Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL CCS USA

Accreditation No.: SCS 0108

Certificate No: D2450V2-748_Feb17

CALIBRATION CERTIFICATE

Object D2450V2 - SN:748

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: February 08, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	dela
Approved by:	Katja Pokovic	Technical Manager	La College

Issued: February 9, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-748_Feb17

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-748_Feb17 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.8.8
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy , $dz = 5 mm$	
2450 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.5 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-748_Feb17 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.9 Ω - 1.1 jΩ	
Return Loss	- 28.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω + 1.8 jΩ	
Return Loss	- 34.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

Certificate No: D2450V2-748_Feb17 Page 4 of 8

Date: 08.02.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:748

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ S/m}$; $\varepsilon_r = 37.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 31.12.2016;

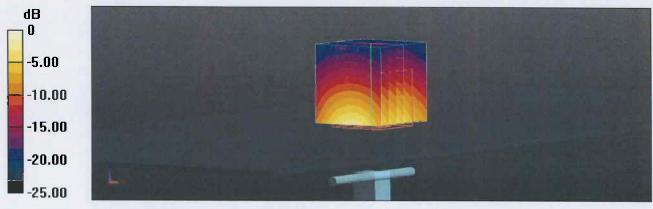
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.01.2017

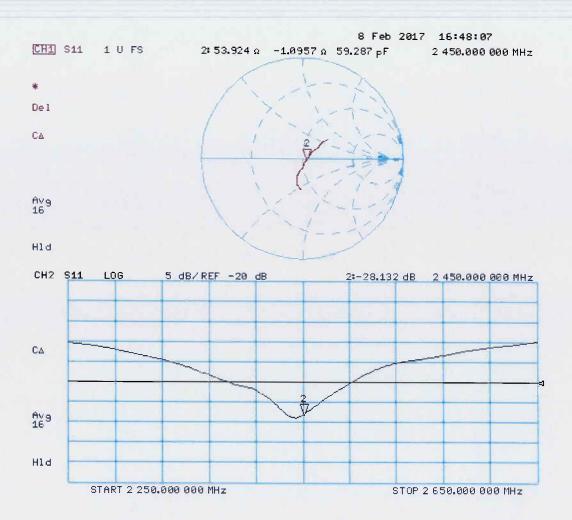
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.6 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.16 W/kg

Maximum value of SAR (measured) = 21.9 W/kg

0 dB = 21.9 W/kg = 13.40 dBW/kg

Date: 08.02.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:748

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2016;

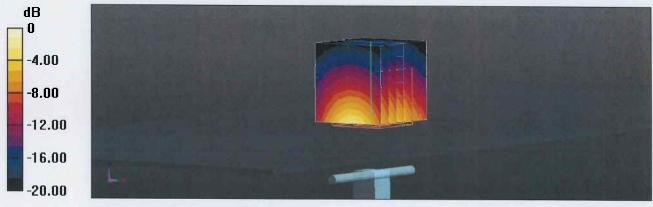
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.7 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.06 W/kg

Maximum value of SAR (measured) = 21.1 W/kg

0 dB = 21.1 W/kg = 13.24 dBW/kg

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL CCS USA

Accreditation No.: SCS 0108

Certificate No: D2450V2-899 Mar17

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:899

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 10, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seif Allen
			med
Approved by:	Katja Pokovic	Technical Manager	Jel B-
Approved by:	Katja Pokovic	Technical Manager	Al A

Issued: March 14, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-899_Mar17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.97 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3 Ω + 7.9 jΩ	
Return Loss	- 21.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.5 \Omega + 9.5 j\Omega$	
Return Loss	- 20.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 19, 2012

Certificate No: D2450V2-899_Mar17

DASY5 Validation Report for Head TSL

Date: 10.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:899

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 31.12.2016;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

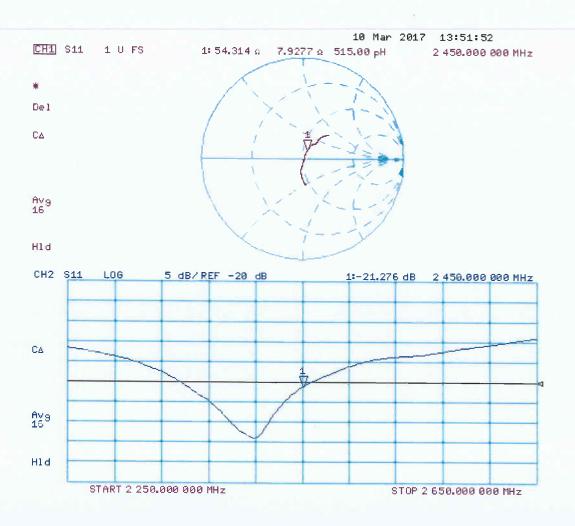
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.1 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 27.6 W/kg


SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.25 W/kg

Maximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:899

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2016;

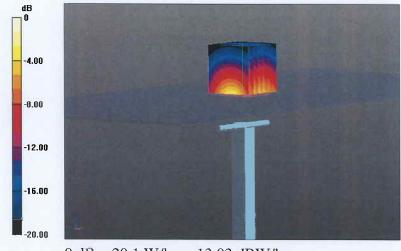
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.01.2017

• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

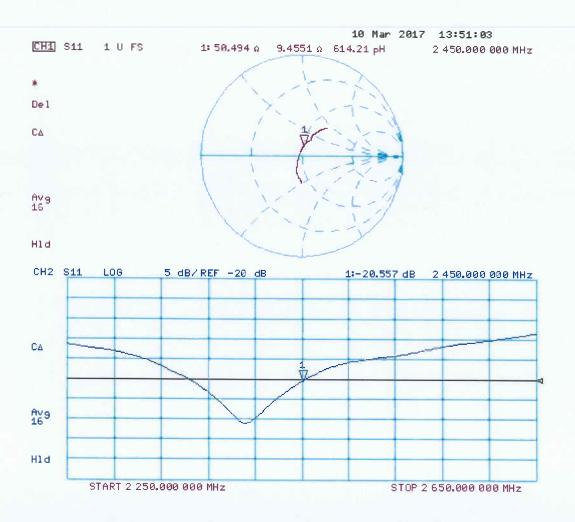
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.8 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 25.3 W/kg


SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.97 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL CCS USA

Accreditation No.: SCS 0108

Certificate No: D2600V2-1036 Mar17

CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1036

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 10, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

SN: 104778 SN: 103244	06-Apr-16 (No. 217-02288/02289)	Apr-17
SN: 103244		
	06-Apr-16 (No. 217-02288)	Apr-17
SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
SN: 5047.2 / 06327		Apr-17
SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
D #	Check Date (in house)	Scheduled Check
SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
Name	Function	Signature
eif Klysner	Laboratory Technician	Seil Alger
		men
Katja Pokovic	Technical Manager	Elle
	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 D # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	SN: 5058 (20k) 05-Apr-16 (No. 217-02292) SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) SN: 7349 31-Dec-16 (No. EX3-7349_Dec-16) SN: 601 04-Jan-17 (No. DAE4-601_Jan17) D# Check Date (in house) SN: GB37480704 07-Oct-15 (in house check Oct-16) SN: US37292783 07-Oct-15 (in house check Oct-16) SN: MY41092317 07-Oct-15 (in house check Oct-16) SN: 100972 15-Jun-15 (in house check Oct-16) SN: US37390585 18-Oct-01 (in house check Oct-16) Name Function Laboratory Technician

Issued: March 14, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1036_Mar17

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1036_Mar17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	2.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.3 Ω - 6.0 jΩ	
Return Loss	- 24.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 4.6 jΩ	
Return Loss	- 24.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.147 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 03, 2009

Certificate No: D2600V2-1036_Mar17

DASY5 Validation Report for Head TSL

Date: 10.03,2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1036

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 37.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 31.12.2016;

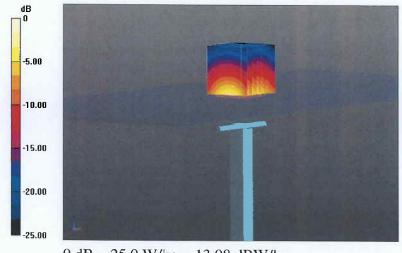
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

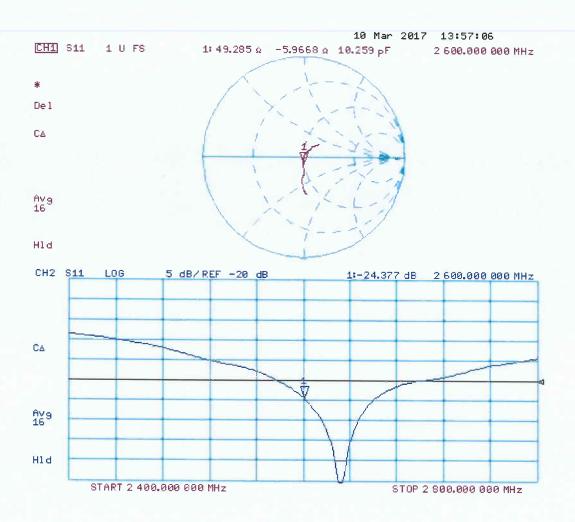
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.4 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 32.0 W/kg


SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.5 W/kg

Maximum value of SAR (measured) = 25.0 W/kg

0 dB = 25.0 W/kg = 13.98 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1036

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.21$ S/m; $\epsilon_r = 52.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 31.12.2016;

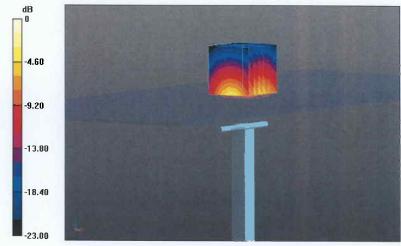
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

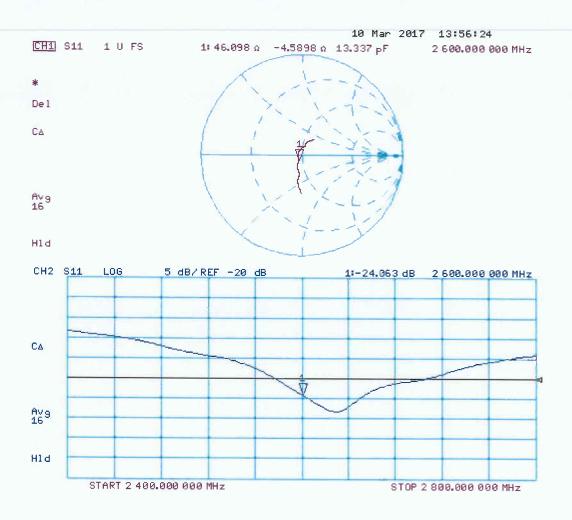
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.7 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 27.8 W/kg


SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.46 dBW/kg

Impedance Measurement Plot for Body TSL

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 10/Oct/2017

CERTIFICATE NUMBER: 11903941JD01E

UL VS LTD
PAVILION A
ASHWOOD PARK, ASHWOOD WAY
BASINGSTOKE, HAMPSHIRE

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

(UL)

Page 1 of 10

APPROVED SIGNATORY

M. Marca

Naseer Mirza

Customer:

RG23 8BG, UK

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:

Dipole Validation Kit

Date of Receipt:

29/Sep/2017

Manufacturer:

Speag

Type/Model Number:

D2600V2

Serial Number:

1006

Calibration Date:

05/Oct/2017

Calibrated By:

Chanthu Thevarajah

Laboratory Engineer

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ^oC and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER: 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2546	Data Acquisition Electronics	SPEAG	DAE4	1435	10 Feb 2017	12
A2587	Probe	SPEAG	ES3DV3	3341	14 Aug 2017	12
A2767	Dipole	SPEAG	D2600V2	1109	13 Feb 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	16 Nov 2016	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	26 Sept 2016	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	12
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12
M1908	Signal Generator	Rhode & Schwarz	SMIQ 03B	1125.555.03	08 Nov 2016	12

