	と 次り CHNOLOGY		
	TEST REPOR	Т	
FCC ID :	2BE6N-W150S		
Test Report No:	CT241128E019		
Date of issue:	Dec. 09, 2024		
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB	
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an District 518103, People's Republic of Ch	t, Shenzhen, Guangdong,	
Applicant's name: :	GIRAFIT INC		
Address:	21642 GOLDEN POPPY COUR United States	T, WALNUT, California 91749,	
Manufacturer's name :	GIRAFIT INC		
Address:	21642 GOLDEN POPPY COUR United States	T, WALNUT, California 91749,	
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01		
Product Name::	W150S Window Camera		
Trade Mark:	N/A		
Model/Type reference :	GRF-W150SW, GRF-W150S, GRF-W150SB, GRF-W150SG, W150S, W150SW, W150SG, W150SB		
Rating(s):	Adapter Information: MODEL: BS05A-0501000US INPUT: AC 100-240V, 50/60Hz, OUTPUT: DC 5V, 1000mA		
Date of receipt of test item	Nov. 28, 2024	$\left(\mathcal{C} \right)$	
Date (s) of performance of test:	Nov. 28, 2024 ~ Dec. 09, 2024		
Tested by (+signature) :	Yannie ZHONG	Vannie Zootteger	
Check by (+signature) :	Beryl ZHAO	Boy Pur TCT	
Approved by (+signature):	Tomsin	Toms in st	
TONGCE TESTING LAB. TH	his document may be altered or r ly, and shall be noted in the revis	e written approval of SHENZHEN revised by SHENZHEN TONGCE sion section of the document. The	

TABLE OF CONTENTS

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	General Product Information	
	1.1. EUT description	3
	1.2. Model(s) list	
	1.3. Test Frequency	
2.	Test Result Summary	
3.	General Information	
	3.1. Test environment and mode	
	3.2. Description of Support Units	7
4.	Facilities and Accreditations	
	4.1. Facilities	
	4.2. Location	
	4.3. Measurement Uncertainty	
5.	Test Results and Measurement Data	
	5.1. Antenna requirement	9
	5.2. Conducted Emission	
	5.3. Maximum Conducted Output Power	
	5.4. 6dB Emission Bandwidth	16
	5.5. 26dB Bandwidth and 99% Occupied Bandwid	dth17
	5.6. Power Spectral Density	
	5.7. Band edge	
	5.8. Unwanted Emissions	
	5.9. Frequency Stability Measurement	
F	Appendix A: Test Result of Conducted Test	
A	Appendix B: Photographs of Test Setup	
	Appendix C: Photographs of EUT	

Page 2 of 146

1. General Product Information

1.1. EUT description

Product Name:	W150S Window Camera		(\mathbf{c}^{\prime})
Model/Type reference:	GRF-W150SW		
Sample Number:	TCT241128E011-0101		
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz		
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz 802.11ax: 20MHz, 40MHz	9	
Modulation Technology:	Orthogonal Frequency Division Multip	lexing (OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QF	PSK 🕗	
Antenna Type:	Metal Antenna		
Antenna Gain:	Band 1: 3.08dBi Band 3: 3.76dBi		
Rating(s):	Adapter Information: MODEL: BS05A-0501000US INPUT: AC 100-240V, 50/60Hz, 0.25A OUTPUT: DC 5V, 1000mA	A Max.	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.			Model No. Tested with			
1		GRF-W150	DSW			\boxtimes	
Other models	GRF-W150	S, GRF-W150SB, W150SW, W15					
	erent on the mode	other models are deriv I names, image pixel a					
						3 of 146	

Report No.: TCT241128E019

1.3. Test Frequency

Band 1

20MHz			40MHz
Channel	Frequency	Channel	Frequency
36	5180 🤇	38	5190
40	5200	46	5230
48	5240	(
			0

Band 3

20MHz		1	40MHz
Channel	Frequency	Channel	Frequency
149	5745	151	5755
157	5785	159	5795
165	5825	(

Note:

Ś

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS
		(207)

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

5. For the band 5.15-5.25GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 146

3. General Information

3.1. Test environment and mode

Operating Environment:				
Condition	Conducted Emission	Radiated Emission		
Temperature:	22.1 °C	23.5 °C		
Humidity:	50 % RH	51 % RH		
Atmospheric Pressure:	1010 mbar	1010 mbar		

Test Software:

Software Information:	SSCOM V5.13.1	
Power Level:	Band 1: 10	
FOWEI Level.	Band 3: 15	

Test Mode:

Engineer mode:

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Data rate			
6 Mbps			
6.5 Mbps			
13.5 Mbps			
6.5 Mbps			
13.5 Mbps			
6.5Mbps			
13.5Mbps	13.5Mbps		
	6 Mbps6.5 Mbps13.5 Mbps6.5 Mbps13.5 Mbps13.5 Mbps6.5 Mbps		

Page 6 of 146

Keep the EUT in continuous transmitting by select channel and modulations with max duty cycle.

TCT通测检测 3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1		
Ke /				

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test. 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
- use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious

Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

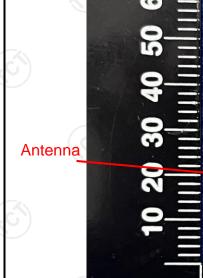
4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement


Standard requirement: FCC Part15 C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The WIFI antenna is metal antenna which permanently attached, and the best case gain of the antenna is 3.76dBi of Band 3.

Page 9 of 146

5.2. Conducted Emission

5.2.1. Test Specification

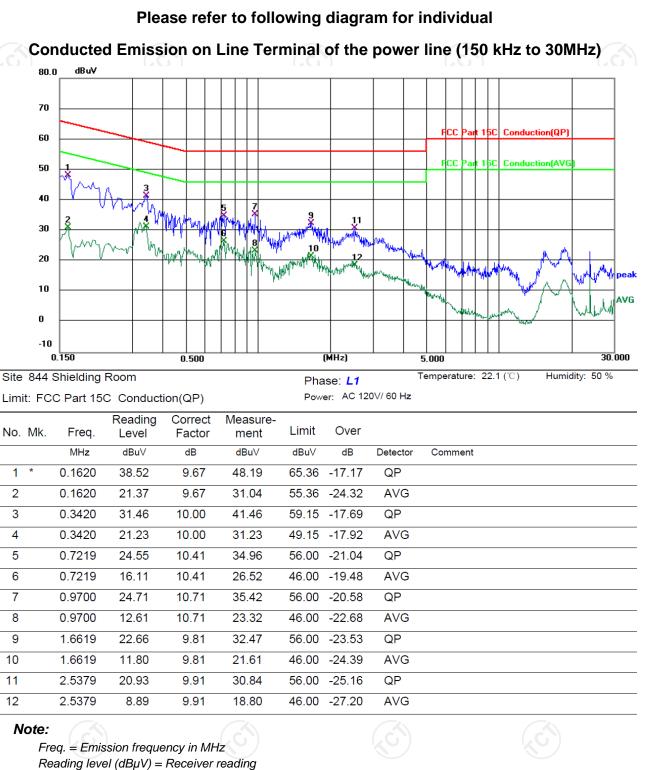
0.5-5 56 46 5-30 60 50 Reference Plane 0.5-5 56 46 50 Reference Plane 0.5-5 50 Reference Plane 0.5-5 50 Reference Plane 0.5-5 50 Plane 0.5-5 50 Reference Plane Image: Colspan="2">Colspan="2"Co				(
Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 Reference Plane Image: transmitting Mode Transmitting Mode 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization network? Test Mode: 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization network? Test Procedure: 2. The peripheral devices are also connected to the r power through a Line impedance stabilization network? Before the book diagram of the test setup photographs). 3. Both sides of A.C. line are checked for maxin conducted interference. In order to find the maxin ministion, the relative positions of equipment and a the interface cables must be changed accordin ANSI C63.10: 2020 on conducted measurement.	Test Requirement:	FCC Part15 C Section	15.207				
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 Reference Plane Image: transmitting transmitting transmitting Mode Test Mode: Transmitting Mode 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization network that provides a 500hm/50uH couprimpedance for the measuring equipment. 2. The peripheral devices are also connected to the r power through a LISN that provides a 500hm/50uH couprimpedance for the measuring equipment. 3. Both sides of A.C. line are checked for maxin conducted interference. In order to find the maxin emission, the relative positions of equipment and a the interface cables must be changed accordin ANSI C63.10: 2020 on conducted measurement.	Test Method:	ANSI C63.10:2020					
Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46' 0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">ENT procedure Reference Plane Reference Plane Image: Colspan="2">ENT procedure Reference Plane Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= "2" Test Node: Transmitting Mode 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization network (L.I.S.N.). This provides a 500chm/50UH coupling impedance for the measuring equipment. Coupling impedance with 500hm termination. (Plane" for the use step photographs). Both sides of A.C. line are checked for maxin con	Frequency Range:	150 kHz to 30 MHz					
Limits: (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46' 0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Image: Colspan="2">Colspan="2"Colspan= Colspan="2"Colspan="2"Colspan="2"Colspan="	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
Limits: (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46' 0.5-5 56 46 5-30 60 50 Reference Plane Image: Plane in the interface of the maximum of the test setup Test Mode: Transmitting Mode 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization network (LI.S.N.). This provides a 500hm/50UH coup impedance for the measuring equipment. Test Mode: Test Procedure: Test Procedure: Description of the test setup photographs). Both sides of A.C. line are checked for maxim conducted interforence. In order to find the maxim emission, the relative positions of equipment and a the interface cables must be changed accordin ANSI C63.10: 2020 on conducted measurement.		Frequency range	Limit (dBuV)			
Limits: 0.15-0.5 66 to 56* 56 to 46' 0.5-5 56 46 5-30 60 50 Reference Plane Image: Solution plane Reference Plane Image: Solution plane Remark: EULT AC power Image: Solution plane Remark: Colspan="2">Image: Solution plane Remark: EULT AC power Image: Solution plane Remark: Colspan="2">Image: Solution plane Remark: Colspan="2">Solution plane Remark: Colspan="2">Solution plane Remark: Colspan="2">Solution plane Remark: Colspan="2">Solution plane FMI Remark: Colspan="2">Solution plane Image: Solution plane Image: Solution plane Image: Solution plane </td <td></td> <td></td> <td></td> <td></td>							
0.5-5 56 46 5-30 60 50 Reference Plane 0.5-5 56 46 50 Reference Plane 0.5-5 50 Reference Plane 0.5-5 50 Reference Plane 0.5-5 50 Plane Image: Colspan="2">Colspan="2"Colspan=	Limits:			56 to 46*			
Test Setup: Feference Plane Image: Formatic test table/Insulation plane Filter Ac power Fermatic test table/Insulation plane Filter Ac power Fermatic test table/Insulation plane Filter Ac power Test Mode: Transmitting Mode 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization network Test Mode: 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coup impedance for the measuring equipment. Test Procedure: 2. The peripheral devices are also connected to the r power through a LISN that provides a 500hm/50uH coup impedance with 500hm termination. (Ple refer to the block diagram of the test setup photographs). 3. Both sides of A.C. line are checked for maxin conducted interference. In order to find the maxin emission, the relative positions of equipment and a the interface cables must be changed accordin ANSI C63.10: 2020 on conducted measurement.							
Test Setup: Image: Test table/Insulation plane 80cm LISN Filter AC power Remark: E.U.T Equipment Under Test EMI Receiver LISN Line impedance Stabilization Network EMI Receiver EMI Receiver Test Mode: Transmitting Mode 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization network Test Mode: 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization network Test Procedure: 2. The peripheral devices are also connected to the r power through a LISN that provides a 500hm/50uH coupling impedance with 50ohm termination. (Ple refer to the block diagram of the test setup photographs). 3. Both sides of A.C. line are checked for maxin conducted interference. In order to find the maxin emission, the relative positions of equipment and a the interface cables must be changed accordin ANSI C63.10: 2020 on conducted measurement.							
Test Setup: Image: E.U.T and power biabilization plane Remark: E.U.T Equipment Under Test LISN Line impedence Stabilization Network EMI Receiver Test Mode: Transmitting Mode 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coup impedance for the measuring equipment. 2. The peripheral devices are also connected to the r power through a LISN that provides a 500hm/50uH coup impedance with 500hm termination. (Plerefer to the block diagram of the test setup photographs). 3. Both sides of A.C. line are checked for maxim conducted interference. In order to find the maxim emission, the relative positions of equipment and a the interface cables must be changed accordin ANSI C63.10: 2020 on conducted measurement.		Reference	e Plane				
 Test Procedure: 1. The E.U.T and simulators are connected to the r power through a line impedance stabilization netw (L.I.S.N.). This provides a 50ohm/50uH coup impedance for the measuring equipment. 2. The peripheral devices are also connected to the r power through a LISN that provides a 50ohm/5 coupling impedance with 50ohm termination. (Pler refer to the block diagram of the test setup photographs). 3. Both sides of A.C. line are checked for maxim emission, the relative positions of equipment and a the interface cables must be changed according ANSI C63.10: 2020 on conducted measurement. 		E.U.T AC power 80cm LISN Test table/Insulation plane Filter AC power Remarkc E.U.T. Equipment Under Test EMI LISN: Line Impedence Stabilization Network Retwork					
 Test Procedure: power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH couprimpedance for the measuring equipment. The peripheral devices are also connected to the measuring equipment. The peripheral devices are also connected to the measuring impedance with 500hm termination. (Pleareform to the block diagram of the test setup photographs). Both sides of A.C. line are checked for maximents of the interface cables must be changed according ANSI C63.10: 2020 on conducted measurement. 	Test Mode:	Transmitting Mode					
	Test Procedure:	 power through a line (L.I.S.N.). This pro- impedance for the m 2. The peripheral device power through a LI- coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative the interface cables 	e impedance stab ovides a 500hm neasuring equipme es are also conne SN that provides with 500hm term diagram of the line are checken nce. In order to fin e positions of equ s must be chang	pilization networ /50uH coupling ent. ected to the main a 50ohm/50uh nination. (Please test setup and ed for maximum ind the maximum ipment and all co led according to			
Test Result: PASS	Test Result:	PASS					

Page 10 of 146

5.2.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Conducted Emission Shielding Room Test Site (843)							
~	Equipment	Manufacturer	Model	Serial Number	Calibration Due			
	EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025			
	LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025			
	Attenuator	N/A	10dB	164080	Jun. 26, 2025			
	Line-5	тст	CE-05		Jun. 26, 2025			
	EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	/			



Page 11 of 146

5.2.3. Test data

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit ($dB\mu V$) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)


Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 12 of 146

Report No.: TCT241128E019

Site 844 Shielding Room

Limit: FCC Part 15C Conduction(QP)

Phase: N Power: AC 120V/ 60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	39.85	9.65	49.50	66.00	-16.50	QP	
2		0.1500	16.86	9.65	26.51	56.00	-29.49	AVG	
3	*	0.1980	38.11	9.63	47.74	63.69	-15.95	QP	
4		0.1980	17.35	9.63	26.98	53.69	-26.71	AVG	
5		0.3459	31.27	9.99	41.26	59.06	-17.80	QP	
6		0.3459	14.29	9.99	24.28	49.06	-24.78	AVG	
7		1.0060	23.60	10.71	34.31	56.00	-21.69	QP	
8		1.0060	2.47	10.71	13.18	46.00	-32.82	AVG	
9		1.7700	20.35	9.77	30.12	56.00	-25.88	QP	
10		1.7700	3.39	9.77	13.16	46.00	-32.84	AVG	
11		3.1500	17.95	9.91	27.86	56.00	-28.14	QP	
12		3.1500	-0.33	9.91	9.58	46.00	-36.42	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ Limit $(dB\mu V) = Limit$ stated in standard $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$ Q.P. =Quasi-Peak

worst case Mode (Lowest channel and 802.11ax(HE20)) was submitted only.

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(HE20), 802.11ax(HE40) and the

Report No.: TCT241128E019

5.3. Maximum Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section			
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E				
	Frequency Band (MHz)	Limit			
	5180 - 5240	24dBm(250mW) for client device			
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz			
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz			
	5745 - 5825	30dBm(1W)			
Test Setup:	Power meter	EUT			
Test Mode:	Transmitting mode w	vith modulation			
Test Procedure:	KDB789033 D02 Rules v02r01 Set 2. The RF output of meter by RF cab to the results for 3. Set to the maximu EUT transmit cor	EUT was connected to the power le. The path loss was compensated each measurement. Im power setting and enable the atinuously. lucted output power and record the			
Test Result:	PASS				

Page 14 of 146

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Power Meter	Agilent	E4418B	MY45100357	Jun. 26, 2025
Power Sensor	Agilent	8184A	MY41096530	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
	Combiner Box	Ascentest	AT890-RFB	1	1
X		9	No.	No.	No.

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049					
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D					
No restriction limits					
Spectrum Analyzer EUT					
Transmitting mode with modulation					
 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report. 					
PASS					

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

5.6. Power Spectral Density

5.6.1. Test Specification

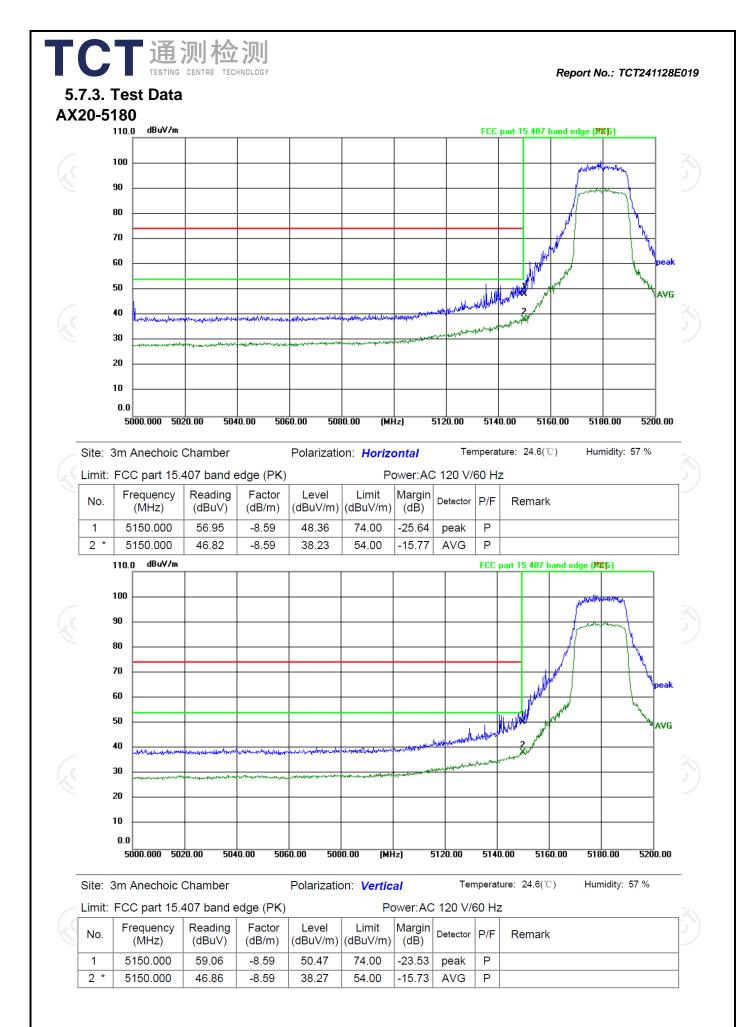
Test Requirement:	FCC Part15 E Section 15.407 (a)
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F
Limit:	 ≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near trace approximate.
	free-space environment.

