#### 5. SAR Measurement with DASY4 System Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are: 10.3 mW/g $$\pm$$ 16.8 % (k=2)<sup>2</sup> **6.76 mW/g** $$\pm$$ 16.2 % (k=2)<sup>2</sup> # 6. Dipole Impedance and Return Loss The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements. $$Re\{Z\} = 46.7 \Omega$$ Im $$\{Z\} = -4.5 \Omega$$ ### 7. Handling Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole. #### 8. Design The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. #### Power Test Date/Time: 02/12/04 12:33:41 Test Laboratory: SPEAG, Zurich, Switzerland #### **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN499** Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.1$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ET3DV6 - SN1507; ConvF(6.3, 6.3, 6.3); Calibrated: 1/23/2004 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE3 Sn411; Calibrated: 11/6/2003 • Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006 • Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 98 Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 56.5 V/m Power Drift = -0.0 dB Maximum value of SAR = 2.68 mW/g Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 3.81 W/kg SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.62 mW/g Reference Value = 56.5 V/m Power Drift = -0.0 dB Maximum value of SAR = 2.68 mW/g 12 Feb 2004 10:45:43 CH1 S11 1 U FS 1:51.156 Ω -1.7266 Ω 110.40 pF 835.000 000 MHz Del Cor Av9 Date/Time: 02/10/04 15:14:12 Test Laboratory: SPEAG, Zurich, Switzerland ## **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN499** Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Muscle 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 55.5$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: - Probe: ET3DV6 SN1507; ConvF(6.13, 6.13, 6.13); Calibrated: 1/23/2004 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 SN411; Calibrated: 11/6/2003 - Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006; - Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101 ### Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 54.7 V/m; Power Drift = 0.002 dB Maximum value of SAR (interpolated) = 2.79 mW/g # Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.7 V/m; Power Drift = 0.002 dB Maximum value of SAR (measured) = 2.79 mW/g Peak SAR (extrapolated) = 3.82 W/kg SAR(1 g) = 2.58 mW/g; SAR(10 g) = 1.69 mW/g 10 Feb 2004 10:59:22 CHI S11 1 U FS 1: 46.676 Ω -4.5078 Ω 42.283 pF 835.000 000 MHz De 1 Cor Av9 1 CH2 S11 LOG 5 dB/REF -20 dB 1:-24.722 dB 835.000 000 MHz Cor CENTER 835.000 000 MHz SPAN 400.000 000 MHz Client Sproton Int. (Auden) # **CALIBRATION CERTIFICATE** Object(s) D1900V2 - SN:5d041 Calibration procedure(s) QA CAL-05.v2 Calibration procedure for dipole validation kits Calibration date: February 17, 2004 Condition of the calibrated item In Tolerance (according to the specific calibration document) This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard. All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%. Calibration Equipment used (M&TE critical for calibration) | Model Type | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |---------------------------|------------|-------------------------------------------|------------------------| | Power meter EPM E442 | GB37480704 | 6-Nov-03 (METAS, No. 252-0254) | Nov-04 | | Power sensor HP 8481A | US37292783 | 6-Nov-03 (METAS, No. 252-0254) | Nov-04 | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (Agilent, No. 20021018) | Oct-04 | | RF generator R&S SML-03 | 100698 | 27-Mar-2002 (R&S, No. 20-92389) | In house check: Mar-05 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (SPEAG, in house check Nov-03) | In house check: Oct 05 | Calibrated by: Name Function Judith Mueller Technician priville Approved by: Katja Pokovic Laboratory Director Date issued: February 18, 2004 This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed. s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com # **DASY** Dipole Validation Kit Type: D1900V2 Serial: 5d041 Manufactured: July 4, 2003 Calibrated: February 17, 2004