CERTIFICATE NUMBER: 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number: F14/5T5ZA1/A/01		
DASY Version:	DASY 52 (v52.8.8.1258)	
Phantom: Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)	
Frequency:	2600 MHz	

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquie	d Temp	Parameters Target Value	Measured	Uncertainty	
	(MHz)	Start	End	Start	End		Value	Value	(%)
				00.000	00.000	εr	39.00	37.06	± 5%
Head	2600	23.0 °C	22.0 °C	20.0°C	22.0°C	σ	1.96	1.97	± 5%

SAR Results - Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	14.00 W/Kg	55.73 W/Kg	± 17.57%
Head	SAR averaged over 10g	6.30 W/Kg	25.08 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	50.38 Ω 6.70 jΩ	$\pm 0.28 \Omega \pm 0.044 \Omega$
	Return Loss	23.52	± 1.27 dB

CERTIFICATE NUMBER: 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements - Body Simulating Liquid (MSL)

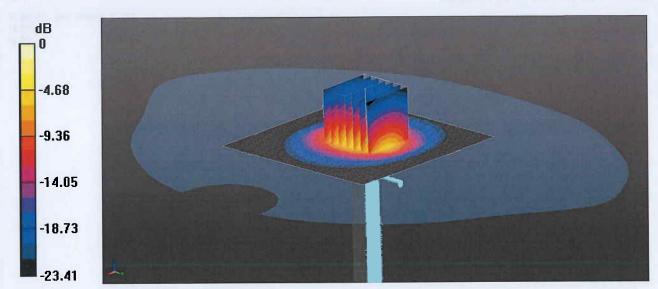
Simulant Liquid	Frequency	Room Temp		Liquid Temp Paramet		Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Faiameters	Value	Value	(%)
Body	2600	22.0 °C	22.0 °C	22.0°C	22.0°C	٤r	52.50	51.39	± 5%
Bouy	2000	22.0 C	22.0 C	22.0 %	22.0 C	σ	2.16	2.19	± 5%

SAR Results - Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Dadu	SAR averaged over 1g	14.10 W/Kg	56.13 W/Kg	± 18.06%
Body	SAR averaged over 10g	6.28 W/Kg	25.00 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	48.51 Ω -2.73 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	30.37	± 1.27 dB


CERTIFICATE NUMBER: 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

0 dB = 21.7 W/kg = 13.36 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 MHz HSL Medium parameters used: f = 2600 MHz; σ = 1.971 S/m; ϵ_r = 37.058; ρ = 1000 kg/m³ Phantom section: Flat Section DASY4 Configuration:

- Probe: ES3DV3 - SN3341; ConvF(4.5, 4.5, 4.5); Calibrated: 14/08/2017;

- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)

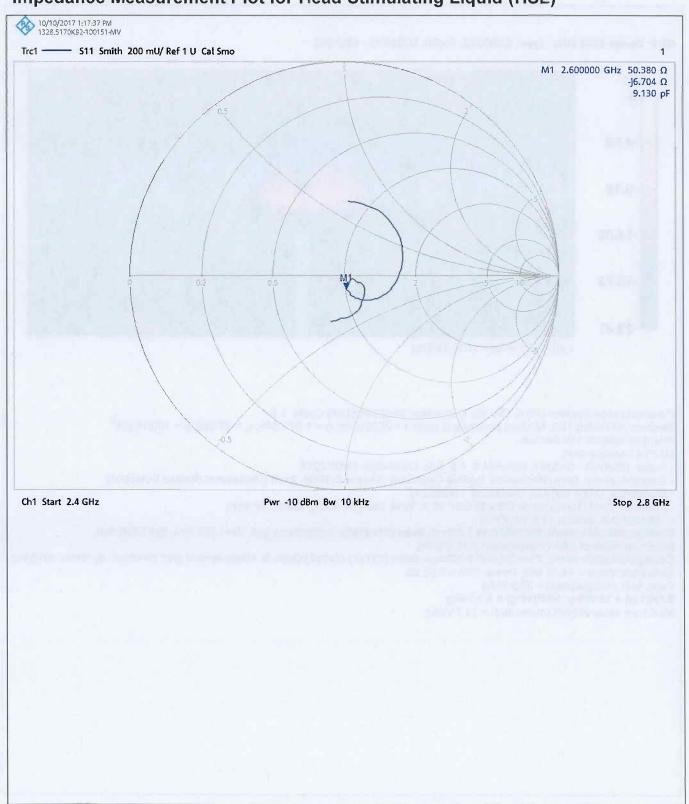
- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017

- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx

-; SEMCAD X Version 14.6.10 (7372)

Configuration/d=10mm, Pin=250mW 2 2/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 15.9 W/kg

Configuration/d=10mm, Pin=250mW 2 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.28 V/m; Power Drift = 0.03 dB

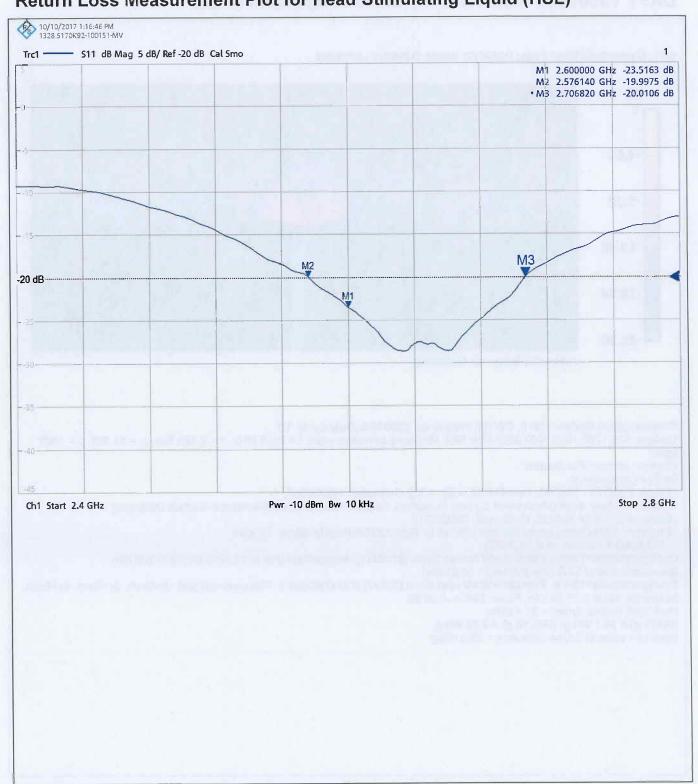

Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.3 W/kg Maximum value of SAR (measured) = 21.7 W/kg

