

TEST REPORT

Product : Smart Sleep Light

Trade mark : N/A

Model/Type reference : TEW201

Serial Number : N/A

Report Number : EED32K00287203 **FCC ID** : 2ADIOTEW201

Date of Issue : Nov. 09, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Medica Technology Development Co., Ltd.

2F Building A, Tongfang Information Harbor, No.11, East Langshan Road,
Nanshan District, Shenzhen, P.R. China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested by:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Date:

Kevin yang (Reviewer)

ReJm

Nov. 09, 2018

Max liang

Max liang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:3096353610

Page 2 of 64

2 Version

Version No.	Date	Description
00	Nov. 09, 2018	Original
	**	

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

4 Content

	E						
2 VERSION			•••••				2
3 TEST SUMM	ARY		•••••		•••••		3
4 CONTENT	•••••	•••••	•••••	•••••	•••••	•••••	4
5 TEST REQUI	REMENT	•••••				•••••	5
5.1.1 For 5.1.2 For 5.1.3 For	CONDUCTED TOP Conducted test Radiated Emiss Conducted Emis	setupions test setu ssions test se	ptup				5 5
5.3 TEST CO	NDITION					(6
6 GENERAL IN	IFORMATION	•••••	•••••		•••••	•••••	7
6.2 GENERAL 6.3 PRODUCT 6.4 DESCRIP 6.5 TEST LOG 6.6 DEVIATIO 6.7 ABNORM 6.8 OTHER IN	NEORMATION DESCRIPTION OF SPECIFICATION OF SUPPOR CATION N FROM STANDA	F EUTSUBJECTIVE TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO	O THIS STANDAI	RD			
	EMENT UNCERTA	- ALC: 100.10		F 450 170 1			
7 EQUIPMENT 8 RADIO TECH							
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A): Conducted B): 6dB Occupi C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b I): Radiated Spi	Peak Output I ed Bandwidth for RF Condu ted Spurious I stral Density quirement ine Conducte ands around	Power Incted Emission Emissions ed Emission fundamental frons	s requency (Ra	diated)		
PHOTOGRAPH	HS OF TEST SE	TUP			•••••		62
PHOTOGRAPH	HS OF EUT CO	NSTRUCTIO	NAL DETAILS	•••••	•••••	•••••	64

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:	(25)		(25)
Temperature:	22°C		(6)
Humidity:	58% RH		
Atmospheric Pressure:	1010mbar	1896	

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel				
rest wode	I X/KX	Low(L)	Middle(M)	High(H)		
902 11b/a/a/UT20)	2412MHz ~2462MHz	Channel 1	Channel 6	Channel11		
802.11b/g/n(HT20)		2412MHz	2437MHz	2462MHz		
TX mode:	The EUT transmitted the continuous signal at the specific channel(s).					

Test mode:

Pre-scan under all rate at lowest channel 1

Mode		802	.11b				(0,0)	
Data Rate	1Mbps	2Mbps	5.5Mbp	s 11Mbp	os			
Power(dBm)	16.12	16.74	16.88	16.96				
Mode	73		730	802.1	1g	100		_°3
Data Rate	6Mbps	9Mbps	12Mbps	18Mbp	s 24Mbp	s 36Mbp	s 48Mbps	54Mbps
Power(dBm)	16.06	16.01	15.87	15.41	15.30	15.21	15.00	14.98
Mode			·	802.11n	(HT20)	·		
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	15.36	15.22	15.14	15.01	14.97	14.87	14.33	14.21

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

Page 7 of 64

6 General Information

6.1 Client Information

Applicant:	Shenzhen Medica Technology Development Co., Ltd.
Address of Applicant:	2F Building A, Tongfang Information Harbor, No.11, East Langshan Road, Nanshan District, Shenzhen, P.R. China
Manufacturer:	Shenzhen Medica Technology Development Co., Ltd.
Address of Manufacturer:	2F Building A, Tongfang Information Harbor, No.11, East Langshan Road, Nanshan District, Shenzhen, P.R. China
Factory:	E-safe Technology Limited
Address of Factory:	Room 210, Block B, Baoyuan huafeng Economic Building, Xixiang Avenue, Bao'an District, Shenzhen, Guangdong, China

6.2 General Description of EUT

Product Name:	Smart Sleep Light		
Model No.(EUT):	TEW201		
Trade mark:	N/A		
EUT Supports Radios application:	BT: 4.0 BT Dual mode, 2402MHz to 2480MHz WiFi: IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz		(2)
Power Supply:	Model: NLB100120W1A5S95 Input: 100-240V~50/60Hz, 0.35A Max Output: 12V——1A		0
Sample Received Date:	Oct. 25, 2018	-15	
Sample tested Date:	Oct. 25, 2018 to Nov. 09, 2018	10	

