

FCC Radio Test Report

FCC ID: XMR2025SC682ANA

This report concerns: Original Grant

Project No. : 2502H027

Equipment: LTE Module with Wi-Fi & Bluetooth

Brand Name : QUECTEL
Test Model : SC682A-NA

Series Model : N/A

Applicant: Quectel Wireless Solutions Co., Ltd.

Address : Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin

Road, Minhang District, Shanghai, 200233, China.

Manufacturer: Quectel Wireless Solutions Co., Ltd.

Address : Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin

Road, Minhang District, Shanghai, 200233, China.

Date of Receipt : Mar. 03, 2025

Date of Test : Mar. 13, 2025 ~ Apr. 09, 2025

Issued Date : Apr. 22, 2025

Report Version : R00

Test Sample : Engineering Sample No.: SH20250305145 for radiated, SH20250305145

and SH20250305146 for conducted.

Standard(s) : 47 CFR FCC Part 90 Subpart R

47 CFR FCC Part 2

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Edward Li
Edward Li
Steven Lu
Steven Lu

Room 108-116, 309-310, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl ga@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	5
1 . APPLICABLE STANDARDS	6
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
2.3 TEST ENVIRONMENT CONDITIONS	8
3. GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	10
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATIONOFSYSTEMTESTED	11
3.4 DESCRIPTION OF SUPPORT UNITS	11
4. TEST RESULT	12
4.1 OUTPUT POWER MEASUREMENT	12
4.1.1 LIMIT	12
4.1.2 TEST PROCEDURE 4.1.3 TEST SETUP LAYOUT	12 12
4.1.4 TEST DEVIATION	12
4.1.5 TEST RESULTS	12
4.2 OCCUPIED BANDWIDTH MEASUREMENT	13
4.2.1 TEST PROCEDURE	13
4.2.2 TEST SETUP LAYOUT	13
4.2.3 TEST DEVIATION 4.2.4 TEST RESULTS	13 13
4.3 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	14
4.3.1 LIMIT	14
4.3.2 TEST PROCEDURES	14
4.3.3 TEST SETUP LAYOUT	14
4.3.4 TEST DEVIATION	14
4.3.5 TEST RESULTS	14
4.4 RADIATED SPURIOUS EMISSIONS MEASUREMENT 4.4.1 LIMIT	15 15
4.4.2 TEST PROCEDURES	15
4.4.3 TEST SETUP LAYOUT	16
4.4.4 TEST DEVIATION	17
4.4.5 TEST RESULTS (9KHZ TO 30MHZ)	17
4.4.6 TEST RESULTS (30MHZ TO 1000MHZ) 4.4.7 TEST RESULTS (ABOVE 1000MHZ)	17 17
4.4.7 TEST RESULTS (ABOVE TOUDWINZ) 4.5 MASK MEASUREMENTS	17
4.5 IVIAON IVIEASUNEIVIEIVIO	10

Table of Contents	Page
4.5.1 LIMIT 4.5.2 TEST PROCEDURES 4.5.3 TEST SETUP LAYOUT 4.5.4 TEST DEVIATION 4.5.5 TEST RESULTS 4.6 PEAK TO AVERAGE RATIO MEASUREMENT 4.6.1 LIMIT 4.6.2 TEST PROCEDURES 4.6.3 TEST SETUP LAYOUT 4.6.4 TEST DEVIATION 4.6.5 TEST RESULTS 4.7 CONDUCTED BAND EDGE MEASUREMENT 4.7.1 LIMIT	18 18 18 18 19 19 19 19 19 19
4.7.2 TEST PROCEDURES 4.7.3 TEST SETUP LAYOUT 4.7.4 TEST DEVIATION 4.7.5 TEST RESULTS 4.8 FREQUENCY STABILITY MEASUREMENT 4.8.1 LIMIT 4.8.2 TEST PROCEDURES 4.8.3 TEST SETUP LAYOUT 4.8.4 TEST DEVIATION 4.8.5 TEST RESULTS	20 20 20 20 21 21 21 21 21 21
5 . LIST OF MEASUREMENT EQUIPMENTS 5. EUT TEST PHOTO	22 24
APPENDIX A - OUTPUT POWER APPENDIX B - OCCUPIED BANDWIDTH APPENDIX C - CONDUCTED SPURIOUS EMISSIONS APPENDIX D - RADIATED SPURIOUS EMISSIONS (9KHZ TO 30MHZ) APPENDIX E - RADIATED SPURIOUS EMISSIONS (30MHZ TO 1000MHZ) APPENDIX F - RADIATED SPURIOUS EMISSIONS (ABOVE 1000MHZ) APPENDIX G - MASK APPENDIX H - PEAK TO AVERAGE RATIO	27 30 33 35 37 39 41 44
APPENDIX I - CONDUCTED BAND EDGE MEASUREMENT APPENDIX J - FREQUENCY STABILITY	47 50

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-10-2502H027	R00	Original Report.	Apr. 22, 2025	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.26-2015

The following reference test guidance is not within the scope of accreditation of A2LA:

FCC KDB 971168 D01 Power Meas License Digital Systems v03r01

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part 90 Subpart R & Part 2					
Standard(s) Section Test Item		Judgment	Remark		
2.1046 & 90.542 (a)(7)	Effective Radiated Power	PASS			
2.1049	Occupied Bandwidth	PASS			
2.1053 & 90.543(e)(3)	Conducted Spurious Emissions	PASS			
2.1053 & 90.543(e)(3) & 90.543(f)	Radiated Spurious Emissions	PASS			
2.1051 & 90.210(n)	Mask Measurements	PASS			
-	Peak To Average Ratio	PASS	Record Only		
2.1053 & 90.543(e)(2)(3)	Condcted Band Edge Measurement	PASS			
2.1055 & 90.539(e)	Frequency Stability	PASS			

Note:

(1) "N/A" denotes test is not applicable in this test report.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of Room 108-116, 309-310, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China.