CERTIFICATE NUMBER: 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

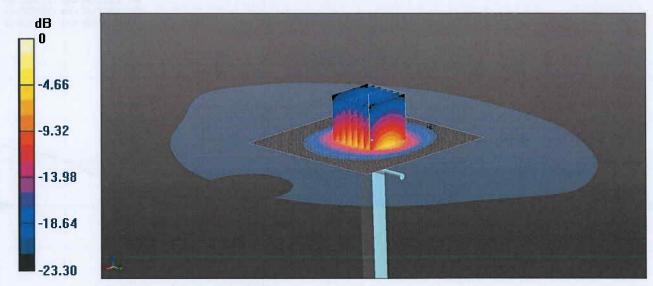


CERTIFICATE NUMBER: 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)


CERTIFICATE NUMBER: 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1006

0 dB = 22.3 W/kg = 13.48 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: 900,1750,1800,1900,2600 MHz MSL Medium parameters used: f = 2600 MHz; σ = 2.189 S/m; ϵ_r = 51.388; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

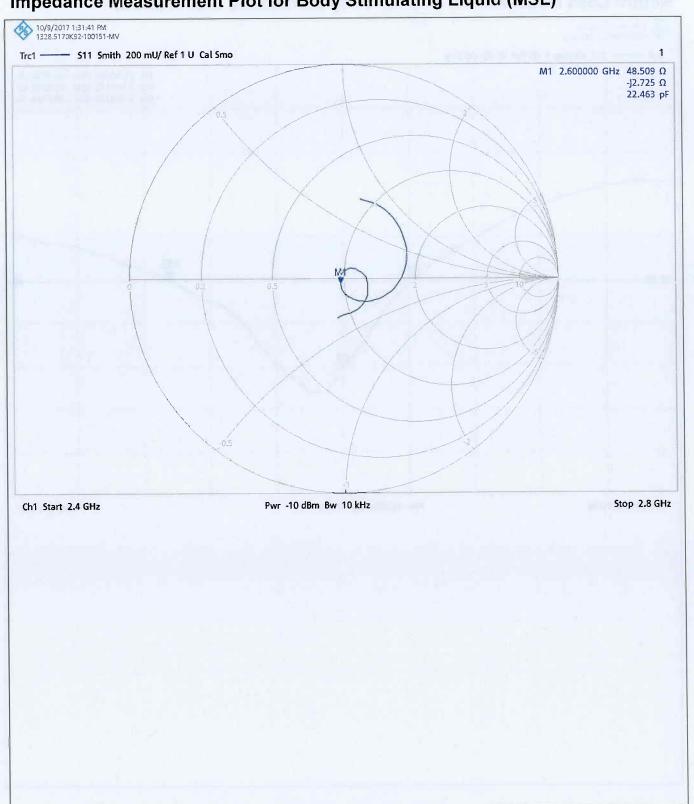
- Probe: ES3DV3 SN3341; ConvF(4.32, 4.32, 4.32); Calibrated: 14/08/2017;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx
- -; SEMCAD X Version 14.6.10 (7372)

Configuration/d=10mm, Pin=250mW 2/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 16.2 W/kg

Configuration/d=10mm, Pin=250mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.50 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.4 W/kg

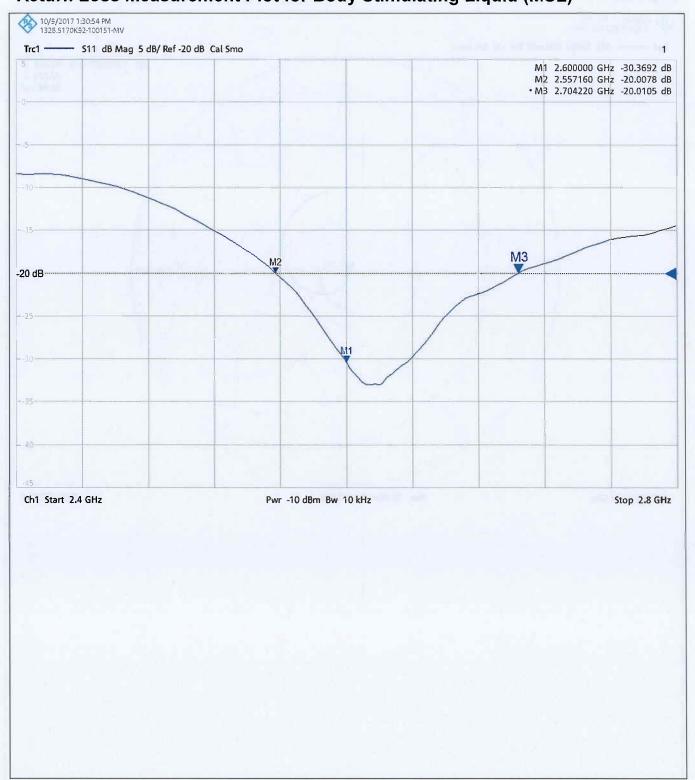

SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 22.3 W/kg

CERTIFICATE **NUMBER:** 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER: 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01E

Instrument ID: 1006

Calibration Date: 05/Oct/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01E

Instrument ID: 1006

Calibration Date: 05/Oct/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01E

Instrument ID: 1006

Calibration Date: 05/Oct/2017

Calibration Due Date:

