

TEST REPORT

Applicant Name: Address:

Report Number: FCC ID: Alford Industries Ltd. Suite 1603A, Tower2, Nina Tower 8 Yeung UK Road, Tsuen Wan,N.T. Hong Kong China 2401A111120E-RF-00 2BMUJ-MDZ500PU

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Trade Mark: Date Received: Issue Date: Color Night Vision Baby Monitor MDZ500 N/A N/A 2024/12/18 2025/03/25

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

EKKO. WU

Ekko Wu RF Engineer

Approved By:

Nanas Wang

Nancy Wang RF Supervisor

Note: The information marked [#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "V".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF006

Page 1 of 71

Version 3.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
OBJECTIVE	5
Test Methodology	5
MEASUREMENT UNCERTAINTY	6
IEST FACILITT	
SISTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	/
SPECIAL ACCESSORIES	7
EQUIPMENT MODIFICATIONS	7
SUPPORT EQUIPMENT LIST AND DETAILS	8
External I/O Cable	8
BLOCK DIAGRAM OF TEST SETUP	8
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	11
FCC §15.247 (1) & §1.1307 (B) (3) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	13
APPLICABLE STANDARD	
KESULT	13
FCC §15.203 - ANTENNA REQUIREMENT	14
APPLICABLE STANDARD	14
ANTENNA CONNECTOR CONSTRUCTION	14
FCC §15.207 (A) - AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	15
EUT SETUP	15
EMI TEST RECEIVER SETUP	15
TEST PROCEDURE	10
TEST DATA	
FCC 815 205 815 209&815 247(D) - RADIATED EMISSIONS	23
$\Delta PPLICARLE STANDARD$	23
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	24
Test Procedure	25
FACTOR & OVER LIMIT/MARGIN CALCULATION	25
TEST DATA	25
FCC §15.247(A) (1) - CHANNEL SEPARATION TEST	54
APPLICABLE STANDARD	54
Test Procedure	
IEST DATA	54

FCC §15.247(A) (1) - 20DBEMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	56
APPLICABLE STANDARD	56
Test Procedure	56
TEST DATA	57
FCC §15.247(A) (1) (III) - QUANTITY OF HOPPING CHANNEL TEST	60
APPLICABLE STANDARD	60
TEST PROCEDURE	60
TEST DATA	60
FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	62
APPLICABLE STANDARD	62
TEST PROCEDURE	62
TEST DATA	62
FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	64
APPLICABLE STANDARD	64
TEST PROCEDURE	64
TEST DATA	64
FCC §15.247(D) - BAND EDGES TESTING	67
APPLICABLE STANDARD	67
Test Procedure	67
TEST DATA	67
EUT PHOTOGRAPHS	70
TEST SETUP PHOTOGRAPHS	71

DOCUMENT REVISION HISTORY

Revision Number Report Number		Description of Revision	Date of Revision
0	2401A111120E-RF-00	Original Report	2025/03/25

GENERAL INFORMATION

roduct Description for Equipment under Test (EUT	Product Descri	ption for E	quipment	under Te	st (EUT)
--	-----------------------	--------------------	----------	----------	----------

Product	Color Night Vision Baby Monitor
Tested Model	MDZ500
Multiple Model(s)	N/A
Frequency Range	2402-2476MHz
Maximum conducted peak output power	18.05dBm
Modulation Technique	GFSK
Antenna Specification [#]	-2.52dBi (provided by the applicant)
Voltage Range	DC 5V from Adapter or DC 3.8V from Battery
	2W79-1 for RF Conducted Test
Sample serial number	2W79-2 for Radiated Emissions
	(Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
	Adapter1
	Model: GLH50C1500
	Input: AC100-240V, 50/60Hz, 0.4A
Adapter Information	Output: DC 5.0V, 1.5A, 7.5W
Adapter Information	Adapter2
	Model:PS12L050K1500UD
	Input: AC100-240V, 50/60Hz, 0.35A Max
	Output: DC 5.0V, 1.5A, 7.5W
	Battery1
	Model: 19300
	Li-ion 3.8V/2100mAh 7.98Wh
	Limited charge voltage:4.35V
Battery Information	Battery2
	Model: EB-L1G6LLU
	2100mAh 3 8V Li-ion BATTERY 7.98Wh
	Charging voltage limit:4.35V