BTL's Registration Number for FCC: 747969 BTL's Designation Number for FCC: CN1377

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

A. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U,(dB)
SSL-CB01	CISPR	9kHz ~ 30MHz	2.74

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
SSL-CB01 CISPR	30MHz ~ 200MHz	V	4.70	
	CICDD	30MHz ~ 200MHz	Н	3.56
	200MHz ~ 1,000MHz	٧	4.92	
		200MHz ~ 1,000MHz	Н	4.54

Test Site	Method	Measurement Frequency Range	U,(dB)
SSL-CB01 CISPR		1GHz ~ 6GHz	4.56
(3m)	CISPR	6GHz ~ 18GHz	5.14

B. Other Measurement:

Parameter	Uncertainty
Spectrum Bandwidth	±1.74 dB
Maximum Output Power	±0.87 dB
Frequency Stability	±53.10Hz
Conducted Spurious Emissions	2.71 dB
Temperature	±0.48 °C
Humidity	±1.37 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By	Test Date
Output Power & ERP	23.5°C	43%	DC 3.8V	Gavin Ge	Mar. 13, 2025~ Mar. 27, 2025
Occupied Bandwidth	23.5°C	43%	DC 3.8V	Gavin Ge	Mar. 13, 2025~ Mar. 27, 2025
Conducted Spurious Emissions	23.5°C	43%	DC 3.8V	Gavin Ge	Mar. 13, 2025~ Mar. 27, 2025
Radiated Spurious Emissions (9 kHz to 30 MHz)	23°C	47%	DC 3.8V	Young Zou	Mar. 24, 2025
Radiated Spurious Emissions (30 MHz to 1000 MHz)	22°C	50%	DC 3.8V	Young Zou	Mar. 24, 2025
Radiated Spurious Emissions (Above 1000 MHz)	22°C	50%	DC 3.8V	Young Zou	Mar. 24, 2025
Mask	23.5°C	43%	DC 3.8V	Gavin Ge	Mar. 28, 2025
Peak to Average Ratio	23.5°C	43%	DC 3.8V	Gavin Ge	Mar. 13, 2025~ Mar. 27, 2025
Condcted Band Edge Measurement	23.5°C	43%	DC 3.8V	Gavin Ge	Mar. 13, 2025~ Mar. 27, 2025
Frequency Stability	Normal & Extreme	43%	Normal & Extreme	Gavin Ge	Mar. 13, 2025~ Mar. 27, 2025

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	LTE Module with Wi-Fi & Bluetooth			
Brand Name	QUECTEL			
Test Model	SC682A-NA			
Series Model	N/A			
Model Difference(s)	N/A			
Hardware Version	SC682A-NA			
Software Version	SC682ANAF	PAR01A01		
Power Source	DC Voltage	supplied from host syste	em.	
Power Rating	3.55 to 4.4V;	Typical: 3.8V		
IMEI No.	Radiated 867665070008943			
IIVIEI NO.	Conducted	867665070008943, 86	7665070010568	
Modulation Type	UL: QPSK,1	6QAM		
Wodulation Type	DL: QPSK,1	6QAM,64QAM		
	LTE Channel Bandwidth QPSK 16QAM			
Max. ERP	LIE	(MHz)	(dBm)	(dBm)
IVIAX. LIVE	Band 14	5	20.65	19.75
	Danu 14	10	21.01	19.62

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

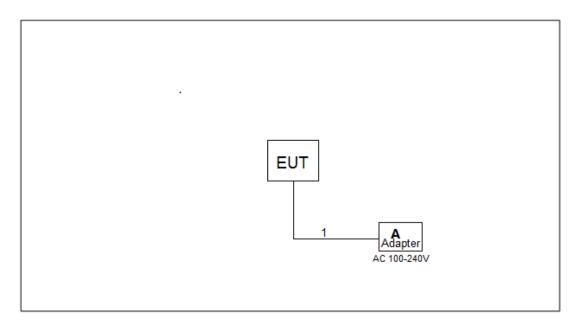
2. Channel List:

LTE Band 14(UL: 788-798 MHz, DL: 758-768 MHz)					
Test Frequency ID	Bandwidth (MHz)	N _{UL}	Frequency of Uplink (MHz)	N _{DL}	Frequency of Downlink (MHz)
Low Bongo	5	23305	790.5	5305	760.5
Low Range	10	23330	793	5330	763
Mid Range	5/10	23330	793	5330	763
High Dongs	5	23355	795.5	5.55	763.5
High Range	10	23330	793	5330	763

3. Table for Filed Antenna:

Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Note
QUECTEL	External 5G Antenna	Dipole	SMA Male	-0.5	LTE Band 14

Note: The antenna gain is provided by the manufacturer.


3.2 DESCRIPTION OF TEST MODES

Following mode(s) is (were) found to be the worst case(s) and selected for the final test.

	LTE BAND 14 MODE								
Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode				
Output Power	23305 to 23355	23305, 23330, 23355	5MHz	QPSK, 16QAM	1RB/12RB/25RB				
&ERP	23330	23330	10MHz	QPSK, 16QAM	1RB/25RB/50RB				
Occupied	23305 to 23355	23305, 23330, 23355	5MHz	QPSK, 16QAM	25RB				
Bandwidth	23330	23330	10MHz	QPSK, 16QAM	50RB				
Conducted	23305 to 23355	23330	5MHz	QPSK	1RB				
Spurious Emissions	23330	23330	10MHz	QPSK	1RB				
Radiated	23305 to 23355	23330	5MHz	QPSK	1RB				
Spurious Emissions	23330	23330	10MHz	QPSK	1RB				
	23305 to 23355	23305, 23355	5MHz	QPSK	1RB				
Mask	23303 to 23333	25505, 25555	JIVII IZ	QF 5N	25RB				
IVIASK	23330	23330	10MHz	QPSK	1RB				
	23330	23330	TOIVINZ	QFSN	50RB				
Peak To	23305 to 23355	23305, 23330, 23355	5MHz	QPSK, 16QAM	1RB				
Average Ratio	23330	23330	10MHz	QPSK, 16QAM	1RB				
	23305 to 23355	23305, 23355	5MHz	QPSK	1RB				
Condcted	23303 10 23355	23300, 23300	SIVITZ	QF3N	25RB				
Band Edge Measurement	23330	23330	10MHz	QPSK	1RB				
, , , , , , , , , , , , , , , , , , , ,	23330	23330	1 OIVII IZ	QF3N	50RB				
Frequency Stability	23305 to 23355	23330	10MHz	QPSK	50RB				

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATIONOFSYSTEMTESTED

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.
Α	Adapter	Keyu Power Supply	KA1801A-0503000DE-	-

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.2m

4. TEST RESULT

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMIT

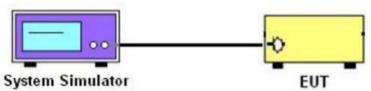
Control stations and mobile stations transmitting in the 758–768 MHz band and the 788–798 MHz band are limited to 30 watts ERP.

