TEST REPORT FOR FCC PART 15B CLASS B

of

Keyboard

Model

6100C

Applied by:

BEHAVIOR TECH COMPUTER CORP. 2F,51,Tung Hsing Rd., Taipei 110 Taiwan, R. O. C.

Test Performed by:
International Standards Laboratory

(NVLAP Lab. Code: 200234-6

(V) Hsichih LAB	Lung-Tan LAB			
Site Registration No.: (NVLAP Lab. Code: 200234-0)	Site Registration No.: (NVLAP Lab. Code: 200234-0)			
No. 65, Ku Dai Keng St.	No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd.			
Hsichih, Taipei Hsien 22117	Lung-Tan Hsiang, Tao Yuan County 325			
Taiwan, R.O.C.	Taiwan, R.O.C			
Tel:(02)2646-2550	Tel:(03)407-1718			
Fax:(02)2646-4641	Fax:(03)407-1738			

Issue Date: 2004/05/28

Contents of Report

1.	General	1
1.1	Certification of Accuracy of Test Data	1
1.2	Applicant Information	2
1.3	Operation Environment	
2.	Powerline Conducted Emissions	3
2.1	Configuration and Procedure	3
2	.1.1 EUT Configuration	
2	.1.2 Test Procedure	
2	1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	
2.2	Test Data: The EUT inserted into the USB port on Personal Computer	4
2.3	Test Data: The EUT used USB to PS/2 adaptor inserted into the PS/2 Keyboard	l port on Personal
Coı	nputer	6
3.	Open Field Radiated Emissions	8
3.1	Configuration and Procedure	8
3	.1.1 EUT Configuration	
3	.1.2 Test Procedure	
3	1.3 Spectrum Analyzer Configuration (for the frequencies tested)	
3.2	Test Data:.The EUT inserted into the USB port on Personal Computer	9
3.3	Test Data: The EUT used USB to PS/2 adaptor inserted into the PS/2 Keyboard	l port on Personal
Cor	nputer	11
4.	Appendix	13
4.1	Appendix A: Warning Labels	
4.2	Appendix B: Warning Statement	14
4.3	Appendix C: Measurement Procedure for Powerline Conducted Emissions	15
4.4		
4.5		
4	.5.1 Test Equipment List	
4	.5.2 Software for Controlling Spectrum/Receiver and Calculating Test Data	
4.6	Appendix F: Layout of EUT and Support Equipment	18
4	.6.1 General Conducted Test Configuration	18
4	.6.2 General Radiation Test Configuration	
4.7	11 1 1 1 1	
	7.1 Description of Support Equipment	
	7.2 Software for Controlling Support Unit	
	7.3 I/O Cable Condition of EUT and Support Units	
4.8		
4.9		
4.1	O Appendix J: Photographs of EUT Configuration Test Set Up	32
4.1	1 Appendix K: Photographs of EUT	34

1. General

1.1 Certification of Accuracy of Test Data

Standards: ANSI C63.4-2001, CFR 47 Part 15 Subpart B

or EN55022: 1998

Industry Canada Interference-Causing Equipment

Standard ICES-003 Issue 4: 2004

Equipment Tested: Keyboard

Model/Type/Machine Type: 6100C

Applied by BEHAVIOR TECH COMPUTER CORP.

Sample received Date: 2004/05/18

Final test Date: refer to the date of test data

Test Engineer:

David Y.Y. Wu

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the radiated and power line conducted electromagnetic emissions generated by sample equipment under test at the time of the test.

The sample equipment tested as described in this report is in compliance with the limits of above standards.

Approve & Signature

Eddy Hsiung/Director

Test results given in this report apply only to the specific sample(s) tested under stated test conditions.

This report shall not be reproduced other than in full without the explicit written consent of ISL. This report totally contains 36 pages, including 1 cover page, 1 contents page, and 34 pages for the test description.

This report must not be use to claim product endorsement by NVLAP or any agency of the U.S. Government.

This test data shown below is traceable to NIST or national or international standard. International Standards Laboratory certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

1.2 Applicant Information

Applicant: BEHAVIOR TECH COMPUTER CORP.

2F,51,Tung Hsing Rd.,

Taipei 110 Taiwan, R. O. C.

