring both regional compliances and compatibility with the LTE 3GPP specification.

15.1 Certified bands

The following table shows the FCC and ISED certified Cat-M1 bands for nRF9161.

Band	FCC certification	ISED certification
Band 2	Yes	Yes
Band 4	Yes	Yes
Band 5	Yes	Yes
Band 8	Yes	Yes
Band 12	Yes	Yes
Band 13	Yes	Yes
Band 25	Yes	Yes
Band 26	Yes	No
Band 66	Yes	Yes
Band 85	Yes	Yes

Table 69: FCC and ISED certified bands

The following table shows the FCC and ISED certified Cat-NB1 and Cat-NB1 bands for nRF9161.

Band	FCC certification	ISED certification
Band 2	Yes	Yes
Band 4	Yes	Yes
Band 5	Yes	Yes
Band 8	Yes	Yes
Band 12	Yes	Yes
Band 13	Yes	Yes
Band 17	Yes	Yes
Band 25	Yes	Yes
Band 26	Yes	No
Band 66	Yes	Yes
Band 85	Yes	Yes

Table 70: FCC and ISED certified CAT-NB1/NB2 bands

15.2 Supported FCC/ISED rules

The nRF9161 module has been certified to comply with FCC and ISED rules.

The nRF9161 SiP has been certified to comply with the following FCC rules.

- 47 CFR Part 22
- 47 CFR Part 24
- 47 CFR Part 27
- 47 CFR Part 90
- 47 CFR Part 2.1091

The nRF9161 SiP has been certified to comply with the following ISED rules.

- RSS-132 Issue 4
- RSS-130 Issue 2
- RSS-139 Issue 4
- RSS-133 Issue 6

A host manufacturer who integrates the nRF9161 SiP to a host device, can apply the certifications to the host device, except for FCC Part 15 Subpart B which must be retested.

The host manufacturer can use nRF9161's FCC ID if the device meets the conditions of the FCC certificate. Normally, the conditions are the following:

- A minimum of 20 cm distance from the human body.
- No colocation with other transmitters. Typically, this condition needs to be reviewed by the FCC lab.
- Antenna gain below the requirements.

15.3 FCC/ISED regulatory notices

FCC/ISED regulatory notices cover modification and interference statements, wireless and FCC Class B digital device notices, permitted antennas and labeling requirements.

Modification statement

Nordic Semiconductor has not approved any changes or modifications to this device by the user. Any changes or modifications could void the user's authority to operate the equipment.

Nordic Semiconductor n'approuve aucune modification apportée à l'appareil par l'utilisateur, quelle qu'en soit la nature. Tout changement ou modification peuvent annuler le droit d'utilisation de l'appareil par l'utilisateur.

Interference statement

This device complies with Part 15 of the FCC Rules and Industry Canada's licence-exempt RSS standards. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Wireless notice

This equipment complies with FCC and ISED radiation exposure limits set forth for an uncontrolled environment. The antenna should be installed and operated with minimum distance of 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Cet appareil est conforme aux limites d'exposition aux rayonnements de l'ISDE pour un environnement non contrôlé. L'antenne doit être installée de façon à garder une distance minimale de 20 centimètres entre la source de rayonnements et votre corps. L'émetteur ne doit pas être colocalisé ni fonctionner conjointement avec à autre antenne ou autre émetteur.

Permitted antenna

This radio transmitter has been approved by FCC and ISED to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Band	Max gain for SMD antenna type
Band 2	9.0 dBi
Band 4	6.0 dBi
Band 5	7.1 dBi
Band 8	7.32 dBi
Band 12	6.6 dBi
Band 13	6.9 dBi
Band 17 (Cat-NB1/NB2)	6.6 dBi
Band 25	9.0 dBi
Band 26	7.0 dBi
Band 66	6.0 dBi
Band 85	6.6 dBi

Le présent émetteur radio a été approuvé par ISDE pour fonctionner avec les types d'antenne énumérés ci dessous et ayant un gain admissible maximal. Les types d'antenne non inclus dans cette liste, et dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

Bande	Gain maximal pour CMS antenne
Bande 2	9.0 dBi
Bande 4	6.0 dBi
Bande 5	7.1 dBi
Band 8	7.32 dBi
Bande 12	6.6 dBi
Bande 13	6.9 dBi
Bande 17 (Cat-NB1/NB2)	6.6 dBi
Bande 25	9.0 dBi
Bande 26	7.0 dBi
Bande 66	6.0 dBi
Bande 85	6.6 dBi

FCC Class B digital device notice

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna

- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

CAN ICES-3 (B)/NMB-3 (B)

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de classe B est conforme à la norme canadienne ICES-003.