MODERATE OF THE PARTY OF TRANSPORT

TOTAL TRANSPORT

AND ASSESSMENT OF

1997 33 temperatural

Colombia to Colombia

and of south sighted the Distant

mich militariam and the constant

Applications of majority and the contraction of

pide t. still marginale il

Californian Dans; Valoration 2017

California o Den Dentile I

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 30/Nov/2017

CERTIFICATE NUMBER: 11903932JD01F

5248

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 16

APPROVED SIGNATORY

M. Marca

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:

Dipole Validation Kit

Date of Receipt:

20/Nov/2017

Manufacturer:

Speag

Type/Model Number:

D5GHzv2

Serial Number:

1168

Calibration Date:

23/Nov/2017

Calibrated By:

Chanthu Thevarajah

Laboratory Engineer

Signature:

All Calibration have been conducted in the closed laboratory facility. Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 16

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)	
A2546	Data Acquisition SPEAG		DAE4	1435	10 Feb 2017	12	
A2545	Probe	SPEAG	ES3DV4	3395	04 May 2017	12	
A1377	Dipole	SPEAG	D5GHzV2	1016	16 Feb 2017	12	
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12	
M1855	Power Sensor	Rhode & Schwarz	NRP-Z51	103246	08 Nov 2017	12	
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12	
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	24	
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12	
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	30 Mars 2017	12	

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 16

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F14/5T5ZA1/A/01
DASY Version:	DASY 52 (v52.8.8.1258)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)

Frequency: 5250 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

D1010011								July 1	
Simulant Liquid	Frequency Room Temp Liquid Temp Parameters (MHz) Start End Start End	Target	Measured	Uncertainty					
Simularit Liquid		Start	End	Start	End	raiameters	Value	Value	(%)
Hood	EDED	21.0 °C	21.0 °C	21.0°C	21.0°C	εr	35.9	36.445	± 5%
Head	5250	21.0°C	21.0 °C	21.0°C	21.0%	σ	4.71	4.578	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Lload	SAR averaged over 1g	8.09 W/Kg	80.9 W/Kg	± 18.75%
Head	SAR averaged over 10g	2.28 W/Kg	22.8 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
11	Impedance	62.365 Ω 2.721 jΩ	$\pm 0.28 \Omega \pm 0.044 j\Omega$
Head	Return Loss	19.18	± 1.48 dB

Frequency: 5600 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

		,							
Simulant	Frequency	Room Temp		Liquid Temp		Parameters	Target	Measured	Uncertainty
Liquid	(MHz)	Start	End	Start	End	1 arameters	Value	Value	(%)
Hood	F600	24.0.00	24.0 °C	24.096	21.000	εr	35.5	36.195	± 5%
Head	5600	21.0 °C	21.0 °C	21.0°C	21.0°C	σ	5.07	5.011	± 5%

SAR Results - Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	8.72 W/Kg	87.2 W/Kg	± 18.75%
neau [SAR averaged over 10g	2.44 W/Kg	24.4 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
114	Impedance	47.404 Ω 4.886 jΩ	$\pm 0.28 \Omega \pm 0.044 j\Omega$
Head	Return Loss	25.69	± 1.48 dB

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 16

Frequency: 5750 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant	Frequency	Room	Temp	Liquid	Temp	Parameters	Target	Measured	Uncertainty
Liquid	(MHz)	Start	End	Start	End	Faranteters	Value	Value	(%)
Hood	5750	24.0.00	21.0 °C	21.0°C	21.0°C	εr	35.4	35.945	± 5%
Head	3750	21.0 °C	Z1.0 °C	21.0°C	21.0°C	σ	5.22	5.214	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
lland	SAR averaged over 1g	7.91 W/Kg	79.1 W/Kg	± 18.75%
Head	SAR averaged over 10g	2.21 W/Kg	22.1 W/Kg	± 18.63%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Unnd	Impedance	58.626 Ω -3.403 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	20.65	± 1.48 dB

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 16

Frequency: 5250 MHz

Dielectric Property Measurements – Body Simulating Liquid (MSL)

Divide the point, included the control of the									
Simulant Liquid	Frequency	Room	Temp	Liquid Temp		Parameters	Parameters Target	Measured	Uncertainty
Simulant Liquid (MHz)	(MHz)	Start	End	Start	End	raidificieis	Value	Value	(%)
Dody	5050	22.0.00	24.0.90	24.096	24.090	εr	48.9	47.644	± 5%
Body	5250	22.0 °C	21.0 °C	21.0°C	21.0°C	σ	5.36	5.312	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Destri	SAR averaged over 1g	7.07 W/Kg	70.7 W/Kg	± 18.53%
Body	SAR averaged over 10g	1.97 W/Kg	19.7 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
D - du	Impedance	60.697 Ω 2.711]Ω	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	20.08	± 1.48 dB

Frequency: 5600 MHz

Dielectric Property Measurements – Body Simulating Liquid (MSL)

	Didioodilo i loporej		y	9 W. 1 O	01110		aiacii.g		— — ,	
Simulant Liquid	Frequency	Room	Room Temp Liquid Temp		Parameters	Target	Measured	Uncertainty		
	Simulant Liquid	(MHz)	Start	End	Start	End	Tarameters	Value	Value	(%)
	Dady	E600	22.0.00	21.0 °C	21.0°C	21.0°C	13	48.5	46.782	± 5%
	Body	5600	22.0 °C	21.0 %	21.0%	21.0%	σ	5.77	5.777	± 5%

SAR Results – Body Simulating Liquid (MSL)

Of it Producto Body Simulating England (in-							
Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)			
Dody	SAR averaged over 1g	7.56 W/Kg	75.6 W/Kg	± 18.53%			
Body	SAR averaged over 10g	2.08 W/Kg	20.8 W/Kg	± 18.61%			

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dadu	Impedance	46.92 Ω 4.017 jΩ	$\pm 0.28 \Omega \pm 0.044 j\Omega$
Body	Return Loss	25.70	± 1.48 dB