1.3 Operation Environment

Test Site: OATS 01; Conduction 01

Temperature refer to each site test data Humidity: refer to each site test data

input power: Conduction input power: AC 110 V / 60 Hz

Radiation input power: AC 110 V / 60 Hz

2. Powerline Conducted Emissions

2.1 Configuration and Procedure

2.1.1 EUT Configuration

The EUT was set up on the non-conductive table that is 1.0 by 1.5 meter, 80cm above ground. The wall was 40cm to the rear of the EUT.

Power to the EUT was provided through the LISN. The impedance vs. frequency characteristic of the LISN is complied with the limit of standards used.

Both lines (neutral and hot) were connected to the LISN in series at testing. A coaxial-type connector which provides one 50 ohms impedance termination was connected to the test instrument. The excess length of the power cord was folded back and forth at the center of the lead to form a bundle 30cm to 40cm in length.

Any changes made to the configuration or modifications made to EUT during testing, are noted in the following test record.

If EUT has an extra auxiliary AC outlet which can provide power to an external monitor, all measurements will be made with the monitor power from EUT-mounted AC outlet and then from floor-mounted AC outlet.

2.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The main power line conducted EMI tests were run on both hot and neutral conductors of the power cord and the results were recorded. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

At the frequencies where the peak values of the emissions were higher than 6dß below the applicable limits, the emissions were also measured with the quasi-peak detectors. At the frequencies where the quasi-peak values of the emissions were higher than 6dß below the applicable average limits, the emissions were also measured with the average detectors.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 150KHz~30MHz

Detector Function: Quasi-Peak / Average Mode

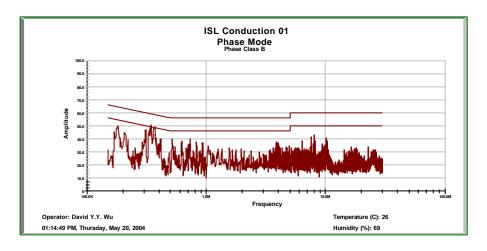
Resolution Bandwidth: 9KHz

Report Number: ISL-04HE048FB

2.2 Test Data: The EUT inserted into the USB port on Personal Computer.

Table 2.2.1 Power Line Conducted Emissions (Hot)

Operator: David Y.Y. Wu Temperature (C): 26 Humidity (%): 69


01:12:10 PM, Thursday, May 20, 2004

Frequency	LISNLoss	CableLoss	QP Corrct.	QP Limit	QP Margin	AVE Corrct.	AVE Limit	AVE Margin
MHz	(dB)	(dB)	Amp.(dBuV)	(dBuV)	(dB)	Amp.(dBuV)	(dBuV)	(dB)
0.181889	0.10	0.10	59.84	65.09	-5.25	51.61	55.09	-3.48
0.307722	0.10	0.18	51.16	61.49	-10.34	45.17	51.49	-6.33
0.36	0.10	0.20	56.03	60.00	-3.97	46.29	50.00	-3.71
0.412	0.10	0.23	42.01	58.51	-16.51	42.01	48.51	-6.51
0.514444	0.10	0.28	41.09	56.00	-14.91	40.11	46.00	-5.89
0.619666	0.10	0.31	40.62	56.00	-15.38	38.47	46.00	-7.53
0.725333	0.10	0.34	39.16	56.00	-16.84	34.00	46.00	-12.00
0.825666	0.10	0.37	41.46	56.00	-14.54	36.85	46.00	-9.15
0.928777	0.10	0.40	41.12	56.00	-14.88	39.10	46.00	-6.90
1.238	0.10	0.47	41.20	56.00	-14.80	35.21	46.00	-10.79

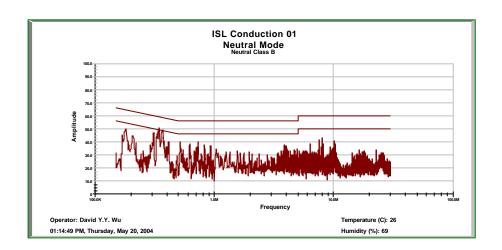
* Note:

Margin = Corrected Amplitude - Limit Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss A margin of -8dB means that the emission is 8dB below the limit