5.6.2. Test Instruments

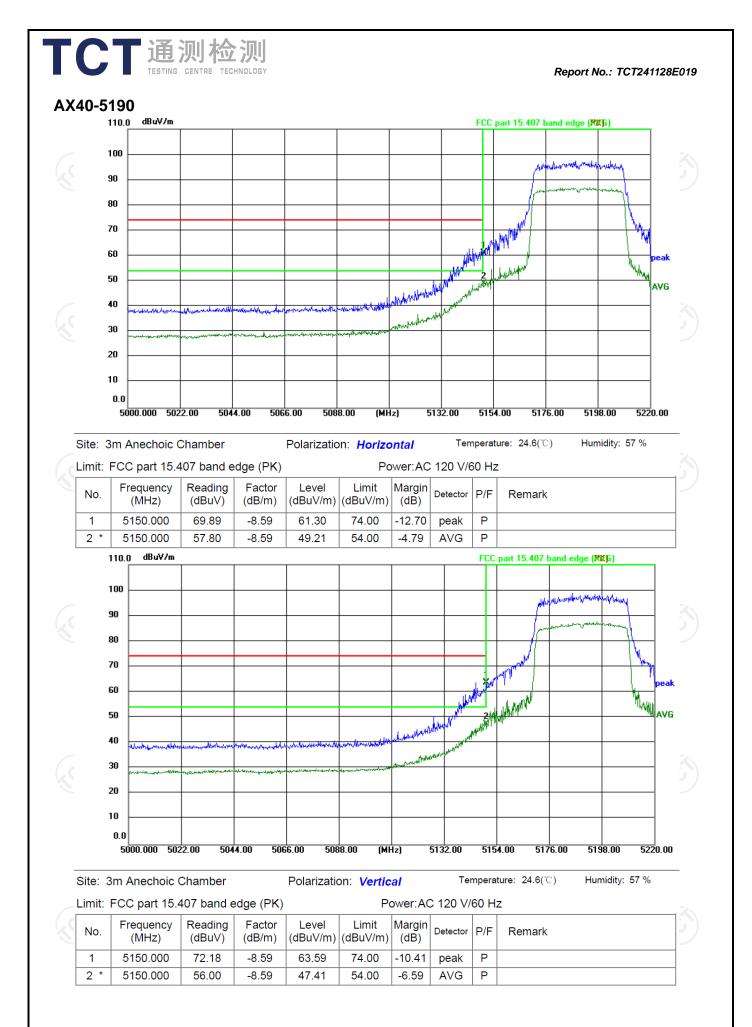
Equipment Manufacturer		Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

FCC CFR47 Part	FCC CFR47 Part 15E Section 15.407						
ANSI C63.10:202	20						
In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3:							
Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)				
< 5650	-27	5850~5855	27~15.6				
5650~5700	-27~10	5855~5875	15.6~10				
5700~5720	10~15.6	5875~5925	10~-27				
5720~5725	15.6~27	> 5925	-27				
In restricted band:		(
	r						
AVG		54dBµ	V/m				
Controller Contro							
-			S.				
meters above the was rotated 360 of highest radiation. 2. The EUT was s interference-received the top of a variate 3. The antenna how meters above the value of the field s polarizations of the measurement.	e ground at a degrees to d set 3 meters iving antenn ole-height ar eight is varie ground to c strength. Bo ne antenna a ected emiss	a 3 meter camb etermine the p away from the a, which was r ntenna tower. ed from one me letermine the r th horizontal a are set to make	ber. The table position of the mounted on eter to four maximum nd vertical e the vas arranged				
	ANSI C63.10:202 In un-restricted bank For Band 3: Frequency (MHz) \$5650 5650~5700 5700~5720 5720~5725 E[dBµV/m] = EIRP In restricted band: Detecto Peak AVG Transmitting mod 1. The EUT was preters above the was rotated 360 of highest radiation. 2. The EUT was sinterference-rece the top of a varial 3. The antenna hometers above the value of the field polarizations of th measurement. 4. For each suspon	ANSI C63.10:2020 In un-restricted band: For Band 1&2A&2C: -27dBm/MH; For Band 3: Frequency Limit (MHz) (dBm/MHz) < 5650	ANSI C63.10:2020 In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3: Frequency Limit (MHz) (MHz) < 5650 - 5700				

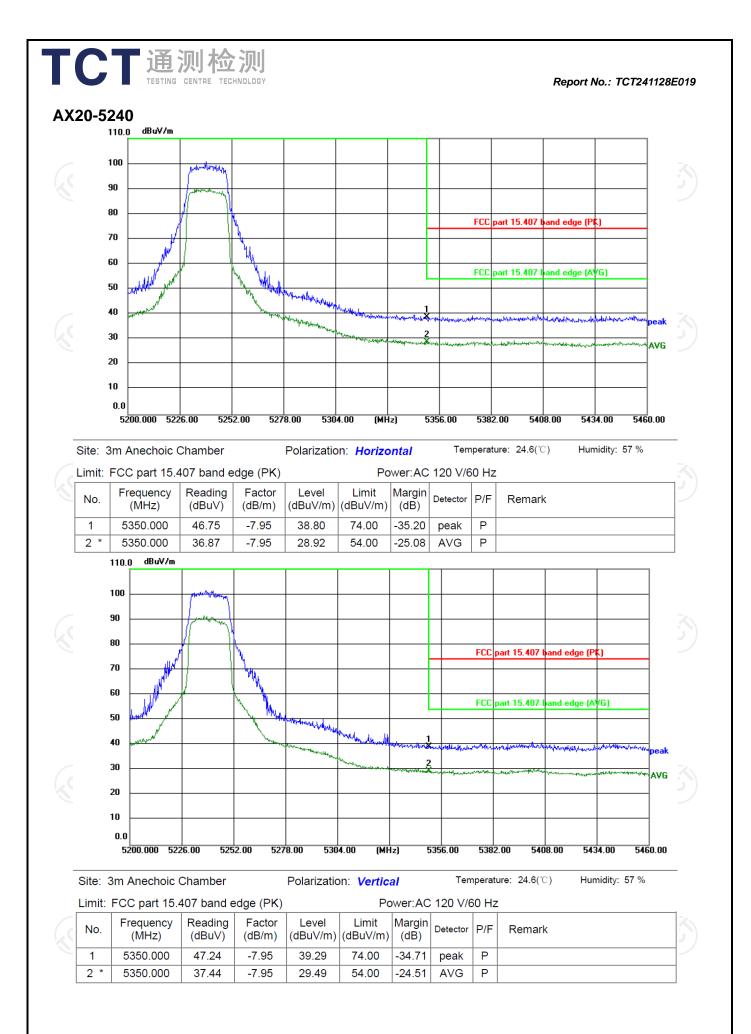
Page 19 of 146

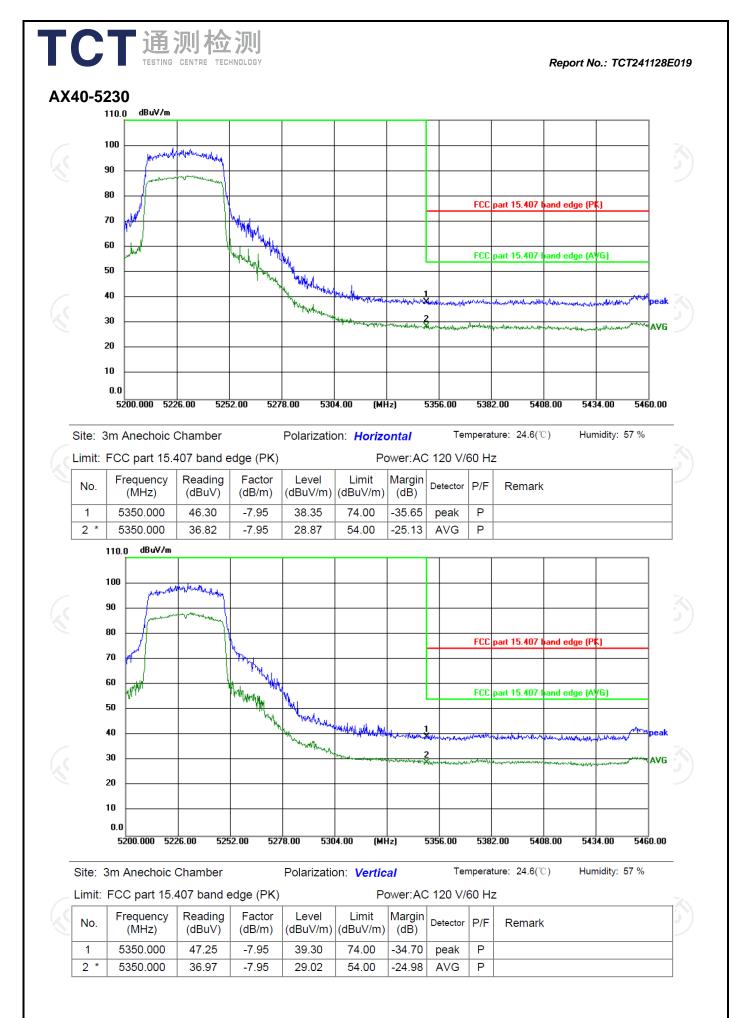

	変 沢リ ECHNOLOGY Report No.: TCT241128E
	Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
Test Result:	PASS

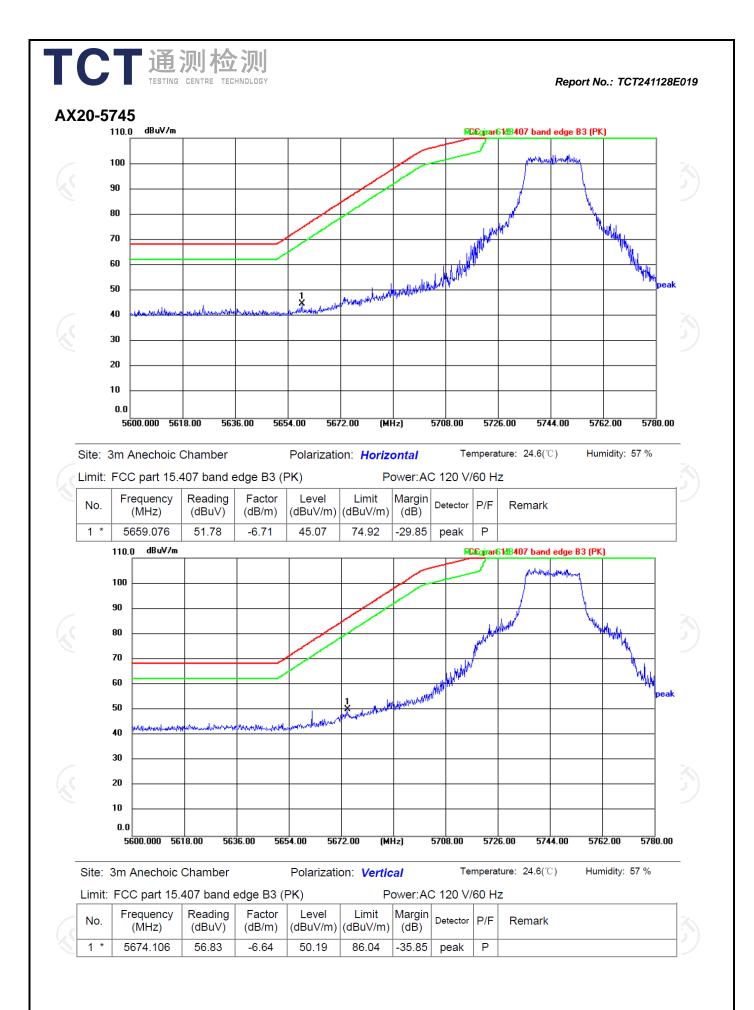
			Page 2	0 of 146

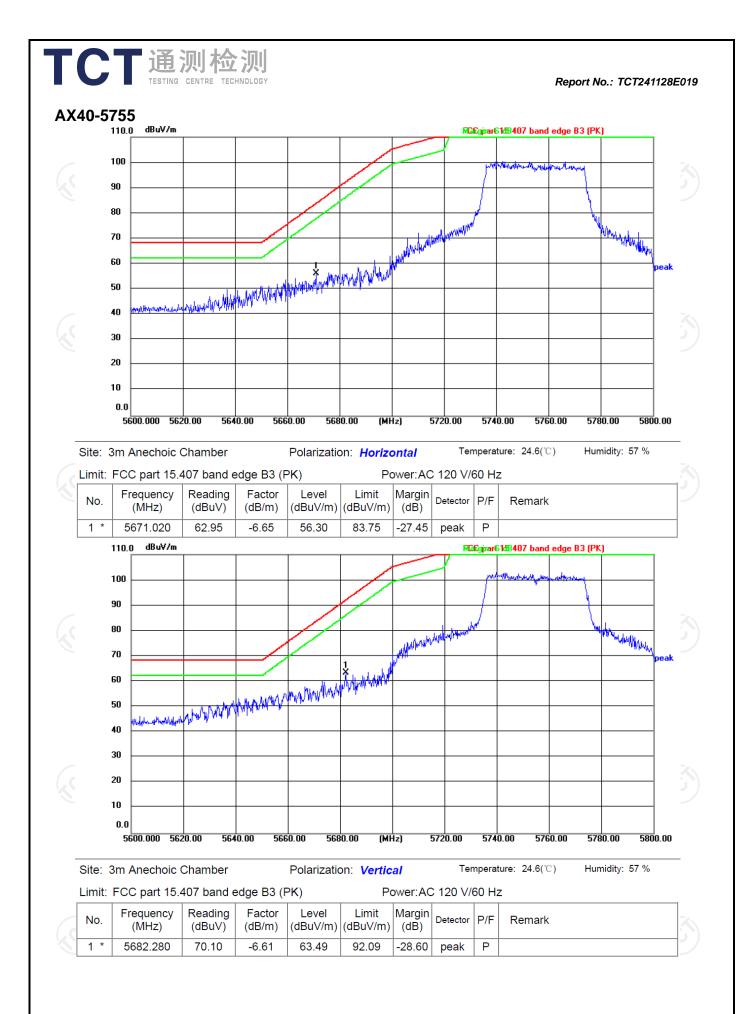

5.7.2. Test Instruments

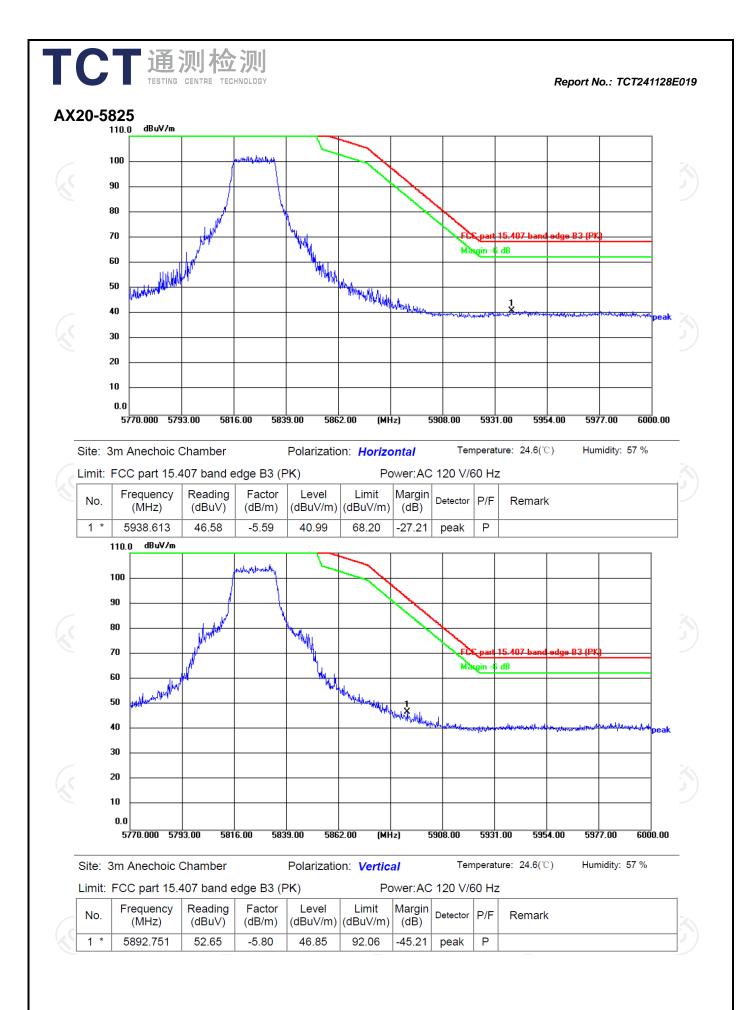
Radiated Emission Test Site (966)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025				
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025				
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025				
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025				
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025				
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025				
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025				
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025				
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025				
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025				
Coaxial cable	SKET	RE-03-D	1	Jun. 26, 2025				
Coaxial cable	SKET	RE-03-M	1	Jun. 26, 2025				
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025				
Coaxial cable	SKET	RE-04-D	(\mathcal{C})	Jun. 26, 2025				
Coaxial cable	SKET	RE-04-M	1	Jun. 26, 2025				
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025				
Antenna Mast	Keleto	RE-AM	\mathcal{D}_{I}					
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/				

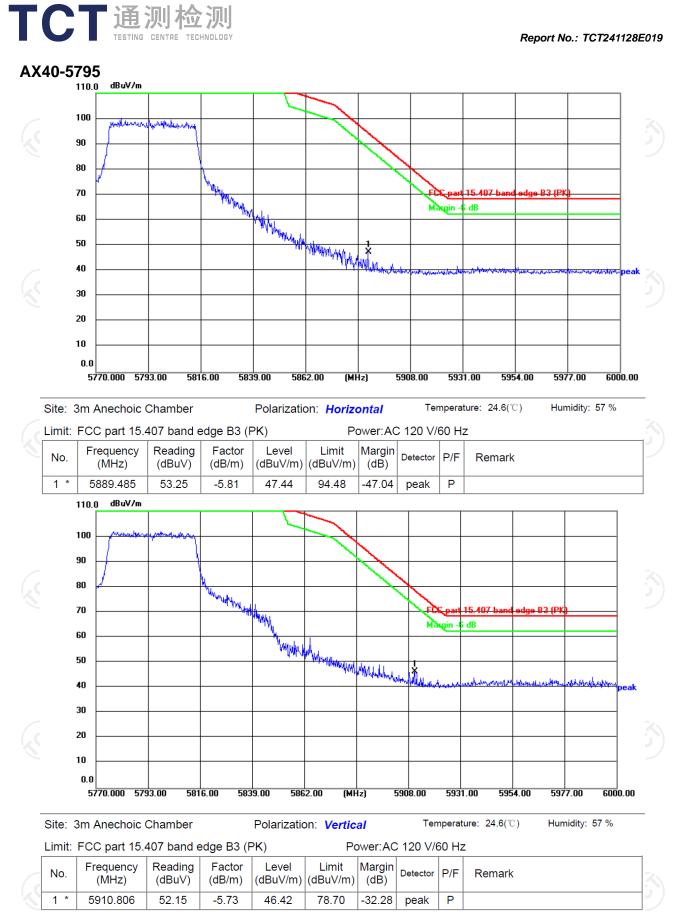

Page 21 of 146


Page 22 of 146


Page 23 of 146


Page 24 of 146


Page 25 of 146


Page 26 of 146

Page 27 of 146

Page 28 of 146

Note: All modulation (802.11a, 802.11n, 802.11ac, 802.11ax) have been tested, only the worst case in 802.11ax be

reported.