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 16

Frequency: 5750 MHz

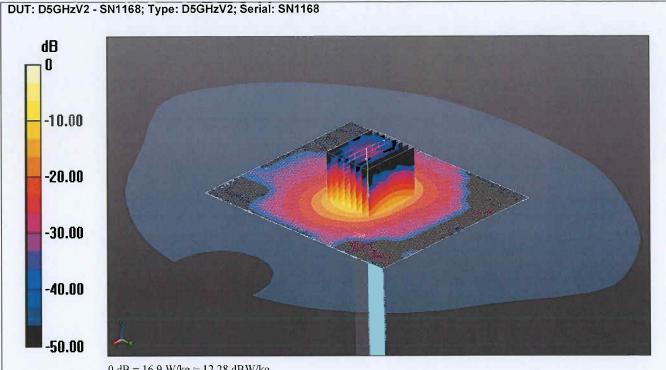
Dielectric Property Measurements - Body Simulating Liquid (MSL)

Simulant Liquid	Frequency (MHz)	Room Temp Liquid Temp		Temp	Parameters	Target	Measured	Uncertainty	
		Start	End	Start	End	raiailicicis	Value	Value	(%)
Dark	F750	02.0.00	04.0.00	04.000	21.0°C	εr	48.3	46.523	± 5%
Body	5750	22.0 °C	21.0 °C	21.0°C	21.0 %	σ	5.94	5.968	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	100 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Deale	SAR averaged over 1g	6.53 W/Kg	65.3 W/Kg	± 18.53%
Body	SAR averaged over 10g	1.82 W/Kg	18.2 W/Kg	± 18.61%

Antenna Parameters – Body Simulating Liquid (MSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	59.977 Ω -2.829 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	20.34	± 1.48 dB

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 16

DASY Validation Scan for Head Stimulating Liquid (HSL)

0 dB = 16.9 W/kg = 12.28 dBW/kg

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: 5GHz MSL Medium parameters used: f = 5250 MHz; $\sigma = 4.578$ S/m; $\epsilon_r = 36.445$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(5.38, 5.38, 5.38); Calibrated: 04/05/2017;

- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017

- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx

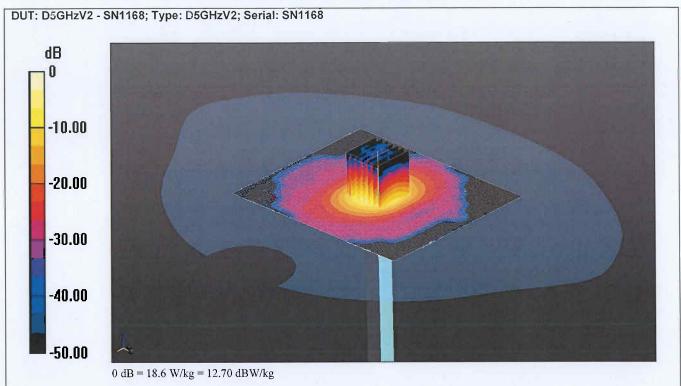
-; SEMCAD X Version 14.6.10 (7372)

Configuration/d=10mm, Pin=250mW 2 2/Area Scan (101x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 12.4 W/kg

Configuration/d=10mm, Pin=250mW 2 2/Zoom Scan 2 (9x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 53.68 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 33.8 W/kg


SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.28 W/kgMaximum value of SAR (measured) = 16.9 W/kg

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 16

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: 5GHz MSL Medium parameters used: f = 5600 MHz; $\sigma = 5.011$ S/m; $\epsilon_r = 36.195$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(5.02, 5.02, 5.02); Calibrated: 04/05/2017;

- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017

- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx

-; SEMCAD X Version 14.6.10 (7372)

Configuration/d=10mm, Pin=250mW/Area Scan (101x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

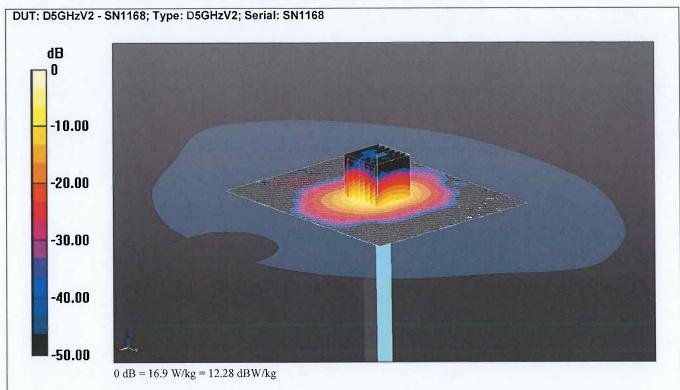
Maximum value of SAR (interpolated) = 13.2 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 53.28 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 38.9 W/kg

SAR(1 g) = 8.72 W/kg; SAR(10 g) = 2.44 W/kg


Maximum value of SAR (measured) = 18.6 W/kg

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 16

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: 5GHz MSL Medium parameters used: f = 5750 MHz; $\sigma = 5.214$ S/m; $\epsilon_r = 35.945$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(5.3, 5.3, 5.3); Calibrated: 04/05/2017;

- Sensor-Surface: 3mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017

- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx

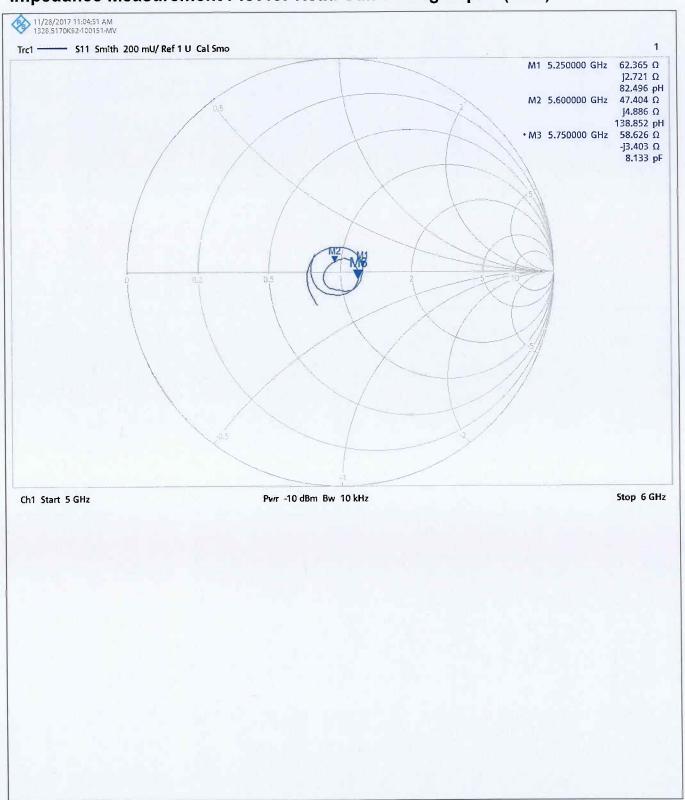
-; SEMCAD X Version 14.6.10 (7372)