Graph 2.2.1 Power Line Conducted Emissions (Hot)

Table 2.2.2 Power Line Conducted Emissions (Neutral)

Operator: David Y.Y. Wu Temperature (C): 26 Humidity (%): 69


01:23:37 PM, Thursday, May 20, 2004

Frequency	LISNLoss	CableLoss	QP Corrct.	QP Limit	QP Margin	AVE Corrct.	AVE Limit	AVE Margin
MHz	(dB)	(dB)	Amp.(dBuV)	(dBuV)	(dB)	Amp.(dBuV)	(dBuV)	(dB)
0.180244	0.10	0.10	54.72	65.14	-10.42	47.42	55.14	-7.72
0.309933	0.10	0.18	49.61	61.43	-11.82	45.75	51.43	-5.68
0.36	0.10	0.20	54.39	60.00	-5.61	46.19	50.00	-3.81
0.413445	0.10	0.23	39.61	58.47	-18.86	38.45	48.47	-10.02
0.516911	0.10	0.28	40.06	56.00	-15.94	39.92	46.00	-6.08
0.619	0.10	0.31	36.17	56.00	-19.83	35.04	46.00	-10.96
0.725	0.10	0.34	38.85	56.00	-17.15	35.37	46.00	-10.63
0.826356	0.10	0.37	40.90	56.00	-15.10	37.28	46.00	-8.72
0.928	0.10	0.40	37.72	56.00	-18.28	35.98	46.00	-10.02
1.238	0.10	0.47	39.57	56.00	-16.43	33.76	46.00	-12.24

* Note:

Margin = Corrected Amplitude - Limit Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss A margin of -8dB means that the emission is 8dB below the limit

Graph 2.2.2 Power Line Conducted Emissions (Neutral)

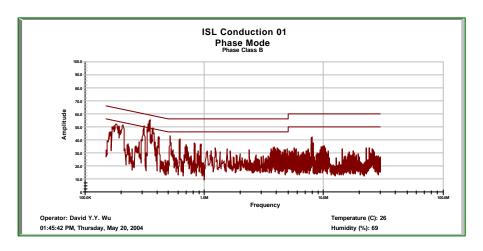
2.3 Test Data: The EUT used USB to PS/2 adaptor inserted into the PS/2 Keyboard port on Personal Computer.

Table 2.3.1 Power Line Conducted Emissions (Hot)

Operator: David Y.Y. Wu Temperature (C): 26 Humidity (%): 69

01:53:58 PM, Thursday, May 20, 2004

Frequency	LISNLoss	CableLoss	QP Corrct.	QP Limit	QP Margin	AVE Corrct.	AVE Limit	AVE Margin
MHz	(dB)	(dB)	Amp.(dBuV)	(dBuV)	(dB)	Amp.(dBuV)	(dBuV)	(dB)
0.181	0.10	0.10	59.62	65.11	-5.50	51.79	55.11	-3.32
0.31	0.10	0.18	52.87	61.43	-8.56	41.91	51.43	-9.52
0.361333	0.10	0.20	56.69	59.96	-3.27	46.11	49.96	-3.85
0.517111	0.10	0.28	43.04	56.00	-12.96	42.04	46.00	-3.96
0.619	0.10	0.31	40.40	56.00	-15.60	39.37	46.00	-6.63
0.827	0.10	0.37	40.64	56.00	-15.36	39.05	46.00	-6.95
0.93	0.10	0.40	41.64	56.00	-14.36	38.49	46.00	-7.51
1.242	0.10	0.47	41.33	56.00	-14.67	34.60	46.00	-11.40
1.342	0.10	0.49	40.13	56.00	-15.87	33.57	46.00	-12.43
1.552	0.10	0.53	38.62	56.00	-17.38	31.26	46.00	-14.74


^{*} Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

Graph 2.3.1 Power Line Conducted Emissions (Hot)