Page 29 of 146

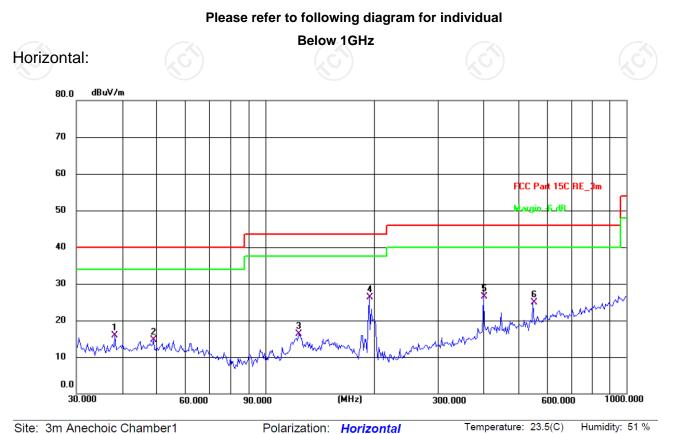
5.8. Unwanted Emissions

5.8.1. Test Specification

FCC CFR47	Part 15 S	ection 15	.407 & 1	5.209 & 15.20		
KDB 789033	3 D02 v02r	·01				
9kHz to 40G	Hz					
3 m	6	3				
Horizontal &	Vertical	\mathcal{I}				
Transmitting	mode with	h modulat	ion			
Frequency	Detector	RBW	VBW	Remark		
9kHz- 150kHz			1kHz	Quasi-peak Value		
150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value		
30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
	Peak	1MHz	3MHz	Peak Value		
Above TGHZ	Peak	1MHz	10Hz	Average Value		
Frequency	F (AVC Field Strengtl microvolts/m	G h	74dBµV/m 54dBµV/m Measurement Distance (meters)		
0.009-0.490	1			300		
			()	3		
				30		
				3		
216-960				3		
Above 960				3		
In un-restricted bands: 68.2dBuV/m						
For radiated emissions below 30MHz Distance = 3m Computer						
	EUT					
	KDB 789033 9kHz to 40G 3 m Horizontal & Transmitting Frequency 9kHz- 150kHz 150kHz- 30MHz-16Hz Above 1GHz Unwanted sp per FCC Par general field below table, In restricted Frequency 0.009-0.490 0.49 -1.705 1.705-30 30-88 88-216 216-960 Above 960 In un-restricted For radiated	KDB 789033 D02 v02r 9kHz to 40GHz 3 m Horizontal & Vertical Transmitting mode with Frequency Detector 9kHz- 150kHz Quasi-peak 150kHz- Quasi-peak 30MHz-1GHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak Unwanted spurious emper FCC Part15.205 sH general field strength below table, In restricted bands: Frequency Above 1G Frequency Above 960 1.705-30 30-88 88-216 216-960 Above 960	KDB 789033 D02 v02r01 9kHz to 40GHz 3 m Horizontal & Vertical Transmitting mode with modulat Frequency Detector 9kHz-150kHz Quasi-peak 30MHz-150kHz Quasi-peak 30MHz-1GHz Quasi-peak 30MHz-1GHz Quasi-peak 150kHz- Quasi-peak 30MHz-1GHz Quasi-peak 100kHz- Peak 1MHz Peak Unwanted spurious emissions fiper FCC Part15.205 shall compligeneral field strength limits set below table, In restricted bands: Frequency Frequency Detector Above 1G Avc Frequency Detector 0.009-0.490 2400/F(KHz) 0.49 -1.705 2400/F(KHz) 0.49 -1.705 2400/F(KHz) 1.705-30 30 30-88 100	9kHz to 40GHz 3 m Horizontal & Vertical Transmitting mode with modulation Frequency Detector RBW VBW 9kHz. 150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 30Hz- Unwanted spurious emissions fallen in reper FCC Part15.205 shall comply with th general field strength limits set forth is below table, In restricted bands: In restricted bands: Frequency Detector Above 1G Peak AVG Frequency Field Strength (microvolts/meter) 0.009-0.490 0.009-0.490 2400/F(KHz) 0.49 -1.705 0.009-0.490 2400/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz Distance=3m Im Im Im		

Page 30 of 146

	沢リ Indugy Boppert No + TCT244429年
	30MHz to 1GHz
	Antenna Tower
	Search Search
	EUT _ 4m Antenna
	RF Test Receiver
	Table
	Ground Plane
	Above 1GHz
	AE EUT Horn Antenna Tower
	Ground Reference Plane
	Test Receiver Angelier Controller
	4. The FUT was placed on the tap of a rotating table 0.9
	1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table
	was rotated 360 degrees todetermine the position of the
	highest radiation.
	2. The EUT was set 3 meters away from the
	interference-receiving antenna, whichwas mounted on
	the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four
	meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical
	polarizations of the antenna are set to make the
	measurement.
	4. For each suspected emission, the EUT was arranged
Test Procedure:	to its worst case and thenthe antenna was tuned to
	heights from 1 meter to 4 meters and the rotatablewas
	turned from 0 degrees to 360 degrees to find the
	maximum reading. 5. The test-receiver system was set to Peak Detect
	Function and SpecifiedBandwidth with Maximum Hold
	Mode.
	6. If the emission level of the EUT in peak mode was
	10dB lower than the limitspecified, then testing could be
	stopped and the peak values of the EUT wouldbe
	reported. Otherwise the emissions that did not have
	10dB margin would bere-tested one by one using peak,
	quasi-peak or average method as specified andthen
Test results:	reported in a data sheet.
LOST FOSILITE'	PASS

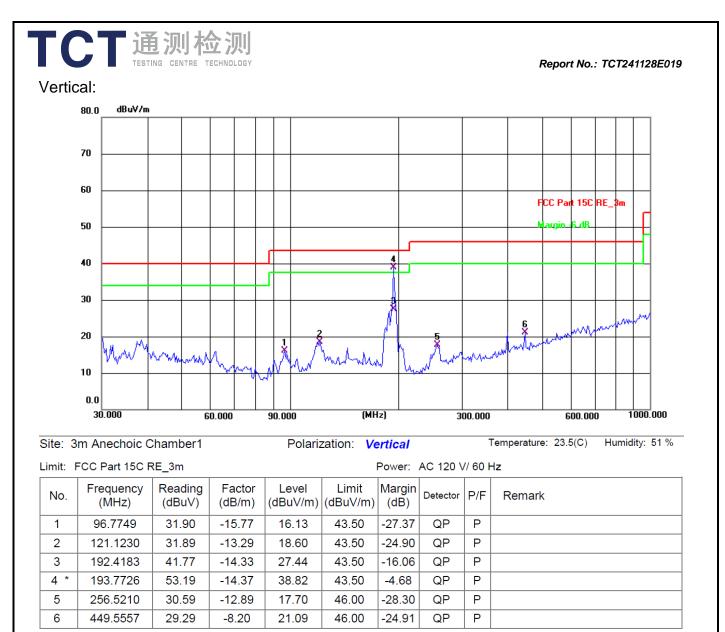

Page 31 of 146

5.8.2. Test Instruments

Radiated Emission Test Site (966)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025				
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025				
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025				
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025				
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025				
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025				
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025				
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025				
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025				
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025				
Coaxial cable	SKET	RE-03-D	1	Jun. 26, 2025				
Coaxial cable	SKET	RE-03-M	1	Jun. 26, 2025				
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025				
Coaxial cable	SKET	RE-04-D	KG)	Jun. 26, 2025				
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025				
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025				
Antenna Mast	Keleto	RE-AM	21					
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/				

Page 32 of 146

5.8.3. Test Data


Limit: FCC Part 15C RE 3m

Power: AC 120 V/ 60 Hz

Ennie. 1							A0 120	,, 00	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	38.3462	27.95	-12.08	15.87	40.00	-24.13	QP	Р	
2	49.0144	26.89	-12.27	14.62	40.00	-25.38	QP	Р	
3	123.6984	29.38	-13.11	16.27	43.50	-27.23	QP	Ρ	
4 *	193.7727	40.60	-14.37	26.23	43.50	-17.27	QP	Р	
5	401.8384	35.45	-8.96	26.49	46.00	-19.51	QP	Р	
6	550.9480	31.27	-6.43	24.84	46.00	-21.16	QP	Ρ	

Page 33 of 146

Report No.: TCT241128E019

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

 Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(HE20), 802.11ax(HE40) and the worst case Mode (Lowest channel and 802.11ax(HE20)) was submitted only.

3.Measurement (dBµV) = Reading level + Correction Factor, correction Factor= Antenna Factor + Cable loss – Pre-amplifier.

Page 34 of 146

			Ν	Adulation Ty	ne: Rand 1				
			I	11a CH36: 5	·				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	T	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	38.57		1.78	40.35		68.2		-27.85
15540	Н	39.02		5.21	44.23		74	54	-9.77
	(H)				(20			(\mathcal{G}^{-})	
					0				
10360	V	38.94		1.78	40.72		68.2		-27.48
15540	V	40.13		5.21	45.34		74	54	-8.66
	V	()		-+.6		(<u> </u>		(
				11a CH40: 5	5200MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
× ,		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)			· · ·
10400	H	39.35		1.83	41.18		68.2		-27.02
15600	Н	40.71		5.23	45.94		74	54	-8.06
(Н			(*					
				K)				K)
10400	V	40.36		1.83	42.19		68.2		-26.01
15600	V	41.58		5.23	46.81		74	54	-7.19
	V					X			
				11a CH48: 5	5240MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissic	on Level	Peak limit AV limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.04		1.85	39.89		68.2		-28.31
15720	Н	39.26		5.25	44.51		74	54	-9.49
	Н								
10480	V	38.78		1.85	40.63	9	68.2		-27.57
15720	V	40.36		5.25	45.61		74	54	-8.39
	V								
			11	n(HT20) CH3	36: 5180MH	lz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	(H)	41.47	- - 20	1.78	43.25	57)	68.2	(, , , ,)	-24.95
15540	Ч	40.03		5.21	45.24) <u></u>	74	54	-8.76
	Н								
								ļ	
10360	V	42.14		1.78	43.92	(68.2		-24.28
15540	V	41.52		5.21	46.73		74	54	-7.27
	V								

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 35 of 146

Report No.: TCT241128E019

		则 行 议 CENTRE TECHNOI	LOGY				Rep	ort No.: TCT2	41128E0
							-		
				n(HT20) CH	40: 5200MF	lz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissio		Peak limit	AV limit (dBµV/m)	Margii (dB)
(11112)	11/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(abµ v/m)	(abµ v/m)	(ub)
10400	Н	40.36		1.83	42.19		68.2		-26.01
15600	Н	41.14		5.23	46.37		74	54	-7.63
	Н								
	(.c)		66		(.)	5)		(.c)	
10400	V	40.96		1.83	42.79	<u> </u>	68.2		-25.4
15600	V	39.25		5.23	44.48		74	54	-9.52
	V								
			11	n(HT20) CH	48: 5240MH	Ηz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	K H	41.03	<u>- 40</u>	1.85	42.88	J)	68.2	<u>k</u>	-25.3
15720	H	41.24		5.25	46.49		74	54	-7.51
	Н								
								1	
10480	V	40.63		1.85	42.48		68.2		-25.7
15720	V	40.17		5.25	45.42		74	54	-8.58
	V								
			. 11	n(HT40) CH	38: 5190MF	lz	2		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	on Level	Peak limit (dBµV/m)		Margi (dB)
					(dBµV/m)	(dBµV/m)			
10380	Н	42.78		1.80	44.58		68.2		-23.6
15570	Н	41.23		5.22	46.45		74	54	-7.55
	Н								
							1		
10380	V	40.15		1.80	41.95		68.2		-26.2
15570	V	39.92		5.22	45.14		74	54	-8.86
	V								
				n(HT40) CH	46: 5230MH	lz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	Н	41.87		1.85	43.72		68.2		-24.4
15690	(H)	39.04	(, G	5.08	44.12	5)	74	54	-9.88
	H		<u> </u>		0	Ú			
								,	
10460	V	41.56		1.85	43.41		68.2		-24.7
15690	V	40.21		5.08	45.29		74	54	-8.71
	V				/				<u>.</u>

Page 36 of 146

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

		<u>川和立</u> 沙	.DGY				Repo	ort No.: TCT2	41128E0
			11a	c(VHT20) CH	136: 5180M	IHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margi
(MHz)	H/V	(dBµV)́	(dBµV)́	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	40.33		1.78	42.11		68.2		-26.0
15540	Н	39.14		5.21	44.35		74	54	-9.65
	Н								
	(.c)		(.G)		(.((.G)	
10360	V	38.08		1.78	39.86	J	68.2		-28.34
15540	V	39.23		5.21	44.44		74	54	-9.56
	V								
			11a	c(VHT20) CH	40: 5200N	Hz			
_		Peak	AV	Correction					
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor		on Level	Peak limit (dBµV/m)		Margi (dB)
(11112)		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)			(02)
10400	K H	40.15	<u>k</u>	1.83	41.98	2/	68.2		-26.2
15600	H	40.36		5.23	45.59		74	54	-8.41
	Н								
(K)			<u>,</u>					ļ. ļ	
10400	V	39.89		1.83	41.72	(68.2		-26.4
15600	V	39.52		5.23	44.75		74	54	-9.25
	V								
			1	1ac(VHT20)	CH48:5240)			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	37.07		1.85	38.92		68.2		-29.2
15720	H	38.46		5.25	43.71		74	54	-10.29
	H								
10480	V	38.13		1.85	39.98		68.2		-28.2
15720	V	39.96		5.25	45.21	·)	74	54	-8.79
	V								
			1	1ac(VHT40)	CH38:5190)			
Frequency	Ant. Pol.	Peak	AV	Correction		on Level	Peak limit	AV limit	Margi
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBuV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	40.66		1.80	42.46	(ubµ (/////)	68.2		-25.74
15570	(,CH)	39.41		5.22	42.40		74	54	- <u>25.74</u> -9.37
	Н				44.03				-9.37
		!		Į	!			I	
10380	V	38.02		1.80	39.82		68.2		-28.3
15570	V	39.35		5.22	44.57	(74	54	-9.43
10010	v	00.00		0.22				<u> </u>	0.70

Page 37 of 146

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

		ENTRE TECHNO	LOGY				Repo	ort No.: TCT2	<u>41128E</u> 01
			1′	lac(VHT40)	CH46:5230				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading (dBµV)	Correction Factor	Emissi	on Level	Peak limit (dBµV/m)		Margiı (dB)
(101112)	I 1/ V	(dBµV)	(ασμν)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)		(dBµV/m)	(UD)
10460	Н	38.58		1.85	40.43		68.2		-27.77
15690	Н	39.41		5.08	44.49		74	54	-9.51
	Н								
10460	V	39.79	 C	1.85	41.64	()	68.2	()	-26.56
15690	V	40.23		5.08	45.31		74	54	-8.69
	V								
		Peak	AV	x(HE20) CH Correction	36: 5180IVIF	1Z			
Frequency	Ant. Pol.	reading	reading	Factor	Emissio	on Level	Peak limit		Margir
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	H	39.65		1.78	41.43		68.2		-26.77
15540	(H)	40.12		5.21	45.33		74	54	-8.67
	H								
	I		<u> </u>			1			
10360	V	38.55		1.78	40.33	/	68.2		-27.87
15540	V	40.37		5.21	45.58		74	54	-8.42
	V) <u> </u>)
			11a:	k(HE20) CH	40: 5200M⊦	Ηz			
Frequency	Ant. Pol.	Peak	AV	Correction	Emissio	n Level	Peak limit	AV limit	Margir
(MHz)	H/V	reading	reading	Factor				(dBµV/m)	(dB)
χ , γ		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	Av	× 1 /	、 	()
10400	Н	39.89		1.83	41.72		68.2		-26.48
15600	Н	40.34		5.23	45.57		74	54	-8.43
<u> </u>	Н								1.
10100	V	20.45	<u> </u>	1.00	40.00	I	<u> </u>		07.00
10400 15600	V	39.15		1.83	40.98		68.2		-27.22
15600	V	39.06		5.23	44.29)	74	54	-9.71
	V			1ax(HE20)	CH48·5240				
		Peak	AV	Correction					
Frequency	Ant. Pol.	reading	reading	Factor	Emissio	n Level	Peak limit	AV limit	Margi
(MHz)	H/V	(dBµV)́	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.52		1.85	40.37		68.2		-27.8
15720	Н	39.04		5.25	44.29	X	74	54	-9.71
	(ACH)		- <u>4</u> 6		(5)			
					C				
10480	V	38.36		1.85	40.21		68.2		-27.9
15720	V	39.88		5.25	45.13		74	54	-8.87
<u> </u>	V	()		(C.	·	(<u> </u>		