Portable stations (hand-held devices) transmitting in the 758–768 MHz band and the 788–798 MHz band are limited to 3 watts ERP.

4.1.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 5.0 or ANSI C63.26-2015 Section 5.2.

ERP:


EIRP= Output Power + Antenan gain ERP = EIPR - 2.15dBi.

Output Power:

The EUT was set up for the maximum power with GSM, GPRS, EDGE, WCDMA, CDMA, and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.3 TEST SETUP LAYOUT

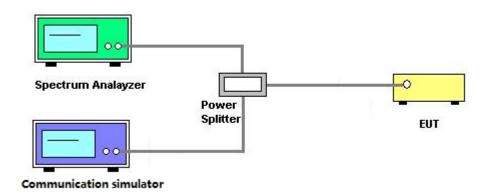
Output Power Measurement

4.1.4 TEST DEVIATION

No deviation.

4.1.5 TEST RESULTS

Please refer to the APPENDIX A.


4.2 OCCUPIED BANDWIDTH MEASUREMENT

4.2.1 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 4.0 or ANSI C63.26-2015 Section 5.4.

- 1. The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth and 26dB bandwidth.
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 3. RBW=(1% ~ 5%)*EBW VBW≥3* RBW
- 4. Set spectrum analyzer with RMS detector.

4.2.2 TEST SETUP LAYOUT

4.2.3 TEST DEVIATION

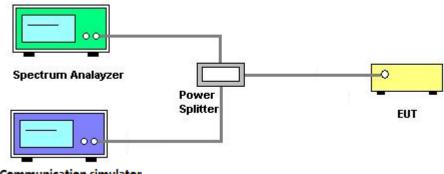
No deviation.

4.2.4 TEST RESULTS

Please refer to the APPENDIX B.

4.3 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

4.3.1 LIMIT


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to -13dBm.

4.3.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6.0 or ANSI C63.26-2015 Section 5.7.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured. Set RBW>=1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 3. Set spectrum analyzer with Peak or RMS detector.
- 4. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

4.3.3 TEST SETUP LAYOUT

Communication simulator

4.3.4 TEST DEVIATION

No deviation.

4.3.5 TEST RESULTS

Please refer to the APPENDIX C.

4.4 RADIATED SPURIOUS EMISSIONS MEASUREMENT

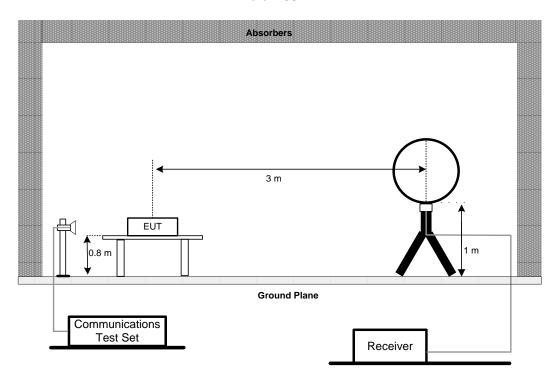
4.4.1 LIMIT

Out of band emissions: The power of any emission outside of theauthorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

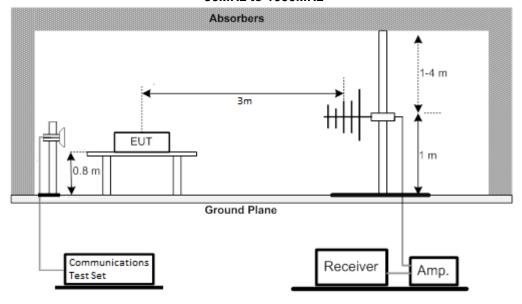
For operations in the 758–775 MHz and 788–805 MHz bands, all emissions including harmonics in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

E (dB μ V/m) = EIRP (dBm) - 20 log D + 104.8; where D is the measurement distance in meters. The emission limit equal to 82.26dB μ V/m or 55.26dB μ V/m.

4.4.2 TEST PROCEDURES

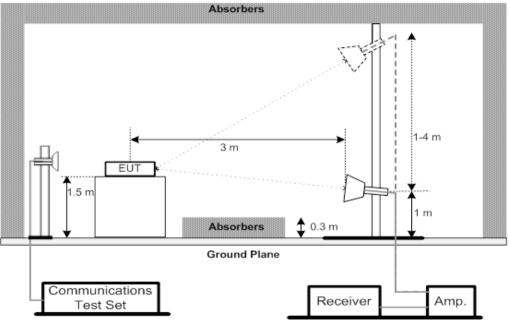

The testing follows FCC KDB 971168 v03r01 Section 6.2 or ANSI C63.26-2015 Section 5.5.

- 1. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- 4. Start the test, rotate the table 360° to find the worst Angle, maintain the worst Angle, raise the antenna to 1-4m to find the worst height, maintain the worst height, then rotate the table to determine the final worst Angle, grab the spectrum diagram.
- 5. EUT shall be placed in accordance with X,Y,Z as required by Figure 5 in ANSI C63.26. Repeat Step 5 above to find the worst placement. Test all bands according to the worst placement.
- 6. Then EIRP is then converted to field strength as follows in Equation
- 7. E (dBuV/m) = EIRP (dBm) $20\log(D)$ + 104.8; where D is the measurement distance (in the far field region) in m.The emission limit equal to 82.26dBuV/m or $55.26dB\mu V/m$.