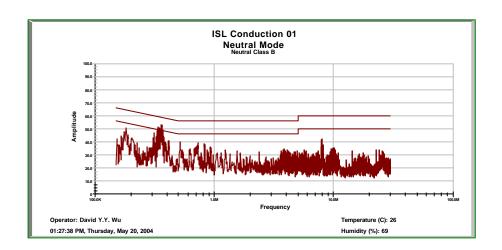
Report Number: ISL-04HE048FB

HC LAB: NVLAP: 200234-0; VCCI: R-341, C-354; NEMKO: ELA 113a, 113c; BSMI: SL2-IN-E-0037, SL2-R1-E-0037; CNLA:1178 **LT LAB**: NVLAP: 200234-0; VCCI: R-1435, C-1440; NEMKO: ELA 113b,113d; BSMI: SL2-IN-E-0013; CNLA:0997

Table 2.3.2 Power Line Conducted Emissions (Neutral)

Operator: David Y.Y. Wu Temperature (C): 26

Humidity (%): 69


01:44:19 PM, Thursday, May 20, 2004

Frequency	LISNLoss	CableLoss	QP Corrct.	QP Limit	QP Margin	AVE Corrct.	AVE Limit	AVE Margin
MHz	(dB)	(dB)	Amp.(dBuV)	(dBuV)	(dB)	Amp.(dBuV)	(dBuV)	(dB)
0.181	0.10	0.10	54.68	65.11	-10.44	46.55	55.11	-8.57
0.31	0.10	0.18	49.42	61.43	-12.01	42.20	51.43	-9.23
0.362	0.10	0.20	55.41	59.94	-4.53	46.06	49.94	-3.88
0.517	0.10	0.28	39.06	56.00	-16.94	39.06	46.00	-6.94
0.619295	0.10	0.31	37.24	56.00	-18.76	37.24	46.00	-8.76
0.82774	0.10	0.37	38.51	56.00	-17.49	36.55	46.00	-9.45
0.930962	0.10	0.40	39.35	56.00	-16.65	37.01	46.00	-8.99
1.242	0.10	0.47	39.46	56.00	-16.54	31.12	46.00	-14.88
1.342	0.10	0.49	39.18	56.00	-16.82	33.68	46.00	-12.32
1.552	0.10	0.53	36.63	56.00	-19.37	27.19	46.00	-18.81

* Note:

Margin = Corrected Amplitude - Limit Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss A margin of -8dB means that the emission is 8dB below the limit

Graph 2.3.2 Power Line Conducted Emissions (Neutral)

3. Open Field Radiated Emissions

3.1 Configuration and Procedure

3.1.1 EUT Configuration

The equipment under test was set up on a non-conductive table 80cm above ground, on a 10 meter open field or 10 meter chamber. The excess length of the power cord was folded back and forth at the center of the lead to form a bundle 30cm to 40cm in length.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

If EUT has an extra auxiliary AC outlet which can provide power to an external monitor, all measurements will be made with the monitor power from EUT-mounted AC outlet and then from floor-mounted AC outlet.

3.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The maximum emission was measured by varying the height of antenna and then by rotating the turntable. Both polarization of antenna, horizontal and vertical, were measured.

The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission. The highest emissions of frequency higher than 1000 MHz was analyzed in peak mode and/or average mode to determine the precise amplitude of the emission.

3.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 30MHz--1000MHz Detector Function: Quasi-Peak Mode

Resolution Bandwidth: 120KHz

Frequency Range: Above 1000Mhz
Detector Function: Peak/Average Mode

Resolution Bandwidth: 1MHz

HC LAB: NVLAP: 200234-0; VCCI: R-341, C-354; NEMKO: ELA 113a, 113c; BSMI: SL2-IN-E-0037, SL2-R1-E-0037; CNLA:1178 LT LAB: NVLAP: 200234-0; VCCI: R-1435, C-1440; NEMKO: ELA 113b,113d; BSMI: SL2-IN-E-0013; CNLA:0997

3.2 Test Data: The EUT inserted into the USB port on Personal Computer.

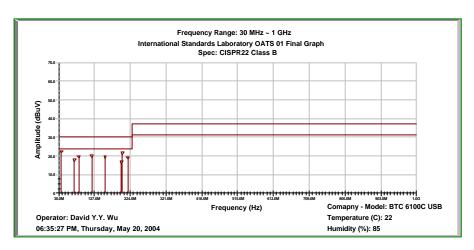
Table 3.2.1 Open Field Radiated Emissions (Horizontal)