Page 38 of 146

ГС	通	则检测	Ņ						
	TESTING (CENTRE TECHNOL					Repo	ort No.: TCT2	41128E01
	1			11ax(HE40) (JH38:5190				
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit		Margin (dB)
(MHz)	Π/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(UD)
10380	Н	40.12		1.80	41.92		68.2		-26.28
15570	Н	39.47		5.22	44.69		74	54	-9.31
	Н								
						2.		<u></u>	
10380	(V)	38.06		1.80	39.86		68.2	(\mathcal{G}^{-})	-28.34
15570	V	38.89		5.22	44.11	/	74	54	-9.89
	V								
				11ax(HE40) (CH46:5230				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissi	on Level	Peak limit		Margir
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	Ĥ	38.91		1.85	40.76		68.2		-27.44
15690	H	39.53		5.08	44.61	·/	74	54	-9.39
	Н								
10460	V	39.77		1.85	41.62		68.2		-26.58
15690	V	40.25		5.08	45.33		74	54	-8.67
<u> </u>	V						<u> </u>		

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

		ENTRE TECHNOI	.OGY				Rep	ort No.: TCT2	41128E0
			Ν	Adulation Ty	vne: Band 3	3			
				11a CH149:		-			
		Peak	AV	Correction					
Frequency	Ant. Pol.	reading	reading	Factor	Emissio	on Level	Peak limit		Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	44.57		2.48	47.05		74	54	-6.95
17235	Н	37.02		6.50	43.52		68.2		-24.6
	(H)			0.50	43.32				-24.00
)					
11490	V	45.45		2.48	47.93		74	54	-6.07
17235	V	38.13		6.50	44.63		68.2		-23.5
11200	V			0.00		/			20.0
. ()	•			11a CH157:	5785MHz		. (* 4 *)		
		Peak	AV	Correction					
Frequency	Ant. Pol.	reading	reading	Factor	Emissio	on Level	Peak limit	AV limit	Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		X * F 7	Λ [−] Γ 7		(dBµV/m)	(dBµV/m)			
11570	H	43.04		2.42	45.46		74	54	-8.54
17355	Н	38.26		7.03	45.29		68.2		-22.9
	Н			(
		$(\dot{\mathcal{O}})$		Ú,		((Ú)		("Č
11570	V	43.17		2.42	45.59		74	54	-8.41
17355	V	39.69		7.03	46.72		68.2		-21.48
	V								
				11a CH165:	5825MHz				
_		Peak	AV	Correction					
Frequency	Ant. Pol.	reading	reading	Factor	Emissio	on Level	Peak limit		Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	43.93		2.41	46.34	'	74	54	-7.66
17475	Н	36.22		7.41	43.63		68.2		-24.5
	Н								
				1	(
11650	V	43.05	<u>-</u> <u>x</u>	2.41	45.46	Y)	74	54	-8.54
17475	V	38.63		7.41	46.04		68.2		-22.1
	V								
			11r	n(HT20) CH1	49: 5745M	Hz			
F		Peak	AV	Correction		on Level	Deel Part		N.4
	Ant. Pol. H/V	reading	reading	Factor			Peak limit		Margi
(MHz)	Π/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	(H)	44.13	-+.0	2.48	46.61	5)	74	54	-7.39
17235	H	38.55		6.50	45.05	Ú	68.2		-23.1
	Н								
<u>_</u>						-		. <u> </u> !	
11490	V	44.27		2.48	46.75		74	54	-7.25
17235	V	39.04		6.50	45.54		68.2		-22.6
-	V								

Page 40 of 146

		火リ <u>イル</u> ノ Sentre technol	. 0gy				Rep	ort No.: TCT2	41128E0
				n(HT20) CH1	57: 5785M	Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margi (dB)
(11112)	11/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/π)	(ασμ ν/π)	(00)
11570	H	44.97		2.42	47.39		74	54	-6.61
17355	Н	39.14		7.03	46.17		68.2		-22.0
	Ŧ								
	(G)		(.G	•)	(.)	5)		(G)	
11570	V	44.66		2.42	47.08)	74	54	-6.92
17355	V	39.25		7.03	46.28		68.2		-21.92
	V								
			11r	n(HT20) CH1	65: 5825M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	K H	45.88	<u>k</u>	2.41	48.29	·)	74	54	-5.71
17475	H	37.07		7.41	44.48		68.2		-23.72
	Н								
()							~ K.		
11650	V	45.34		2.41	47.75		74	54	-6.25
17475	V	40.15		7.41	47.56		68.2		-20.64
	V								
			11r	n(HT40) CH1	51: 5755M	Hz			
Fraguanav	Ant. Pol.	Peak	AV	Correction	Emissio	on Level	Peak limit	AV limit	Morai
Frequency (MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV	(dBµV/m)	(dBµV/m)	Margi (dB)
11510	Н	44.02		2.47	46.49	/	74	54	-7.51
17265	H	37.36		6.62	43.98		68.2		-24.22
	H								
11510	V	44.99		2.47	47.46		74	54	-6.54
17265	V	38.13		6.62	44.75	·)	68.2		-23.4
	V								
			11r	n(HT40) CH1	59: 5795M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit	AV limit	Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	H.	44.76		2.40	47.16		74	54	-6.84
17385	н	38.41	-+.0	7.15	45.56	G)	68.2	(.G.)	-22.64
	H					9 			
			<u> </u>	-		-			
11590	V	44.58		2.40	46.98		74	54	-7.02
17385	V	37.23		7.15	44.38		68.2		-23.82
<u></u>	V			\	/				

Page 41 of 146

		川 位 ル で ル に に に に い の し の の の の し の つ し の し の し の し の つ つ し つ つ し つ し つ し つ つ つ つ つ つ つ つ つ つ つ つ つ	. 0gY				Rep	ort No.: TCT2	41128E0 ⁻
							Пер		4112020
			11ac	C(VHT20) CH	149: 5745	ИНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margi (dB)
	11/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/π)	(ασμ ν/ιιι)	(UD)
11490	Н	44.35		2.48	46.83		74	54	-7.17
17235	Н	37.08		6.50	43.58		68.2		-24.62
	Н		-						
	(G)					5))		(G)	
11490	V	44.25		2.48	46.73)	74	54	-7.27
17235	V	38.66		6.50	45.16		68.2		-23.04
	V								
			11ac	C(VHT20) CH	157: 5785N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	K H	43.59	<u>k</u>	2.42	46.01	2)	74	54	-7.99
17355	Н	36.21	-	7.03	43.24		68.2		-24.96
	Н								
11570	V	43.47		2.42	45.89		74	54	-8.11
17355	V	38.85		7.03	45.88		68.2		-22.32
	V								
			11ac	C(VHT20) CH	165: 5825	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	44.13		2.41	46.54		74	54	-7.46
17475	Н	38.05		7.41	45.46		68.2		-22.74
	Н								
				•					
11650	V	44.24		2.41	46.65		74	54	-7.35
17475	V	40.97	<u> </u>	7.41	48.38	·)	68.2		-19.82
	V								
			11ac	(VHT40) CH	151: 5755	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	1	on Level	Peak limit		Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	<u>н</u>	44.36		2.47	46.83		74	54	-7.17
17265	(H)	37.15	- , ,,	6.62	43.77	()	68.2	(-24.43
	H					9 <u></u>			
				I	1		1		
11510	V	43.47		2.47	45.94		74	54	-8.06
17265	V	36.09		6.62	42.71		68.2		-25.49
	V								

Page 42 of 146

	通 TESTING	火リ イシビ 湯 Sentre technol	. 0gy				Rep	ort No.: TCT2	241128E0
							-1-		
				CHT40) CH	159: 5795	MHz	•		
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margi (dB)
(11112)	11/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/π)	(ubµ v/m)	(UD)
11590	Н	43.47		2.40	45.87		74	54	-8.13
17385	Н	37.16		7.15	44.31		68.2		-23.89
	H								
	(G)		(.C)		(.)			(\mathbf{G})	
11590	V	42.03		2.40	44.43		74	54	-9.57
17385	V	38.29		7.15	45.44		68.2		-22.76
	V	(
			11a	x(HE20) CH	149: 5745N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	H	45.56	2	2.48	48.04	·)	74	54	-5.96
17235	H	37.23)	6.50	43.73		68.2) =	-24.47
	Н								
11490	V	45.17		2.48	47.65		74	54	-6.35
17235	V	38.02		6.50	44.52		68.2		-23.68
	V								
			11a	x(HE20) CH	157: 5785N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Н	43.15		2.42	45.57	/	74	54	-8.43
17355	Н	36.68		7.03	43.71		68.2		-24.4
	Н								
11570	V	44.26		2.42	46.68		74	54	-7.32
17355	V	38.35		7.03	45.38	· /	68.2		-22.8
	V								
		-	11a	x(HE20) CH	165: 5825N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit	AV limit	Margi
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	43.68		2.41	46.09	(ubµ v/m)	74	54	-7.91
17475	H	39.23	6	7.41	46.64		68.2		-21.56
	H				40.04				-21.30
	-11								
11650	V	43.07		2.41	45.48		74	54	-8.52
17475	V	39.35		7.41	46.76		68.2		-0.52
	V				40.70				-21.44

Page 43 of 146

	通	则检测	则						
	TESTING	CENTRE TECHNO					Rep	ort No.: TCT2	241128E01
				x(HE40) CH	151: 5755N	1Hz	-		
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin (dB)
(11172)	Π/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(UD)
11510	Н	43.26		2.47	45.73		74	54	-8.27
17265	Н	37.04		6.62	43.66		68.2		-24.54
	Н								
						7.			
11510	V	43.96		2.47	46.43	5)	74	54	-7.57
17265	V	36.17		6.62	42.79	ノ <u></u>	68.2		-25.41
	V								
			11a	x(HE40) CH	159: 5795N	1Hz	-		
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	H	44.38		2.40	46.78		74	54	-7.22
17385	KH/	37.74		7.15	44.89	9) <u></u>	68.2	<u> </u>	-23.31
	Н								
11590	V	43.12		2.40	45.52		74	54	-8.48
17385	V	38.59		7.15	45.74		68.2		-22.46
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2020
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal suppl voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at temperature of 20 degrees C.
	Temperature Chamber
Test Setup:	Spectrum Analyzer EUT
	AC/DC Power supply The EUT was placed inside the environmental tes
Test Procedure:	chamber and powered by nominal AC/DC voltage. b Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The suppli voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n,11ac, 11ax), the worst case (11ax) was found and test data was shown in this report.

Report No.: TCT241128E019

Test plots as follows:

Test mode:	802.11ax(HE20) Freque	ency(MHz):	5180
Temperature (°C)	Voltage(V _{AC})	Measurement	Delta	Result
	Voltage(VAC)	Frequency(MHz)	Frequency(Hz)	Result
45		5180.02	20000	PASS
35		5180	0	PASS
25	120V	5180	0	PASS
15	1200	5180	0	PASS
5		5180	0	PASS
0		5180	0	PASS
	102V	5180	0	PASS
25	120V	5180	0	PASS
	138V	5180	0	PASS

Test mode:	802.11ax(HE20)	Freque	ency(MHz):		5200	
Temperature (°C)	Voltage(V _{AC})	Ditage(VAC) Measurement		Delta		Result	
		Frequence	cy(MHz)	Frequency(HZ)		
45		5200		40000		PASS	
35		5200.04		40000		PASS	$\langle \rangle$
25	120V	5200.04		40000		PASS	
15	1200	5200	.02	20000		PASS	
5		5200	.02	20000		PASS	
0		5200	.02	20000		PASS	
	102V	5200	.04	40000		PASS	
25	120V	5200	.02	20000		PASS	
	138V	5200	.02	20000	Þ.	PASS	-
(G)	(\mathbf{C})	(.G		6.6			

Test mode:	802.11ax(HE20) Freque	ency(MHz):	5240
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5240.06	60000	PASS
35		5240.04	40000	PASS
25	120V	5240.04	40000	PASS
15	1200	5240.04	40000	PASS
5		5240.04	40000	PASS
0		5240.04	40000	PASS
	102V	5240.04	40000	PASS
25	120V	5240.04	40000	PASS
	138V	5240.04	40000	PASS

Test mode: 8		802.11ax(I	(HE20) Freque		ency(MHz):			5745		
mperature (°C)	ure (°C) Voltage(V _{AC})		Measurement		Delta			Result		
	V	Unage(VAC)	Frequency(MHz)		Frequency(Hz)		Hz)	Result		
45		D.	574	5.04		40000			PASS	
35			574	5.02		20000			PASS	
25 15 5		1201/	574	5.02		20000			PASS	
		120V	574	5.02		20000			PASS	
			57	45	Ú)	0		(, (,	PASS	
0			574	5.02		20000			PASS	

5745.02

5745.02

5745.04

Test mode:	802.11ax(HE20) Frequ	iency(MHz):	5785
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5785.04	40000	PASS
35		5785.02	20000	PASS
25	120V	5785.02	20000	PASS
15	1200	5785.02	20000	PASS
5		5785.02	20000	PASS
0		5785.04	40000	PASS
(\mathbf{C})	102V	5785.04	40000	PASS
25	120V 🕥	5785.02	20000	PASS
	138V	5785.02	20000	PASS

Test mode:	802.11ax(HE20) Freque	ency(MHz):	5825
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45	C	5825.02	20000	PASS
35		5825.02	20000	PASS
25	120V	5825.04	40000	PASS
15	1200	5825.02	20000	PASS
5		5825.02	20000	PASS
0		5825.02	20000	PASS
	102V	5825.02	20000	PASS
25	120V	5825.02	20000	PASS
	138V	5825.02	20000	PASS

Report No.: TCT241128E019

20000

20000

40000

PASS

PASS

PASS

Page 47 of 146

102V

120V

138V

Ter

25

Test mode:	Test mode: 802.11ax(H		IE40) Frequency(MHz):		5190		
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)				Delta Frequency(H	Hz) Result
45	(\mathbf{c})	51	90	0	PASS		
35		519	0.04	40000	PASS		
25	1001/	519	0.04	40000	PASS		
15	120V	519	0.04	40000	PASS		
5 ()		519	0.04	40000	PASS		

102V

102V

120V

138V

0

25

25	120V	519	0.04	40000		PASS	
	138V 51		0.04 40000)	PASS	
Test mode:	802.11ax(HE40)	Freque	ency(MHz):		5230	
Temperature (°C)	Voltage(V _{AC})	Measu	rement	Delta		Result	
Temperature (C)	vollage(vac)	Frequen	cy(MHz)	Frequency(I	Hz)	ivesuit	
45		5230.04		40000		PASS	
35		523	0.08	80000		PASS	
25	120V	523	0.08	80000		PASS	
15	1200	523	0.04	40000		PASS	
5		523	0.04	40000		PASS	
0		523	0.08	80000		PASS	

5230.04

5230.04

5230.04

5190.04

5190.04

Test mode:	802.11ax(HE40) Freque	ency(MHz):	5755
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5755.04	40000	PASS
35		5755.04	40000	PASS
25	120V	5755	0	PASS
15	1200	5755	0	PASS
5		5755.04	40000	PASS
0		5755.04	40000	PASS
	102V	5755.04	40000	PASS
25	120V	5755.04	40000	PASS
	138V	5755.04	40000	PASS

40000

40000

40000

40000

40000

Report No.: TCT241128E019

PASS

PASS

PASS

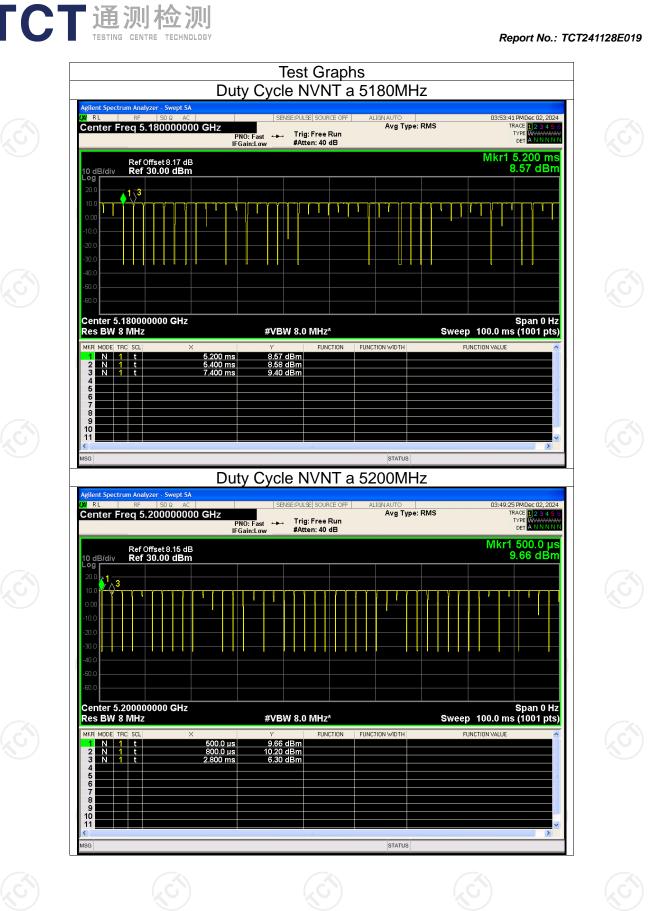
PASS

PASS

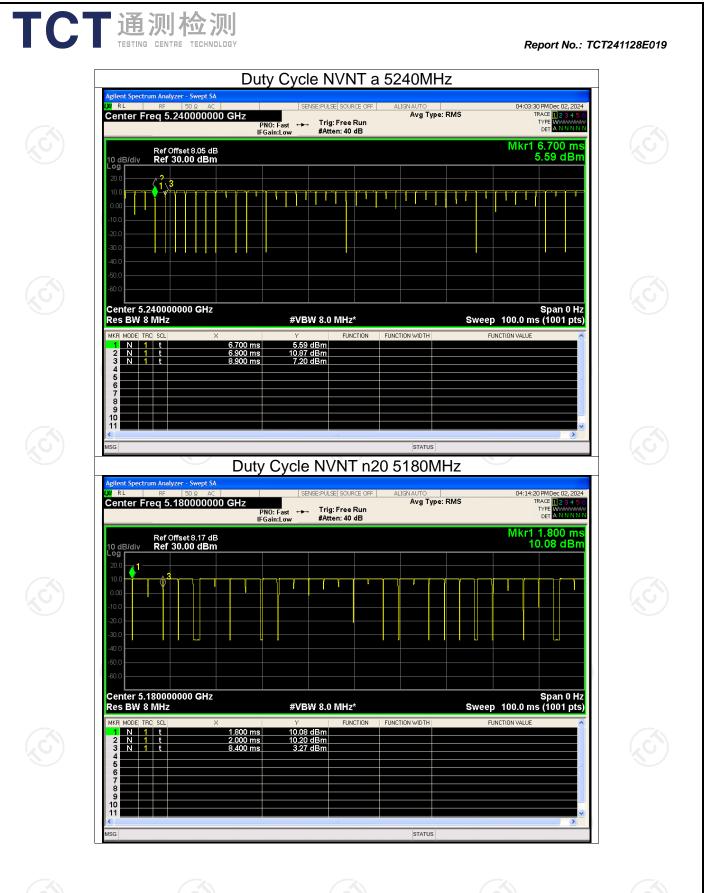
Page 48 of 146

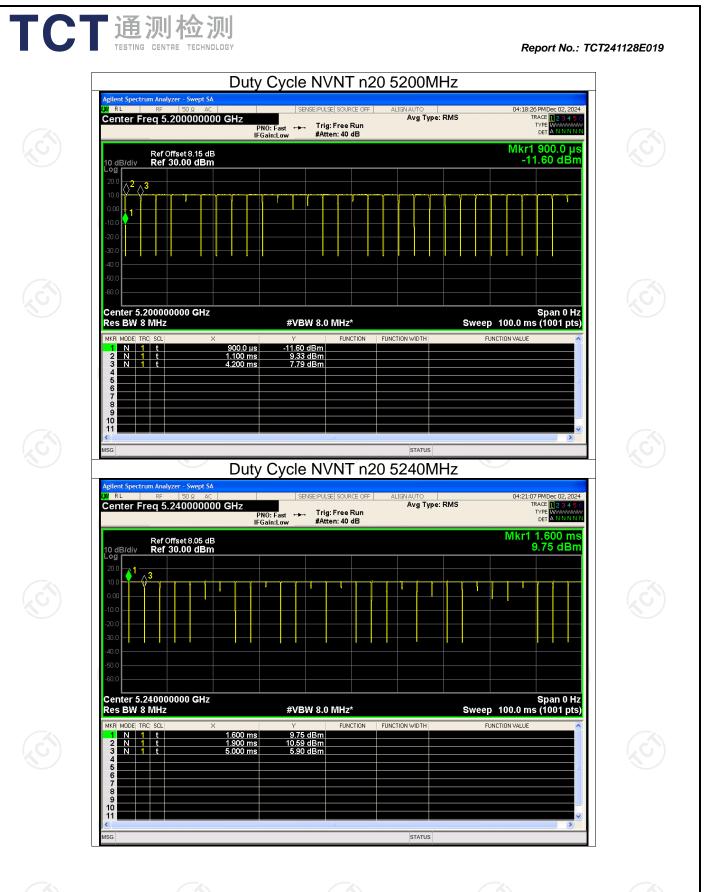
45 40000 PASS 5795.04 35 5795.04 40000 PASS PASS 25 5795.04 40000 120V PASS 40000 15 5795.04 5 40000 PASS 5795.04 5795.04 PASS 0 40000 102V PASS 5795.04 40000 120V 40000 PASS 25 5795.04 138V 5795.04 40000 PASS