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz			
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channel			
Channel Separation:	5MHz	(6)		
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM,QPSK,BPSK)			
Test Power Grade:	N/A			
Test Software of EUT:	N/A			
Firmware version:	V0.51(manufacturer declare)			
Hardware version:	V1.0(manufacturer declare)			
Antenna Type:	PCB Antenna	~°5~		
Antenna Gain:	2.5dBi	(25)		
Test Voltage:	AC 120V, 60Hz			

Operation	Operation Frequency each of channel(802.11b/g/n HT20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz		
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz		
3	2422MHz	6	2437MHz	9	2452MHz				

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted. CNAS-Lab Code: L1910 A2LA-Lab Cert. No. 3061.01 FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
		0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
		4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
		3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

01-09-2019

03-12-2019

03-12-2019

03-12-2019

03-12-2019

03-12-2019

03-12-2019

03-12-2019

01-10-2018

03-13-2018

03-13-2018

03-13-2018

03-13-2018

03-13-2018

03-13-2018

03-13-2018

7 Equ

High-pass

filter DC Power

PC-1

BT&WI-FI Automatic

control RF control

unit RF control

unit RF control

unit BT&WI-FI Automatic

test software

MICRO-

TRONICS

Keysight

Lenovo

R&S

JS Tonscend

JS Tonscend

JS Tonscend

JS Tonscend

uipment	ipment List									
RF test system										
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019					
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019					
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019					
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-10-2018	01-09-2019					

MY54426035

101374

15860006

15860004

158060007

SPA-F-63029-4

E3642A

R4960d

OSP120

JS0806-2

JS0806-1

JS0806-4

JS1120-2

(30)		(30)				
	Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
Temperature/ Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019	
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019	
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019	
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019	
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019	
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020	
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019	
ISN	TESEQ	ISN T800	30297	02-06-2018	02-05-2019	

	3M	Semi/full-anech			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	(6)	06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	04-26-2018	04-25-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Double ridge horn antenna	A.H.SYSTEM S	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEM S	PAP-1840-60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Multi device Controller	maturo	NCD/070/107 11112		01-10-2018	01-09-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106 SF106	5220/6A	01-10-2018 01-10-2018	01-09-2019
Cable line Cable line	Fulai(3M) Fulai(3M)	SF106 SF106	5216/6A 5217/6A	01-10-2018	01-09-2019 01-09-2019
Communication test set	R&S	CMW500	104466	02-05-2018	02-04-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-10-2018	01-09-2019

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

				7,700
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Appendix A): Conducted Peak Output Power

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	16.96	PASS
11B	MCH	17.04	PASS
11B	нсн	17.62	PASS
11G	LCH	16.06	PASS
11G	MCH	16.26	PASS
11G	НСН	15.9	PASS
11N20SISO	LCH	15.36	PASS
11N20SISO	MCH	15.4	PASS
11N20SISO	НСН	14.83	PASS

Page 14 of 64

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	8.076	10.587	PASS
11B	МСН	8.056	10.614	PASS
11B	нсн	10.02	14.368	PASS
11G	LCH	16.32	16.337	PASS
11G	MCH	16.31	16.334	PASS
11G	НСН	16.31	16.345	PASS
11N20SISO	LCH	16.55	17.478	PASS
11N20SISO	MCH	16.64	17.477	PASS
11N20SISO	HCH	16.54	17.488	PASS

Test Graph

Page 18 of 64

Page 19 of 64

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	5.287	-49.300	-24.71	PASS
11B	HCH	6.023	-48.959	-23.98	PASS
11G	LCH	-2.981	-48.331	-32.98	PASS
11G	HCH	-2.955	-48.723	-32.96	PASS
11N20SISO	LCH	-3.694	-50.117	-33.69	PASS
11N20SISO	НСН	-3.812	-48.930	-33.81	PASS

Test Graph

Page 22 of 64

Result Table

- Itobait Tab	.0	U.Y. 1	110000	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	5.885	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	5.782	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	6.371	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-2.754	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-2.66	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	-3.4	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-3.231	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-3.374	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-3.866	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

Page 24 of 64

Page 25 of 64

Page 26 of 64

Page 27 of 64

Page 28 of 64

Page 29 of 64

Page 31 of 64

Appendix E): Power Spectral Density

Result Table

Mode	Channel	Power Spectral Density[dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-8.213	8	PASS
11B	MCH	-9.334	8	PASS
11B	НСН	-8.087	8	PASS
11G	LCH	-17.158	8	PASS
11G	MCH	-17.142	8	PASS
11G	НСН	-17.383	8	PASS
11N20SISO	LCH	-18.089	8	PASS
11N20SISO	MCH	-18.134	8	PASS
11N20SISO	HCH	-18.556	8	PASS

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB antenna and no consideration of replacement. The best case gain of the antenna is 2.5dBi.