Operator: David Y.Y. Wu Temperature (C): 22

Humidity (%): 85

06:35:26 PM, Thursday, May 20, 2004

Frequency	Rx Amp.	Ant Fact	Cb Loss	PreAmp.	Corret.	Limit	Margin*	Ant.Pos.	TablePos.
					Emi.				
MHz	(dBuV)	(dB/m)	(dB)	Gain (dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)
36.8735	6.00	15.16	1.13	0.00	22.29	30.00	-7.71	400	257
72.0195	10.40	5.70	1.52	0.00	17.62	30.00	-12.38	400	222
83.932	10.40	7.61	1.58	0.00	19.59	30.00	-10.41	400	67
120	6.30	11.60	1.91	0.00	19.81	30.00	-10.19	400	279
155.83	7.70	9.29	2.24	0.00	19.23	30.00	-10.77	400	161
200	5.40	8.80	2.51	0.00	16.71	30.00	-13.29	400	245
202.816	10.20	8.72	2.53	0.00	21.45	30.00	-8.55	400	123
217.257	7.90	8.35	2.68	0.00	18.93	30.00	-11.07	400	267


* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

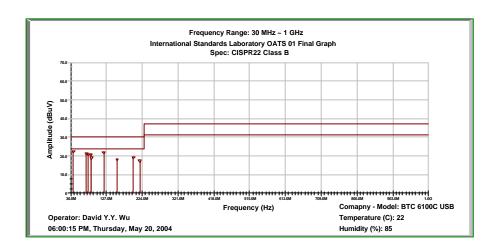
Graph 3.2.1 Open Field Radiated Emissions (Horizontal)

Table 3.2.2 Open Field Radiated Emissions (Vertical)

Operator: David Y.Y. Wu Temperature (C): 22 Humidity (%): 85

06:00:13 PM, Thursday, May 20, 2004

Frequency	Rx Amp.	Ant Fact	Cb Loss	PreAmp.	Corrct.	Limit	Margin*	Ant.Pos.	TablePos.
					Emi.				
MHz	(dBuV)	(dB/m)	(dB)	Gain (dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)
36.87	5.90	15.17	1.13	0.00	22.19	30.00	-7.81	100	214
72	13.90	5.70	1.52	0.00	21.12	30.00	-8.88	100	65
78	12.40	6.60	1.58	0.00	20.58	30.00	-9.42	100	317
83.93	11.30	7.61	1.58	0.00	20.49	30.00	-9.51	100	86
85.985	9.20	7.98	1.60	0.00	18.78	30.00	-11.22	100	286
120	8.30	11.60	1.91	0.00	21.81	30.00	-8.19	100	292
155.87	6.30	9.29	2.24	0.00	17.83	30.00	-12.17	100	139
200	7.70	8.80	2.51	0.00	19.01	30.00	-10.99	100	314
217.247	6.20	8.36	2.68	0.00	17.23	30.00	-12.77	100	308


* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Graph 3.2.2 Open Field Radiated Emissions (Vertical)

3.3 Test Data: The EUT used USB to PS/2 adaptor inserted into the PS/2 Keyboard port on Personal Computer.

Table 3.3.1 Open Field Radiated Emissions (Horizontal)

Operator: David Y.Y. Wu Temperature (C): 22 Humidity (%): 85

05:26:29 PM, Thursday, May 20, 2004

Frequency	Rx Amp.	Ant Fact	Cb Loss	PreAmp.	Corrct.	Limit	Margin*	Ant.Pos.	TablePos.
					Emi.				
MHz	(dBuV)	(dB/m)	(dB)	Gain (dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)
36.1374	5.20	15.65	1.12	0.00	21.97	30.00	-8.03	400	241
72.0232	9.50	5.70	1.52	0.00	16.72	30.00	-13.28	400	276
78.2	9.40	6.63	1.58	0.00	17.61	30.00	-12.39	400	258
84.1	6.50	7.64	1.58	0.00	15.72	30.00	-14.28	400	341
174.314	2.40	8.51	2.39	0.00	13.30	30.00	-16.70	400	41
199.86	7.00	8.80	2.51	0.00	18.30	30.00	-11.70	400	268
202.829	8.50	8.72	2.53	0.00	19.75	30.00	-10.25	400	26

^{*} Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Graph 3.3.1 Open Field Radiated Emissions (Horizontal)

