

TEST REPORT

Report No.:	BCTC2305780878E	
Applicant:	Vocal star	
Product Name:	Portable speaker	
Model/Type reference:	VS-275BT	CHENZH
Tested Date:	2023-05-09 to 2023-05-18	
Issued Date:	2023-05-19	
She	nzhen BCTC Testing Co., Ltd.	
No.: BCTC/RF-EMC-007	Page: 1 of 79	Edition: B.0

FCC ID:2BBC2VS-275BT

Product Name:	Portable speaker
Trademark:	N/A
Model/Type Reference:	VS-275BT VS-355BT, VS-P120, VS-PPA, VS-P180, VS-MT, VS-T200, VS-T100, VS-Phoenix, VS-Funk, VS-KS, VS-KP, VS-PB, VS-BB, VS-SB, VS-800, VS-325BT, VS-375BT
Prepared For:	Vocal star
Address:	Unit 10 Chantry Park 2 Cowley Road Nuffield ind estate Poole Dorset BH17 0UJ UK
Manufacturer:	SHENZHEN DELUXE-AV ELECTRONICS CO.,LTD
Address:	Building A, Tianxin Industrial park, Gushu, Bao'an District, Shenzhen, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2023-05-09
Sample tested Date:	2023-05-09 to 2023-05-18
Issue Date:	2023-05-19
Report No.:	BCTC2305780878E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by:

Jeff.Fu/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No.: BCTC/RF-EMC-007

Page: 2 of 79

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	9
4.4	Channel List	9
4.5	Test Mode	10
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	11
5.1	Test Facility	11
5.2	Test Instrument Used	11
6.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	13
6.3	Test procedure	
6.4	EUT operating Conditions	
6.5	Test Result	
7.	Radiated emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Opera	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	
8.4	EUT operating Conditions	
8.5	Test Result	
9.	Spurious RF Conducted Emissions	
9.1	Block Diagram Of Test Setup	
9.2	Limit Test procedure Test Result	
9.3	Test procedure	
9.4		
10.	20 dB Bandwidth	
10.1	Block Diagram Of Test Setup Limit	
10.2	Limit	
10.3		
10.4		
11.	Maximum Peak Output Power	
11.1	Block Diagram Of Test Setup	
11.2	Limit	

,TC 3C

⊃PR

测

11.3 Test procedure	54
11.4 Test Result	
12. Hopping Channel Separation	60
12.1 Block Diagram Of Test Setup	60
12.2 Limit	60
12.3 Test procedure	60
12.4 Test Result	60
13. Number Of Hopping Frequency	66
13.1 Block Diagram Of Test Setup	66
13.2 Limit	66
13.3 Test procedure	66
13.4 Test Result	66
14. Dwell Time	69
14.1 Block Diagram Of Test Setup	69
14.2 Limit	69
14.3 Test procedure	69
14.4 Test Result	69
15. Antenna Requirement	75
15.1 Limit	
15.2 Test Result	75
16. EUT Photographs	
17. EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

检

Page: 4 of 79

1. Version

Report No.	Issue Date	Description	Approved
BCTC2305780878E	2023-05-19	Original	Valid

No.: BCTC/RF-EMC-007

Page: 5 of 79

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U≐0.59°C

No.: BCTC/RF-EMC-007

4. Product Information And Test Setup

4.1 Product Information

	VS-275BT
Model/Type reference:	VS-355BT, VS-P120, VS-PPA, VS-P180, VS-MT, VS-T200, VS-T100, VS-Phoenix,
	VS-Funk, VS-KS, VS-KP, VS-PB, VS-BB, VS-SB, VS-800, VS-325BT, VS-375BT
Model differences:	All the model are the same circuit and RF module, except model names.
Bluetooth Version:	5.0
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/ 4 DQPSK, 8DPSK
Number Of Channel	79CH
Antenna installation:	PCB antenna
Antenna Gain:	-0.58 dBi
Ratings:	DC 5V From Adapter DC3.7V From Battery

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

E-1 EUT

E

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Portable speaker	N/A	VS-275BT	N/A	EUT
E-2	Adapter	N/A	BCTC0001	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	. 23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	1

,TC 3C PR

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK) 2402MHz 2441MHz 2480MHz					
4	Transmitting (Conducted emission & Radiated emission)					

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	BT_Tool				
Frequency	2402 MHz	2441 MHz	2480 MHz		
Parameters	DEF	DEF	DEF		

TE,

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850

A2LA certificate registration number is: CN1212

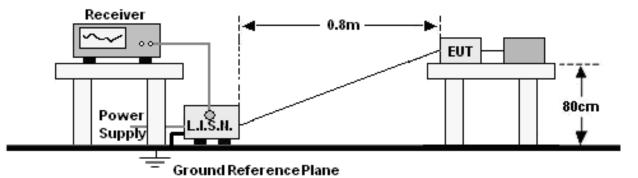
ISED Registered No.: 23583

ISED CAB identifier: CN0017

5.2 Test Instrument Used

Conducted Emissions Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023			
LISN	R&S	ENV216	101375	May 24, 2022	May 23, 2023			
Software	Frad	EZ-EMC	EMC-CON 3A1	/	/			
Attenuator	١	10dB DC-6GHz	1650	May 24, 2022	May 23, 2023			

Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Power Metter	Keysight	E4419		May 24, 2022	May 23, 2023
Power Sensor (AV)	Keysight	E9300A		May 24, 2022	May 23, 2023
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 24, 2022	May 23, 2023
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 24, 2022	May 23, 2023
Radio frequency control box	MAIWEI	MW100-RFC B		١	
Software	MAIWEI	MTS 8310		١	f_{1}


	Radiated Emissions Test (966 Chamber01)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023			
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023			
Receiver	R&S	ESRP	101154	May 24, 2022	May 23, 2023			
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 24, 2022	May 23, 2023			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 26, 2022	May 25, 2023			
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 26, 2022	May 25, 2023			
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 24, 2022	May 23, 2023			
Horn Antenna	Schwarzbeck	BBHA9120D	1541	Jun. 06, 2022	Jun. 05, 2023			
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 26, 2022	May 25, 2023			
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	Jun. 06, 2022	Jun. 05, 2023			
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 24, 2022	May 23, 2023			
Software	Frad	EZ-EMC	FA-03A2 RE	1	Λ_{j}			

No.: BCTC/RF-EMC-007

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)			
Frequency (MHz)	Quas-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		
Notes:		/		

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

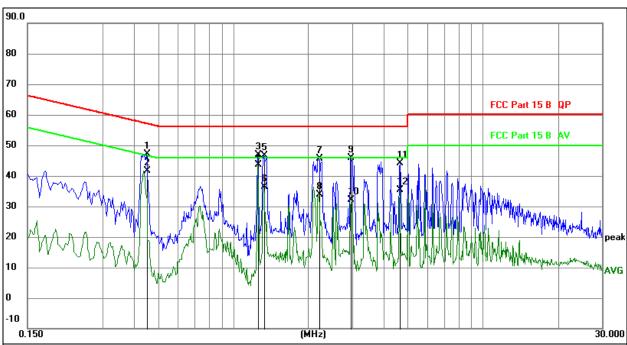
6.3 Test procedure

Receiver Parameters	S	Setting
Attenuation		10 dB
Start Frequency		0.15 MHz
Stop Frequency		30 MHz
IF Bandwidth		9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