Page 37 of 64

Test Procedure:	Test frequency range :150KHz-	-30MHz							
(250)	1)The mains terminal disturban	ce voltage test was	conducted in a shielde	ed room.					
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for								
	the unit being measured. A power cables to a single LIS								
	exceeded.								
	3)The tabletop EUT was place reference plane. And for flucture horizontal ground reference	oor-standing arrange		-					
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This								
	distance was between the closest points of the LISN 1 and the EUT. All other units								
)	of the EUT and associated equipment was at least 0.8 m from the LISN 2.								
	5) In order to find the maximum the interface cables must measurement.								
Limit:									
(273)	[[] [] [] [] [] [] [] [] [] [Limit ((dBµV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
N	5-30	60	50	1.6					

	· ·		1
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* The limit decreases linearly	with the logarithm of th	e frequency in the ra	naa

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 38 of 64

Live line:

			Read	ding_Le	vel	Correct	M	Measurement			nit	Ma	rgin		
	No.	Freq.	(dBu∀)		Factor		(dBu∀)		(dB	uV)	(0	dB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
Ī	1	0.5660	42.40	39.65	29.53	9.84	52.24	49.49	39.37	56.00	46.00	-6.51	-6.63	Р	
	2	1.0900	35.83	32.11	21.50	9.81	45.64	41.92	31.31	56.00	46.00	-14.08	-14.69	Р	
	3	1.8260	36.89	33.58	23.25	9.74	46.63	43.32	32.99	56.00	46.00	-12.68	-13.01	Р	
ð	4	4.1540	40.10	37.64	23.32	9.72	49.82	47.36	33.04	56.00	46.00	-8.64	-12.96	Р	
	5	5.8340	35.55	32.69	22.34	9.72	45.27	42.41	32.06	60.00	50.00	-17.59	-17.94	Р	
	6	19.4100	34.02	31.48	17.19	10.17	44.19	41.65	27.36	60.00	50.00	-18.35	-22.64	Р	

Page 39 of 64

Neutral line:

		Read	ding_Le	vel	-						rgin			
No	. Freq.	(dBu∀)		Factor		(dBu∀)		(dB	uV)	(0	iB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.5620	36.51	33.21	23.68	9.83	46.34	43.04	33.51	56.00	46.00	-12.96	-12.49	Р	
2	1.0940	29.96	26.54	18.50	9.81	39.77	36.35	28.31	56.00	46.00	-19.65	-17.69	Р	
3	2.5540	26.06	23.84	17.35	9.72	35.78	33.56	27.07	56.00	46.00	-22.44	-18.93	Р	
4	5.1140	29.95	26.58	17.30	9.72	39.67	36.30	27.02	60.00	50.00	-23.70	-22.98	Р	
5	8.0140	29.59	26.33	18.12	9.81	39.40	36.14	27.93	60.00	50.00	-23.86	-22.07	Р	
6	23.8060	33.55	30.21	11.90	10.18	43.73	40.39	22.08	60.00	50.00	-19.61	-27.92	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A1 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	-05
est Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the to c. The antenna height is with determine the maximum.	n the top of a rota choic camber. The of the highest rad ters away from th p of a variable-he varied from one m n value of the fiel	e table wa iation. e interferd ight anter neter to fo d strength	s rotated 3 ence-recei nna tower. ur meters n. Both hor	on degrees to ving antenna, above the grorizontal and ve	whic
	d. For each suspected en the antenna was tuned was turned from 0 degree. The test-receiver syste Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectre for lowest and highest of the system of the syst	nission, the EUT was to heights from 1 rees to 360 degreem was set to Peaum Hold Mode. The restricted pliance. Also mean analyzer plot. The channel	was arran meter to es to find k Detect I ed band c asure any	ged to its was a meters of the maximum function a losest to the measure of the me	worst case and and the rotatal num reading. nd Specified ne transmit in the restrict	ble ted
	g. Different between above to fully Anechoic Cham	e is the test site,	table 0.8	meter to 1		
)	18GHz the distance is h. Test the EUT in the lov i. The radiation measure Transmitting mode, and j. Repeat above procedu	1 meter and table west channel , the ments are perforn d found the X axis	e Highest ned in X, s positioni	channel Y, Z axis p ng which i	t is worse cas	e.
imit:	h. Test the EUT in the low i. The radiation measure Transmitting mode, and	1 meter and table west channel , the ments are perforn d found the X axis	e Highest ned in X, s positioni encies me	channel Y, Z axis p ng which i	t is worse cas	e.
imit:	h. Test the EUT in the low i. The radiation measured Transmitting mode, and j. Repeat above procedu	1 meter and table west channel, the ments are perforn d found the X axis res until all frequen	e Highest ned in X, s positioni encies me	channel Y, Z axis p ng which i asured wa	t is worse case as complete.	e.
imit:	h. Test the EUT in the low i. The radiation measured Transmitting mode, and j. Repeat above procedu	1 meter and table west channel , the ments are perform d found the X axis res until all freque Limit (dBµV/m	e Highest ned in X, s positioni encies me	channel Y, Z axis p ng which i easured wa Rer Quasi-pe	t is worse case as complete. mark	e.
imit:	18GHz the distance is h. Test the EUT in the lov i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz	1 meter and table west channel , the ments are perform d found the X axis res until all freque Limit (dBµV/m 40.0	e Highest ned in X, s positioni encies me	channel Y, Z axis p ng which i asured wa Rer Quasi-pe	t is worse cases complete. mark eak Value	e.
Limit:	18GHz the distance is h. Test the EUT in the lov i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	1 meter and table west channel , the ments are perform d found the X axis res until all frequency Limit (dBµV/m 40.0 43.5	e Highest ned in X, s positioni encies me	channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	t is worse case as complete. mark eak Value eak Value	e.
Limit:	18GHz the distance is h. Test the EUT in the lov i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	1 meter and table west channel , the ments are perform d found the X axis res until all freque Limit (dBµV/m 40.0 43.5 46.0	e Highest ned in X, s positioni encies me	channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	t is worse case as complete. mark eak Value eak Value eak Value	e.