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Report No.: 2401A111120E-RF-00

Parameter		Uncertainty	
Occupied Channel Bandwidth		109.2kHz(k=2, 95% level of confidence)	
R	F Frequency	56.6Hz(k=2, 95% level of confidence)	
RF output	ut power, conducted	0.86dB(k=2, 95% level of confidence)	
Unwanted	Emission, conducted	1.60dB(k=2, 95% level of confidence)	
AC Power Lines	9 kHz~150 KHz	3.63dB(k=2, 95% level of confidence)	
Conducted Emissions	150 kHz ~30MHz	3.66dB(k=2, 95% level of confidence)	
	0.009MHz~30MHz	3.60dB(k=2, 95% level of confidence)	
	30MHz~200MHz (Horizontal)	5.32dB(k=2, 95% level of confidence)	
	30MHz~200MHz (Vertical)	5.43dB(k=2, 95% level of confidence)	
Padiated Emissions	200MHz~1000MHz (Horizontal)	5.77dB(k=2, 95% level of confidence)	
Radiated Emissions	200MHz~1000MHz (Vertical)	5.73dB(k=2, 95% level of confidence)	
	1GHz - 6GHz	5.34dB(k=2, 95% level of confidence)	
	6GHz - 18GHz	5.40dB(k=2, 95% level of confidence)	
	18GHz - 40GHz	5.64dB(k=2, 95% level of confidence)	
	Temperature	±1°C	
	Humidity	$\pm 1\%$	
Su	ipply voltages	±0.4%	

Measurement Uncertainty

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	11	2422	21	2442	31	2462
2	2404	12	2424	24	2444	32	2464
3	2406	13	2426	23	2446	33	2466
4	2408	14	2428	24	2448	34	2468
5	2410	15	2430	25	2450	35	2470
6	2412	16	2432	26	2452	36	2472
7	2414	17	2434	27	2454	37	2474
8	2416	18	2436	28	2456	38	2476
9	2418	19	2438	29	2458	/	/
10	2420	20	2440	30	2460	/	/

Channel list

Channel 1, 20, 38 was tested.

EUT Exercise Software

"SecureCRT"[#] exercise software was used and the power level is default[#]. The software and power level was provided by the applicant.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From/Port	То	
Unshielded detachable DC cable	1.5	Adapter	EUT	

Block Diagram of Test Setup

For Conducted Emissions:

Report No.: 2401A111120E-RF-00

For Radiated Emissions:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (3) & §2.1091	Maximum Permissible Exposure(MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20dBEmission Bandwidth&99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Condu	cted Emissions '	Test		
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/12/04	2025/12/03
Rohde & Schwarz	LISN	ENV216	101613	2024/12/04	2025/12/03
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
	Radia	ited Emission T	est		
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03
Sonoma instrument	Pre-amplifier	310 N	186238	2024/05/21	2025/05/20
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19
Unknown	Cable	Chamber A Cable 1	N/A	2024/06/18	2025/06/17
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13
Unknown	Cable	2Y194	0735	2024/12/04	2025/12/03
Unknown	Cable	PNG214	1354	2024/12/04	2025/12/03
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26
A.H.System	Preamplifier	PAM-0118P	489	2024/11/15	2025/11/14
The Electro-Mechanics Co.	Horn Antenna	3115	9107-3694	2024/06/06	2027/06/05
Unknown	RF Cable	KMSE	735	2024/12/04	2025/12/03
Unknown	RF Cable	UFA147	219661	2024/12/04	2025/12/03
JD	Filter Switch Unit	DT7220FSU	DS79906	2024/09/09	2025/09/08
JD	Multiplex Switch Test Control Set	DT7220SCU	DS79903	2024/09/09	2025/09/08
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
A.H.System	Pre-amplifier	PAM- 1840VH	190	2024/06/18	2025/06/17
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17
Electro-Mechanics Co	Horn Antenna	3116	2026	2023/09/18	2026/09/17
UTIFLEX	RF Cable	NO. 13	232308-001	2024/12/18	2025/12/17