Labeling requirements for the host device

The host device shall be properly labelled to identify the modules within the host device. The certification label of the module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to display the FCC ID and IC of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as shown in the following examples:

Contains FCC ID: 2ANPO00NRF9161 Contains IC: 24529-NRF9161

L'équipement hôte doit être correctement étiqueté pour identifier les modules dans l'équipement. L'étiquette de certification du module doit être clairement visible en tout temps lorsqu'il est installé dans l'hôte, l'équipement hôte doit être étiqueté pour afficher le FCC ID et IC du module, précédé des mots "Contient le module émetteur", ou le mot "Contient", ou un libellé similaire exprimant la même signification, comme suit:

Contient FCC ID: 2ANPO00NRF9161 Contient IC: 24529-NRF9161

15.4 RF exposure considerations

The nRF9161 has been tested and certified as a mobile device for use of a minimum of 20 cm distance from the human body with no colocation with other transmitters. If the device is to be used closer than 20 cm from the human body and/or with other transmiters simultaneously, the host product manufacturer is required to perform additional evaluation, testing, or testing and Class 2 permissive change. It is required to take responsibility of the module through a change in the FCC ID (new application). The host product manufacturer must also inform the end user about RF Exposure conditions.

15.5 Host device manufacturer responsibility

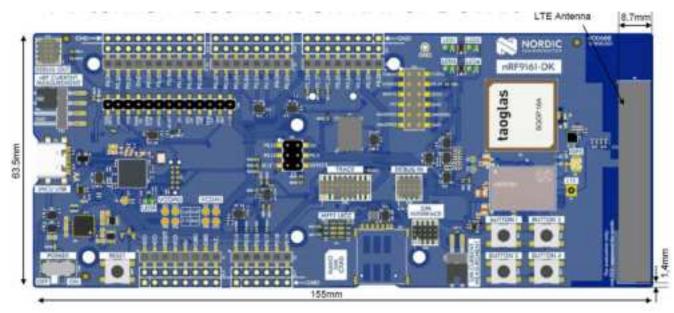
The nRF9161 device is only authorized for the rules listed in Supported FCC/ISED rules on page 462. The host device manufacturer is responsible for compliance to any other FCC rules that apply to the host device not covered by the nRF9161 grant of certification. It is mandatory for the host device manufacturer to assure the final device's compliance with FCC Part 15 Subpart B even if certification has been granted to nRF9161.

15.6 Antenna interface

The nRF9161 module has a single-ended 50 Ω antenna port where the antenna solution shall be connected. nRF9161 is evaluated with a 50 Ω antenna load. To ensure good overall RF performance,

antenna impedance and the characteristic impedance of the transmission line (i.e. cable) connecting the antenna and antenna port must be 50 Ω . Impedance mismatch may lead to performance degradation. Maximum antenna VSWR 2:1 is recommended but VSWR 3:1 can still be accepted in the final device. Respective minimum return loss values are 9.5 dB and 6.0 dB.

The length of the transmission line from the antenna to the nRF9161 antenna port should be kept as short as possible to minimize losses, as this loss is directly deteriorating the module's transmitted and received power. Additionally, low-loss matching circuit between the antenna and the nRF9161 antenna port is recommended to minimize loss caused by antenna and PCB routing mismatch. Reserving space from device manufacturer's application board for matching components (e.g. π -circuit) is recommended. This is because, for example, catalog antennas are typically tuned on reference board and differences to device mechanics may impact antenna impedance. It is also possible that device mechanics change during the development phase of the final device, and these modifications may impact antenna performance. Matching components can be used to compensate the impact of mechanics change to antenna impedance, and thus it may not be mandatory to modify the antenna itself.