Page 41 of 64

Test plot as follows:

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2480
Remark:	PK	10.5	

Test Graph

Cable Ant Pream Freq. Reading Level Limit Margin NO Factor loss gain Result **Polarity** Remark [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2390.0000 18.54 1 13.37 55.46 74.00 Η 32.25 -36.6246.46 **Pass** Peak 2 2411.9024 74.00 Н 32.28 13.35 -36.61 85.70 94.72 -20.72 Peak **Pass**

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	46.95	55.95	74.00	18.05	Pass	V	Peak
2	2413.1977	32.28	13.36	-36.61	83.00	92.03	74.00	-18.03	Pass	V	Peak

1 490 12 01 01	Page	42	of	64
----------------	------	----	----	----

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV	105	(40)

Test Graph

Cable Ant Pream Reading Level Limit Margin Freq. NO Result Polarity Factor loss gain Remark [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2390.0000 32.25 13.37 -36.62 34.71 43.71 54.00 10.29 1 **Pass** Η Average 2 2412.4781 32.28 88.25 Н 13.36 -36.61 79.22 54.00 -34.25 **Pass** Average

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.85	43.85	54.00	10.15	Pass	V	Average
2	2412.4781	32.28	13.36	-36.61	77.14	86.17	54.00	-32.17	Pass	V	Average

Page 43 of 64

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2461.9449	32.35	13.48	-36.70	85.20	94.33	74.00	-20.33	Pass	Н	Peak
2	1 /4× 3 million	32.38	13.38	-36.80	45.70	54.66	74.00	19.34	Pass	Н	Peak

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2463.3242	32.35	13.47	-36.70	82.57	91.69	74.00	-17.69	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.62	54.58	74.00	19.42	Pass	V	Peak

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2462.5257	32.35	13.47	-36.69	79.81	88.94	54.00	-34.94	Pass	Н	Average
2	2483.5000	32.38	13.38	-36.80	34.53	43.49	54.00	10.51	Pass	Н	Average

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	(*)	75	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2462.5982	32.35	13.47	-36.69	77.57	86.70	54.00	-32.70	Pass	V	Average
2	2483.5000	32.38	13.38	-36.80	34.49	43.45	54.00	10.55	Pass	V	Average

Page	45	of	64
------	----	----	----

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.26	54.26	74.00	19.74	Pass	Н	Peak
2	2416.7960	32.28	13.38	-36.61	81.38	90.43	74.00	-16.43	Pass	Н	Peak

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.68	54.68	74.00	19.32	Pass	V	Peak
2	2417.5156	32.28	13.38	-36.61	78.11	87.16	74.00	-13.16	Pass	V	Peak

Page 46 of 64	Page	46	of	64
---------------	------	----	----	----

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV	The same of the sa	

Test Graph

Cable Ant Pream Freq. Reading Level Limit Margin NO Factor loss gain Result **Polarity** Remark [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2390.0000 10.37 1 13.37 43.63 54.00 Н Average 32.25 -36.6234.63 **Pass** 2 2412.1902 78.60 54.00 Н 32.28 13.36 -36.61 69.57 -24.60 **Pass** Average

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV	75	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.63	43.63	54.00	10.37	Pass	V	Average
2	2412.0463	32.28	13.36	-36.61	66.45	75.48	54.00	-21.48	Pass	V	Average

Page 47 o	f 64
-----------	------

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2467.7522	32.35	13.45	-36.71	82.58	91.67	74.00	-17.67	Pass	Н	Peak
2	2483.5000	32.38	13.38	-36.80	45.75	54.71	74.00	19.29	Pass	Н	Peak

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2467.1715	32.35	13.45	-36.71	78.42	87.51	74.00	-13.51	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.71	54.67	74.00	19.33	Pass	V	Peak