4.4.3 TEST SETUP LAYOUT

Below 30MHz



30MHz to 1000MHz

4.4.4 TEST DEVIATION

No deviation.

4.4.5 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the APPENDIX D.

4.4.6 TEST RESULTS (30MHZ TO 1000MHZ)

Please refer to the APPENDIX E.

4.4.7 TEST RESULTS (ABOVE 1000MHZ)

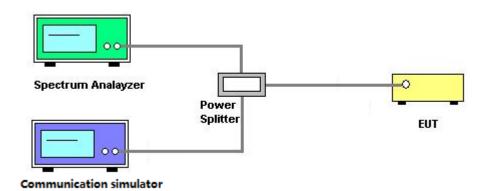
Please refer to the APPENDIX F.

4.5 MASK MEASUREMENTS

4.5.1 LIMIT

<Mask B>

For transmitter that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:


- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43+10log(P) dB.

4.5.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6.0 or ANSI C63.26-2015 Section 5.7.

- 1. All measurements were done at low and high operational frequency range.
- 2. Set RBW=1% of 26dBc bandwidth, VBW=3 X RBW, detector=RMS, Sweep time = Auto.
- 3. Record the max trace plot into the test report.

4.5.3 TEST SETUP LAYOUT

4.5.4 TEST DEVIATION

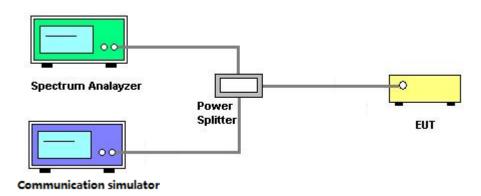
No deviation.

4.5.5 TEST RESULTS

Please refer to the APPENDIX G.

4.6 PEAK TO AVERAGE RATIO MEASUREMENT

4.6.1 LIMIT


In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

4.6.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 5.7 or ANSI C63.26-2015 Section 5.2.6.

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

4.6.3 TEST SETUP LAYOUT

4.6.4 TEST DEVIATION

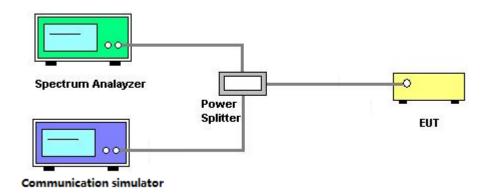
No deviation.

4.6.5 TEST RESULTS

Please refer to the APPENDIX H.

4.7 CONDUCTED BAND EDGE MEASUREMENT

4.7.1 LIMIT


- (1) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 76+10log(P) dB In a 6.25 KHz band segment, for base and fixed stations.
- (2) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 65+10log(P) dB In a 6.25 KHz band segment, for mobile and portable stations.
- (3) On all frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43+10log(P) dB.

4.7.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6 or ANSI C63.26-2015 Section 5.7.

- 1. All measurements were done at low and high operational frequency range.
- 2. Record the max trace plot into the test report.

4.7.3 TEST SETUP LAYOUT

4.7.4 TEST DEVIATION

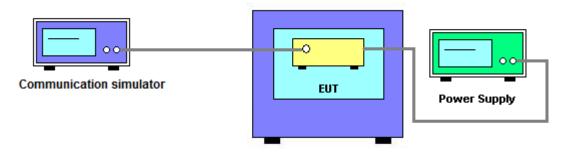
No deviation.

4.7.5 TEST RESULTS

Please refer to the APPENDIX I.

4.8 FREQUENCY STABILITY MEASUREMENT

4.8.1 LIMIT


Tht frequency stability of mobile portable and control transmitters operating in the wideband segment must be 1.25 parts per million or better.

4.8.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 9.0 or ANSI C63.26-2015 Section 5.6.

- 1. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- 2. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- 3. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ±0.5°C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.
- 4. The frequency error was recorded frequency error from the communication simulator.

4.8.3 TEST SETUP LAYOUT

4.8.4 TEST DEVIATION

No deviation.

4.8.5 TEST RESULTS

Please refer to the APPENDIX J.

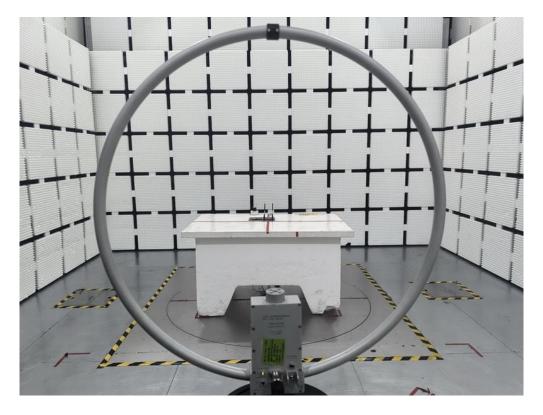
5. LIST OF MEASUREMENT EQUIPMENTS

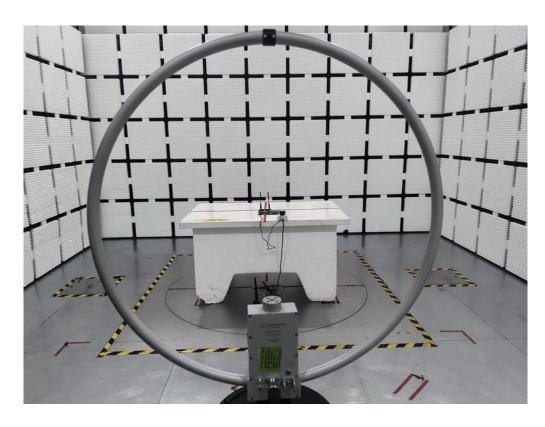
	Radiated Emissions - 9 kHz to 30 MHz								
Item	Kind of Equipment	Serial No.	Calibrated until						
1	Active Loop Antenna	Schwarzbeck	FMZB 1513-60	00025	Mar. 01, 2026				
2	MXE EMI Receiver	Keysight	N9038A	MY59050118	Jun. 28, 2025				
3	Cable	EMC INSTRUMENT	EMCCFD400-N M-NM-3000	N/A	Jun. 06, 2025				
4	Cable	EMC INSTRUMENT	EMCCFD400-N M-NM-7000	N/A	Jun. 06, 2025				
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A				
6	Wideband Radio Communication Tester	R&S	CWM 500	104462	Jun. 28, 2025				
7	966 Chamber room	Tai He	9*6*6 (NSA&VSWR)	N/A	Jun. 06, 2025				