TR-EM-RF006

Version 3.0

Report No.: 2401A111120E-RF-00

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
RF Conducted Test					
Tonscend	RF control Unit	JS0806-2	19D8060154	2024/08/06	2025/08/05
Rohde & Schwarz	Spectrum Analyzer	FSV40	101473	2024/12/04	2025/12/03
Unknown	10dB Attenuator	Unknown	F-03-EM065	2024/06/27	2025/06/26

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §1.1307 (b) (3) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

According to KDB 447498 D04 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power(ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(3)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

Ris the minimum separation distance in meters f = frequency in MHz

Result

Mode	Frequency (MHz)	Tune up conducted power [#]	Antenna Gain [#]		ERP		Evaluation Distance	ERP Limit (W)
	()	(dBm)	(dBm) (dBi)		(dBm)	(W)	(m)	
FHSS	2402-2476	18.05	-2.52	-4.67	13.38	0.22	0.2	0.768

Note: The tune up conducted power and antenna gain was declared by the applicant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

TR-EM-RF006

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached and the antenna gain[#] is -2.52dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W			
150 kHz – 30 MHz	9 kHz			

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

Test Data

Environmental Conditions

Temperature:	21~26 °C
Relative Humidity:	39~68 %
ATM Pressure:	100~103 kPa

The testing was performed by Macy Shi from 2025-01-23 to 2025-03-24.

EUT operation mode: Transmitting (worst case is high channel)

For Battery1 For Adapter1 AC 120V/60 Hz, Line

Condition	n:	Line			
Project	:	2401A1111	20E-RF		
tester	:	Macy.shi	Note:Tra	ansmitting	
Setting	:	RBW:9kHz	VBW:30KHz	Detector	Peak

		Read		LISN	Cable	Limit	0ver		
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark	
	MHz	dBuV	dBuV	dB	dB	dBuV	dB		
1	0.174	22.93	43.58	10.55	10.10	54.77	-11.19	Average	
2	0.174	31.34	51.99	10.55	10.10	64.77	-12.78	QP	
3	0.187	16.11	36.83	10.63	10.09	54.15	-17.32	Average	
4	0.187	26.21	46.93	10.63	10.09	64.15	-17.22	QP	
5	0.227	16.55	37.30	10.67	10.08	52.57	-15.27	Average	
6	0.227	25.50	46.25	10.67	10.08	62.57	-16.32	QP	
7	0.305	6.45	27.17	10.61	10.11	50.10	-22.93	Average	
8	0.305	16.31	37.03	10.61	10.11	60.10	-23.07	QP	
9	0.558	8.50	29.26	10.63	10.13	46.00	-16.74	Average	
10	0.558	17.42	38.18	10.63	10.13	56.00	-17.82	QP	
11	2.237	2.89	24.14	11.07	10.18	46.00	-21.86	Average	
12	2.237	11.27	32.52	11.07	10.18	56.00	-23.48	QP	

AC 120V/60 Hz, Neutral

Conditio	n:	Neutral			
Project	:	2401A1111	20E-RF		
tester	:	Macy.shi	Note:Tra	insmitting	
Setting	:	RBW:9kHz	VBW:30KHz	Detector	Peak

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.176	22.05	42.77	10.62	10.10	54.68	-11.91	Average
2	0.176	31.14	51.86	10.62	10.10	64.68	-12.82	QP
3	0.229	16.54	37.38	10.76	10.08	52.48	-15.10	Average
4	0.229	25.15	45.99	10.76	10.08	62.48	-16.49	QP
5	0.308	5.17	25.94	10.66	10.11	50.02	-24.08	Average
6	0.308	15.19	35.96	10.66	10.11	60.02	-24.06	QP
7	0.502	4.90	25.54	10.50	10.14	46.00	-20.46	Average
8	0.502	14.70	35.34	10.50	10.14	56.00	-20.66	QP
9	0.614	6.77	27.45	10.56	10.12	46.00	-18.55	Average
10	0.614	15.45	36.13	10.56	10.12	56.00	-19.87	QP
11	2.190	3.95	24.87	10.74	10.18	46.00	-21.13	Average
12	2.190	12.07	32.99	10.74	10.18	56.00	-23.01	QP