Page 48 of 64

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2462.3805	32.35	13.47	-36.69	71.75	80.88	54.00	-26.88	Pass	Н	Average
2	2483.5000	32.38	13.38	-36.80	34.70	43.66	54.00	10.34	Pass	Н	Average

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2462.3079	32.35	13.47	-36.69	67.23	76.36	54.00	-22.36	Pass	V	Average
2	2483.5000	32.38	13.38	-36.80	34.49	43.45	54.00	10.55	Pass	V	Average

Page 49 of 64

Mode:	802.11 n(HT20)(6.5Mbps) Transm	itting	Channel: 2412
Remark:	PK	487	500

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.99	54.99	74.00	19.01	Pass	Н	Peak
2	2414.6370	32.28	13.37	-36.61	81.93	90.97	74.00	-16.97	Pass	Н	Peak

Mode:	802.11 n(HT20)(6.5Mbps) Transmitting	Channel: 2412
Remark:	PK	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	46.10	55.10	74.00	18.90	Pass	V	Peak
2	2414.4931	32.28	13.37	-36.61	77.80	86.84	74.00	-12.84	Pass	V	Peak

Р	age	50	OT	64

Mode:	802.11 n(HT20)(6.5Mbps) Transmitting	Channel:2412
Remark:	AV	

Test Graph

Cable Ant Pream Freq. Reading Limit Level Margin NO Factor loss gain Result Polarity Remark [MHz] [dBµV] [dBµV/m] $[dB\mu V/m]$ [dB] [dB] [dB] [dB] 2390.0000 10.32 1 32.25 13.37 -36.62 34.68 43.68 54.00 Pass Н Average 2 2412.0463 32.28 13.36 -36.61 69.06 78.09 54.00 -24.09 Н **Pass** Average

Mode:	802.11 n(HT20)(6.5Mbps) Transmitting	Channel: 2412
Remark:	AV	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.63	43.63	54.00	10.37	Pass	V	Average
2	2412.0463	32.28	13.36	-36.61	65.77	74.80	54.00	-20.80	Pass	V	Average

Page 51 of	64
------------	----

Mode:	802.11 n(HT20)(6.5Mbps) Transmitting	Channel: 2462
Remark:	PK	

Test Graph

Cable Ant Pream Freq. Reading Limit Level Margin NO Factor loss gain Result Polarity Remark [MHz] [dBµV] [dBµV/m] $[dB\mu V/m]$ [dB] [dB] [dB] [dB] 2468.5507 -17.92 1 32.36 13.44 -36.72 82.84 91.92 74.00 Pass Н Peak 2 2483.5000 32.38 13.38 -36.80 46.10 55.06 74.00 18.94 Н **Pass** Peak

Mode:	802.11 n(HT20)(6.5Mbps) Transmitting	Channel: 2462
Remark:	PK	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2468.5507	32.36	13.44	-36.72	78.38	87.46	74.00	-13.46	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.14	54.10	74.00	19.90	Pass	V	Peak

Page 52 of 64	ļ
---------------	---

Mode:	802.11 n(HT20)(6.5Mbps) Transmitting	Channel: 2462
Remark:	AV	

Test Graph

Cable Ant Pream Freq. Reading Limit Level Margin NO Factor loss gain Result Polarity Remark [MHz] [dBµV] [dBµV/m] $[dB\mu V/m]$ [dB] [dB] [dB] [dB] 1 2462.2353 32.35 13.47 -36.69 69.53 78.66 54.00 -24.66 Н **Pass** Average 2 2483.5000 32.38 13.38 41.20 50.16 54.00 Н -36.80 3.84 **Pass** Average

Mode:	802.11 n(HT20)(6.5Mbps) Transmitting	Channel: 2462
Remark:	AV	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2462.1627	32.35	13.47	-36.69	66.87	76.00	54.00	-22.00	Pass	V	Average
2	2483.5000	32.38	13.38	-36.80	41.25	50.21	54.00	3.79	Pass	V	Average

Page 53 of 64

Note:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab 401b	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)...
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	100	30
1.705MHz-30MHz	30	-	(6)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	96.0636	10.37	1.13	-32.07	53.08	32.51	43.50	10.99	Pass	Horizontal
2	147.2847	7.45	1.43	-32.00	56.46	33.34	43.50	10.16	Pass	Horizontal
3	347.9978	14.26	2.22	-31.86	55.10	39.72	46.00	6.28	Pass	Horizontal
4	480.0280	16.68	2.61	-31.90	54.78	42.17	46.00	3.83	Pass	Horizontal
5	597.4097	18.95	2.94	-31.97	41.77	31.69	46.00	14.31	Pass	Horizontal
6	840.1280	21.38	3.50	-31.89	39.89	32.88	46.00	13.12	Pass	Horizontal