802.11ax(HE40) Frequency(MHz): 5795 Test mode: Measurement Delta Voltage(V_{AC}) Temperature (°C) Result Frequency(MHz) Frequency(Hz)

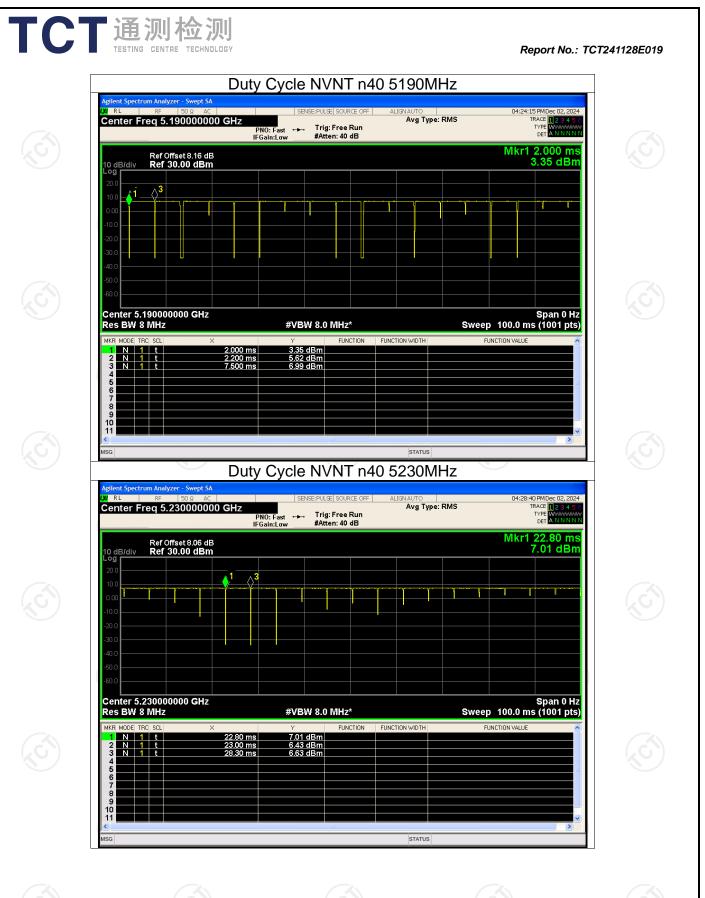

Report No.: TCT241128E019

Page 49 of 146

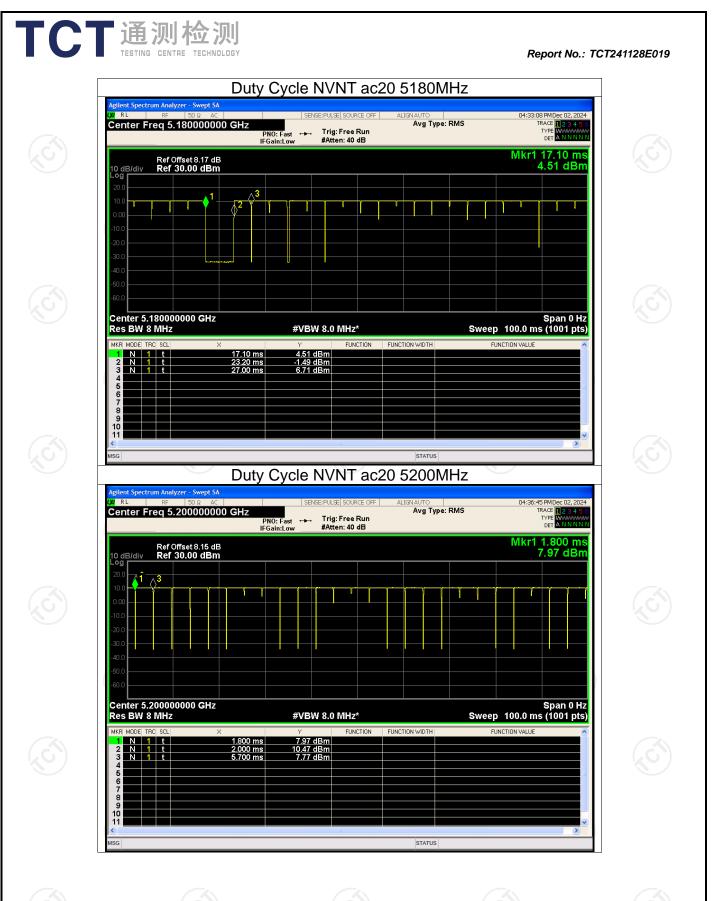


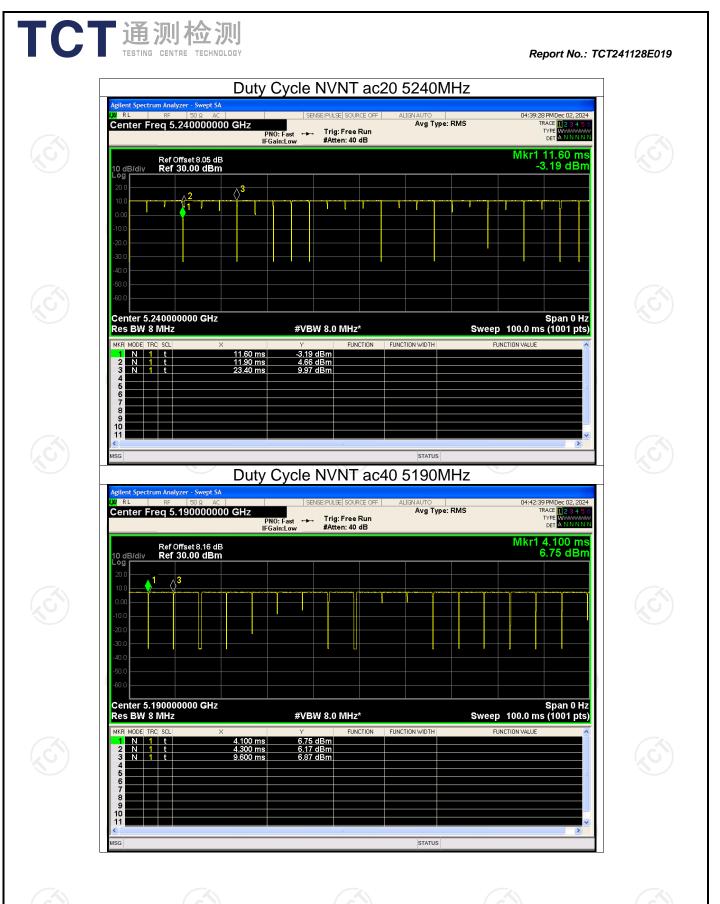

Appendix	A: Test	Result of	Conducted	Test
----------	---------	------------------	-----------	------

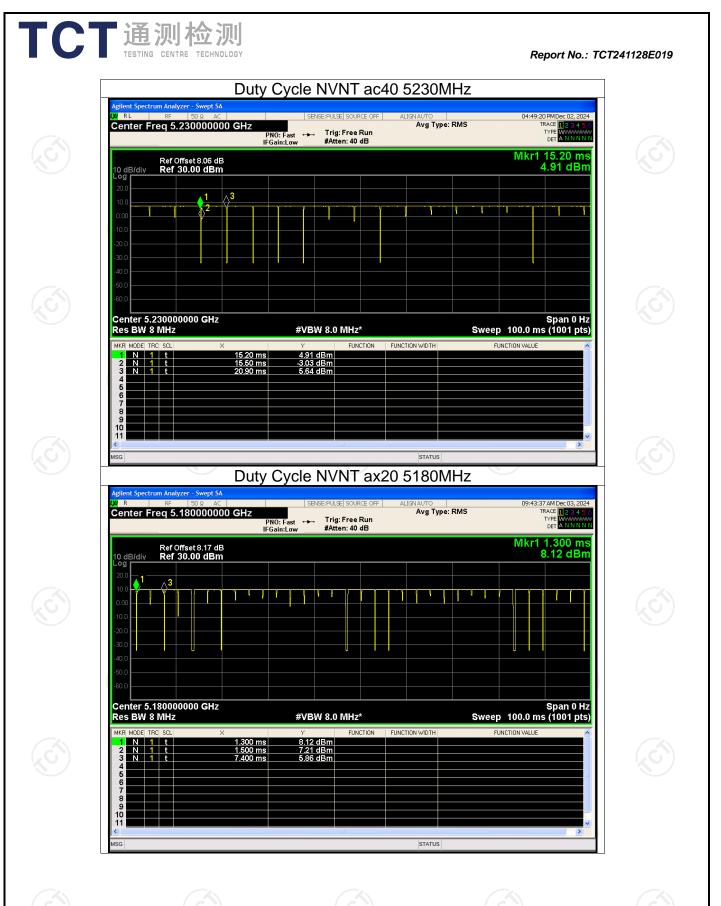
			Duty	y Cycle		(
	Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	
	NVNT	а	5180	96.60	0.15	
	NVNT	а	5200	96.30	0.16	
	NVNT	а	5240	98.50	0	
	NVNT	n20	5180	94.61	0.24	
	NVNT	n20	5200	97.20	0.12	
	NVNT	n20	5240	98.00	0	1
	NVNT	n40	5190	98.00	0	K
	NVNT	n40	5230	99.70	0	
	NVNT	ac20	5180	93.41	0.30	
	NVNT	ac20	5200	98.30	0	
ľ	NVNT	ac20	5240	98.60	0	
	NVNT	ac40	5190	97.50	0.11	
	NVNT	ac40	5230	99.00	0	
	NVNT	ax20	5180	97.80	0.10	1
J	NVNT	ax20	5200	97.00	0.13	K
	NVNT	ax20	5240	99.50	0	
	NVNT	ax40	5190	99.20	0	
	NVNT	ax40	5230	99.40	0	
	NVNT	а	5745	96.40	0.16	
	NVNT	а	5785	95.50	0.20	
	NVNT	а	5825	95.60	0.20	
1	NVNT	n20	5745	97.70	0.10	/
J	NVNT	n20	5785	98.60	0	K
ſ	NVNT	n20	5825	97.90	0.09	
	NVNT	n40	5755	99.50	0	
	NVNT	n40	5795	99.50	0	
	NVNT	ac20	5745	98.10	0	
ſ	NVNT	ac20	5785	98.00	0	
	NVNT	ac20	5825	98.50	0	
	NVNT	ac40	5755	99.40	0	
J	NVNT	ac40	5795	98.50	0	k
	NVNT	ax20	5745	97.50	0.11	
ſ	NVNT	ax20	5785	98.00	0	
ſ	NVNT	ax20	5825	97.40	0.11	
	NVNT	ax40	5755	98.70	0	
ſ	NVNT	ax40	5795	99.20	0	