For Adapter2 AC 120V/60 Hz, Line

116	ive.	•			
Conditio	n:	Line			
Project	:	2401A1111	20E-RF		
tester	:	Macy.shi	Note:Tra	ansmitting	
Setting	:	RBW:9kHz	VBW:30KHz	Detector	Peak

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
-	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.150	34.50	55.03	10.40	10.13	66.00	-10.97	QP
2	0.162	36.00	56.59	10.48	10.11	65.38	-8.79	QP
3	0.172	32.20	52.84	10.54	10.10	64.86	-12.02	QP
4	0.187	30.01	50.73	10.63	10.09	64.15	-13.42	QP
5	0.202	28.50	49.29	10.70	10.09	63.54	-14.25	QP
6	0.215	29.90	50.67	10.68	10.09	63.01	-12.34	QP
		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
-	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.174	10.82	31.47	10.55	10.10	54.77	-23.30	Average
2	0.183	10.19	30.90	10.61	10.10	54.33	-23.43	Average
3	0.302	5.48	26.20	10.61	10.11	50.19	-23.99	Average
4	0.437	6.78	27.42	10.53	10.11	47.11	-19.69	Average
5	0.476	6.87	27.51	10.51	10.13	46.41	-18.90	Average
6	0.518	5.66	26.34	10.54	10.14	46.00	-19.66	Average

AC 120V/60 Hz, Neutral

For Battery2 For Adapter2 AC 120V/60 Hz, Line

Condition	1 :	Line			
Project	:	2401A1111	20E-RF		
tester	:	Macy.shi	Note:Tra	ansmitting	
Setting	:	RBW:9kHz	VBW:30KHz	Detector	Peak

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.153	17.18	37.73	10.42	10.13	55.82	-18.09	Average
2	0.153	31.03	51.58	10.42	10.13	65.82	-14.24	QP
3	0.174	19.60	40.25	10.55	10.10	54.77	-14.52	Average
4	0.174	27.61	48.26	10.55	10.10	64.77	-16.51	QP
5	0.206	13.92	34.70	10.69	10.09	53.36	-18.66	Average
6	0.206	26.60	47.38	10.69	10.09	63.36	-15.98	QP
7	0.222	17.49	38.26	10.68	10.09	52.74	-14.48	Average
8	0.222	25.45	46.22	10.68	10.09	62.74	-16.52	QP
9	0.302	5.20	25.92	10.61	10.11	50.19	-24.27	Average
10	0.302	17.60	38.32	10.61	10.11	60.19	-21.87	QP
11	0.529	1.93	22.63	10.57	10.13	46.00	-23.37	Average
12	0.529	7.33	28.03	10.57	10.13	56.00	-27.97	QP

AC 120V/60 Hz, Neutral

Conditio	n:	Neutral			
Project	:	2401A1111	20E-RF		
tester	:	Macy.shi	Note:Tra	insmitting	
Setting	:	RBW:9kHz	VBW:30KHz	Detector	Peak

		Read		LISN	Cable	Limit	0ver		
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark	
	MHz	dBuV	dBuV	dB	dB	dBuV	dB		
1	0.153	15.51	36.07	10.43	10.13	55.82	-19.75	Average	
2	0.153	29.95	50.51	10.43	10.13	65.82	-15.31	QP	
3	0.170	17.60	38.28	10.58	10.10	54.94	-16.66	Average	
4	0.170	29.03	49.71	10.58	10.10	64.94	-15.23	QP	
5	0.204	12.66	33.54	10.79	10.09	53.45	-19.91	Average	
6	0.204	25.53	46.41	10.79	10.09	63.45	-17.04	QP	
7	0.237	15.40	36.23	10.75	10.08	52.22	-15.99	Average	
8	0.237	23.58	44.41	10.75	10.08	62.22	-17.81	QP	
9	0.305	3.81	24.58	10.66	10.11	50.10	-25.52	Average	
10	0.305	16.11	36.88	10.66	10.11	60.10	-23.22	QP	
11	0.513	-0.63	20.02	10.51	10.14	46.00	-25.98	Average	
12	0.513	6.63	27.28	10.51	10.14	56.00	-28.72	QP	