Page 56 of 64

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	96.0636	10.37	1.13	-32.07	47.73	27.16	43.50	16.34	Pass	Vertical
2	131.9572	7.60	1.34	-32.01	56.99	33.92	43.50	9.58	Pass	Vertical
3	324.0364	13.73	2.14	-31.81	48.86	32.92	46.00	13.08	Pass	Vertical
4	351.1991	14.33	2.23	-31.87	50.10	34.79	46.00	11.21	Pass	Vertical
5	480.0280	16.68	2.61	-31.90	45.05	32.44	46.00	13.56	Pass	Vertical
6	599.1559	18.98	2.95	-31.98	41.01	30.96	46.00	15.04	Pass	Vertical

Transmitter Emission above 1GHz

Mod	e: 802.11 b(11	Mbps) Ti	ransmittin		Channel: 2412MHz						
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1196.4393	28.10	2.66	-37.65	49.05	42.16	74.00	31.84	Pass	Н	Peak
2	3215.4966	33.29	4.59	-36.74	46.05	47.19	74.00	26.81	Pass	Н	Peak
3	4824.0000	34.50	4.61	-36.11	47.60	50.60	74.00	23.40	Pass	Н	Peak
4	6172.9673	35.83	5.24	-36.25	44.01	48.83	74.00	25.17	Pass	Н	Peak
5	7236.0000	36.34	5.79	-36.44	42.36	48.05	74.00	25.95	Pass	Н	Peak
6	9648.0000	37.66	6.72	-36.92	42.45	49.91	74.00	24.09	Pass	Н	Peak
7	1196.8394	28.10	2.66	-37.65	51.75	44.86	74.00	29.14	Pass	V	Peak
8	3021.4521	33.21	4.89	-36.79	46.32	47.63	74.00	26.37	Pass	V	Peak
9	4824.0000	34.50	4.61	-36.11	46.35	49.35	74.00	24.65	Pass	V	Peak
10	6025.7276	35.81	5.27	-36.28	43.56	48.36	74.00	25.64	Pass	V	Peak
11	7236.0000	36.34	5.79	-36.44	42.48	48.17	74.00	25.83	Pass	V	Peak
12	9648.0000	37.66	6.72	-36.92	43.48	50.94	74.00	23.06	Pass	V	Peak

1.70.70		7.1	5.9 . /		10.0			3 /		1,000	
Mod	e: 802.11 b(11	(Mbps	ransmittir	ıg				Channel	: 2437MH	lz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1196.4393	28.10	2.66	-37.65	48.59	41.70	74.00	32.30	Pass	Н	Peak
2	2965.9932	33.15	4.45	-36.78	45.83	46.65	74.00	27.35	Pass	Н	Peak
3	4874.0000	34.50	4.78	-36.09	42.96	46.15	74.00	27.85	Pass	Н	Peak
4	7311.0000	36.41	5.85	-36.31	40.82	46.77	74.00	27.23	Pass	Н	Peak
5	8129.9880	36.45	6.32	-36.48	43.55	49.84	74.00	24.16	Pass	Н	Peak
6	9748.0000	37.70	6.77	-36.79	43.08	50.76	74.00	23.24	Pass	Н	Peak
7	1195.6391	28.10	2.66	-37.65	53.09	46.20	74.00	27.80	Pass	V	Peak
8	2967.1934	33.15	4.45	-36.78	45.83	46.65	74.00	27.35	Pass	V	Peak
9	4874.0000	34.50	4.78	-36.09	44.34	47.53	74.00	26.47	Pass	V	Peak
10	6263.6514	35.85	5.38	-36.27	43.40	48.36	74.00	25.64	Pass	V	Peak
11	7311.0000	36.41	5.85	-36.31	40.30	46.25	74.00	27.75	Pass	V	Peak
12	9748.0000	37.70	6.77	-36.79	42.87	50.55	74.00	23.45	Pass	V	Peak

Mod	e: 802.11 b(11	IMbps) Ti	Channel: 2462MHz								
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1232.0464	28.13	2.67	-37.55	49.54	42.79	74.00	31.21	Pass	Н	Peak
2	3007.8008	33.20	4.91	-36.73	45.95	47.33	74.00	26.67	Pass	Н	Peak
3	4924.0000	34.50	4.85	-36.17	43.25	46.43	74.00	27.57	Pass	Н	Peak
4	6524.0024	35.91	5.41	-36.17	44.93	50.08	74.00	23.92	Pass	Н	Peak
5	7386.0000	36.49	5.85	-36.34	42.28	48.28	74.00	25.72	Pass	Н	Peak
6	9848.0000	37.74	6.83	-36.93	43.18	50.82	74.00	23.18	Pass	Н	Peak
7	1199.2398	28.10	2.66	-37.64	53.68	46.80	74.00	27.20	Pass	V	Peak
8	3389.0639	33.36	4.55	-36.66	47.17	48.42	74.00	25.58	Pass	V	Peak
9	4924.0000	34.50	4.85	-36.17	43.06	46.24	74.00	27.76	Pass	V	Peak
10	6315.3315	35.86	5.46	-36.20	44.13	49.25	74.00	24.75	Pass	V	Peak
11	7386.0000	36.49	5.85	-36.34	42.59	48.59	74.00	25.41	Pass	V	Peak
12	9848.0000	37.74	6.83	-36.93	42.64	50.28	74.00	23.72	Pass	V	Peak