The nRF9161 module has an internal ESD circuit in the antenna port, but additional ESD components at device manufacturer's application board may be used. The design of the ESD circuit shall be such that the impact on RF frequencies is negligible

Note: ESD filtering may be necessary for some active components that can be used at antenna path. Such components can be, for example, RF switches and antenna tuners. For further ESD requirements, see the RF switch and antenna tuner datasheets.

15.7 Antenna port test connector

To run conductive RF tests, a test connector nearby the nRF9161 antenna port in the RF transmission line is needed. The 50 Ω impedance requirement applies also to the test connector, and VSWR and insertion loss should be minimal. Regardless of whether the nRF9161 antenna port is connected to an actual antenna or test equipment, the load at the nRF9161 antenna should remain as close to 50 Ω as possible.

For a test connector, microwave coaxial switch connectors (for example, Murata MM8130-2600) are a good choice for this purpose. For conductive tests, a test cable is plugged in which connects the nRF9161 antenna port to the test equipment instead of the antenna. When the test cable is plugged off, the nRF9161 antenna port is connected to the antenna for real use case or radiated testing. The layout for the connector must be carefully designed to fulfil the 50 Ω requirement. For detailed guidance on this, see the coaxial switch connectors datasheets.

15.8 Reference Circuitry

To ensure good RF performance when designing PCBs, it is highly recommended to use the PCB layouts and component values provided by Nordic Semiconductor.

The information on layout of trace design is confidential; host manufacturer shall need to contact module's grantee to obtain this information.

This module can only be used when installed in a host device that follows the required instructions for use of the layout of trace design. Any deviation(s) from the defined parameters of the layout of trace design, as described by the instructions, require that the host product manufacturer must notify the module grantee that they wish to change the layout of trace design. In this case, a Class II permissive change application is required to be filed by the grantee, or the host manufacturer can take responsibility through the change in FCC ID (new application) procedure followed by a Class II permissive change application.

Documentation for the different package reference circuits, including Altium Designer files, PCB layout files, and PCB production files can be downloaded from www.nordicsemi.com.

16 Legal notices

By using this documentation you agree to our terms and conditions of use. Nordic Semiconductor may change these terms and conditions at any time without notice.

Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to improve reliability, function, or design. Nordic Semiconductor ASA does not assume any liability arising out of the application or use of any product or circuits described herein.

Nordic Semiconductor ASA does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. If there are any discrepancies, ambiguities or conflicts in Nordic Semiconductor's documentation, the Product Specification prevails.

Nordic Semiconductor ASA reserves the right to make corrections, enhancements, and other changes to this document without notice.

Customer represents that, with respect to its applications, it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, and lessen the likelihood of failures that might cause harm, and to take appropriate remedial actions.

Nordic Semiconductor ASA assumes no liability for applications assistance or the design of customers' products. Customers are solely responsible for the design, validation, and testing of its applications as well as for compliance with all legal, regulatory, and safety-related requirements concerning its applications.

Nordic Semiconductor ASA's products are not designed for use in life-critical medical equipment, support appliances, devices, or systems where malfunction of Nordic Semiconductor ASA's products can reasonably be expected to result in personal injury. Customer may not use any Nordic Semiconductor ASA's products in life-critical medical equipment unless adequate design and operating safeguards by customer's authorized officers have been made. Customer agrees that prior to using or distributing any life-critical medical equipment that include Nordic Semiconductor ASA's products, customer will thoroughly test such systems and the functionality of such products as used in such systems.

Customer will fully indemnify Nordic Semiconductor ASA and its representatives against any damages, costs, losses, and/or liabilities arising out of customer's non-compliance with this section.

RoHS and REACH statement

Refer to www.nordicsemi.com for complete hazardous substance reports, material composition reports, and latest version of Nordic's RoHS and REACH statements.

Trademarks

All trademarks, service marks, trade names, product names, and logos appearing in this documentation are the property of their respective owners.

Copyright notice

© Nordic Semiconductor ASA. All rights are reserved. Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