Configuration/d=10mm, Pin=250mW/Area Scan (101x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 11.8 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 49.29 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 36.5 W/kg

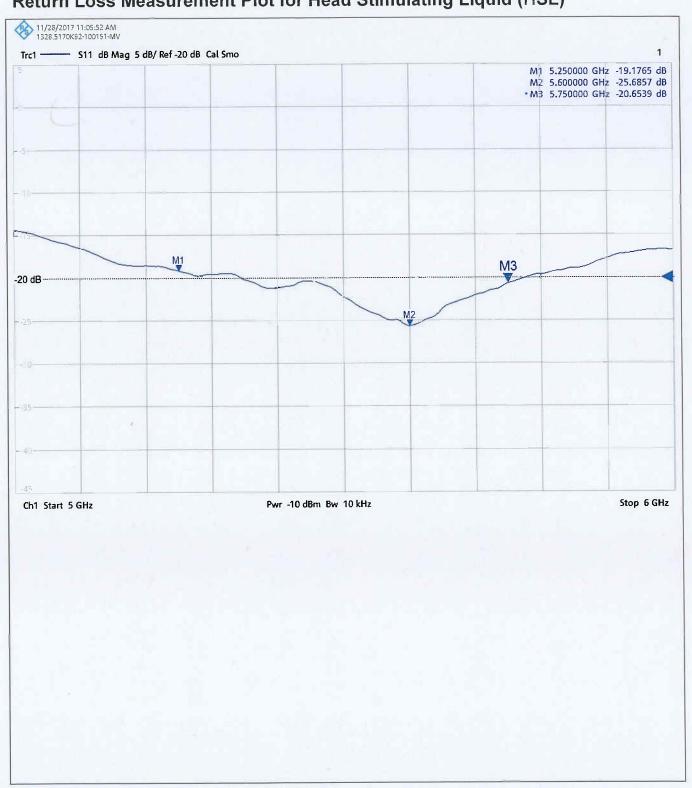

SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 16.9 W/kg

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 16

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

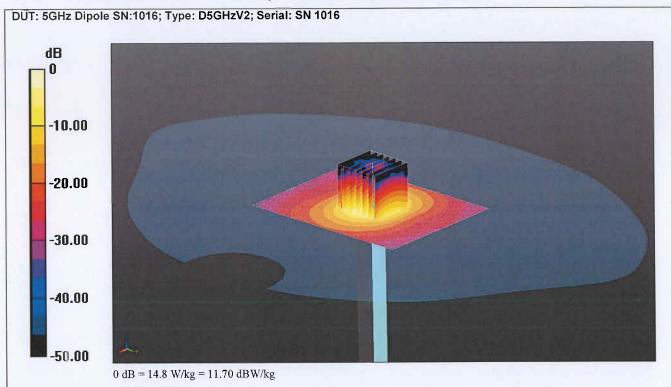


CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 11 of 16

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 12 of 16

DASY Validation Scan for Body Stimulating Liquid (MSL)

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: MSL 5G Medium parameters used: f = 5250 MHz; $\sigma = 5.312$ S/m; $\epsilon_r = 47.644$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

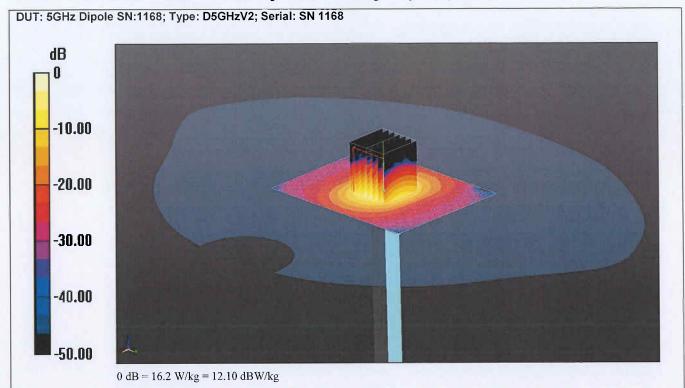
- Probe: EX3DV4 SN3995; ConvF(4.97, 4.97, 4.97); Calibrated: 04/05/2017;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017
- Phantom: SAM (20deg probe tilt) with CRP v4.0; Type: QD000P40CC; Serial: TP:xxxx
- -; SEMCAD X Version 14.6.10 (7372)

Configuration/d=10mm, Pin=100mW 2 2/Area Scan (71x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 15.3 W/kg Configuration/d=10mm, Pin=100mW 2 2/Zoom Scan (7x7x12) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 40.03 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 29.5 W/kg


SAR(1 g) = 7.07 W/kg; SAR(10 g) = 1.97 W/kg Maximum value of SAR (measured) = 14.8 W/kg

CERTIFICATE NUMBER: 11903932JD01F

Page 13 of 16

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Body Stimulating Liquid (MSL)

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: MSL 5G Medium parameters used: f = 5600 MHz; $\sigma = 5.777$ S/m; $\epsilon_r = 46.782$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3995; ConvF(4.4, 4.4, 4.4); Calibrated: 04/05/2017;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017
- Phantom: SAM (20deg probe tilt) with CRP v4.0; Type: QD000P40CC; Serial: TP:xxxx
- -; SEMCAD X Version 14.6.10 (7372)