Mod	e: 802.11 g(6N	Лbps) Tra		Channel: 2412MHz							
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1894.1788	31.00	3.42	-36.79	47.67	45.30	74.00	28.70	Pass	Н	Peak
2	3003.9004	33.20	4.92	-36.72	45.56	46.96	74.00	27.04	Pass	Н	Peak
3	4824.0000	34.50	4.61	-36.11	42.47	45.47	74.00	28.53	Pass	Н	Peak
4	5779.0279	35.45	4.96	-36.07	43.43	47.77	74.00	26.23	Pass	Н	Peak
5	7236.0000	36.34	5.79	-36.44	41.58	47.27	74.00	26.73	Pass	Н	Peak
6	9648.0000	37.66	6.72	-36.92	43.18	50.64	74.00	23.36	Pass	Н	Peak
7	1196.4393	28.10	2.66	-37.65	50.27	43.38	74.00	30.62	Pass	V	Peak
8	2989.9980	33.18	4.52	-36.73	44.76	45.73	74.00	28.27	Pass	V	Peak
9	4824.0000	34.50	4.61	-36.11	38.91	41.91	74.00	32.09	Pass	V	Peak
10	5719.5470	35.35	4.99	-36.12	41.87	46.09	74.00	27.91	Pass	V	Peak
11	7236.0000	36.34	5.79	-36.44	39.51	45.20	74.00	28.80	Pass	V	Peak
12	9648.0000	37.66	6.72	-36.92	43.27	50.73	74.00	23.27	Pass	V	Peak

Page	50	of	61
Page	วษ	OI	04

Mode	e: 802.11 g(6N	Лbps) Tra	Channel	: 2437MH	lz						
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1854.1708	30.74	3.38	-36.93	46.86	44.05	74.00	29.95	Pass	Н	Peak
2	3469.9970	33.39	4.45	-36.58	44.78	46.04	74.00	27.96	Pass	Н	Peak
3	4874.0000	34.50	4.78	-36.09	42.62	45.81	74.00	28.19	Pass	Н	Peak
4	6500.6001	35.90	5.47	-36.22	43.81	48.96	74.00	25.04	Pass	Н	Peak
5	7311.0000	36.41	5.85	-36.31	41.30	47.25	74.00	26.75	Pass	Н	Peak
6	9748.0000	37.70	6.77	-36.79	42.83	50.51	74.00	23.49	Pass	Н	Peak
7	1195.6391	28.10	2.66	-37.65	54.41	47.52	74.00	26.48	Pass	V	Peak
8	3330.5581	33.33	4.54	-36.74	46.31	47.44	74.00	26.56	Pass	V	Peak
9	4874.0000	34.50	4.78	-36.09	41.68	44.87	74.00	29.13	Pass	V	Peak
10	5974.0474	35.76	5.33	-36.23	44.01	48.87	74.00	25.13	Pass	V	Peak
11	7311.0000	36.41	5.85	-36.31	42.12	48.07	74.00	25.93	Pass	V	Peak
12	9748.0000	37.70	6.77	-36.79	43.28	50.96	74.00	23.04	Pass	V	Peak

Mod	e: 802.11 g(6N	Иbps) Tra	Channel: 2462MHz								
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1393.6787	28.29	2.89	-37.21	49.29	43.26	74.00	30.74	Pass	Н	Peak
2	3218.4218	33.29	4.58	-36.74	47.16	48.29	74.00	25.71	Pass	Н	Peak
3	4924.0000	34.50	4.85	-36.17	42.66	45.84	74.00	28.16	Pass	Н	Peak
4	6394.3144	35.88	5.33	-36.32	45.27	50.16	74.00	23.84	Pass	Н	Peak
5	7386.0000	36.49	5.85	-36.34	41.89	47.89	74.00	26.11	Pass	Н	Peak
6	9848.0000	37.74	6.83	-36.93	43.33	50.97	74.00	23.03	Pass	Н	Peak
7	1796.5593	30.36	3.31	-36.81	48.32	45.18	74.00	28.82	Pass	V	Peak
8	3189.1689	33.28	4.63	-36.75	45.51	46.67	74.00	27.33	Pass	V	Peak
9	4924.0000	34.50	4.85	-36.17	41.86	45.04	74.00	28.96	Pass	V	Peak
10	6138.8389	35.83	5.25	-36.22	44.27	49.13	74.00	24.87	Pass	V	Peak
11	7386.0000	36.49	5.85	-36.34	41.32	47.32	74.00	26.68	Pass	V	Peak
12	9848.0000	37.74	6.83	-36.93	43.00	50.64	74.00	23.36	Pass	V	Peak