FCC §15.205, §15.209&§15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

EUT Setup

9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement			
$0 k H_{z} = 150 k H_{z}$	/	/	200 Hz	QP			
9 KHZ – 130 KHZ	300 Hz	1 kHz	/	PK			
150 J.U. 20 MU.	/	/	9 kHz	QP			
130 KHZ – 30 MHZ	10 kHz	30 kHz	/	PK			
20 MHz 1000 MHz	/	/	120 kHz	QP			
30 MHZ – 1000 MHZ	100 kHz	300 kHz	/	PK			
	Harmonics						
	1MHz	3 MHz	/	PK			
Above 1 CHz	Average Emission	Level=Peak Emi	V IF B/W I 200 Hz / / 9 kHz / 120 kHz / / 120 kHz / / Emission Level+20*Ic // //	log(Duty cycle)			
Above I GHZ		WVideo B/WIF B/WMeasure/200 Hz0Hz1 kHz//9 kHz0Hz30 kHz//120 kHz0Hz300 kHz/Hz300 kHz/Hz3 MHz/Hz3 MHz/Mtz1Attach1Hz1 MHzMtz1 MHzMtz1 MHzMtz1 MHzMtz1 MHzMtz1 MHzMtz1 MHz					
	1MHz	3 MHz	/	PK			
	1MHz	1kHz	/	Average			

For Duty cycle measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit or Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit/margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin/Over Limit = Corrected Amplitude/Level-Limit Corrected Amplitude/Level = Reading + Factor

Test Data

Environmental Conditions

Temperature:	22~24.5 °C
Relative Humidity:	41~48 %
ATM Pressure:	101~101.3 kPa

The testing was performed by Anson Su and Alex Yan from 2025-01-08 to 2025-03-25 for below 1GHz and Dylan Yang on 2024-12-30 to 2025-01-20 for above 1GHz.

EUT operation mode: Transmitting

Note: Pre-scan in the X, Y and Z axes of orientation, the worst case Z-axis of orientation was recorded.

Note: When the test result of peak was less than the limit of QP/Average more than 6dB, just peak value were recorded.

Parallel (worst case) For Adapter1

Site :	Chamber A
Condition :	3m
Project Number:	2401A111120E-RF
Test Mode :	Transmitting
Setting PK :	RBW:0.3KHz VBW:1KHz
Tester :	Anson Su

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	32.24	22.95	55.19	127.33	-72.14	Peak
2	0.02	30.06	21.38	51.44	120.85	-69.41	Peak
3	0.04	27.86	20.98	48.84	116.44	-67.60	Peak
4	0.06	25.60	19.58	45.18	112.34	-67.16	Peak
5	0.09	22.53	18.17	40.70	108.29	-67.59	Peak
6	0.14	19.47	17.75	37.22	104.50	-67.28	Peak

Site	:	Chamber A
Condition	:	Зm
Project Number	:	2401A111120E-RF
Test Mode	:	Transmitting
Setting PK	:	RBW:10KHz VBW:30KHz
Tester	:	Anson Su

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.50	6.43	34.65	41.08	73.65	-32.57	Peak
2	0.63	4.76	34.95	39.71	71.53	-31.82	Peak
3	0.78	2.96	35.26	38.22	69.69	-31.47	Peak
4	0.93	1.72	36.01	37.73	68.12	-30.39	Peak
5	1.19	0.67	33.23	33.90	65.94	-32.04	Peak
6	1.47	-0.11	33.51	33.40	64.07	-30.67	Peak

For Adapter2

5

6

0.11 21.17 34.28 55.45 106.46 -51.01 Peak 0.12 21.03 37.61 58.64 106.28 -47.64 Peak

Site		:	Chamber A
Condition		:	Зm
Project Num	nber	:	2401A111120E-RF
Test Mode		:	Transmitting
Detector: F	Peak	RBW/VBW:	10/30kHz
Tester		:	Anson Su

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.50	6.44	43.62	50.06	73.66	-23.60	Peak
2	0.55	5.74	42.89	48.63	72.72	-24.09	Peak
3	0.67	4.27	44.04	48.31	70.99	-22.68	Peak
4	0.74	3.46	42.81	46.27	70.17	-23.90	Peak
5	1.17	0.72	41.46	42.18	66.07	-23.89	Peak
6	1.30	0.35	40.79	41.14	65.11	-23.97	Peak