	Radiated Emissions - 30 MHz to 1 GHz									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	01269	May 18, 2025					
2	Attenuator	EMCI	EMCI-N-6-06	AN-N0697	May 18, 2025					
3	MXE EMI Receiver	Keysight	N9038A	MY59050118	Jun. 28, 2025					
4	Preamplifier	EMC INSTRUMENT	EMC001330	980825	Jan. 10, 2026					
5	Cable	EMC INSTRUMENT	EMCCFD400-NM-N M-2500	N/A	Jun. 06, 2025					
6	Cable	EMC INSTRUMENT	EMCCFD400-NM-N M-7000	N/A	Jun. 06, 2025					
7	Cable	EMC INSTRUMENT	EMCCFD400-NM-N M-3000	N/A	Jun. 06, 2025					
8	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A					
9	Wideband Radio Communication Tester	R&S	CWM 500	104462	Jun. 28, 2025					
10	966 Chamber room	Tai He	9*6*6 (NSA&VSWR)	N/A	Jun. 06, 2025					

	B. Pate J. Francis and A. C. C.									
	Radiated Emissions - Above 1 GHz									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	MXE EMI Receiver	Keysight	N9038A	MY59050118	Jun. 28, 2025					
2	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A					
3	Preamplifier	EMC INSTRUMENT	EMC118A45SE	980739	Jan. 11, 2026					
4	Cable	EMC INSTRUMENT	EMC104-SM-SM-1 0000	N/A	Dec. 09, 2025					
5	Cable	EMC INSTRUMENT	EMC104-SM-SM-3 000	N/A	Dec. 09, 2025					
6	Cable	EMC INSTRUMENT	EMC104-SM-SM-1 000	N/A	Dec. 09, 2025					
7	Double Ridged Broadband Horn Antenna	RF SPIN	DRH18-E	210106A18E	Jul. 17, 2025					
8	Band Reject Filter	COM-MW	ZHPF6-M1000-150 00-533	7213127	Jun. 28, 2025					
9	Wideband Radio Communication Tester	R&S	CWM 500	104462	Jun. 28, 2025					
10	Band Reject Filter	COM-MW	ZHPF6-C3000-180 00-174	7213126	Jun. 28, 2025					
11	Preamplifier	EMC INSTRUMENT	EMC184045SE	980793	Jan. 10, 2026					
12	Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	01046	Jul. 22, 2025					
13	Cable	RegalWay	RWLP50-3.6A-2.92 M2.92M-6M	20241119-001	Nov. 26, 2025					
14	Cable	RegalWay	RWLP50-3.6A-2.92 M2.92M-0.8M	20241119-001	Nov. 26, 2025					
15	966 Chamber room	Tai He	9*6*6 (NSA&VSWR)	N/A	Jun. 06, 2025					

	Conducted Measurement								
Item	Kind of Equipment Manufacturer Type No. Serial No. Calibrated								
1	Wideband Radio Communication Tester	R&S	CWM 500	165848	Jan. 10, 2026				
2	MXA Signal Analyzer	KEYSIGHT	N9020A	MY52091060	Jan. 11, 2026				
3	Temperature Chamber	ESPEC	SU-242	93018777	Jun. 28, 2025				
4	DC power supply	UNI-T	UDP6721	AWP7224050018	Jan. 10, 2026				