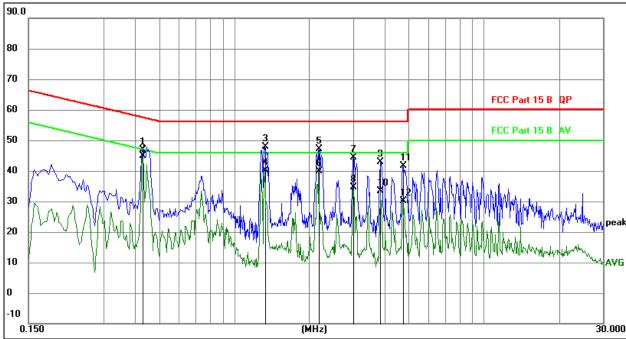
6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.
Measurement = Reading Level + Correct Factor
Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.4492	27.29	19.73	47.02	56.89	-9.87	QP
2		0.4492	21.86	19.73	41.59	46.89	-5.30	AVG
3		1.2555	27.04	19.79	46.83	56.00	-9.17	QP
4	*	1.2555	23.77	19.79	43.56	46.00	-2.44	AVG
5		1.3238	26.74	19.80	46.54	56.00	-9.46	QP
6		1.3238	16.65	19.80	36.45	46.00	-9.55	AVG
7		2.2015	25.75	19.90	45.65	56.00	-10.35	QP
8		2.2015	14.02	19.90	33.92	46.00	-12.08	AVG
9		2.9463	25.83	19.98	45.81	56.00	-10.19	QP
10		2.9463	12.04	19.98	32.02	46.00	-13.98	AVG
11		4.6469	24.02	20.12	44.14	56.00	-11.86	QP
12		4.6469	15.29	20.12	35.41	46.00	-10.59	AVG


E

79 Page: 14 of

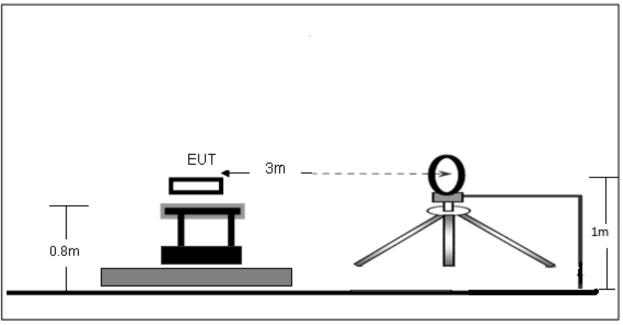
Edition: ·B.C

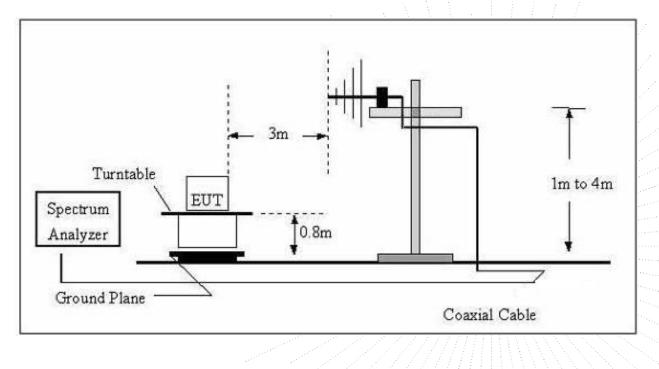
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.
Measurement = Reading Level + Correct Factor
Over = Measurement - Limit

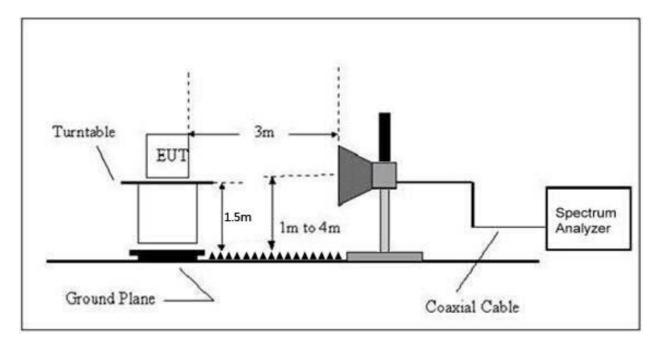
3. Measi	urement =		Cable Loss. .evel + Correc nit	t Factor				
	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.4290	27.20	19.74	46.94	57.27	-10.33	QP
2	*	0.4290	25.05	19.74	44.79	47.27	-2.48	AVG
3		1.3245	28.02	19.80	47.82	56.00	-8.18	QP
4		1.3245	20.41	19.80	40.21	46.00	-5.79	AVG
5		2.1840	27.26	19.90	47.16	56.00	-8.84	QP
6		2.1840	19.99	19.90	39.89	46.00	-6.11	AVG
7		2.9985	24.49	19.99	44.48	56.00	-11.52	QP
8		2.9985	14.74	19.99	34.73	46.00	-11.27	AVG
9		3.8490	22.70	20.08	42.78	56.00	-13.22	QP
10		3.8490	13.21	20.08	33.29	46.00	-12.71	AVG
11		4.7445	21.48	20.12	41.60	56.00	-14.40	QP
12		4.7445	10.09	20.12	30.21	46.00	-15.79	AVG


Edition: ·B.C


7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz


TE,

T(

检

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	····. 3 ····.	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum F	Parameter	Setting			
1-250	GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average	1	/	

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a.The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

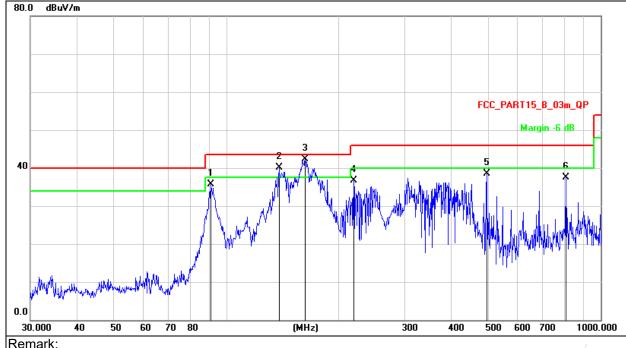
Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	DC 3.7V
Test Mode:	Mode 4	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

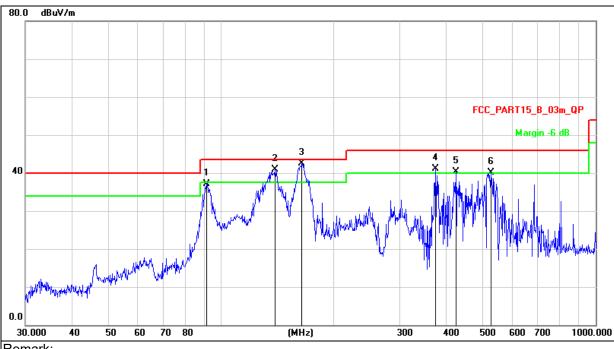
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

	Between 30MHz – 1GHz					
Temperature:	26 ℃	Relative Humidity:	54%			
Pressure:	101KPa	Phase :	Horizontal			
Test Mode:	Mode 4	Test Voltage :	DC 3.7V			

Remark:


Factor = Antenna Factor + Cable Loss – Pre-amplifier.
Measurement = Reading Level + Correct Factor
Over = Measurement - Limit

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		90.8554	54.71	-19.10	35.61	43.50	-7.89	QP
2	İ	138.3873	60.30	-20.29	40.01	43.50	-3.49	QP
3	*	162.6106	62.49	-20.12	42.37	43.50	-1.13	QP
4		219.0752	53.45	-16.78	36.67	46.00	-9.33	QP
5		495.9343	48.76	-10.35	38.41	46.00	-7.59	QP
6		807.4290	43.03	-5.51	37.52	46.00	-8.48	QP

E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage :	DC 3.7V

Remark:

Cable 110 1. .