30MHz-1GHz: (*Maximum output power mode, High channel*) For Adapter1

Horizontal

1	64.57	-18.00	30.17	12.17	40.00	-27.83	Peak
2	129.41	-11.21	34.22	23.01	43.50	-20.49	Peak
3	139.42	-11.83	36.82	24.99	43.50	-18.51	Peak
4	232.12	-13.73	38.46	24.73	46.00	-21.27	Peak
5	400.08	-8.41	46.73	38.32	46.00	-7.68	QP
6	447.59	-7.53	46.90	39.37	46.00	-6.63	Peak

_							
3	128.96	-11.21	33.31	22.10	43.50	-21.40	Peak
4	139.30	-11.82	32.73	20.91	43.50	-22.59	Peak
5	453.51	-7.35	43.00	35.65	46.00	-10.35	Peak
6	580.45	-5.26	37.17	31.91	46.00	-14.09	Peak

For Adapter2

Horizontal

	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	135.98	-11.60	33.97	22.37	43.50	-21.13	Peak
2	150.60	-12.46	39.09	26.63	43.50	-16.87	Peak
3	172.98	-13.29	42.47	29.18	43.50	-14.32	Peak
4	400.08	-8.41	39.76	31.35	46.00	-14.65	Peak
5	436.16	-7.73	41.76	34.03	46.00	-11.97	Peak
6	508.93	-5.77	35.65	29.88	46.00	-16.12	Peak
7	800.03	-2.14	30.89	28.75	46.00	-17.25	Peak

7

911.26 -1.19 28.11 26.92 46.00 -19.08 Peak

Note: When the test result of peak was less than the limit of QP/Average more than 6dB, just peak value were recorded.

Parallel (worst case) For Adapter1

Site :	Chamber A
Condition :	Зm
Project Number :	2401A111120E-RF
Test Mode :	2.4G Transmitting
Detector: Peak RBW/VBW:	10/30kHz
Tester :	Alex Yan

			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.48	6.69	37.37	44.06	93.89	-49.83	Peak
2	0.50	6.46	35.57	42.03	73.67	-31.64	Peak
3	0.65	4.57	36.10	40.67	71.31	-30.64	Peak
4	1.18	0.70	33.85	34.55	66.01	-31.46	Peak
5	1.23	0.55	33.54	34.09	65.62	-31.53	Peak
6	1.56	-0.37	32.27	31.90	63.52	-31.62	Peak

30MHz-1GHz: (*Maximum output power mode, High channel*) For Adapter1

Horizontal

Report No.: 2401A111120E-RF-00

For Adapter1 Above 1GHz:

Frequency (MHz)	Reading (dBµV)	PK/AV	Polar (H/V)	Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
		Lo	w Channel(2402MH	Iz)				
4804.00	51.95	PK	Н	-7.79	44.16	74	-29.84	
4804.00	52.14	РК	V	-7.79	44.35	74	-29.65	
	Middle Channel(2440MHz)							
4880.00	53.01	РК	Н	-7.59	45.42	74	-28.58	
4880.00	53.18	PK	V	-7.59	45.59	74	-28.41	
High Channel(2480MHz)								
4952.00	54.00	РК	Н	-7.62	46.38	74	-27.62	
4952.00	54.29	РК	V	-7.62	46.67	74	-27.33	

Report No.: 2401A111120E-RF-00

Test Channel: 2402MHz Ant. Polar. : Horizontal 120 Level (dBuV/m) Date: 2025-01-20 110 90 70 50 30 10 2310 2320 2350 2430 Frequency (MHz) : Horizontal Condition Project No. : 2401A111120E-RF Tester : Dylan Yang Spectrum setting: Peak reading: RBW:1MHz VBW:3MHz Detector:Peak Note : GFSK_2402 Read Limit Over Freq Factor Level Level Line Limit Remark MHz dB/m dBuV dBuV/m dBuV/m dB 1 2389.165 -10.98 63.05 52.07 74.00 -21.93 peak 2 2390.000 -10.98 60.72 49.74 74.00 -24.26 Peak

Test plots for Band Edge Measurements (Radiated):