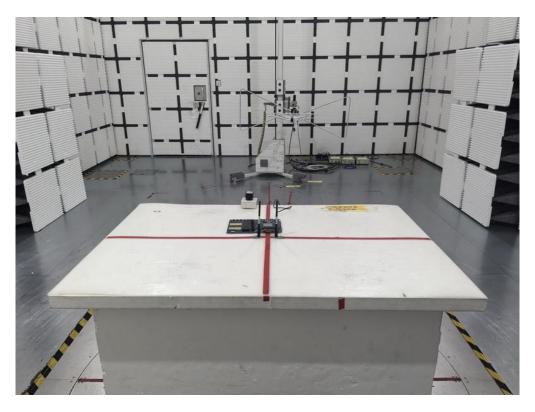

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

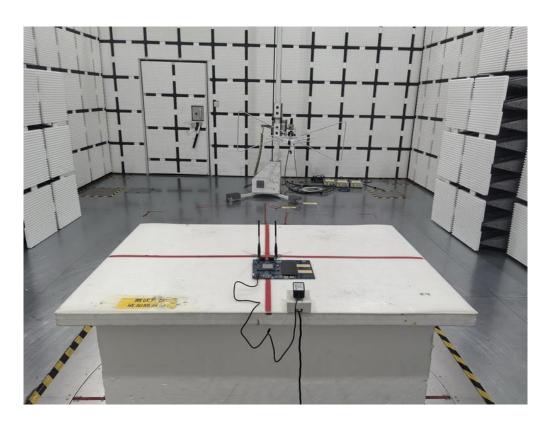


5. EUT TEST PHOTO

Radiated Emissions Test Photos

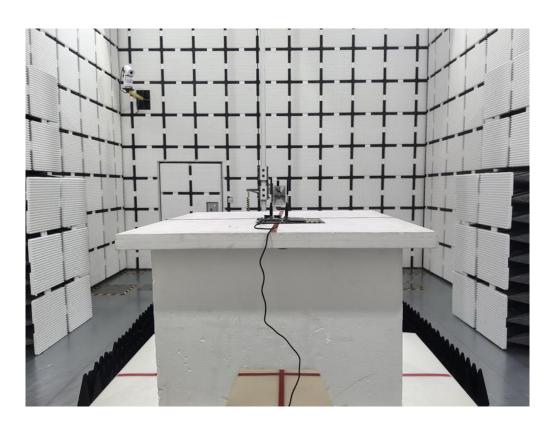
9 kHz to 30 MHz





Radiated Emissions Test Photos

30 MHz to 1 GHz

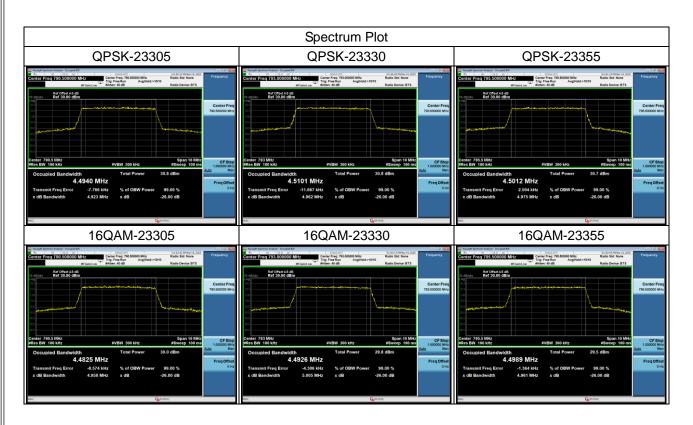


Radiated Emissions Test Photos

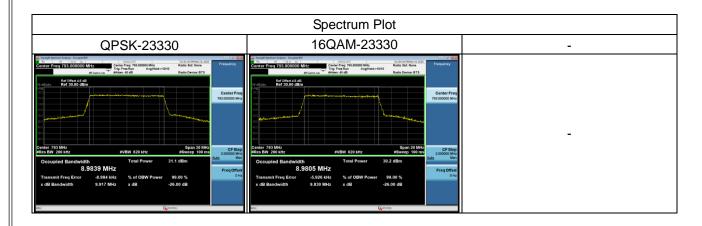
Above 1 GHz

APPENDIX A - OUTPUT POWER	

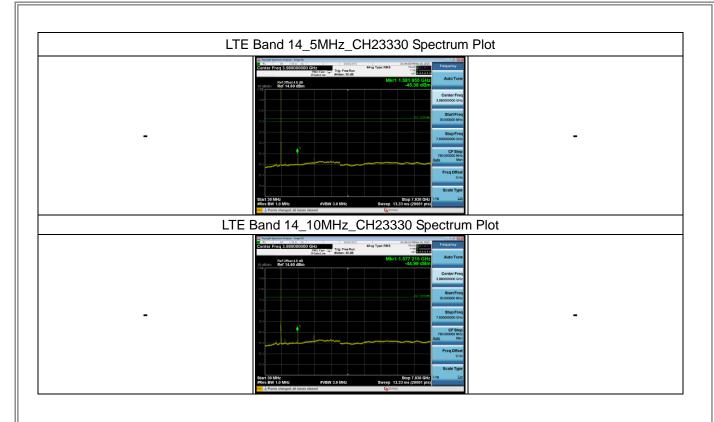
	1	1	1	I	I	1			
Bandwidth	Modulation	RB size	RB offset	CH23305	CH23330	CH23355		ERP	
Dandwidth	Modulation	IND SIZE	IVD Olloci	790.5MHz	793MHz	795.5MHz		LIXI	
		1	0	22.65	22.97	22.80	20.00	20.32	20.15
		1	13	23.12	23.30	22.90	20.47	20.65	20.25
		1	24	23.09	23.10	22.81	20.44	20.45	20.16
	QPSK	12	0	22.26	22.26	22.18	19.61	19.61	19.53
		12	6	22.27	22.27	22.29	19.62	19.62	19.64
		12	11	22.23	22.27	22.34	19.58	19.62	19.69
EMU-		25	0	22.21	22.31	22.21	19.56	19.66	19.56
5MHz		1	0	21.54	21.83	21.74	18.89	19.18	19.09
		1	13	22.38	22.16	22.40	19.73	19.51	19.75
		1	24	21.72	21.67	21.78	19.07	19.02	19.13
	16QAM	12	0	21.03	21.17	20.96	18.38	18.52	18.31
		12	6	21.26	21.25	21.07	18.61	18.60	18.42
		12	11	21.27	21.28	20.99	18.62	18.63	18.34
		25	0	21.15	21.34	21.19	18.50	18.69	18.54


	T	T			,					
Bandwidth	Modulation	RB size	RB offset	-	CH23330	-		ERP		
Danuwiuin	Modulation	ND SIZE	KD 011861	-	793MHz	-		LKF	.RP	
		1	0	-	23.49	-	-	20.84	-	
		1	25	-	23.66	-	-	21.01	-	
		1	49	-	23.52	-	-	20.87	-	
	QPSK	25	0	-	22.15	-	-	19.50	-	
		25	13	-	22.25	-	-	19.60	-	
		25	25	-	22.24	-	-	19.59	-	
10MHz		50	0	-	22.25	-	-	19.60	-	
IOWINZ		1	0	-	22.27	-	-	19.62	-	
		1	25	-	22.27	-	-	19.62	-	
		1	49	-	21.85	-	-	19.20	-	
	16QAM	25	0	-	21.26	-	-	18.61	-	
		25	13	-	21.28	-	-	18.63	-	
		25	25	-	21.30	-	-	18.65	-	
		50	0	-	21.06	-	-	18.41	-	

APPENDIX B - OCCUPIED BANDWIDTH



LTE Band 14_5MHz									
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)		26dB Bandwidth (MHz)					
		QPSK	16QAM	QPSK	16QAM				
23305	790.5	4.4940	4.4825	4.923	4.950				
23330	793	4.5101	4.4926	4.962	5.005				
23355	795.5	4.5012	4.4989	4.975	4.961				

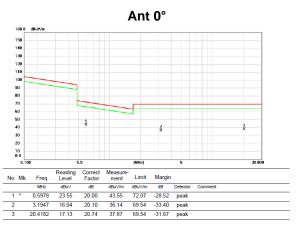

LTE Band 14_10MHz									
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)		26dB Bandwidth (MHz)					
		QPSK	16QAM	QPSK	16QAM				
23330	793	8.9839	8.9805	9.917	9.830				