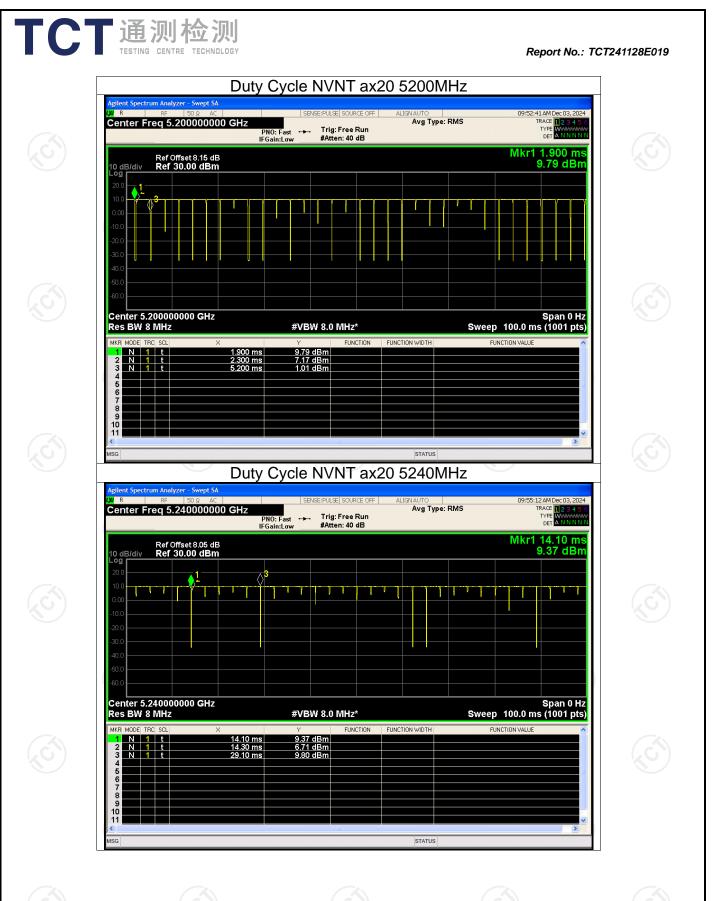


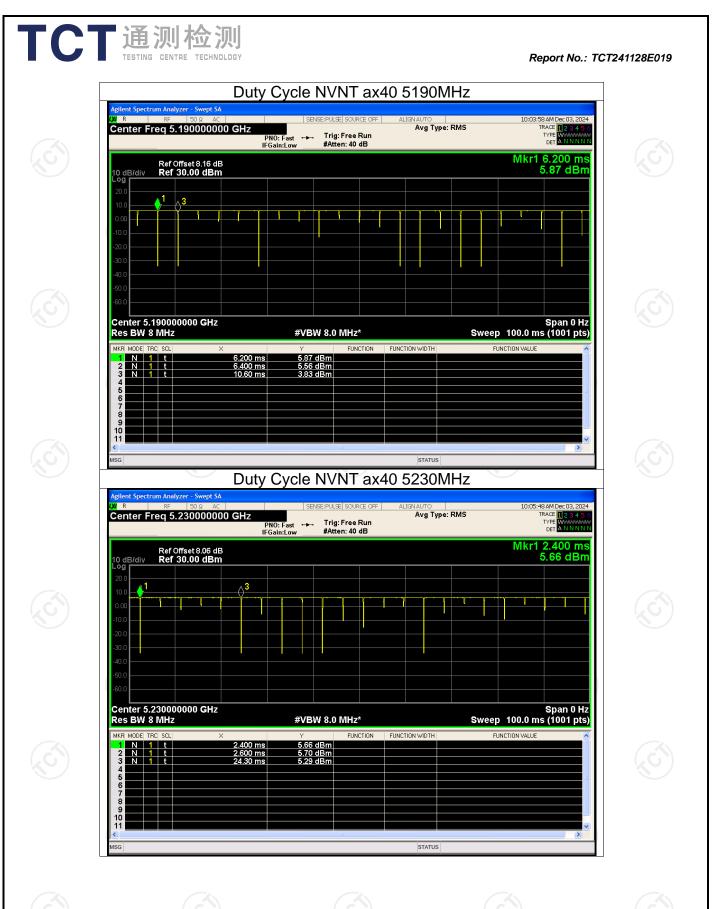
Page 51 of 146

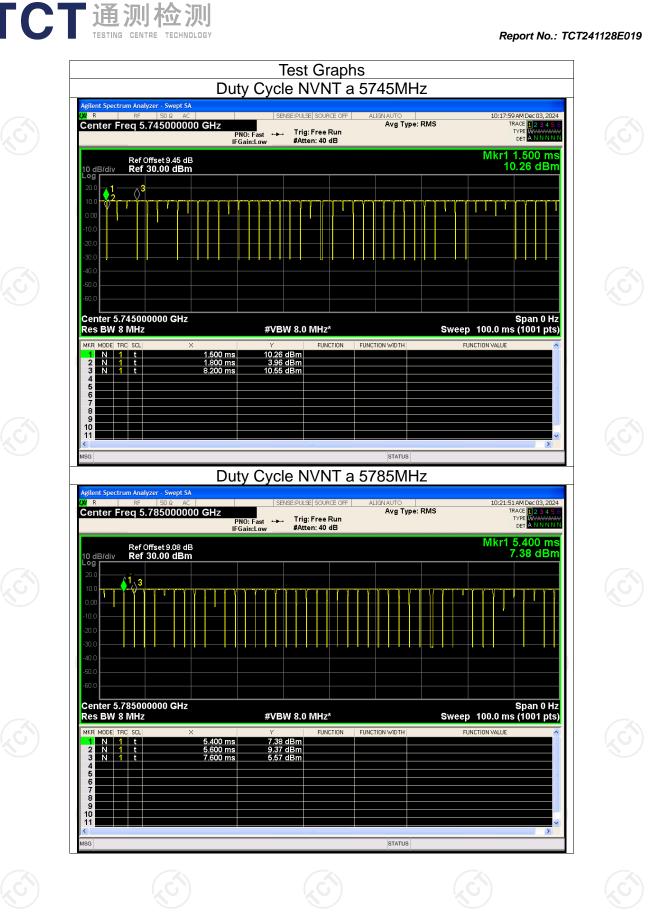


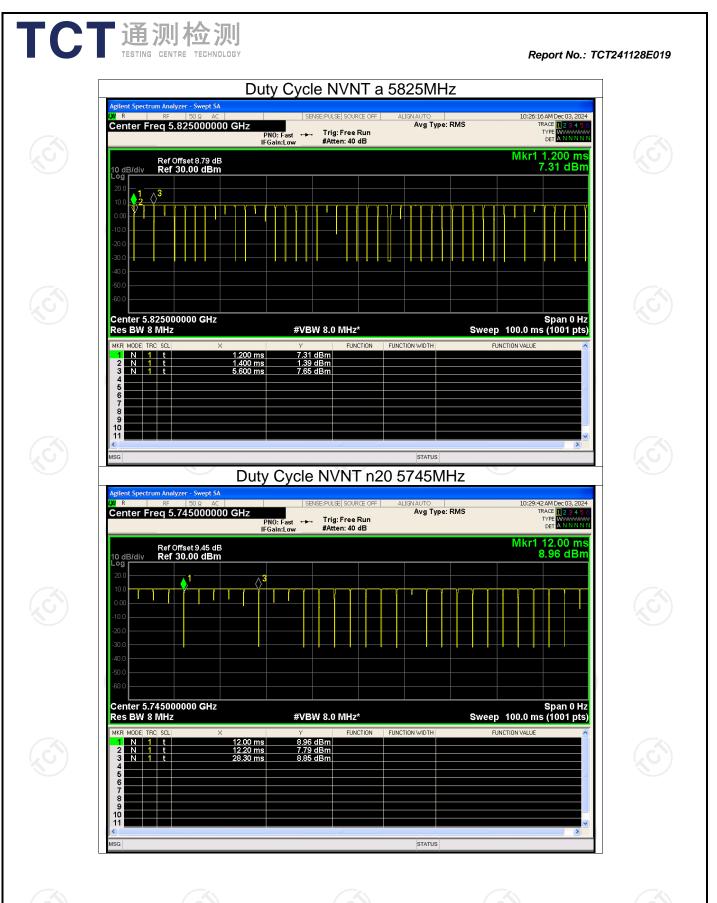

Page 53 of 146

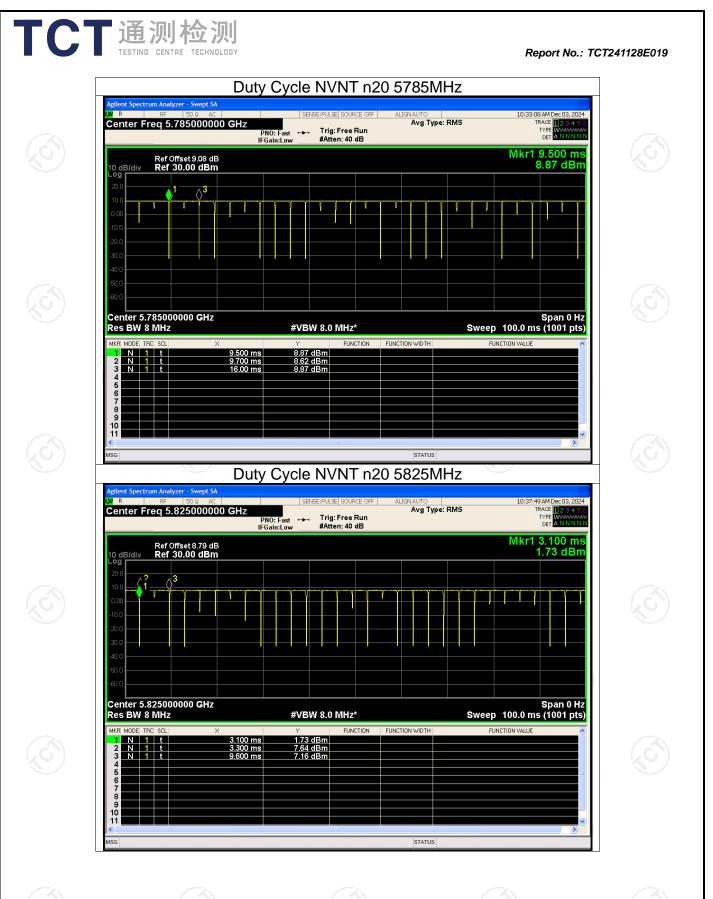


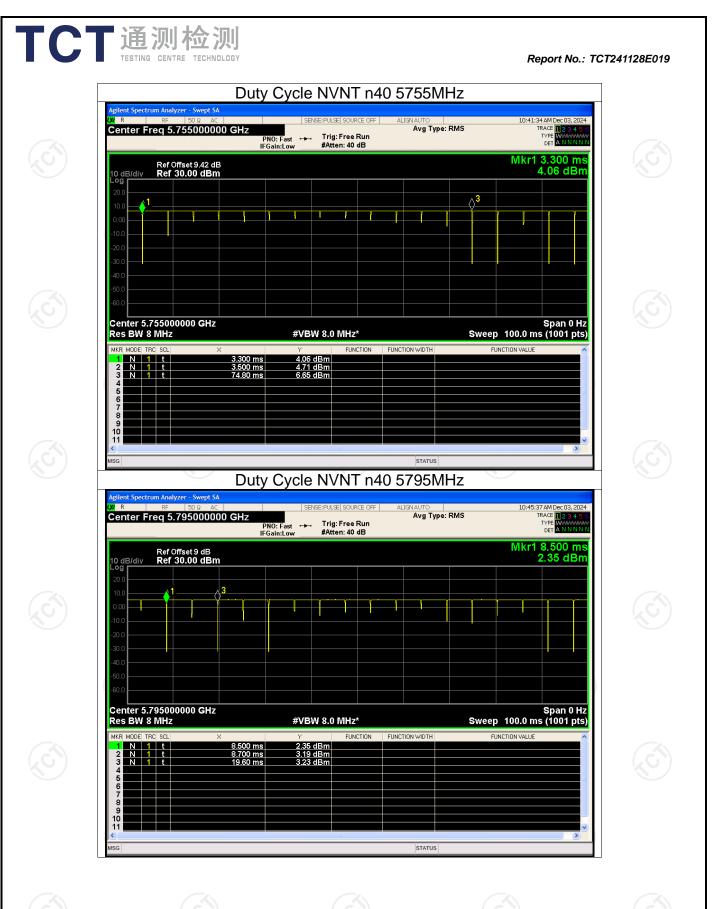

Page 54 of 146

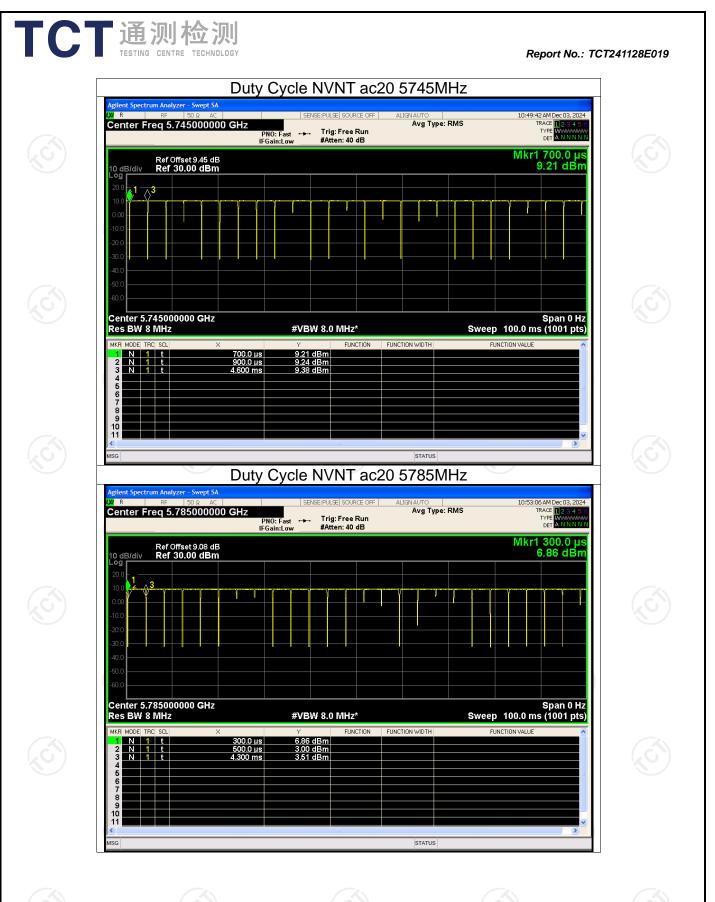


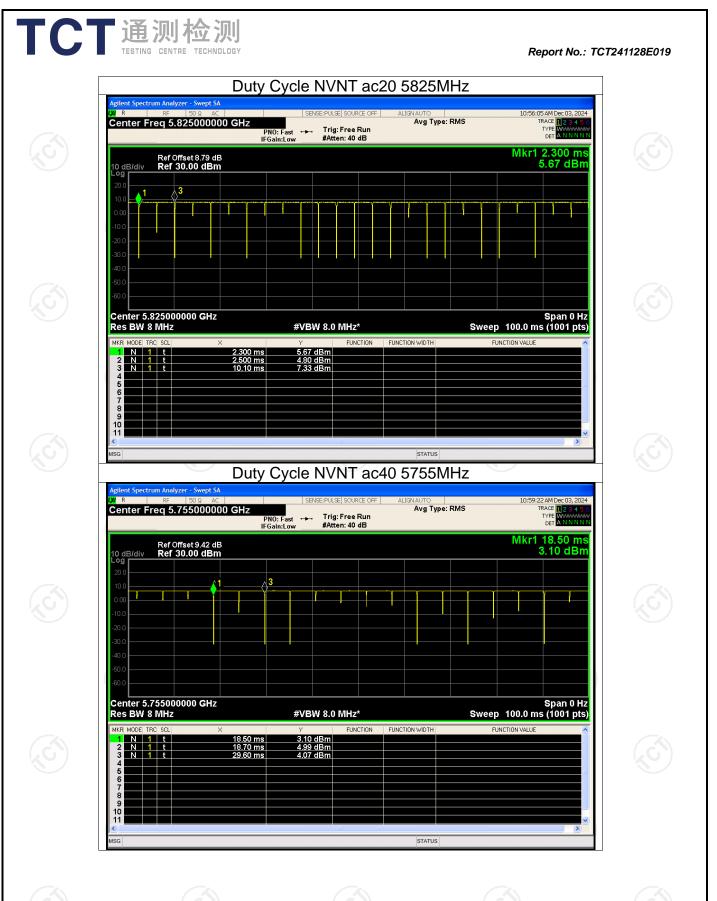

Page 55 of 146

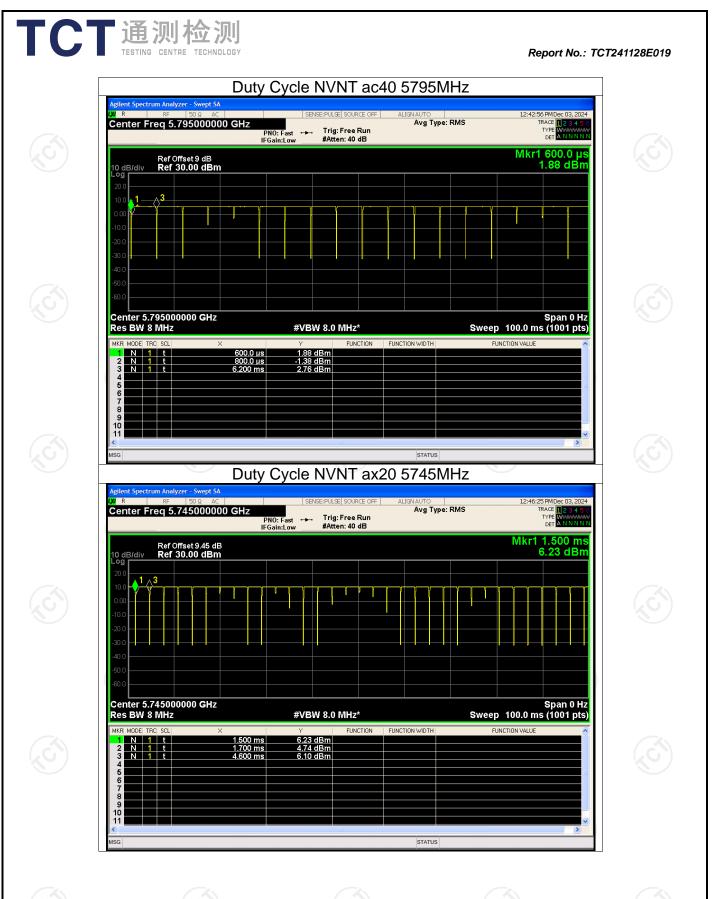


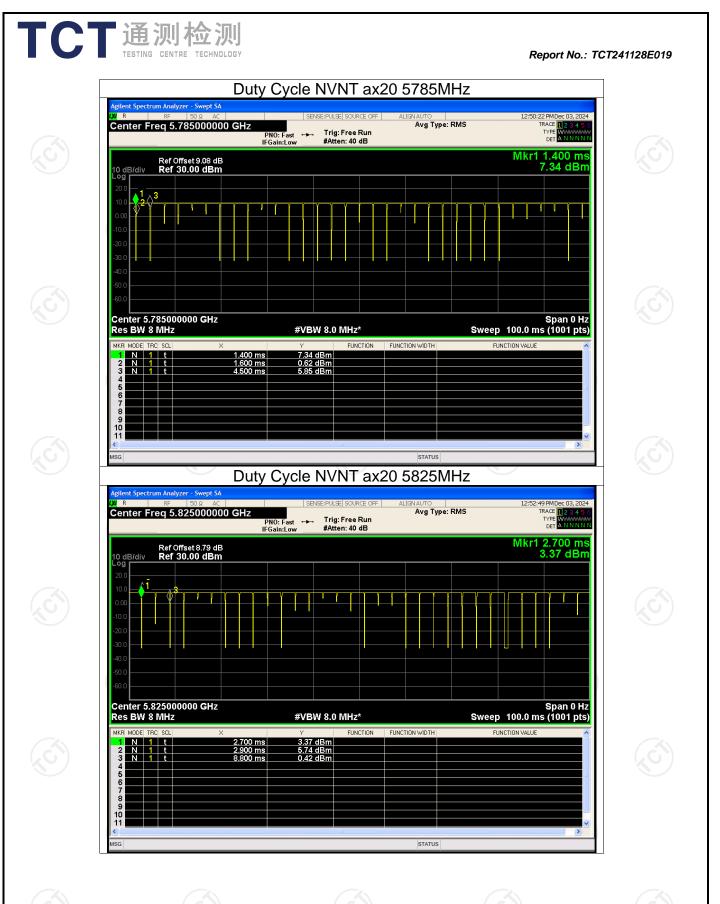


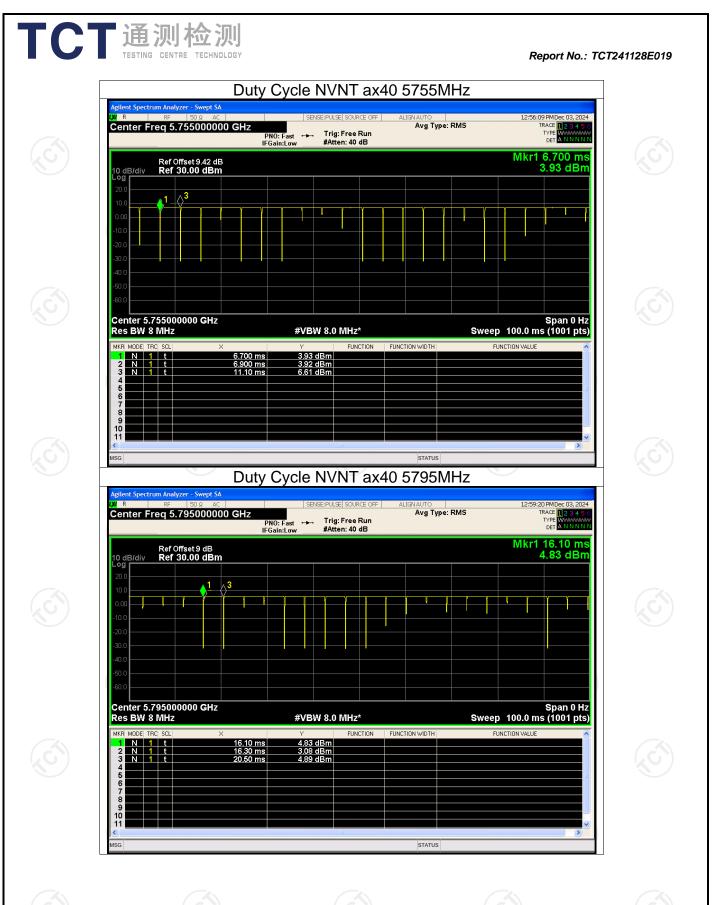




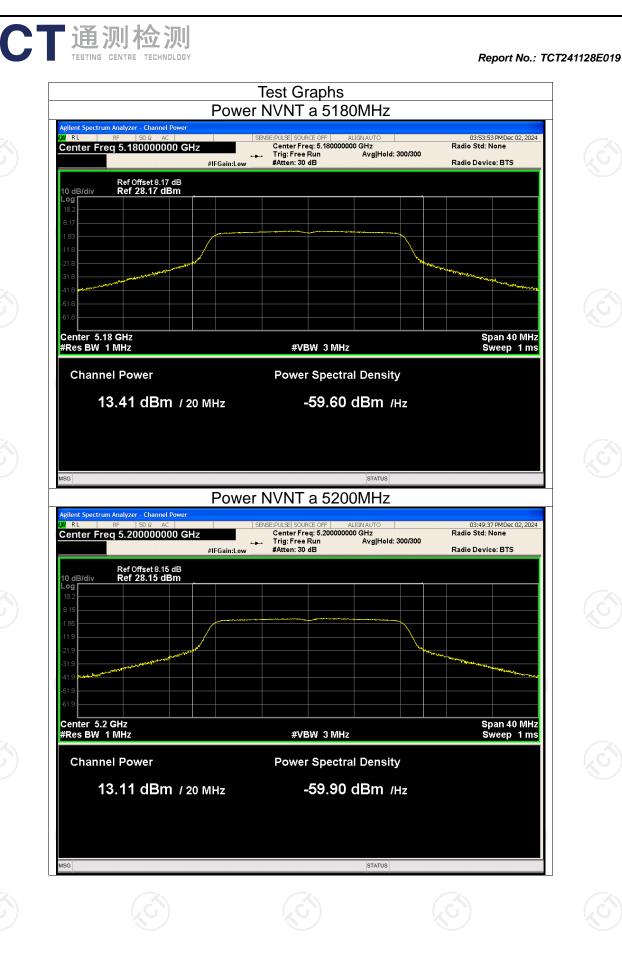


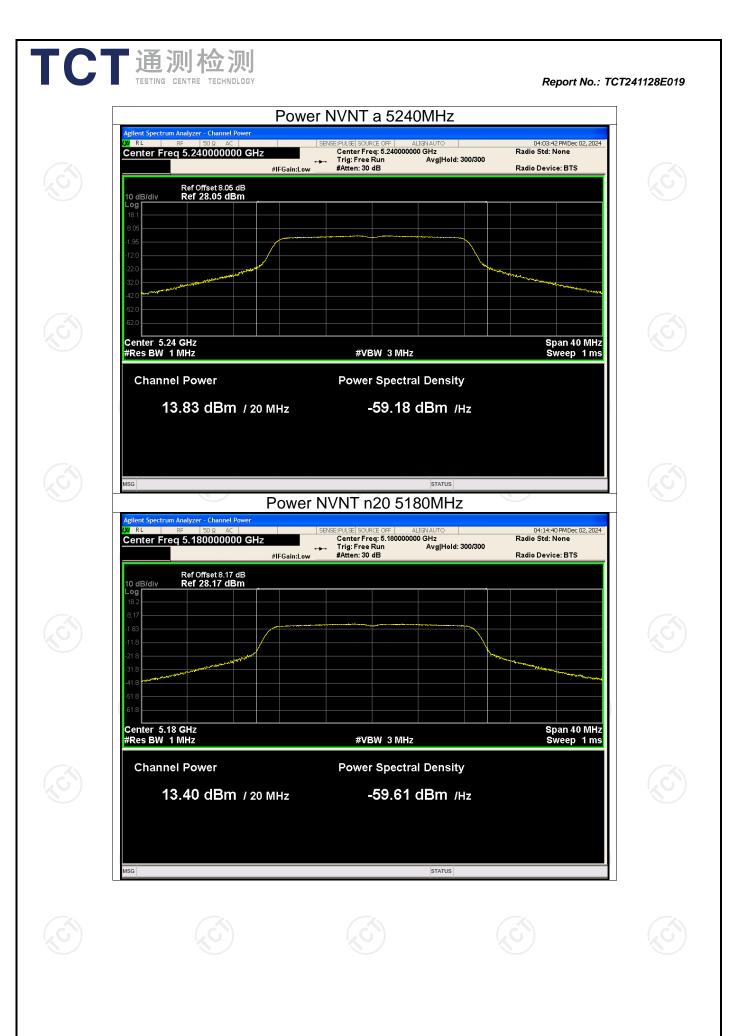






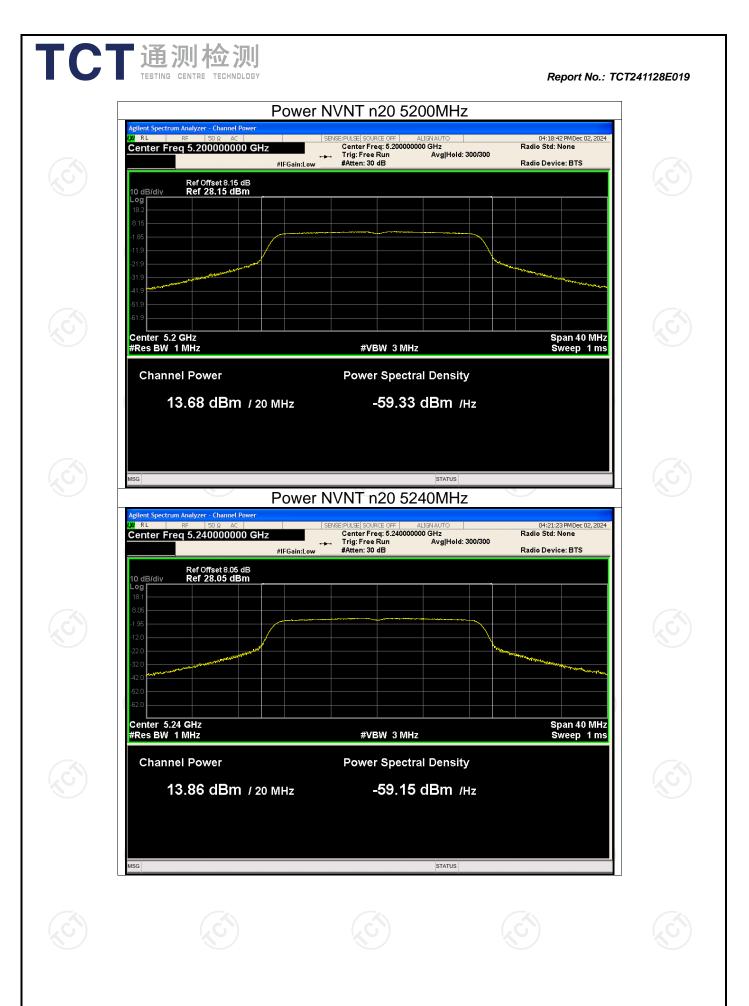
Page 64 of 146



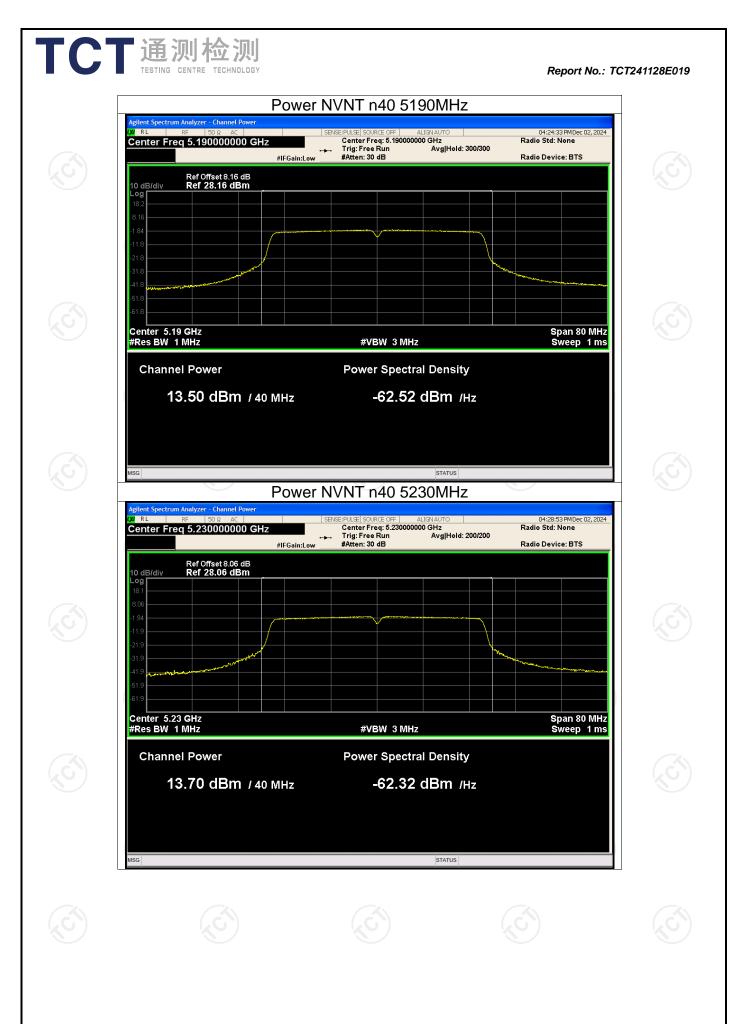

Condition	Mode	Frequency (MHz)	Conducted C Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	13.41	0.15	13.56	24	Pass
NVNT	а	5200	13.11	0.16	13.27	24	Pass
NVNT	а	5240	13.83	0	13.83	24	Pass
NVNT	n20	5180	13.40	0.24	13.64	24	Pass
NVNT 🐇	n20	5200	13.68	0.12	13.80	24	Pass
NVNT	n20	5240	13.86	0	13.86	24	Pass
NVNT	n40	5190	13.50	0	13.50	24	Pass
NVNT	n40	5230	13.70	0	13.70	24	Pass
NVNT	ac20	5180	13.20	0.30	13.50	24	Pass
NVNT	ac20	5200	13.66	0	13.66	24	Pass
NVNT	ac20	5240	13.77	0	13.77	24	Pass
NVNT	ac40	5190	13.51	0.11	13.62	24	Pass
NVNT 🖔	ac40	5230	13.67	0	13.67	24	Pass
NVNT	ax20	5180	12.95	0.10	13.05	24	Pass
NVNT	ax20	5200	13.19	0.13	13.32	24	Pass
NVNT	ax20	5240	13.33	0	13.33	24	Pass
NVNT	ax40	5190	12.64	0	12.64	24	Pass
NVNT	ax40	5230	12.57	0	12.57	24	Pass
NVNT	а	5745	14.16	0.16	14.32	30	Pass
NVNT	а	5785	12.82	0.20	13.02	30	Pass
NVNT 🐇	а	5825	11.23	0.20	11.43	30	Pass
NVNT	n20	5745	14.05	0.10	14.15	30	Pass
NVNT	n20	5785	12.82	0	12.82	30	Pass
NVNT	n20	5825	11.46	0.09	11.55	30	Pass
NVNT	n40	5755	14.02	0	14.02	30	Pass
NVNT	n40	5795	12.57	0	12.57	30	Pass
NVNT	ac20	5745	14.22	0	14.22	30	Pass
NVNT	ac20	5785	13.00	0	13.00	30	Pass
NVNT 😓	ac20	5825	11.47	0	11.47	30	Pass
NVNT	ac40	5755	14.05	0	14.05	30	Pass
NVNT	ac40	5795	12.83	0	12.83	30	Pass
NVNT	ax20	5745	14.34	0.11	14.45	30	Pass
NVNT	ax20	5785	12.94	0	12.94	30	Pass
NVNT	ax20	5825	11.61	0.11	11.72	30	Pass
NVNT	ax40	5755	13.95	0	13.95	30	Pass
NVNT	ax40	5795	12.78	0	12.78	30	Pass
	9					No.	