Report No.: 2401A111120E-RF-00

Report No.: 2401A111120E-RF-00

Report No.: 2401A111120E-RF-00

Report No.: 2401A111120E-RF-00

Listed with the worst harmonic margin test plot:

Report No.: 2401A111120E-RF-00

Report No.: 2401A111120E-RF-00

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

- 1. Set the EUT in transmitting mode, maxhold the channel and in Operating mode, RBW was set at 100 kHz, VBW≥ 3RBW max-hold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

EUT		Speetrum Apolyzon
EUI	Attenuator	Spectrum Analyzei

Test Data

Environmental Conditions

Temperature:	25.7°C	
Relative Humidity:	40 %	
ATM Pressure:	101.5 kPa	

The testing was performed by Cheeb Huang on 2025-01-15.

EUT operation mode: Transmitting

Test Result: Compliant

Test Channel	Test Frequency (MHz)	Channel Separation (MHz)	Limits (MHz)
Lowest	2402	2.000	1.389
Middle	2440	2.010	1.389
Highest	2476	2.000	1.383

NOTE: Limits=2/3*20dB bandwidth Please refer to the below plots:

Report No.: 2401A111120E-RF-00

FCC §15.247(a) (1) - 20dBEMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "20 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

EUT		Attenuator	Spectrum Analyzer

Test Data

Environmental Conditions

Temperature:	25.5 ℃	
Relative Humidity:	38 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Cheeb Huang on 2025-01-14.

EUT operation mode: Transmitting

Test Result: Compliant

Mode	Channel	Frequency (MHz)	99% Emission Bandwidth (MHz)	20 dB Emission Bandwidth (MHz)
	Low	2402	2.043	2.083
GFSK	Middle	2440	2.051	2.083
	High	2476	2.059	2.074

Please refer to the below plots:

Page 58 of 71

Page 59 of 71

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.3

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	25.7°C	
Relative Humidity:	40 %	
ATM Pressure:	101.5 kPa	

The testing was performed by Cheeb Huang on 2025-01-15.

EUT operation mode: Transmitting

Test Result: Compliant

Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)
2400-2483.5	38	≥15

Report No.: 2401A111120E-RF-00

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems (FHSs) in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

EUT	Attenuator	Spectrum Analyzer
	7 Internation	

Test Data

Environmental Conditions

Temperature:	25.7°C
Relative Humidity:	40 %
ATM Pressure:	101.5 kPa

The testing was performed by Cheeb Huang on 2025-01-15.

EUT operation mode: Transmitting

Test Result: Compliant

Test Frequency (MHz)	Pulse width (ms)	Observation time (s)	Hopping Numbers in Observation time	Dwell Time (s)	Limit (s)
2440	0.095	15.2	23	0.002	0.400

Note 1: Observation time= Hopping Channel Number× 0.4

Note 2: Dwell Time = Pulse width *Hopping Numbers in Observation time

Report No.: 2401A111120E-RF-00

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

EUT	Attenuator	Spectrum Analyzer

Test Data

Environmental Conditions

Temperature:	25.7°C
Relative Humidity:	40 %
ATM Pressure:	101.5 kPa

The testing was performed by Cheeb Huang on 2025-01-15.

EUT operation mode: Transmitting

Test Result: Compliant

Report No.: 2401A111120E-RF-00

Mode	Channel	Frequency (MHz)	Peak Output Power (dBm)	Limit (dBm)
GFSK	Low	2402	17.4	21
	Middle	2440	17.85	21
	High	2476	18.05	21

Report No.: 2401A111120E-RF-00

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

According to FCC §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

		Spectrum Analyzer
EUI	Attenuator	Speed and Analyzer

Test Data

Environmental Conditions

Temperature:	25.5~25.7 °C
Relative Humidity:	38~40 %
ATM Pressure:	101.2~101.5 kPa

The testing was performed by Cheeb Huang from 2025-01-14 to 2025-01-15.

EUT operation mode: Transmitting

Test Result: Compliant

Report No.: 2401A111120E-RF-00

Report No.: 2401A111120E-RF-00

EUT PHOTOGRAPHS

Please refer to the attachment 2401A111120E-RF External photo and 2401A111120E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401A111120E-RF Test Setup photo.

***** END OF REPORT *****