APPENDIX C - CONDUCTED SPURIOUS EMISSIONS

APPENDIX D - RADIATED SPURIOUS EMISSIONS (9KHZ TO 30MHZ)

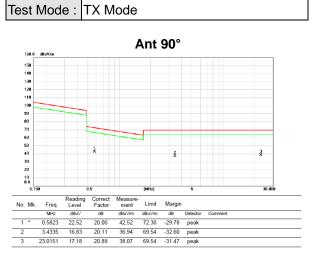
0.0300 27.64

Test Mode : TX Mode


0.1276 26.01

20.07

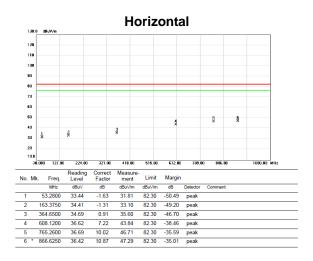
Test Mode : TX Mode Ant 0° Limit No. Mk.

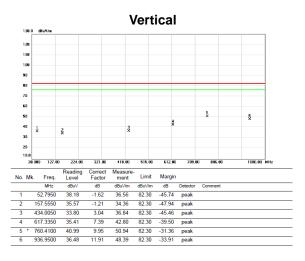

47.37 105.82 -58.45 peak

Test Mode : TX Mode

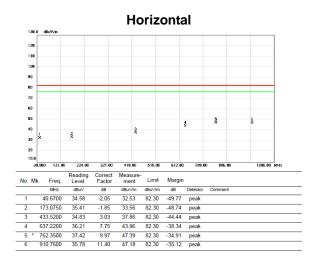
Ant 90° Reading Level Correct Factor dBuV dB 48.79 20.53 Limit No. Mk. dBuV/m dBuV/m dB Detector 69.32 127.60 -58.28 peak 51.63 118.06 -66.43 peak MHz 0.0100 0.0300 31.50 20.13

46.08 105.49 -59.41 peak


APPENDIX E - RADIATED SPURIOUS EMISSIONS (30MHZ TO 1000MHZ)

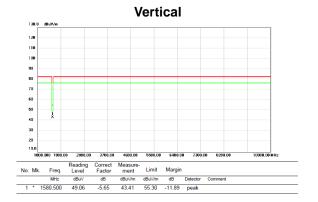

Test Mode: LTE Band 14_TX CH23330_5MHz

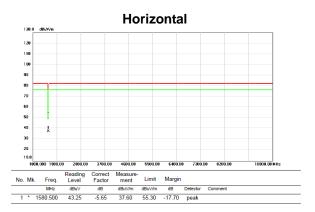
Vertical 5 X Limit Margin No. Mk. Freq. 34.33 82.30 -47.97 peak 82.30 -49.24 peak 160.4650 34.27 -1.21 33.06 3.14 39.07 82.30 -43.23 peak 7.90 44.61 82.30 -37.69 peak 645.4650 36.71 * 761.8650 41.22 35.29 9 96 51.18 82.30 -31.12 peak