Mod	e: 802.11 n(H	Γ20)(6.5N	Channel: 2412MHz								
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1396.0792	28.30	2.89	-37.21	50.18	44.16	74.00	29.84	Pass	Н	Peak
2	3352.9853	33.34	4.52	-36.70	46.16	47.32	74.00	26.68	Pass	Н	Peak
3	4824.0000	34.50	4.61	-36.11	42.41	45.41	74.00	28.59	Pass	Н	Peak
4	5952.5953	35.72	5.32	-36.15	43.27	48.16	74.00	25.84	Pass	Н	Peak
5	7236.0000	36.34	5.79	-36.44	42.18	47.87	74.00	26.13	Pass	Н	Peak
6	9648.0000	37.66	6.72	-36.92	43.52	50.98	74.00	23.02	Pass	Н	Peak
7	1393.6787	28.29	2.89	-37.21	55.44	49.41	74.00	24.59	Pass	V	Peak
8	2903.1806	33.05	4.38	-36.64	47.33	48.12	74.00	25.88	Pass	V	Peak
9	4824.0000	34.50	4.61	-36.11	42.00	45.00	74.00	29.00	Pass	V	Peak
10	5946.7447	35.71	5.30	-36.15	43.20	48.06	74.00	25.94	Pass	V	Peak
11	7236.0000	36.34	5.79	-36.44	42.56	48.25	74.00	25.75	Pass	V	Peak
12	9648.0000	37.66	6.72	-36.92	43.17	50.63	74.00	23.37	Pass	V	Peak

Mod	e: 802.11 n(H	T20)(6.5N		Channel	: 2437MH	z					
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1916.9834	31.15	3.42	-36.80	47.51	45.28	74.00	28.72	Pass	Н	Peak
2	3536.3036	33.43	4.45	-36.48	45.28	46.68	74.00	27.32	Pass	Н	Peak
3	4874.0000	34.50	4.78	-36.09	42.27	45.46	74.00	28.54	Pass	Н	Peak
4	6441.1191	35.89	5.48	-36.27	44.10	49.20	74.00	24.80	Pass	Н	Peak
5	7311.0000	36.41	5.85	-36.31	42.56	48.51	74.00	25.49	Pass	Н	Peak
6	9748.0000	37.70	6.77	-36.79	42.88	50.56	74.00	23.44	Pass	Н	Peak
7	1596.5193	29.04	3.07	-37.00	47.73	42.84	74.00	31.16	Pass	V	Peak
8	2902.7806	33.04	4.38	-36.63	46.04	46.83	74.00	27.17	Pass	V	Peak
9	4874.0000	34.50	4.78	-36.09	40.18	43.37	74.00	30.63	Pass	V	Peak
10	6249.0249	35.85	5.35	-36.29	42.82	47.73	74.00	26.27	Pass	V	Peak
11	7311.0000	36.41	5.85	-36.31	41.59	47.54	74.00	26.46	Pass	V	Peak
12	9748.0000	37.70	6.77	-36.79	42.88	50.56	74.00	23.44	Pass	V	Peak

Mod	e: 802.11 n(H	Γ20)(6.5N	Channel	: 2462MH	lz						
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1198.8398	28.10	2.66	-37.64	50.06	43.18	74.00	30.82	Pass	Н	Peak
2	3091.6592	33.24	4.74	-36.83	46.75	47.90	74.00	26.10	Pass	Н	Peak
3	4924.0000	34.50	4.85	-36.17	42.31	45.49	74.00	28.51	Pass	Н	Peak
4	5980.8731	35.77	5.33	-36.25	44.35	49.20	74.00	24.80	Pass	Н	Peak
5	7386.0000	36.49	5.85	-36.34	42.09	48.09	74.00	25.91	Pass	Н	Peak
6	9848.0000	37.74	6.83	-36.93	42.80	50.44	74.00	23.56	Pass	Н	Peak
7	1197.6395	28.10	2.66	-37.65	53.46	46.57	74.00	27.43	Pass	V	Peak
8	4298.8299	34.22	4.40	-36.13	45.35	47.84	74.00	26.16	Pass	V	Peak
9	4924.0000	34.50	4.85	-36.17	42.04	45.22	74.00	28.78	Pass	V	Peak
10	6391.3891	35.88	5.34	-36.31	44.68	49.59	74.00	24.41	Pass	V	Peak
11	7386.0000	36.49	5.85	-36.34	41.92	47.92	74.00	26.08	Pass	V	Peak
12	9848.0000	37.74	6.83	-36.93	42.98	50.62	74.00	23.38	Pass	V	Peak

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: TEW201

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Page 63 of 64

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Page 64 of 64

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32K00287201 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