Maximum Conducted Output Power

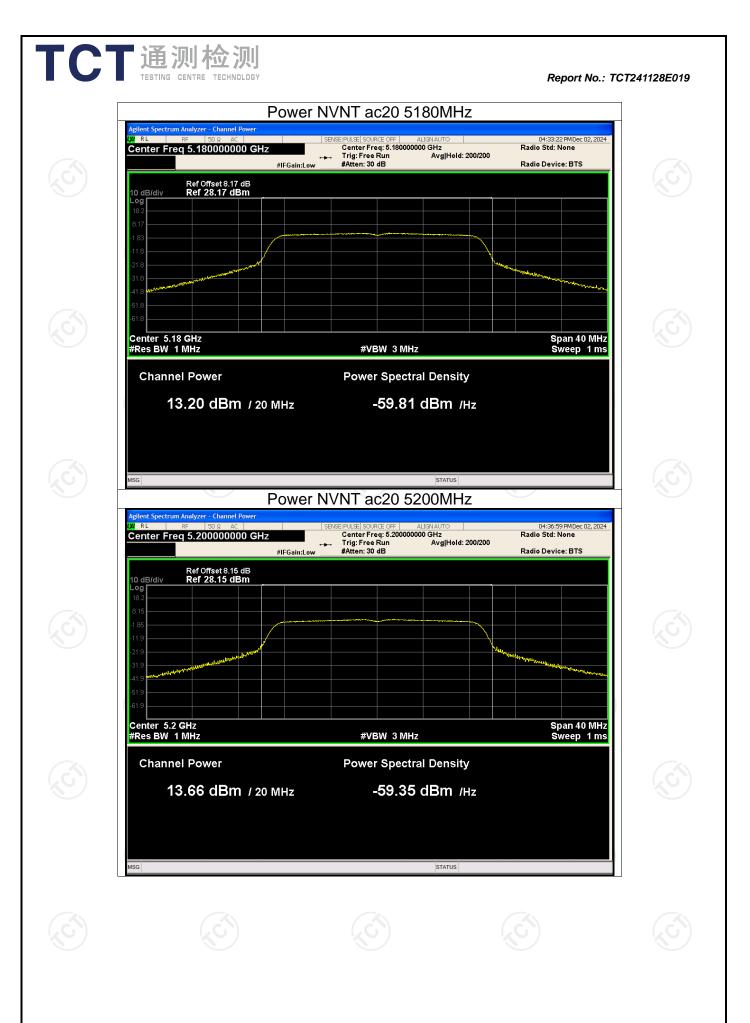
Report No.: TCT241128E019

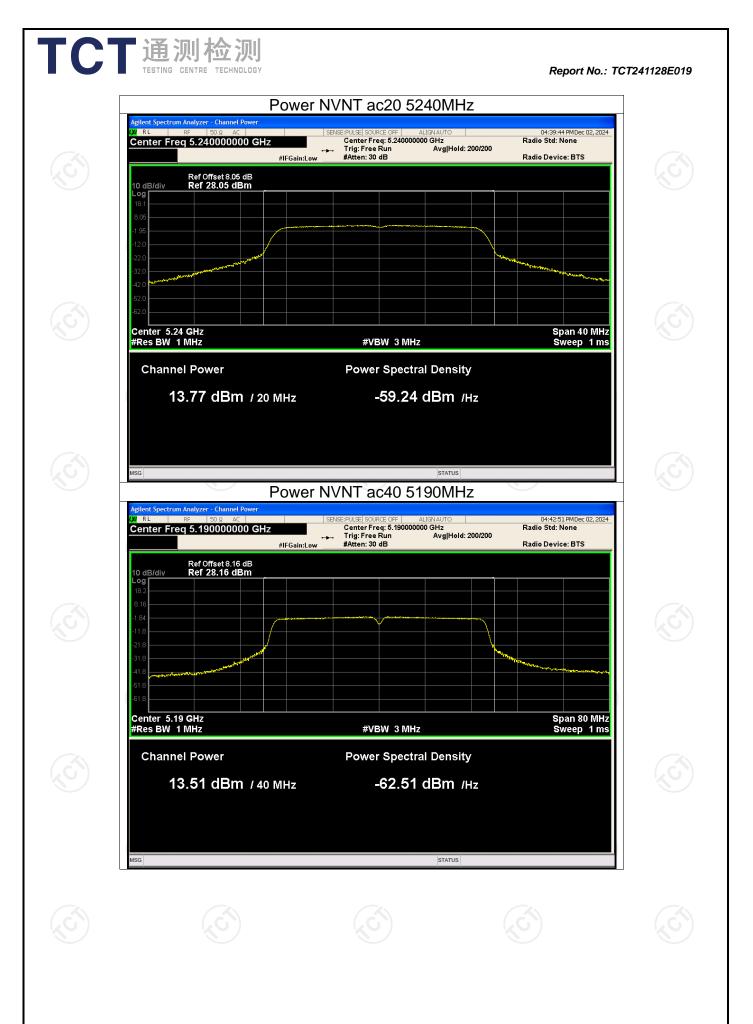


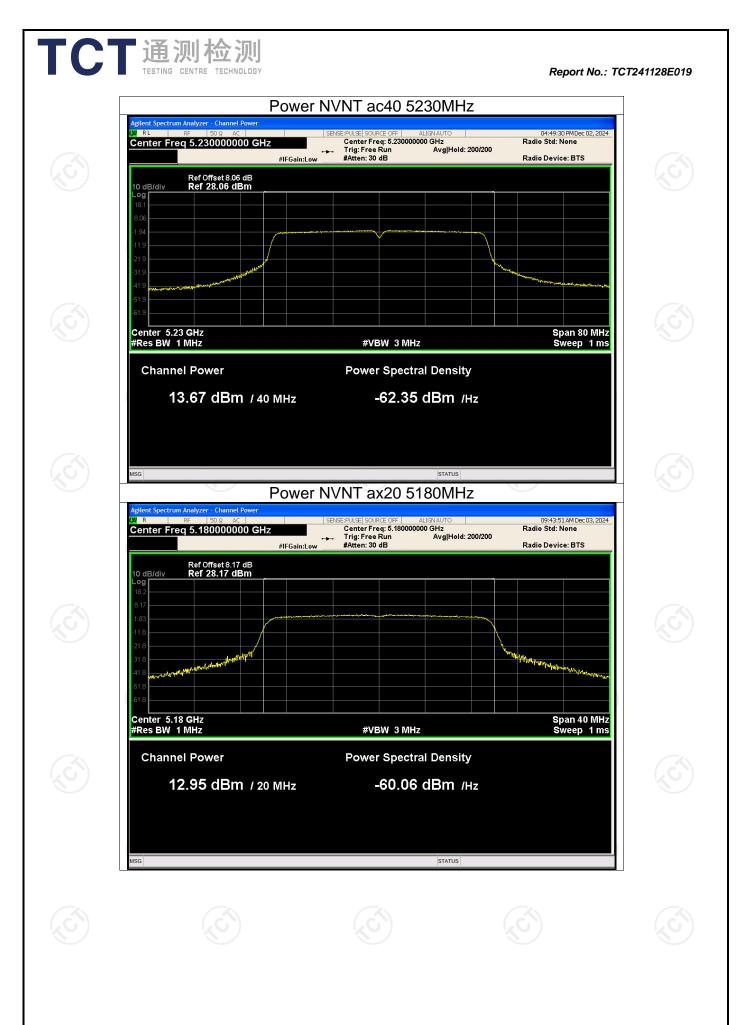
Page 70 of 146

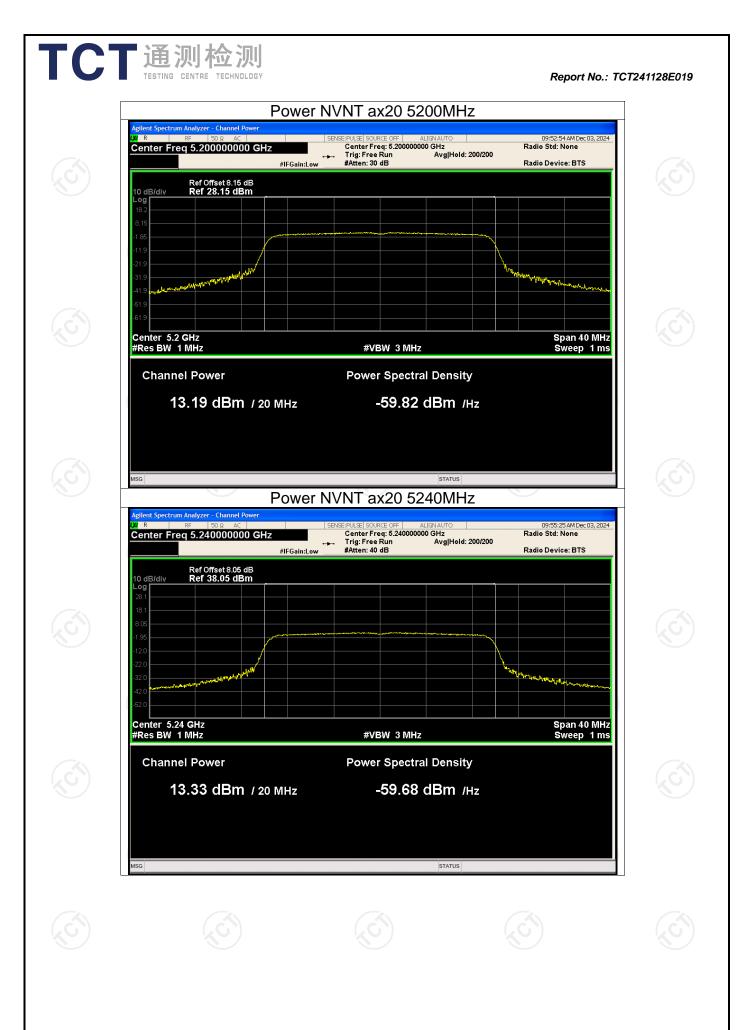


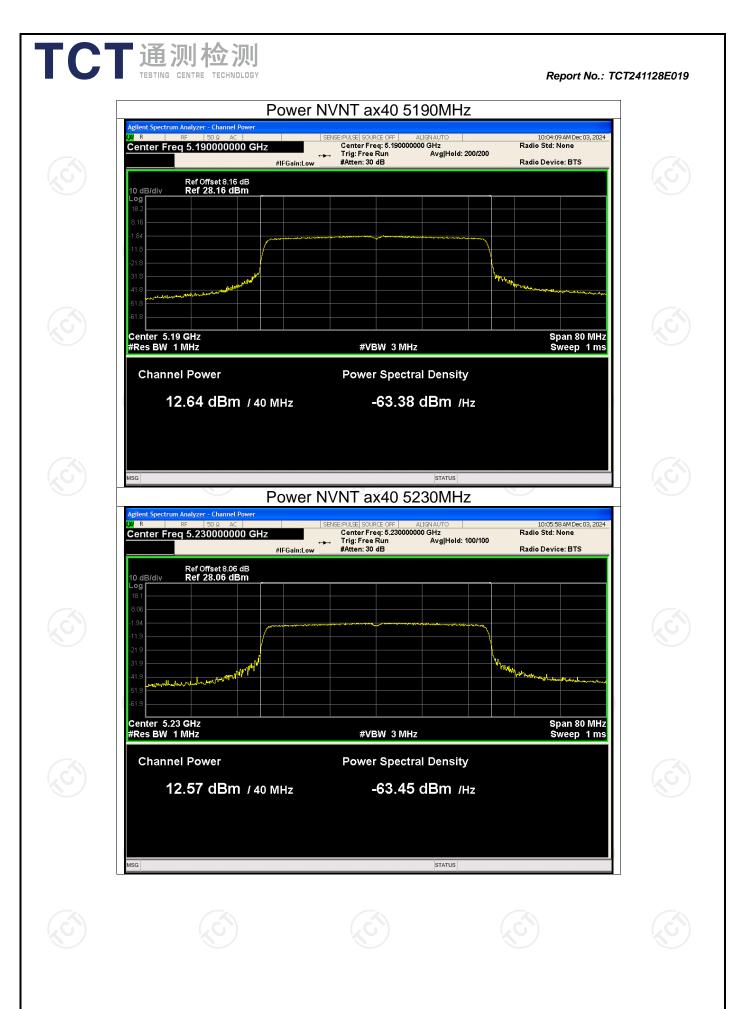
Page 71 of 146

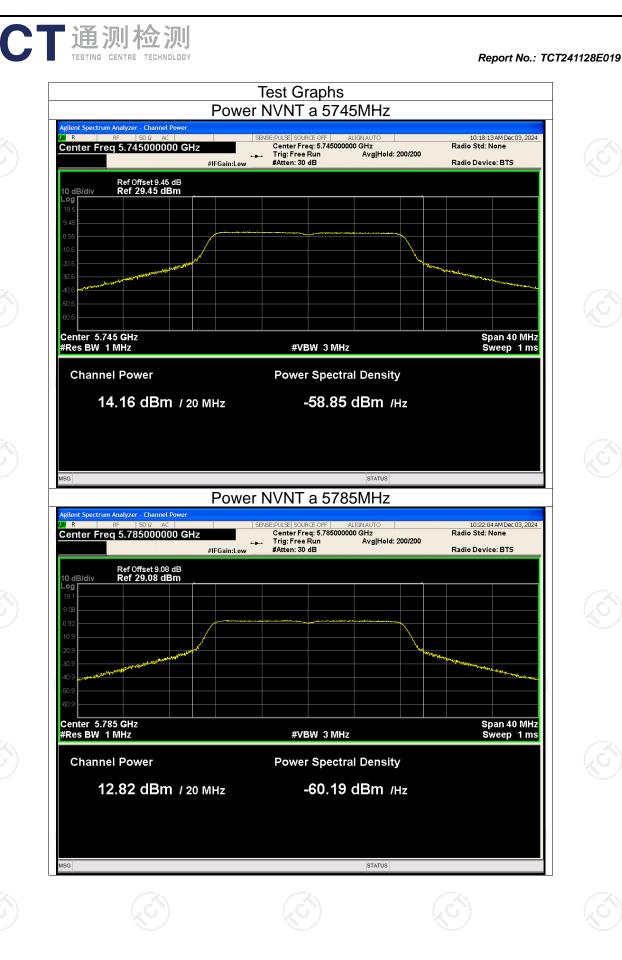

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

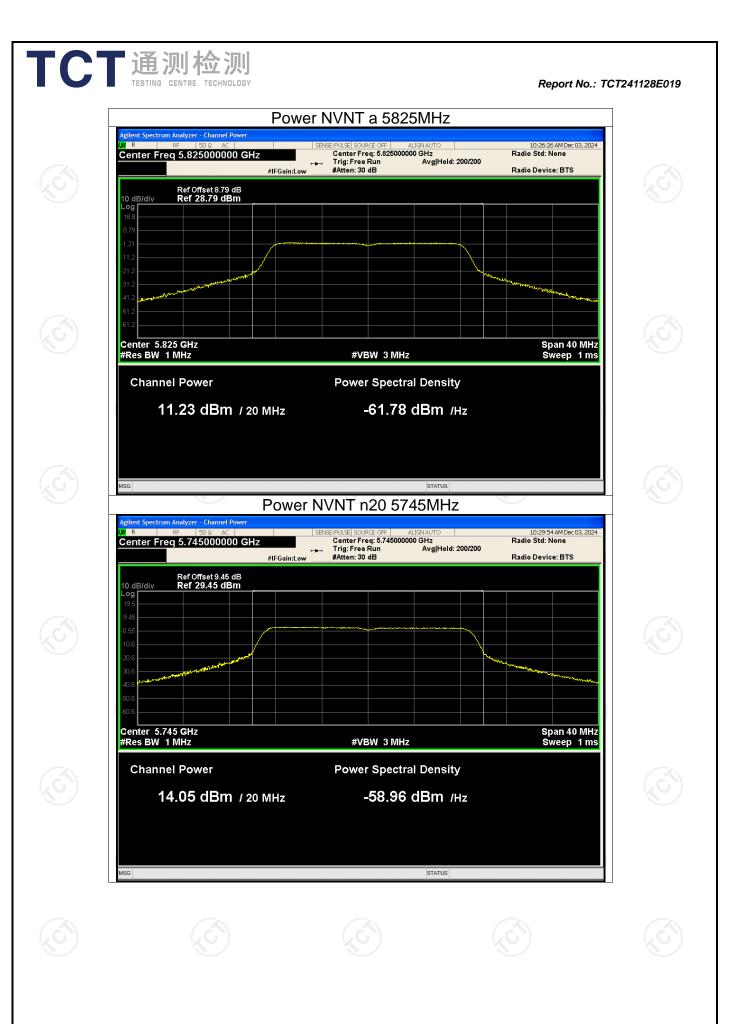

Page 72 of 146


Page 73 of 146

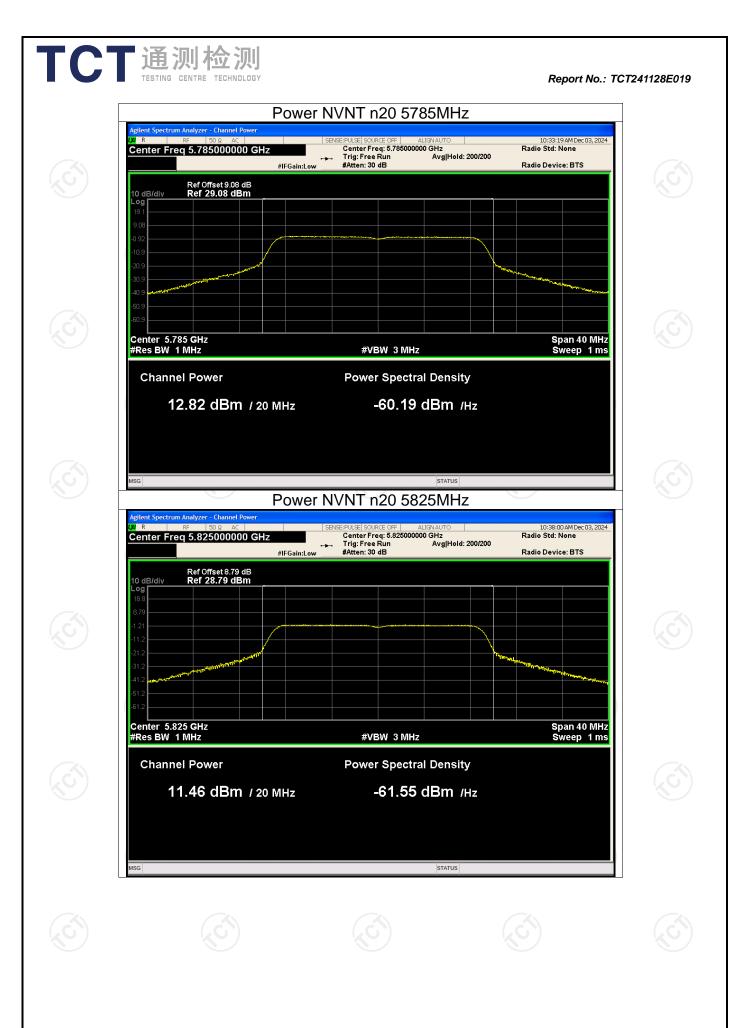

Page 74 of 146


Page 75 of 146

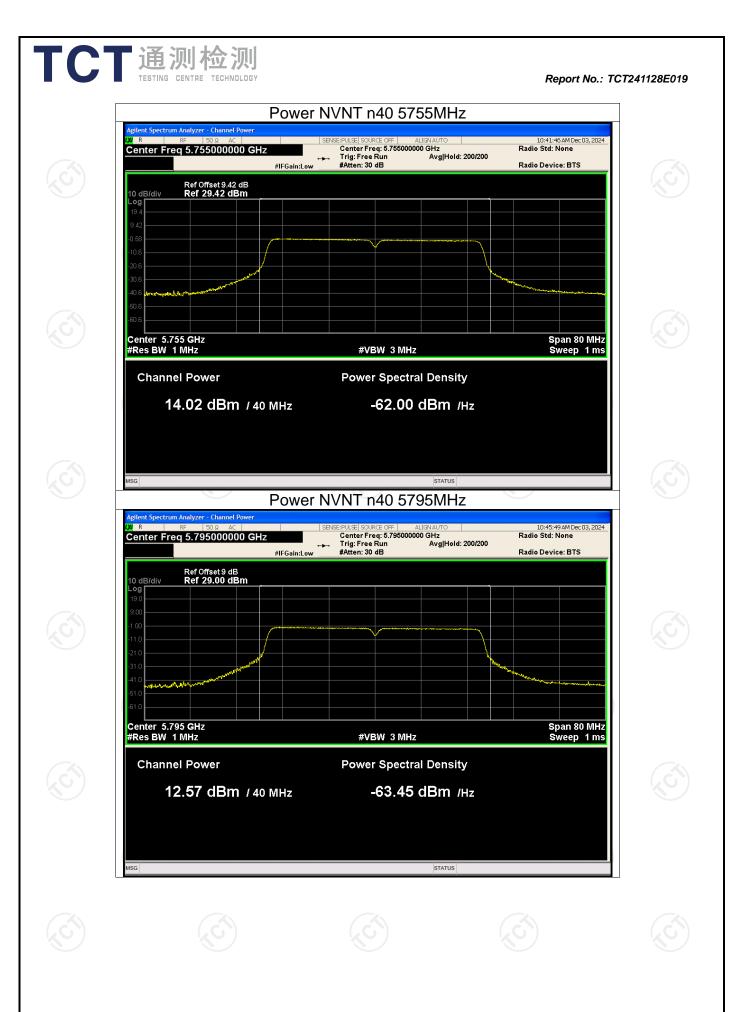

Page 76 of 146

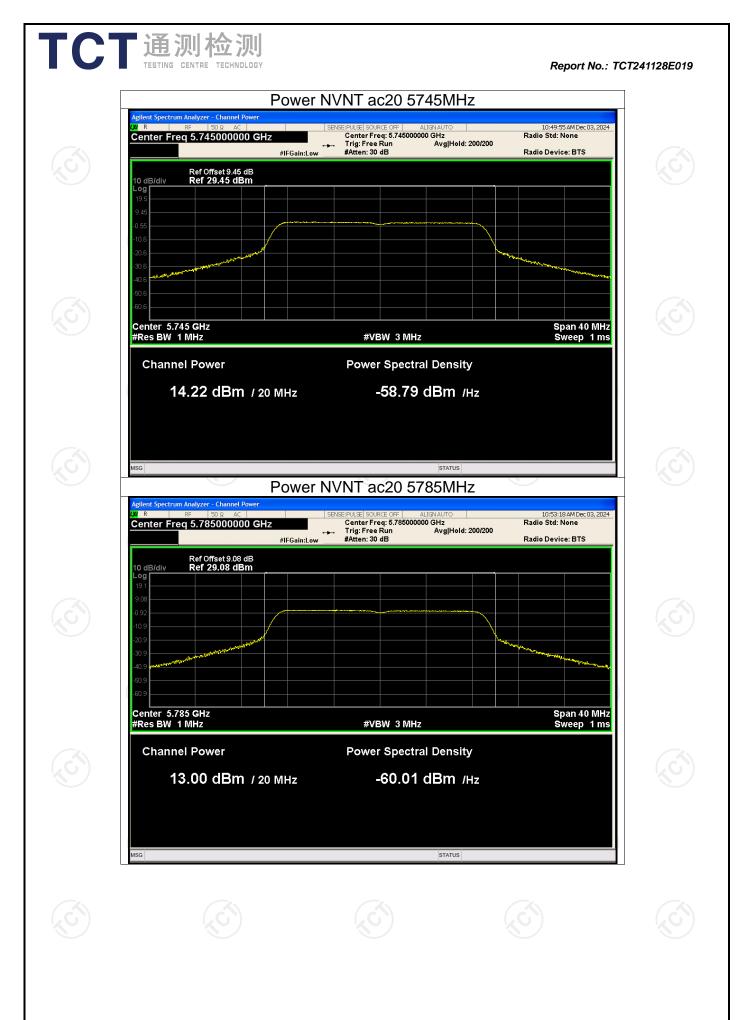


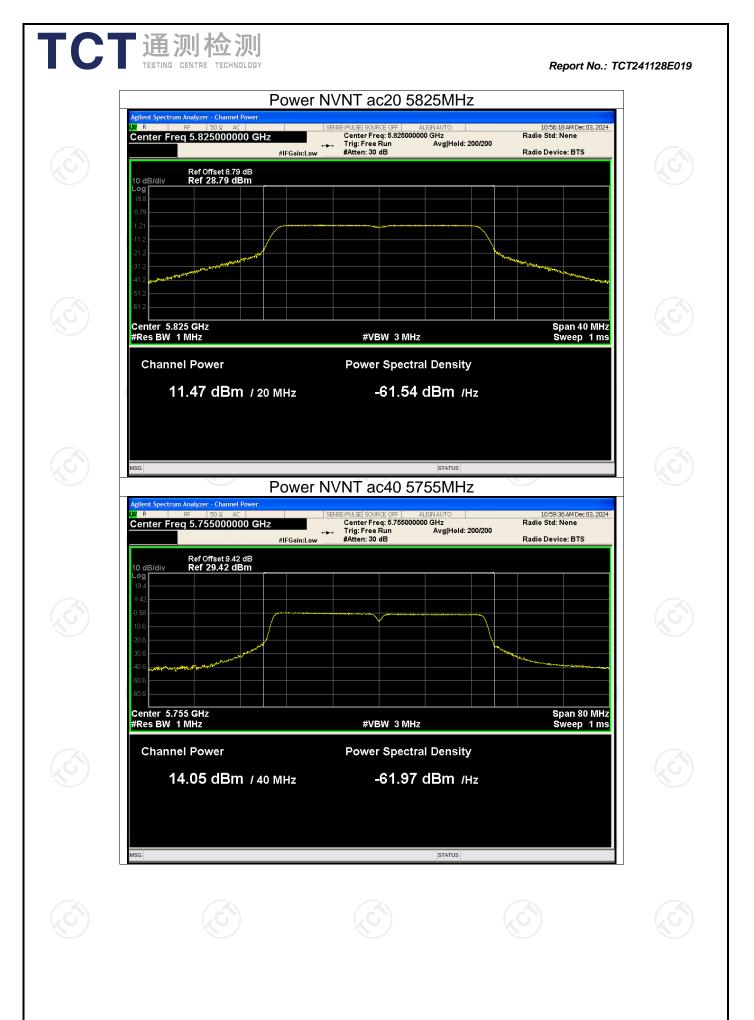
Page 77 of 146



Page 78 of 146




Page 80 of 146


Page 81 of 146

Page 82 of 146

Page 83 of 146

Page 84 of 146