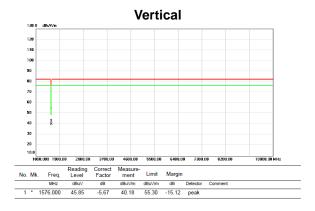

Test Mode: LTE Band 14_TX CH23330_5MHz

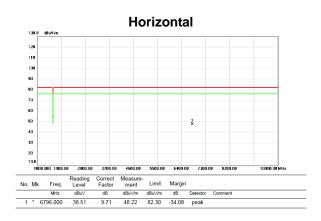
Test Mode: LTE Band 14_TX CH23330_10MHz

Test Mode: LTE Band 14_TX CH23330_10MHz

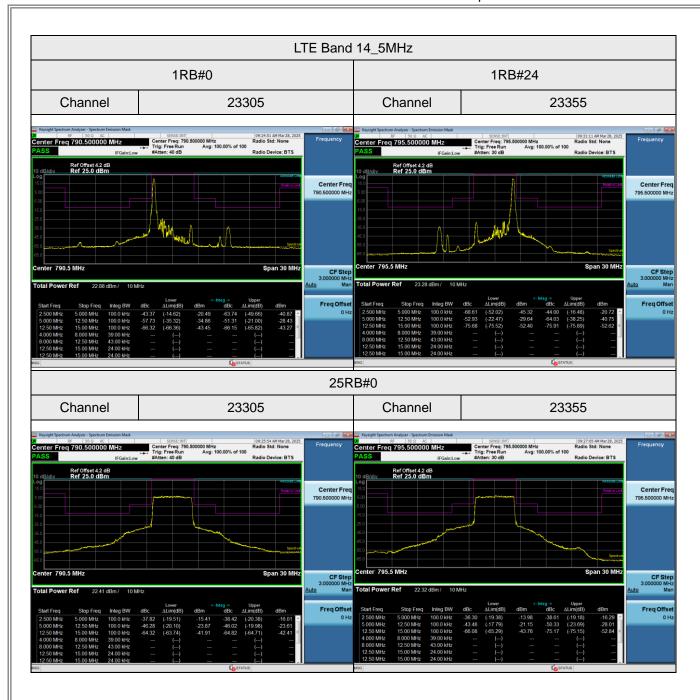


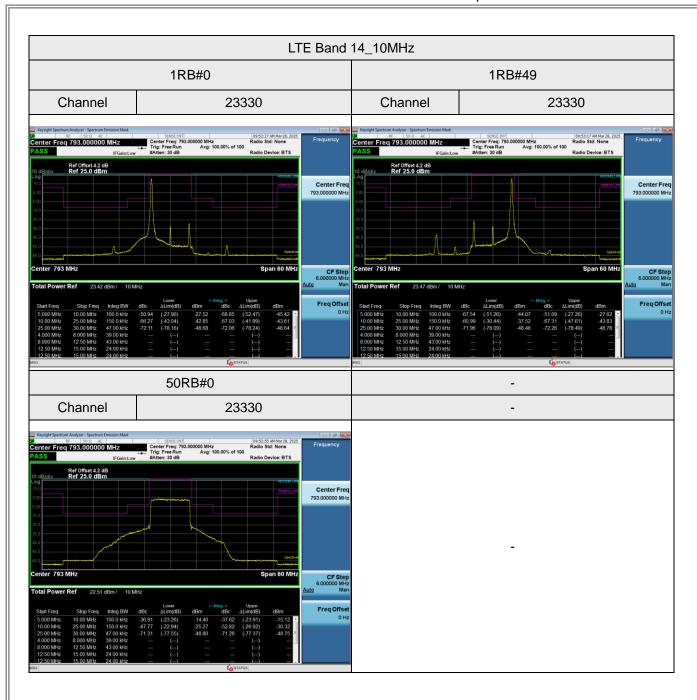

APPENDIX F - RADIATED SPURIOUS EMISSIONS (ABOVE 1000MHZ)


Test Mode: LTE Band 14_TX CH23330_5MHz

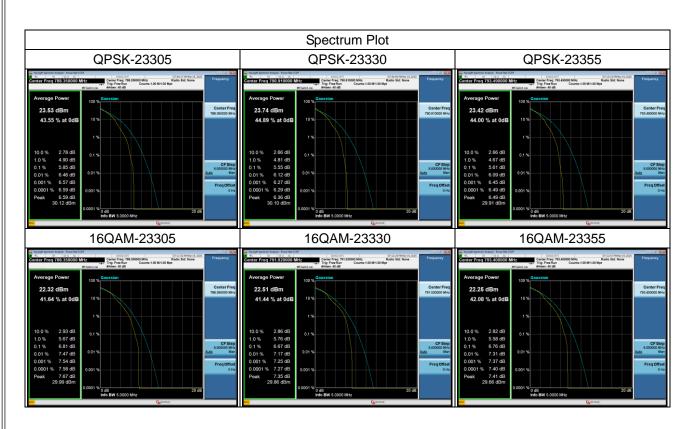

Test Mode: LTE Band 14_TX CH23330_5MHz

Test Mode: LTE Band 14_TX CH23330_10MHz

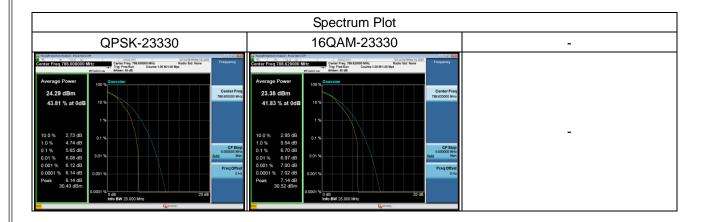

Test Mode: LTE Band 14_TX CH23330_10MHz



APPENDIX G - MASK

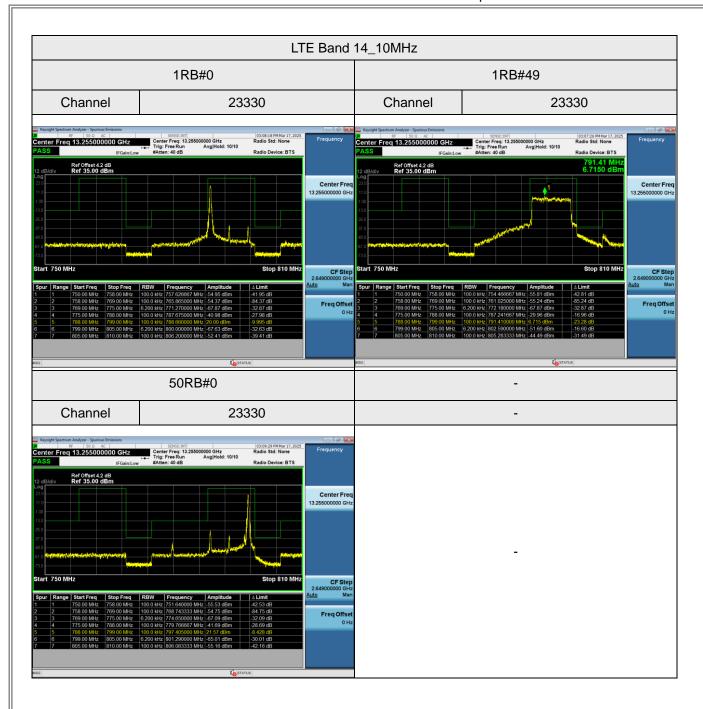


APPENDIX H - PEAK TO AVERAGE RATIO



LTE Band 14_5MHz					
Channel Frequence (MHz)	Frequency	Peak To Average Ratio (dB)		Max. Limit	Result
	(IVITZ)	QPSK	16QAM	(dB)	
23305	790.5	5.85	6.81	13	Pass
23330	793	5.55	6.67	13	Pass
23355	795.5	5.61	6.76	13	Pass


		LTE Band 14_	_10MHz		
Channel	Frequency (MHz)	Peak To Average Ratio (dB)		Max. Limit	Result
	(IVII IZ)	QPSK	16QAM	(dB)	
23330	793	5.65	6.70	13	Pass



APPENDIX I - CONDUCTED BAND EDGE MEASUREMENT			

APPENDIX J - FREQUENCY STABILITY

Test Mode LTE Band 14 _10MHz

Frequency error versus temperature and supply voltage				
Temperature (°C)	Frequency error (Hz)	ppm	Limit	
50	5.21	0.0066		
40	-5.98	-0.0075		
30	-4.63	-0.0058		
20	4.82	0.0061		
10	5.54	0.0070		
0	4.23	0.0053	.1 25nnm	
-10	3.56	0.0045	±1.25ppm	
-20	5.12	0.0065	1	
-30	4.89	0.0062		
Minimum voltage	3.74	0.0047]	
Maximum voltage	-7.25	-0.0091]	
Nominal voltage	-8.35	-0.0105]	

Note: Nominal voltage= 3.8V, Maximum voltage= 4.4V, Minimum voltage= 3.55V.

End of Test Report