2.	Measu	urem	ntenna Factor + ent = Reading I asurement - Lin	_evel + Correct					
-	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	1		91.4949	56.21	-19.01	37.20	43.50	-6.30	QP
	2	İ	139.3611	61.23	-20.35	40.88	43.50	-2.62	QP
	3	*	164.3300	62.43	-20.00	42.43	43.50	-1.07	QP
	4	İ	373.3110	53.70	-12.52	41.18	46.00	-4.82	QP
	5	İ	423.5403	52.08	-11.87	40.21	46.00	-5.79	QP
_	6	İ	524.5539	49.97	-9.89	40.08	46.00	-5.92	QP

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			GFSK Low ch	annel			•
V	4804.00	53.54	-0.43	53.11	74.00	-20.89	PK
V	4804.00	43.95	-0.43	43.52	54.00	-10.48	AV
V	7206.00	43.72	8.31	52.03	74.00	-21.97	PK
V	7206.00	34.23	8.31	42.54	54.00	-11.46	AV
Н	4804.00	49.32	-0.43	48.89	74.00	-25.11	PK
Н	4804.00	38.38	-0.43	37.95	54.00	-16.05	AV
Н	7206.00	40.91	8.31	49.22	74.00	-24.78	PK
Н	7206.00	33.66	8.31	41.97	54.00	-12.03	AV
		G	FSK Middle c	hannel			
V	4882.00	50.51	-0.38	50.13	74.00	-23.87	PK
V	4882.00	43.37	-0.38	42.99	54.00	-11.01	AV
V	7323.00	41.49	8.83	50.32	74.00	-23.68	PK
V	7323.00	31.79	8.83	40.62	54.00	-13.38	AV
Н	4882.00	47.32	-0.38	46.94	74.00	-27.06	PK
Н	4882.00	36.58	-0.38	36.20	54.00	-17.80	AV
Н	7323.00	39.05	8.83	47.88	74.00	-26.12	PK
Н	7323.00	31.58	8.83	40.41	54.00	-13.59	AV
		(GFSK High ch	annel			
V	4960.00	52.99	-0.32	52.67	74.00	-21.33	PK
V	4960.00	42.98	-0.32	42.66	54.00	-11.34	AV
V	7440.00	45.51	9.35	54.86	74.00	-19.14	PK
V	7440.00	34.57	9.35	43.92	54.00	-10.08	AV
Н	4960.00	51.63	-0.32	51.31	74.00	-22.69	PK
Н	4960.00	41.36	-0.32	41.04	54.00	-12.96	AV
Н	7440.00	43.83	9.35	53.18	74.00	-20.82	PK
Н	7440.00	35.15	9.35	44.50	54.00	-9.50	AV

Between 1GHz – 25GHz

Remark:

1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (d	BuV/m) (at 3M)
Frequency (MHz)	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level (dBuV/m)	Correct Factor (dB)	Measure- ment (dBuV/m)	Limits (dBuV/m)		Result			
					РК	РК	AV				
	Low Channel 2402MHz										
GFSK	Н	2390.00	53.06	-6.70	46.36	74.00	54.00	PASS			
	Н	2400.00	56.92	-6.71	50.21	74.00	54.00	PASS			
	V	2390.00	53.30	-6.70	46.60	74.00	54.00	PASS			
	V	2400.00	56.85	-6.71	50.14	74.00	54.00	PASS			
	High Channel 2480MHz										
	Н	2483.50	55.87	-6.79	49.08	74.00	54.00	PASS			
	Н	2500.00	50.78	-6.81	43.97	74.00	54.00	PASS			
	V	2483.50	57.04	-6.79	50.25	74.00	54.00	PASS			
	V	2500.00	54.21	-6.81	47.40	74.00	54.00	PASS			
π/4DQPSK		Low Channel 2402MHz									
	Н	2390.00	53.46	-6.70	46.76	74.00	54.00	PASS			
	Н	2400.00	57.35	-6.71	50.64	74.00	54.00	PASS			
	V	2390.00	53.48	-6.70	46.78	74.00	54.00	PASS			
	V	2400.00	57.29	-6.71	50.58	74.00	54.00	PASS			
	High Channel 2480MHz										
	Н	2483.50	56.50	-6.79	49.71	74.00	54.00	PASS			
	Н	2500.00	52.58	-6.81	45.77	74.00	54.00	PASS			
	V	2483.50	57.63	-6.79	50.84	74.00	54.00	PASS			
	V	2500.00	53.25	-6.81	46.44	74.00	54.00	PASS			
8DPSK	Low Channel 2402MHz										
	Н	2390.00	53.03	-6.70	46.33	74.00	54.00	PASS			
	Н	2400.00	57.54	-6.71	50.83	74.00	54.00	PASS			
	V	2390.00	53.74	-6.70	47.04	74.00	54.00	PASS			
	V	2400.00	56.83	-6.71	50.12	74.00	54.00	PASS			
		High Channel 2480MHz									
	Н	2483.50	56.92	-6.79	50.13	74.00	54.00	PASS			
	Н	2500.00	52.32	-6.81	45.51	74.00	54.00	PASS			
	V	2483.50	56.83	-6.79	50.04	74.00	54.00	PASS			
	V	2500.00	52.25	-6.81	45.44	74.00	54.00	PASS			

1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level – Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

9. Spurious RF Conducted Emissions

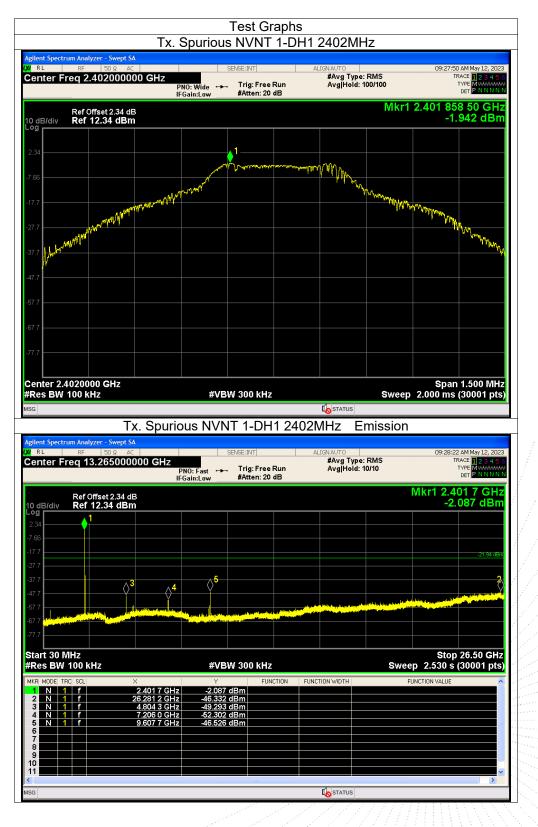
9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

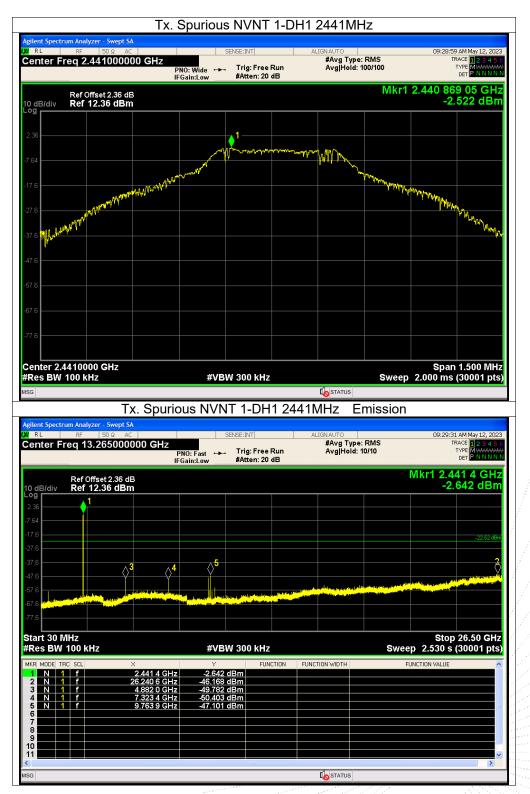
9.3 Test procedure

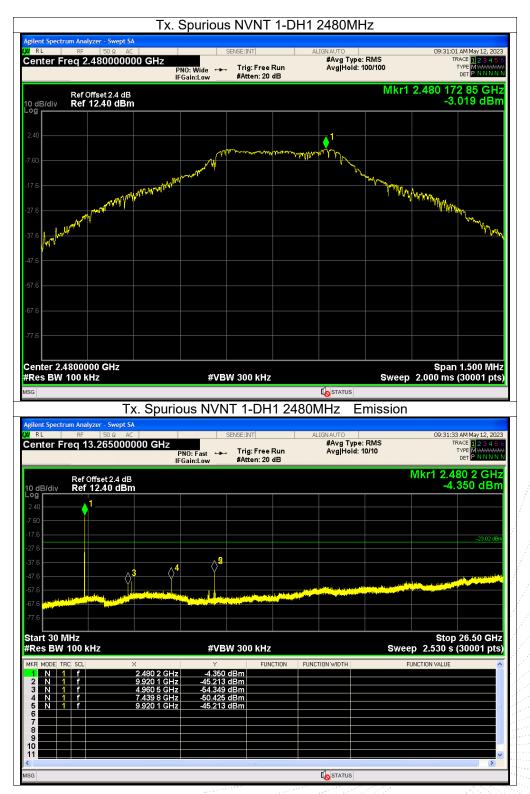
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;


2. Set the spectrum analyzer: Below 30MHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Above 30MHz: RBW = 100KHz, VBW = 300KHz, Sweep = auto Detector function = peak, Trace = max hold

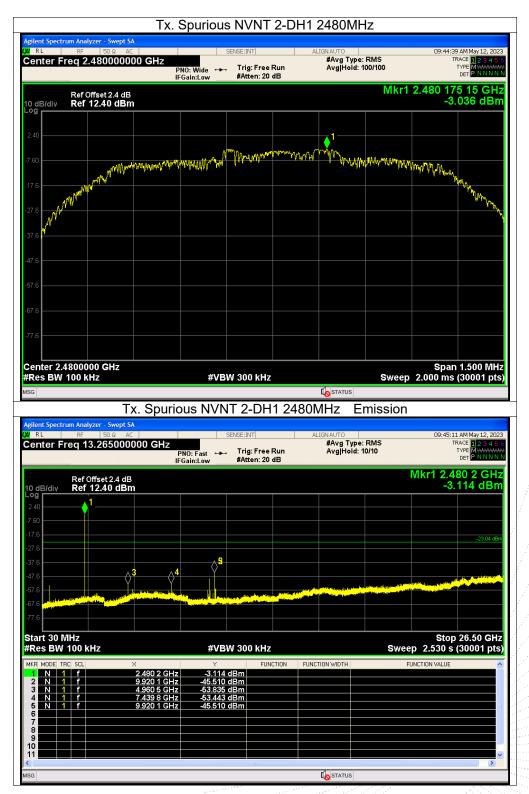
No.: BCTC/RF-EMC-007

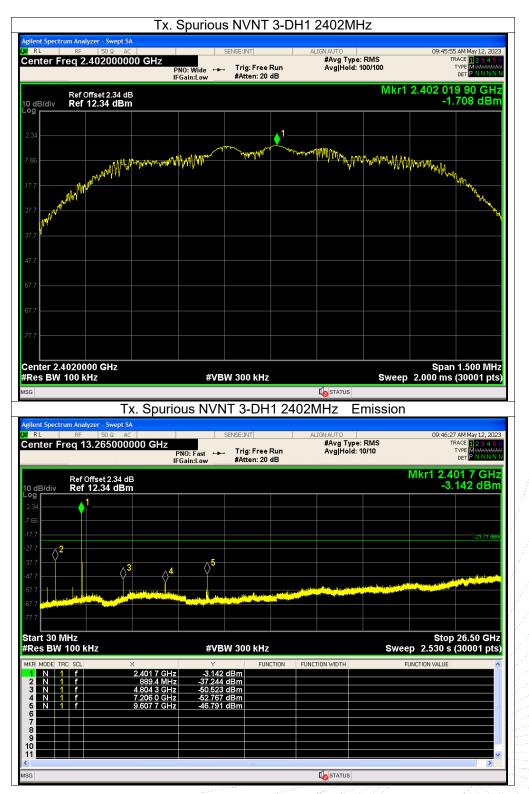
Page: 26 of 7

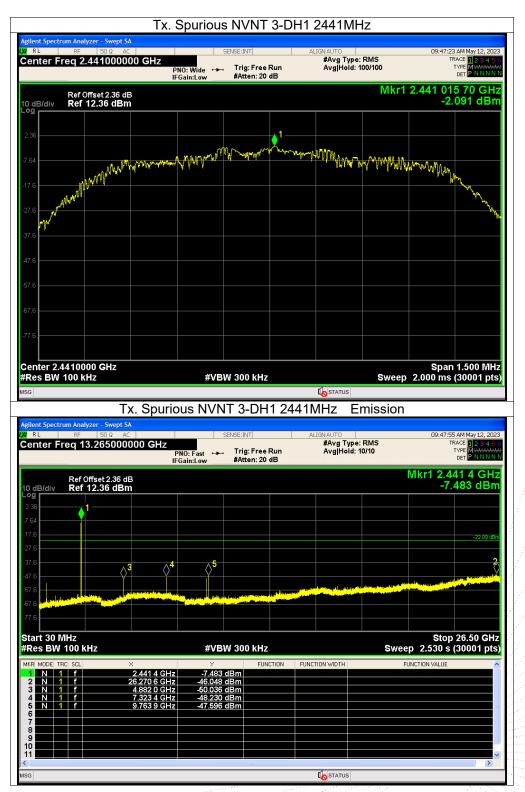

9.4 Test Result



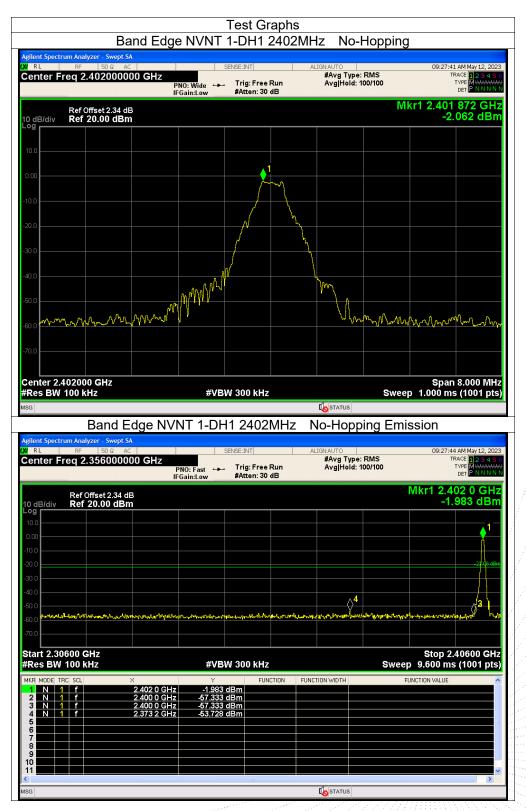
Page: 28 of 79

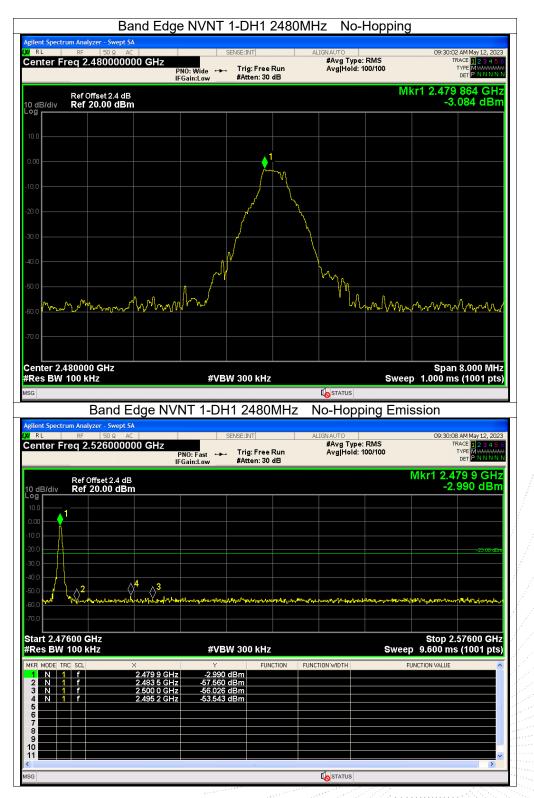




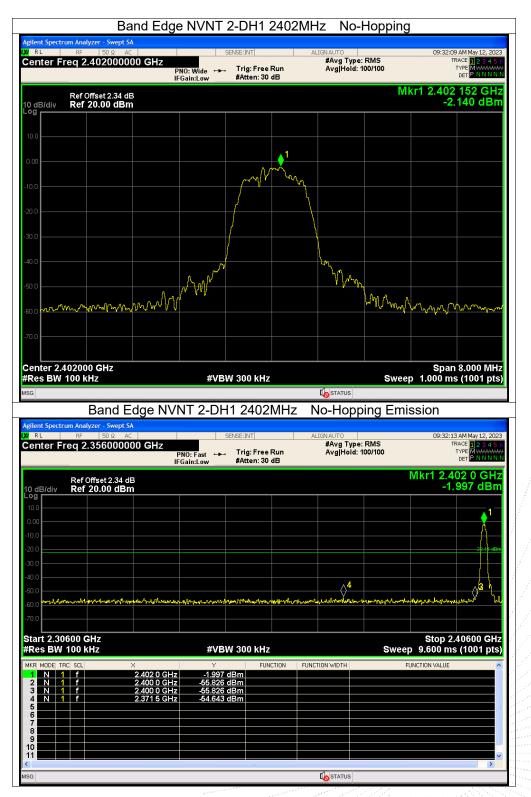


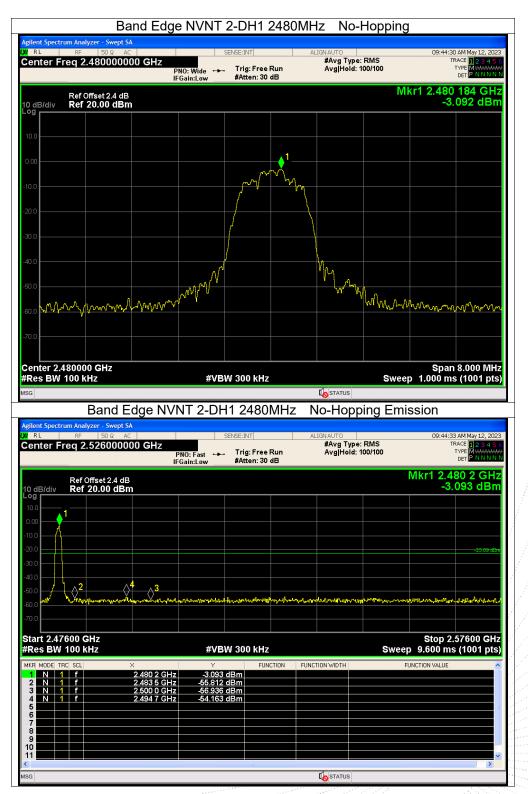




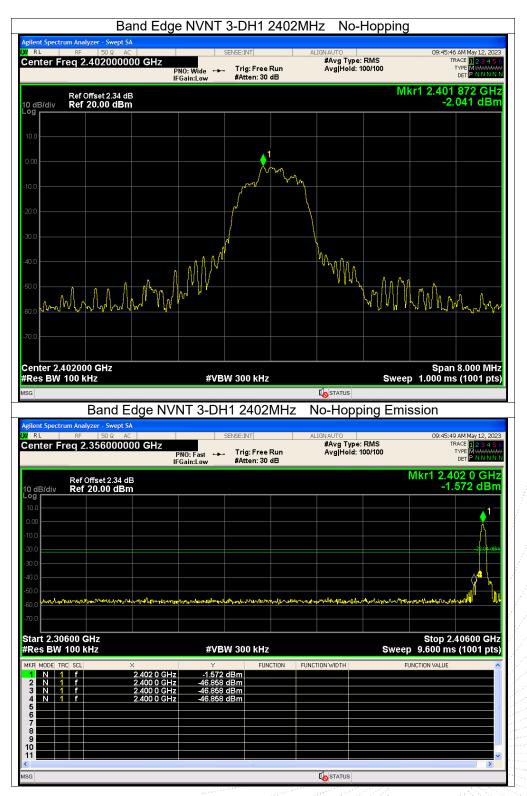


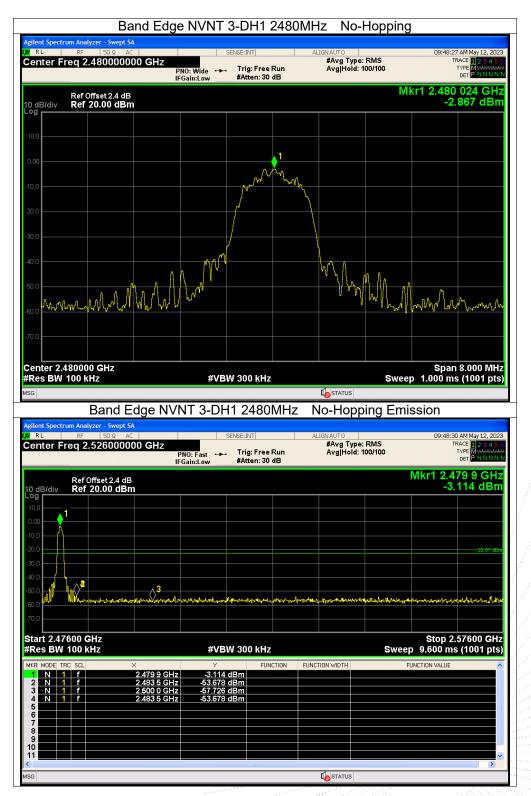
Page: 35 of 79





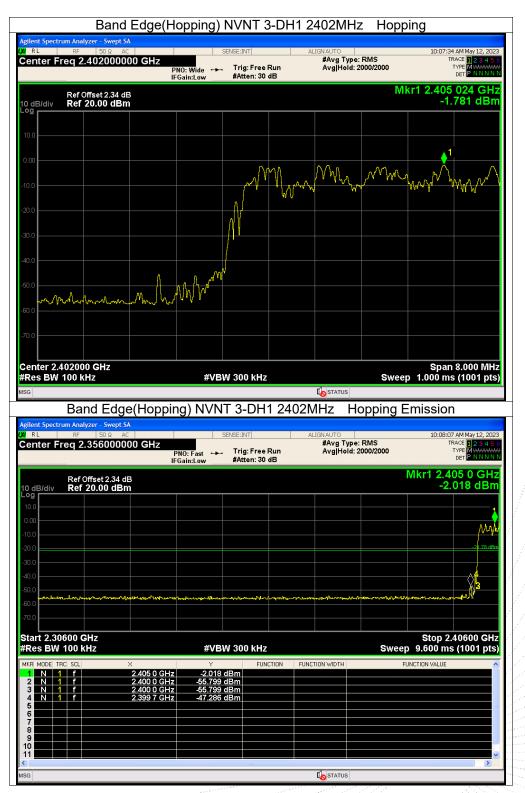
No.: BCTC/RF-EMC-007

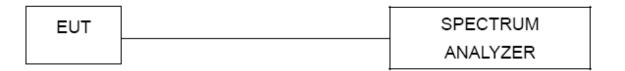




C 00.,LT

No.: BCTC/RF-EMC-007





10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

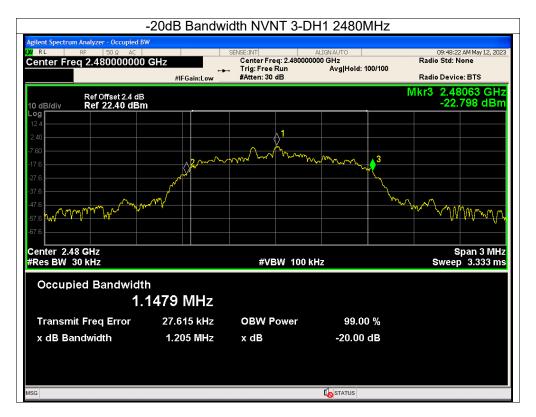
10.4 Test Result

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.923	Pass
NVNT	1-DH1	2441	0.924	Pass
NVNT	1-DH1	2480	0.876	Pass
NVNT	2-DH1	2402	1.3	Pass
NVNT	2-DH1	2441	1.288	Pass
NVNT	2-DH1	2480	1.257	Pass
NVNT	3-DH1	2402	1.209	Pass
NVNT	3-DH1	2441	1.215	Pass
NVNT	3-DH1	2480	1.205	Pass

No.: BCTC/RF-EMC-007

No.: BCTC/RF-EMC-007

JC JC PPR



检

No.: BCTC/RF-EMC-007

Page: 53 of 79

11. Maximum Peak Output Power

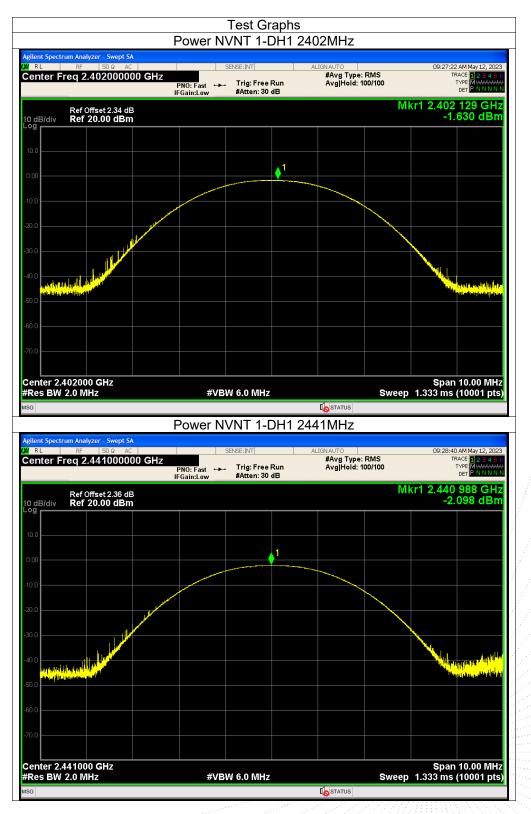
11.1 Block Diagram Of Test Setup

11.2 Limit

		FCC Part15 (15.247) ,	, Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS

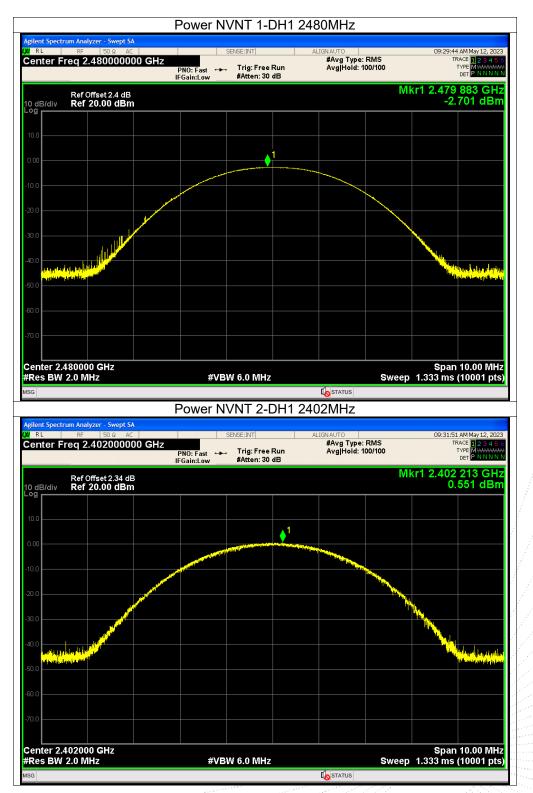
11.3 Test procedure

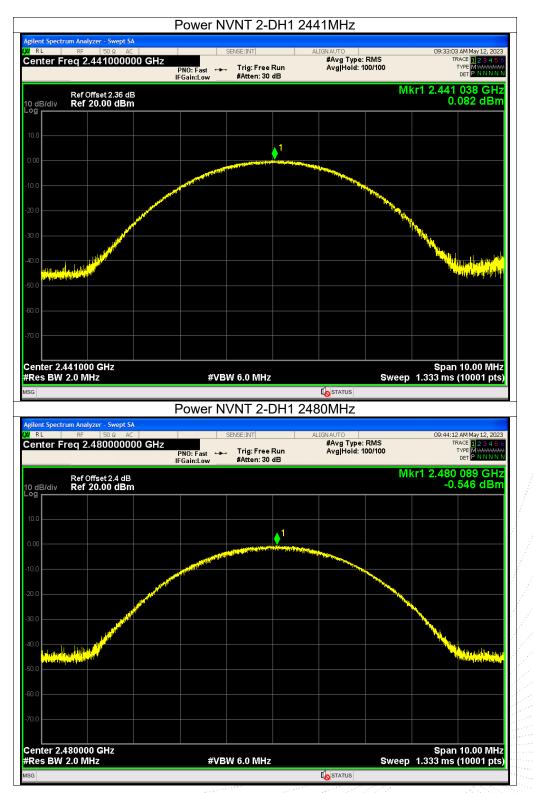
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

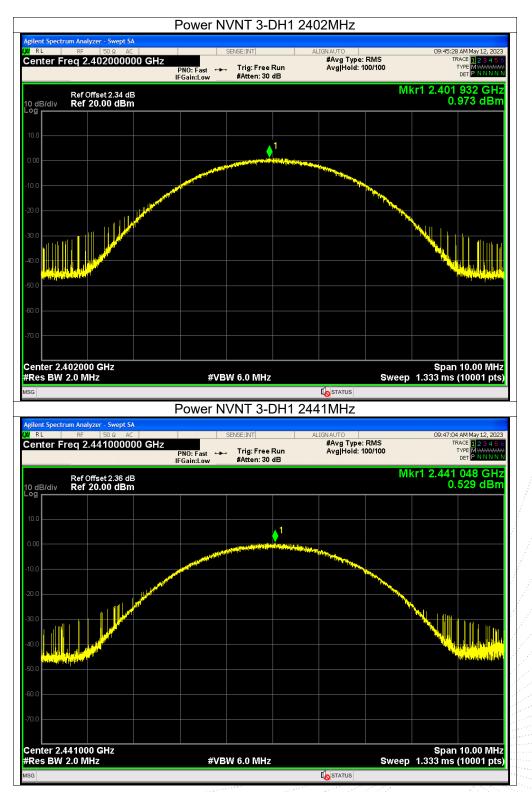

2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.4 Test Result


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-1.63	21	Pass
NVNT	1-DH1	2441	-2.10	21	Pass
NVNT	1-DH1	2480	-2.70	21	Pass
NVNT	2-DH1	2402	0.55	21	Pass
NVNT	2-DH1	2441	0.08	21	Pass
NVNT	2-DH1	2480	-0.55	21	Pass
NVNT	3-DH1	2402	0.97	21	Pass
NVNT	3-DH1	2441	0.53	21	Pass
NVNT	3-DH1	2480	-0.24	21	Pass





则大

No.: BCTC/RF-EMC-007

No.: BCTC/RF-EMC-007

Page: 59 of 79

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.854	2402.852	0.998	0.923	Pass
NVNT	1-DH1	2440.852	2441.854	1.002	0.924	Pass
NVNT	1-DH1	2478.856	2479.854	0.998	0.876	Pass
NVNT	2-DH1	2401.852	2402.854	1.002	0.867	Pass
NVNT	2-DH1	2440.856	2441.852	0.996	0.859	Pass
NVNT	2-DH1	2478.856	2479.854	0.998	0.838	Pass
NVNT	3-DH1	2402.014	2403.01	0.996	0.806	Pass
NVNT	3-DH1	2441.012	2442.014	1.002	0.810	Pass
NVNT	3-DH1	2479.016	2480.02	1.004	0.803	Pass

12.4 Test Result

	С	Test FS NVNT 1	Graphs -DH1 240)2MHz		
gilent Spectrum Analyzer - Sw	vept SA					
RL RF 50 Ω enter Freq 2.40250	00000 GHz		iree Run 1: 30 dB	ALIGN AUTO #Avg Type: RMS Avg Hold:>100/1	;	0:25 AM May 12, 202 TRACE 12345 TYPE MWWWW DET PNNNN
Ref Offset 2. 0 dB/div Ref 20.00	.34 dB				Mkr1 2.40	01 854 GHz 4.136 dBm
og 10.0	. 1			. 2		
0.00		~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
20.0		my			· • • • • • • • • • • • • • • • • • • •	$\gamma_{\gamma_{\gamma}}$
30.0		~~	m m	V		~~~~
40.0						
50.0						
50.0						
						an 2 000 MH
enter 2.402500 GHz Res BW 30 kHz		#VBW 100 I	٢Hz		Sp Sweep 2.133	an 2.000 MHz ms (1001 pts
IKR MODE TRC SCL	×	Y	FUNCTION FUI	NCTION WIDTH	FUNCTION VALU	
1 N 1 f 2 N 1 f	2.401 854 GHz 2.402 852 GHz	-4.136 dBm -4.171 dBm				
3 4						
5						
7 8						
9						
						×
SG						
	С	FS NVNT 1	-DH1 244	11MHz		
					00.5	
RL RF 50Ω	2 AC 00000 GHz PN0	SENSE:INT : Wide Trig: F in:Low #Atten	iree Run 1: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/1	;	TRACE 1 2 3 4 5
RL RF 50 Ω Senter Freq 2.44150 Ref Offset 2. 0 dB/div Ref 20.00	2 AC 000000 GHz PNO IFGa .36 dB	: Wide 😱 Trig: F	iree Run I: 30 dB	#Avg Type: RMS	Mkr1 2 44	
RL RF 50 Ω Senter Freq 2.44150 Ref Offset 2. 0 dB/div Ref 20.00 °9	2 AC 000000 GHz PNO IFGa .36 dB	: Wide 😱 Trig: F	iree Run 1: 30 dB	#Avg Type: RMS Avg Hold:>100/1	Mkr1 2 44	3:47 AM May 12, 2023 TRACE 1 2:3 4 5 TYPE MWWWW DET P NUMMU 40 852 GHz 4.610 dBm
RL RF 50 % center Freq 2.4415(Ref 0ffset2. 0 dB/div Ref 20.00	2 AC 000000 GHz PNO IFGa .36 dB	: Wide 😱 Trig: F	iree Run 1: 30 dB	#Avg Type: RMS Avg Hold:>100/1	Mkr1 2 44	
RL RF 50 % center Freq 2.4415(Ref 0ffset 2. 0 dB/div Ref 0ffset 2. 0 g Ref 0ffset 2. 0 0 0.00 Ref 20.00	2 AC PNO 00000 GHz PNO IFGa 36 dB dBm	: Wide 😱 Trig: F	ree Run : 30 dB	#Avg Type: RMS	Mkr1 2 44	
RL RF 50 Q Center Freq 2.4415(Ref Offset 2. 0 dB/div Ref 20.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 AC PNO 00000 GHz PNO IFGa 36 dB dBm	: Wide 😱 Trig: F	iree Run : 30 dB	#Avg Type: RMS Avg Hold:>100/1	Mkr1 2 44	
RL RF 50 Q Center Freq 2.4415(Ref Offset 2. 0 dB/div Ref 20.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 AC PNO 00000 GHz PNO IFGa 36 dB dBm	: Wide 😱 Trig: F	ree Run : 30 dB	#Avg Type: RMS Avg Hold:>100/1	Mkr1 2 44	
RL RF 50 Q Center Freq 2.4415(0 dB/div Ref 20.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 AC PNO 00000 GHz PNO IFGa 36 dB dBm	: Wide 😱 Trig: F	iree Run : 30 dB	#Avg Type: RMS Avg Hold:>100/1	Mkr1 2 44	
10 dB/div Ref 20.00	2 AC PNO 00000 GHz PNO IFGa 36 dB dBm	: Wide 😱 Trig: F	iree Run : 30 dB	#Avg Type: RMS Avg Hold:>100/1	Mkr1 2 44	
RL RF 50 Q Center Freq 2.4415(Ref Offset2. 0 dB/div Ref 20.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 AC PNO 00000 GHz PNO IFGa 36 dB dBm	: Wide 😱 Trig: F	ree Run : 30 dB	#Avg Type: RMS Avg Hold:>100/1	Mkr1 2 44	
RL RF 50 2 Center Freq 2.44150 Ref Offset 2. 0 dB/div Ref 20.00 10.0	2 AC 00000 GHz PNO IFGa 36 dB dBm	: Wide 😱 Trig: F	iree Run : 30 dB	#Avg Type: RMS Avg Hold:>100/1	Mkr1 2.44	Tree [] 23 4 5 Tree [] 23 4 5 Tree [] 26 4 5 Tree [] 26 4 5 Tree [] 26 4 5 Tree [] 28 4 5 Tree [
RL RF 50 Q Center Freq 2.4415(Ref Offset2. 0 dB/div Ref 20.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 AC 00000 GHz PNO IFGa 36 dB dBm	: Wide 😱 Trig: F	: 30 dB	#Avg Type: RMS Avg Hold:>100/1	Mkr1 2.44	Tree [] 23 4 5 Tree [] 23 4 5 Tree [] 26 4 5 Tree [] 26 4 5 Tree [] 26 4 5 Tree [] 28 4 5 Tree [
RL RF 50 mm center Freq 2.4415(Ref Offset 2. 0 dB/div Ref 20.00	2 AC 00000 GHz PNO IFGa 36 dB dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	Wide Trig: F miLow Katter	: 30 dB	#Avg Type: RMS Avg Hold:>100/1	Mkr1 2.44	Tree [234 5 Tree [234 5 Tree [234 5 Tree [234 5 Alternative and a second
RL RF 50 mm Genter Freq 2.44150 Ref Offset 2. Ref Offset 2. 0 dB/div Ref 20.00 0 0 0 g	2 AC 00000 GHz PNO IFGa 36 dB dBm 1	Wide Trig: F in:Low #Atten	: 30 dB	#Avg Type: RMS Avg Hold>100/1	Mkr1 2.44	Tree [234 5 Tree [234 5 Tree [234 5 Tree [234 5 Alternative and a second
RL RF 50 mm Center Freq 2.44150 Ref Offset 2. 0 0 dB/div Ref 20.00 0 0 d0 0 0 1 N 1 f 1 1 1 N 1 f 1 1 1 N 1 f 1 1	2 AC 00000 GHz PNO IFGa 36 dB dBm 1 1 2 2 2 2 440 852 GHz	Wide Trig: F miLow Katter	: 30 dB	#Avg Type: RMS Avg Hold>100/1	Mkr1 2.44	Tree [234 5 Tree [234 5 Tree [234 5 Tree [234 5 Alternative and a second
RL RF 50 mm center Freq 2.44150 Ref Offset 2. 0 dB/div Ref 20.00 10 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 20 0 Ref 20.00 21 0 Ref 20.00 21 0 Ref 20.00 21 0	2 AC 00000 GHz PNO IFGa 36 dB dBm 1 1 2 2 2 2 440 852 GHz	Wide Trig: F miLow Katter	: 30 dB	#Avg Type: RMS Avg Hold>100/1	Mkr1 2.44	Tree [234 5 Tree [234 5 Tree [234 5 Tree [234 5 Alternative and a second
RL RF 50 f2 Center Freq 2.44150 Ref Offset 2. 0 dB/div Ref 20.00 100	2 AC 00000 GHz PNO IFGa 36 dB dBm 1 1 2 2 2 2 440 852 GHz	Wide Trig: F miLow Katter	: 30 dB	#Avg Type: RMS Avg Hold>100/1	Mkr1 2.44	Tree [234 5 Tree [234 5 Tree [234 5 Tree [234 5 Alternative and a second
RL RF 50 mm center Freq 2.44150 Ref Offset 2. 0 dB/div Ref 20.00 0 0 d0 0 0 0 0 d0 0 <td>2 AC 00000 GHz PNO IFGa 36 dB dBm 1 1 2 2 2 2 440 852 GHz</td> <td>Wide Trig: F miLow Katter</td> <td>: 30 dB</td> <td>#Avg Type: RMS Avg Hold>100/1</td> <td>Mkr1 2.44</td> <td>Tree [234 5 Tree [234 5 Tree [234 5 Tree [234 5 Alternative and a second</td>	2 AC 00000 GHz PNO IFGa 36 dB dBm 1 1 2 2 2 2 440 852 GHz	Wide Trig: F miLow Katter	: 30 dB	#Avg Type: RMS Avg Hold>100/1	Mkr1 2.44	Tree [234 5 Tree [234 5 Tree [234 5 Tree [234 5 Alternative and a second