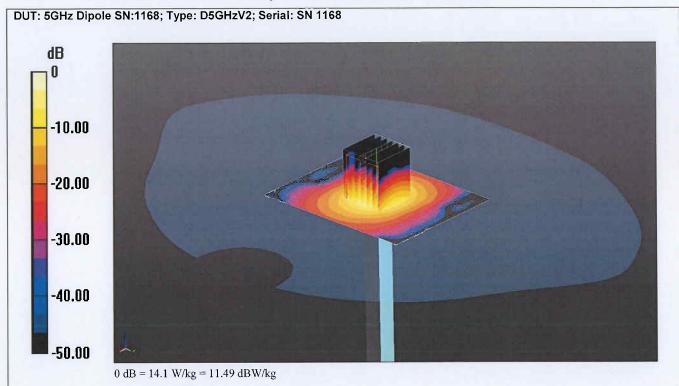
Configuration/d=10mm, Pin=100mW 2/Area Scan (71x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 17.1 W/kg

Configuration/d=10mm, Pin=100mW 2/Zoom Scan (7x7x12) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 39.49 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 33.7 W/kg


SAR(1 g) = 7.56 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 16.2 W/kg

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 14 of 16

DASY Validation Scan for Body Stimulating Liquid (MSL)

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: MS 5G Medium parameters used: f = 5750 MHz; σ = 5.968 S/m; ϵ_r = 46.523; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3995; ConvF(4.59, 4.59, 4.59); Calibrated: 04/05/2017;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017
- Phantom: SAM (20deg probe tilt) with CRP v4.0; Type: QD000P40CC; Serial: TP:xxxx
- -; SEMCAD X Version 14.6.10 (7372)

Configuration/d=10mm, Pin=100mW 2 2 2/Area Scan (71x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

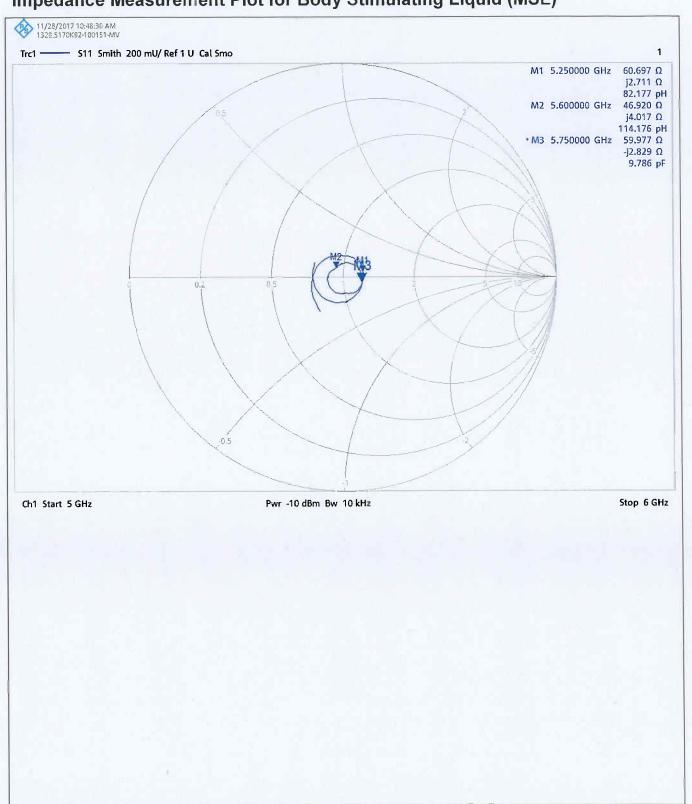
Maximum value of SAR (interpolated) = 14.4 W/kg

Configuration/d=10mm, Pin=100mW 2 2 2/Zoom Scan (7x7x12) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 36.07 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 6.53 W/kg; SAR(10 g) = 1.82 W/kg

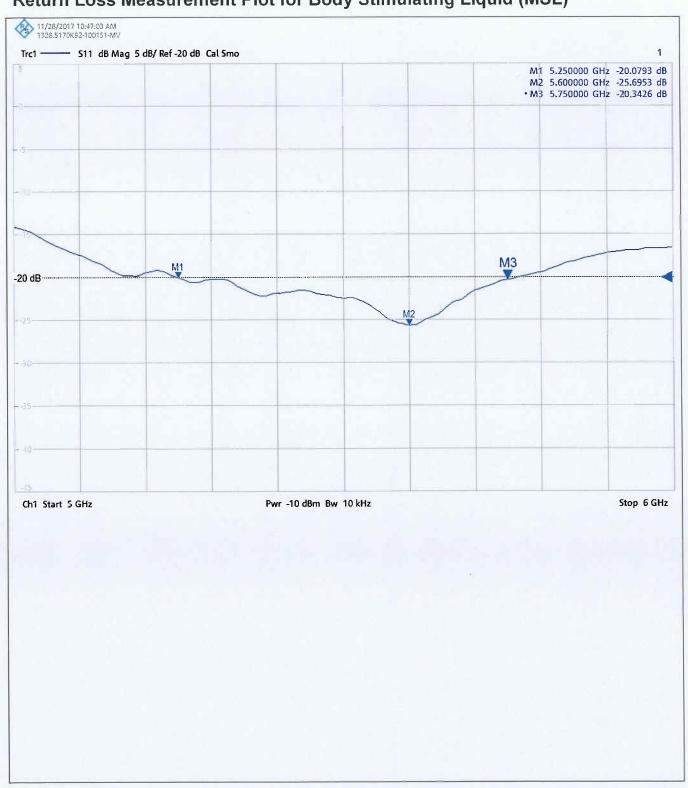

Maximum value of SAR (measured) = 14.1 W/kg

CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 15 of 16

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER: 11903932JD01F

UKAS Accredited Calibration Laboratory No. 5248

Page 16 of 16

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01F

Instrument ID: 1168

Calibration Date: 23/Nov/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01F

Instrument ID: 1168

Calibration Date: 23/Nov/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01F

Instrument ID: 1168

Calibration Date: 23/Nov/2017

Calibration Due Date: