Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 08/26/04 19:40:36

Body_802.11b Ch6_Keypad Up With Touch_20040826

Mono_38 Key_SE800hP_2x Battery

DUT: SYMBOL MC3070 project; Type: Mobile Computer

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

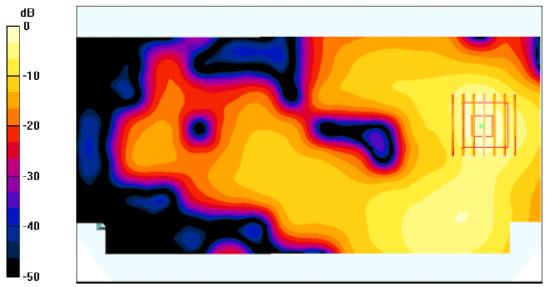
Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.2 °C; Liquid Temperature : 22.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 2003/8/29
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2003/11/21
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 16; Postprocessing SW: SEMCAD, V1.8 Build 123

CH6/Area Scan (71x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.081 mW/g


CH6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.37 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 0.153 W/kg

SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.030 mW/g

Maximum value of SAR (measured) = 0.078 mW/g

0 dB = 0.078 mW/g

Date/Time: 08/26/04 19:40:36

Test Laboratory: Sporton International Inc. SAR Testing Lab

Body_802.11b Ch11_Keypad Up With Touch_20040826

Mono_38 Key_SE800hP_2x Battery

DUT: SYMBOL MC3070 project; Type: Mobile Computer

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³

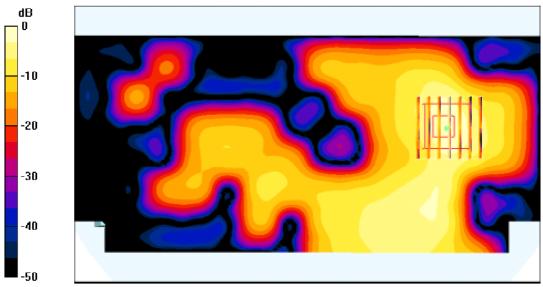
Ambient Temperature : 22.1 °C; Liquid Temperature : 22.2 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 2003/8/29
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2003/11/21
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 16; Postprocessing SW: SEMCAD, V1.8 Build 123

CH11/Area Scan (71x151x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.028 mW/g


CH11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.204 V/m; Power Drift = -0.2 dB

Peak SAR (extrapolated) = 0.092 W/kg

SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.00999 mW/g

Maximum value of SAR (measured) = 0.028 mW/g

0 dB = 0.028 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 08/27/04 19:41:09

Body_802.11g Ch1_Keypad Up With Touch_20040827

Mono_38 Key_SE800hP_2x Battery

DUT: SYMBOL MC3070 project; Type: Mobile Computer

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³

Ambient Temperature ∶ 22.0 °C; Liquid Temperature ∶ 22.1 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 2003/8/29
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2003/11/21
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 16; Postprocessing SW: SEMCAD, V1.8 Build 123

CH1/Area Scan (71x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.044 mW/g

CH1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.403 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 0.122 W/kg

SAR(1 g) = 0.047 mW/g; SAR(10 g) = 0.021 mW/gMaximum value of SAR (measured) = 0.054 mW/g

-10 -20 -30

0 dB = 0.054 mW/g

-50

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 08/27/04 19:41:09

Body_802.11g Ch6_Keypad Up With Touch_20040827

Mono_38 Key_SE800hP_2x Battery

DUT: SYMBOL MC3070 project; Type: Mobile Computer

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

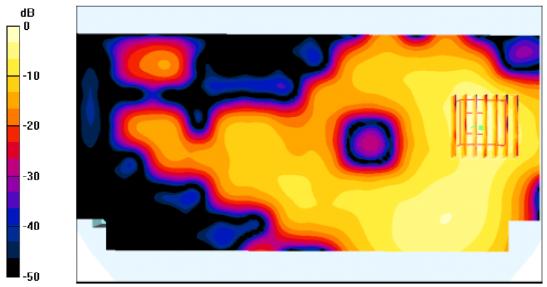
Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.1 $^{\circ}$ C; Liquid Temperature : 22.1 $^{\circ}$ C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 2003/8/29
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2003/11/21
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 16; Postprocessing SW: SEMCAD, V1.8 Build 123

CH6/Area Scan (71x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.033 mW/g


CH6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.716 V/m; Power Drift = -0.2 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.028 mW/g; SAR(10 g) = 0.012 mW/g

Maximum value of SAR (measured) = 0.033 mW/g

0 dB = 0.033 mW/g

Date/Time: 08/27/04 19:41:30 Test Laboratory: Sporton International Inc. SAR Testing Lab

Body_802.11g Ch11_Keypad Up With Touch_20040827

Mono_38 Key_SE800hP_2x Battery

DUT: SYMBOL MC3070 project; Type: Mobile Computer

Communication System: 802.11g; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.99 \text{ mho/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 22.2 °C; Liquid Temperature : 22.1 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2003/8/29
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2003/11/21
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 16; Postprocessing SW: SEMCAD, V1.8 Build 123

CH11/Area Scan (71x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.030 mW/g

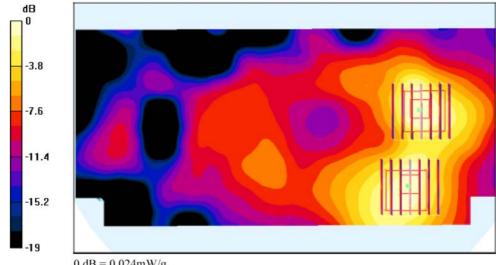
CH11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.14 V/m; Power Drift = 0.2 dB

Peak SAR (extrapolated) = 0.063 W/kg

SAR(1 g) = 0.027 mW/g; SAR(10 g) = 0.013 mW/g

Maximum value of SAR (measured) = 0.031 mW/g


CH11/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.14 V/m; Power Drift = 0.2 dB

Peak SAR (extrapolated) = 0.048 W/kg

SAR(1 g) = 0.022 mW/g; SAR(10 g) = 0.011 mW/g

Maximum value of SAR (measured) = 0.024 mW/g

0 dB = 0.024 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 08/26/04 14:59:36

Body_802.11b Ch6_Keypad Up With Touch_20040826

Mono_38 Key_SE800hP_2x Battery

DUT: SYMBOL MC3070 project; Type: Mobile Computer

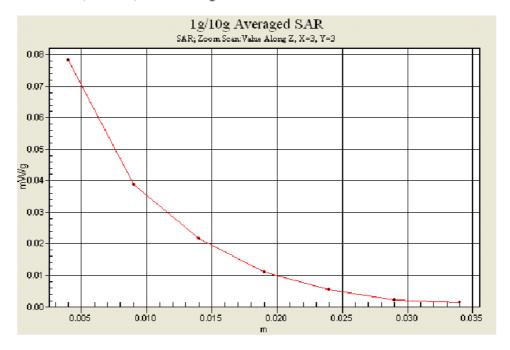
Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.2 °C; Liquid Temperature: 22.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 2003/8/29
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2003/11/21
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 16; Postprocessing SW: SEMCAD, V1.8 Build 123


CH6/Area Scan (71x151x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.081 mW/g

CH6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.9 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 0.153 W/kg

SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.030 mW/gMaximum value of SAR (measured) = 0.078 mW/g

Page 1 (1)

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Sporton Int. Inc.

Object(s)	D2450V2 - SI	N:736	
Calibration procedure(s)	north believe work of	2 ocedure for dipole validation kits	
Calibration date:	August 27, 20	003	
Condition of the calibrated item	In Tolerance	(according to the specific calibration	on document)
17025 international standard.		E used in the calibration procedures and conformity tory facility: environment temperature 22 +/- 2 degree	
Calibration Equipment used (M&)	E critical for calibration)		
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
F generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05
ower sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04
ower sensor HP 8481A	US37292783	30-Oct-02 (METAS, No. 252-0236)	Oct-03
ower meter EPM E442	GB37480704	30-Oct-02 (METAS, No. 252-0236)	Oct-03
letwork Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03
,			
,	Name	Function	Signature
	Name Judith Mueller	Function Technician	Signature
Calibrated by:	Jodnh Mueller	Technician	Signature
Calibrated by:	CARCOCCOCALUS UNA PARTALISMO CO		Signature Signature
Calibrated by: Approved by:	Jodnh Mueller	Technician	Signature Julian Julian Date issued: August 28, 2003
Calibrated by: Approved by:	Judith Mueller Katja Pokovic	Technician Laboratory Director ution until the accreditation process (based on ISO/I	Date issued: August 28, 2003

880-KP0301061-A

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 736

Manufactured: August 26, 2003 Calibrated: August 27, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity 38.2 \pm 5% Conductivity 1.89 mho/m \pm 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2-SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 55.6 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: 25.0 mW/g \pm 16.2 % (k=2)

1 validation uncertainty

Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.158 ns (one direction)

Transmission factor:

0.983

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:

 $Re{Z} = 52.5 \Omega$

Im $\{Z\} = 3.6 \Omega$

Return Loss at 2450 MHz

-27.5 dB

Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity

± 5%

Conductivity

2.03 mho/m ± 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.2 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the advanced extrapolation are:

averaged over 1 cm3 (1 g) of tissue:

56.0 mW/g \pm 16.8 % (k=2)²

averaged over 10 cm3 (10 g) of tissue:

25.8 mW/g \pm 16.2 % (k=2)²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:

 $Re{Z} = 48.7 \Omega$

Im $\{Z\} = 4.8 \Omega$

Return Loss at 2450 MHz

-25.8 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Sections 1 and 4. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Page 1 of 1

Date/Time: 08/27/03 15:43:04

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736 SN3013 M2450 270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: Muscle 2450 MHz ($\sigma = 2.03 \text{ mho/m}, \epsilon_p = 50.75, \rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.2, 4.2, 4.2); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

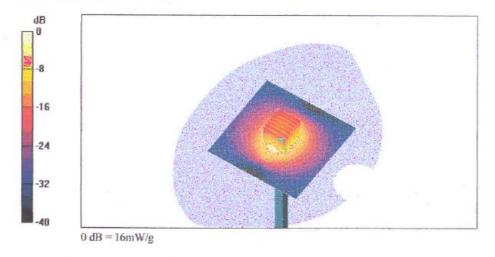
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

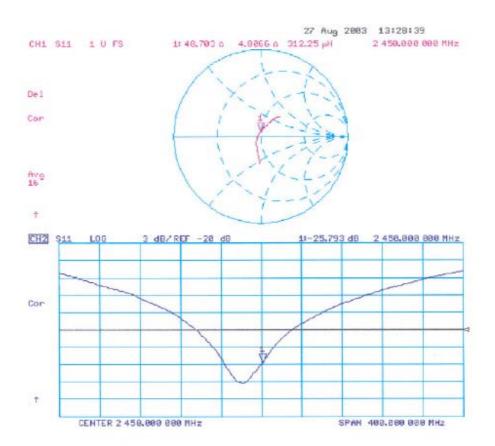
Reference Value = 91 V/m

Power Drift = -0.02 dB

Maximum value of SAR = 15.7 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm


Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 14 mW/g; SAR(10 g) = 6.46 mW/gReference Value = 91 V/m

Power Drift = -0.02 dB

Maximum value of SAR = 16 mW/g

Page 1 of 1

Date/Time: 08/27/03 11:42:12

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_HSL2450_270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL 2450 MHz (σ = 1.89 mho/m, ϵ_r = 38.19, ρ = 1000 kg/m³)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

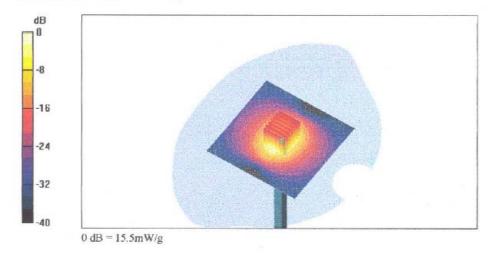
- Probe: ES3DV2 SN3013; ConvF(4.8, 4.8, 4.8); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

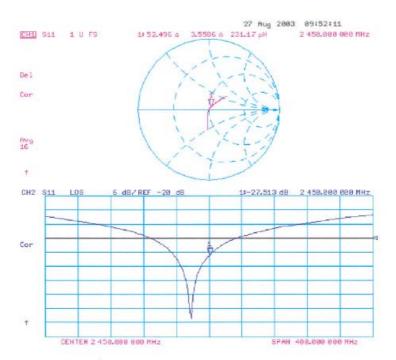
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 91.5 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 15.3 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.25 mW/gReference Value = 91.5 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 15.5 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Sporton Int. Inc.

Object(s)	ET3DV6 - SN:	1788	
Calibration procedure(s)	QA CAL-01 v2 Calibration pro	2 ocedure for dosimetric E-field probe	95
Calibration date:	August 29, 20	03	
Condition of the calibrated item	In Tolerance (according to the specific calibration	document)
17025 international standard.	•	used in the calibration procedures and conformity of	
All calibrations have been conducted Calibration Equipment used (M&TE		ry facility: environment temperature 22 +/- 2 degrees	s Celsius and humidity < 75%.
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
ander rype	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
F generator HP 8684C			
-	MY41495277		Apr-04
ower sensor E4412A		2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918)	
Power sensor E4412A Power sensor HP 8481A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B	MY41495277 MY41092180	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918)	Apr-04 Sep-03
Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	MY41495277 MY41092180 GB41293874	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250)	Apr-04 Sep-03 Apr-04
Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	MY41495277 MY41092180 GB41293874 US37390585	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101)	Apr-04 Sep-03 Apr-04 In house check: Oct 03
Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Celibrator Type 702	MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360)	Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03
Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Celibrator Type 702 Calibrated by:	MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360)	Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03
RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702 Calibrated by: Approved by:	MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803 Name	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360) Function Technicism	Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03
Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Celibrator Type 702 Calibrated by: Approved by:	MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803 Name Nao Vetterii	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360) Function Technicism	Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03 Signature Out-04 Date issued: August 28, 2003

880-KP0301061-A

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1788

Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1788

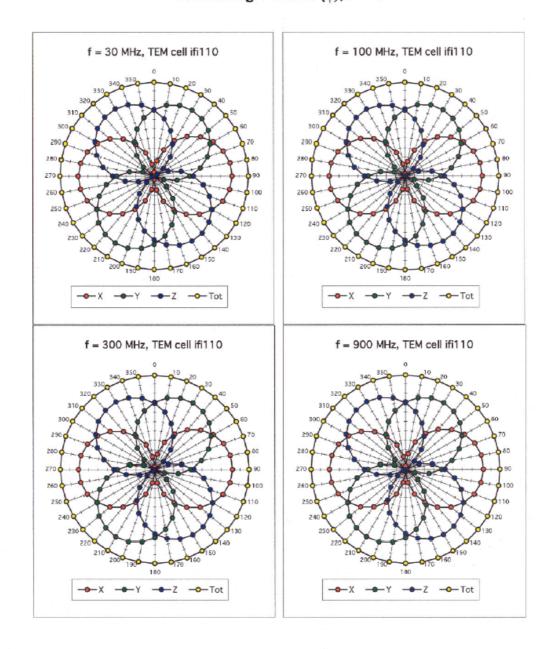
Test Report No : 0453101-1-2-01

August 29, 2003

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in	Free Space	е	Diode Co	mpressior	n	
Norn	mX	1.68 µV/(V/m) ²		DCP X	95	mV
Norn	πY	1.62 µV/(V/m) ²		DCP Y	95	mV
Norn	πZ	1.71 µV/(V/m) ²		DCP Z	95	mV
Sensitivity in 1	Tissue Simu	lating Liquid				
Head	900 MHz	ε _r = 41.5 ±	5% σ=	0.97 ± 5% r	mho/m	
Valid for f=800-100	0 MHz with Head	Tissue Simulating Liquid acc	ording to EN 50361	P1528-200X		
Conv	FX	6.6 ± 9.5% (k=2)		Boundary effe	ect:	
Conv	FY	6.6 ± 9.5% (k=2)		Alpha	0.34	
Conv	FZ	6.6 ± 9.5% (k=2)		Depth	2.48	
Head	1800 MHz	ε _r = 40.0 ±	5% σ=	1.40 ± 5% r	mho/m	
Valid for f=1710-19	10 MHz with Hea	d Tissue Simulating Liquid ac	cording to EN 5036	1, P1528-200	X	
Conv	FX	5.3 ± 9.5% (k=2)		Boundary effe	ect:	
Conv	FY	5.3 ± 9.5% (k=2)		Alpha	0.43	
Conv	FZ	5.3 ± 9.5% (k=2)		Depth	2.80	
Boundary Eff	fect					
Head	900 MHz	Typical SAR gradie	nt: 5 % per mm			
Probe	e Tip to Boundary	,		1 mm	2 mm	
SAR	withou	t Correction Algorithm		8.7	5.0	
SAR	e [%] With C	orrection Algorithm		0.3	0.5	
Head	1800 MHz	Typical SAR gradie	nt: 10 % per mm			
	e Tip to Boundary			1 mm	2 mm	
		t Correction Algorithm		12.8	8.9	
SAR	e [%] With C	orrection Algorithm		0.3	0.1	
Sensor Offse	et					
Probe	e Tip to Sensor C	enter	2.7	,	mm	
Optic	al Surface Detec	tion	1.6 ± 0.2	1	nm	

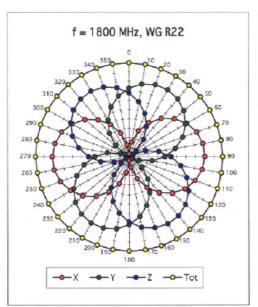
Page 2 of 10

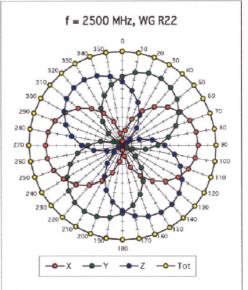


ET3DV6 SN:1788

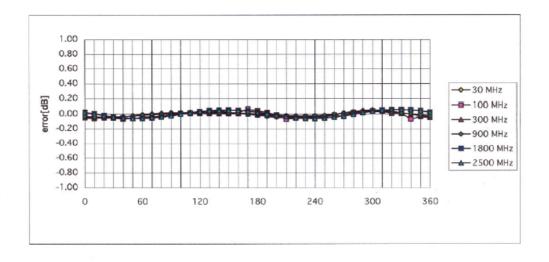
Test Report No : 0453101-1-2-01

August 29, 2003


Receiving Pattern (ϕ), θ = 0°



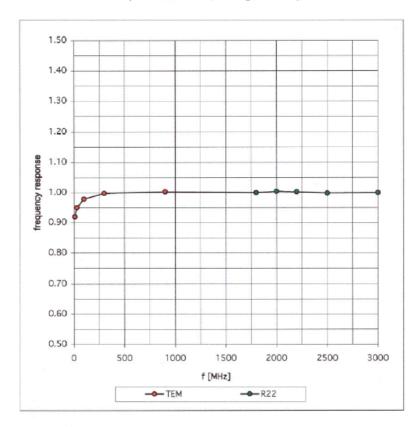
Page 3 of 10


ET3DV6 SN:1788

August 29, 2003

Isotropy Error (ϕ), $\theta = 0^{\circ}$

Page 4 of 10

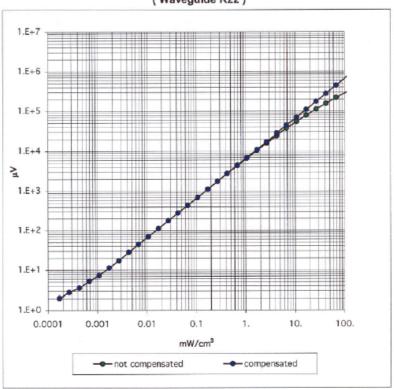


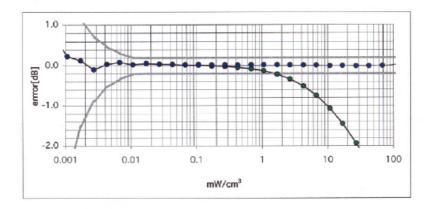
ET3DV6 SN:1788

August 29, 2003

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

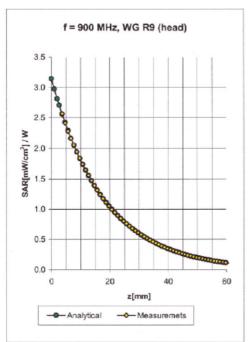

ET3DV6 SN:1788

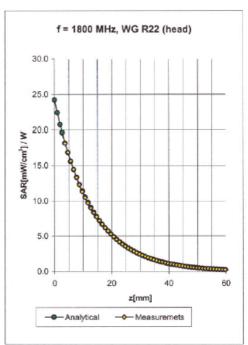

Test Report No : 0453101-1-2-01

August 29, 2003

Dynamic Range f(SAR_{brain})

(Waveguide R22)


Page 6 of 10



ET3DV6 SN:1788

August 29, 2003

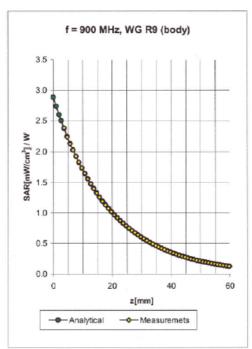
Conversion Factor Assessment

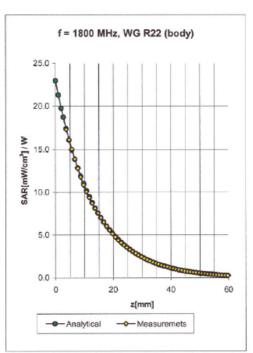
Head	900 MHz	$\varepsilon_{r} = 41.5 \pm 5\%$	σ = 0.97 ± 5% mho/m
Valid for f=800-1000 I	MHz with Head Tiss	ue Simulating Liquid accord	ing to EN 50361, P1528-200X

ConvF X	6.6	± 9.5% (k=2)	Boundary effect:	
ConvF Y	6.6	± 9.5% (k=2)	Alpha	0.34
ConvF Z	6.6	± 9.5% (k=2)	Depth	2.48

Head	1800 MHz	$\varepsilon_r = 40.0 \pm 5\%$	σ = 1.40 ± 5% mho/m
------	----------	--------------------------------	----------------------------

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X


ConvF X	5.3 ± 9.5% (k=2)	Boundary effect:
ConvF Y	5.3 $\pm 9.5\%$ (k=2)	Alpha 0.43
ConvF Z	5.3 ±9.5% (k=2)	Depth 2.80


Page 7 of 10

ET3DV6 SN:1788

Conversion Factor Assessment

2.78

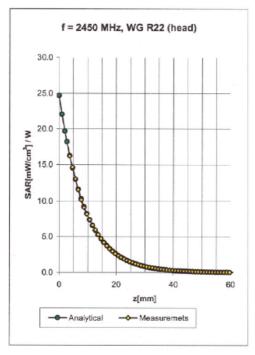
Depth

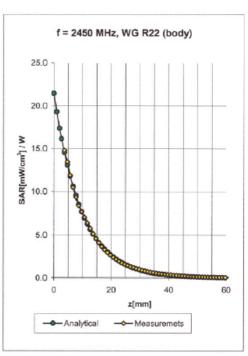
Test Report No : 0453101-1-2-01

August 29, 2003

Body	900 MHz	ϵ_r = 55.0 \pm 5%	σ = 1.05 ± 5% mho/m
Valid for f=8	00-1000 MHz with Body	Tissue Simulating Liquid according to OET	65 Suppl. C
	ConvF X	6.5 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.5 $\pm 9.5\%$ (k=2)	Alpha 0.31
	ConvF Z	6.5 ± 9.5% (k=2)	Depth 2.92
Body	1800 MHz	ϵ_r = 53.3 \pm 5%	σ = 1.52 ± 5% mho/m
Valid for f=1	710-1910 MHz with Boo	dy Tissue Simulating Liquid according to OE	Γ 65 Suppl. C
	ConvF X	5.0 ±9.5% (k=2)	Boundary effect:
	ConvF Y	5.0 ± 9.5% (k=2)	Alpha 0.51

Page 8 of 10


 $5.0 \pm 9.5\% (k=2)$


ConvF Z

ET3DV6 SN:1788

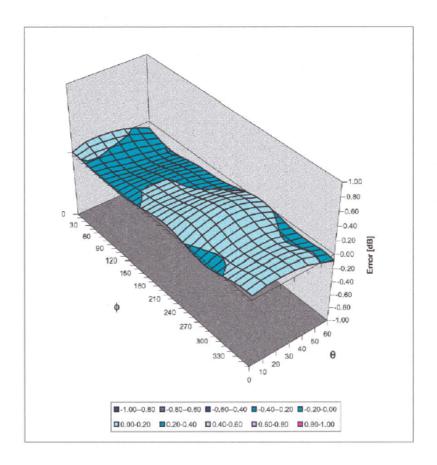
Conversion Factor Assessment

Test Report No : 0453101-1-2-01

August 29, 2003

Head	2450 MHz	ϵ_r = 39.2 ± 5%	σ= 1.80	0 ± 5% mho/m	
Valid for f=2400-250	0 MHz with Head Tissi	ue Simulating Liquid according to	EN 50361, P	1528-200X	
ConvF	× 4.7	± 8.9% (k=2)	Bour	ndary effect:	
ConvF	Y 4.7	± 8.9% (k=2)	Alph	a 0.9 9)
ConvF	z 4.7	± 8.9% (k=2)	Dept	th 1.81	I
Body	2450 MHz	ϵ_r = 52.7 ± 5%	σ= 1.95	5 ± 5% mho/m	
Valid for f=2400-250	0 MHz with Body Tissu	ue Simulating Liquid according to	OET 65 Supp	ol. C	
ConvF	× 4.5	± 8.9% (k=2)	Bour	ndary effect:	
ConvF	Y 4.5	± 8.9% (k=2)	Alph	a 1.01	I
ConvF	z 4.5	± 8.9% (k=2)	Dept	th 1.74	į.

Page 9 of 10



ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Sporton (Auden)

Object(s)	DAE3 - SD 000 D03	3 AA - SN:577	
Calibration procedure(s)	QA CAL-06.v4 Calibration procedure	re for the data acquisit	ion unit (DAE)
Calibration date:	21.11.2003		
Condition of the calibrated item	In Tolerance (accord	ding to the specific cali	bration document)
This calibration statement docume 17025 international standard	ents traceability of M&TE used in	the calibration procedures and co	onformity of the procedures with the ISO/IE
All calibrations have been conducted	ted in the placed laborates. So still		
vi calibrations have been conduc-	ied in the closed laboratory facilit	ty environment temperature 22 +	7- 2 degrees Celsius and humidity < 75%.
		ly environment temperature 22 *:	 2 degrees Ceisius and humidity < 75%.
Calibration Equipment used (M&T		y environment temperature 22 +. Cal Date	Scheduled Calibration
Calibration Equipment used (M&T Model Type Fluke Process Calibrator Type 70:	E critical for calibration)		
Calibration Equipment used (M&T	E critical for calibration)	Cal Date	Scheduled Calibration
Calibration Equipment used (M&T	E critical for calibration) ID # 2 SN. 6295803	Cal Date 8-Sep-03 Function	Scheduled Calibration Sep-05
Calibration Equipment used (M&T Model Type Fluke Process Calibrator Type 703	E critical for calibration) ID # 2 SN. 6295803	Cal Date 8-Sep-03 Function	Scheduled Calibration Sep-05
Calibration Equipment used (M&T Model Type Buke Process Calibrator Type 702 Calibrated by.	E critical for calibration) ID # 2 SN. 6295803 Name Philipp Storchenegger	Cal Date 8-Sep-03 Function	Scheduled Calibration Sep-05

DAE3 SN: 577 DATE: 21.11.2003

1. Cal Lab. Incoming Inspection & Pre Test

Modification Status	Note Status here → → → →	BC
Visual Inspection	Note anomalies	None
Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = 400 mVLow Range: 1LSB = 61nV, full range = 4 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	-

High Range	Input	Reading in µV	% Error
Channel X + Input	200mV	200000.6	0.00
	20mV	20000.9	0.00
Channel X - Input	20mV	-19992.7	-0.04
Channel Y + Input	200mV	200000.6	0.00
	20mV	19999.1	0.00
Channel Y - Input	20mV	-19994.7	-0.03
Channel Z + Input	200mV	199999.8	0.00
	20mV	19998.1	-0.01
Channel Z - Input	20mV	-19999.2	0.00

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	1999.94	0.00
	0.2mV	199.08	-0.46
Channel X - Input	0.2mV	-200.24	0.12
Channel Y + Input	2mV	1999.98	0.00
	0.2mV	199.50	-0.25
Channel Y - Input	0.2mV	-200.80	0.40
Channel Z + Input	2mV	1999.98	0.00
	0.2mV	199.11	-0.44
Channel Z - Input	0.2mV	-201.12	0.56

Page 2 of 4

DAE3 SN: 577

DATE: 21.11.2003

3. Common mode sensitivity

DASY measurement parameters:

Auto Zero Time: 3 sec, High/Low Panas

Measuring time:

3 sec

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time:

3 sec

High Range

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	_	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

DAE3 SN: 577

DATE: 21.11.2003

DASY measurement parameters:

Auto Zero Time: 3 sec, Number of measurements: Measuring time: 3 sec

100, Low Range

Input 10MΩ

TIPUL TOWISE				
in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.64	-1.84	0.71	0.49
Channel Y	-1.77	-3.93	0.94	0.58
Channel Z	-2.21	-3.14	-0.81	0.34

Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level
Supply (+ Vcc)	7.58
Supply (- Vcc)	-7.65

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97