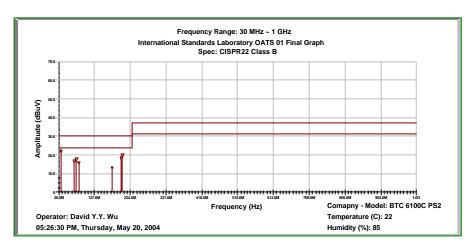
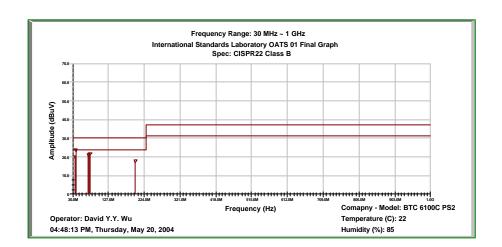


Table 3.3.2 Open Field Radiated Emissions (Vertical)

Operator: David Y.Y. Wu Temperature (C): 22 Humidity (%): 85

04:48:12 PM, Thursday, May 20, 2004

Frequency	Rx Amp.	Ant Fact	Cb Loss	PreAmp.	Corrct.	Limit	Margin*	Ant.Pos.	TablePos.
					Emi.				
MHz	(dBuV)	(dB/m)	(dB)	Gain (dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)
36.142	2.99	15.65	1.12	0.00	19.76	30.00	-10.24	100	185
38.205	8.20	14.28	1.14	0.00	23.63	30.00	-6.37	100	340
72	13.90	5.70	1.52	0.00	21.12	30.00	-8.88	100	336
74.114	14.10	6.02	1.55	0.00	21.67	30.00	-8.33	100	46
78	13.40	6.60	1.58	0.00	21.58	30.00	-8.42	100	279
200	6.40	8.80	2.51	0.00	17.71	30.00	-12.29	100	247


* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Graph 3.3.2 Open Field Radiated Emissions (Vertical)

4. Appendix

4.1 Appendix A: Warning Labels

Label Requirements

A Class B digital device subject to FCC shall carry a label which includes the following statement:

* * * W A R N I N G * * *

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The sample label shown shall be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

4.2 Appendix B: Warning Statement

Statement Requirements

The operators manual for a Class B digital device shall contain the following statements or their equivalent:

* * * W A R N I N G * * *

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio TV technician for help.

Notice: The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equivalent.

* * * * * * * * *

If the EUT was tested with special shielded cables the operators manual for such product shall also contain the following statements or their equivalent:

Shielded interface cables and/or AC power cord, if any, must be used in order to comply with the emission limits.

4.3 Appendix C: Measurement Procedure for Powerline Conducted Emissions

The measurements are performed in a 3.5m x 3.4m x 2.5m shielded room, which referred as Conduction 01 test site, or a 3m x 3m x 2.3m test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

If the EUT is supplied with a flexible power cord, the power cord length in excess of the distance separating the EUT from the LISN shall be folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length. If the EUT is provided with a permanently coiled power cord, bundling of the cord is not required. If the EUT is supplied without a power cord, the EUT shall be connected to the LISN by a power cord of the type specified by the manufacturer which shall not be longer than 1 meter. The excess power cord shall be bundled as described above. If a non-flexible power cord is provided with the EUT, it shall be cut to the length necessary to attach the EUT to the LISN and shall not be bundled.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, hot and neutral, were measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

4.4 Appendix D: Test Procedure for Radiated Emissions

Preliminary Measurements in the Anechoic Chamber

The radiated emissions are initially measured in the anechoic chamber at a measurement distance of 3 meters. Desktop EUT are placed on a wooden stand 0.8 meter in height. The measurement antenna is 3 meters from the EUT. The test setup in anechoic chamber is the same as open site. The turntable rotated 360°C. The antenna height is varied from 1-2.5m. The primary objective of the radiated measurements in the anechoic chamber is to identify the frequency spectrum in the absence of the electromagnetic environment existing on the open test site. The frequencies can then be pre-selected on the open test site to obtain the corresponding amplitude. The initial scan is made with the spectrum analyzer in automatic sweep mode. The spectrum peaks are then measured manually to determine the exact frequencies.

Measurements on the Open Site or 10m EMC Chamber

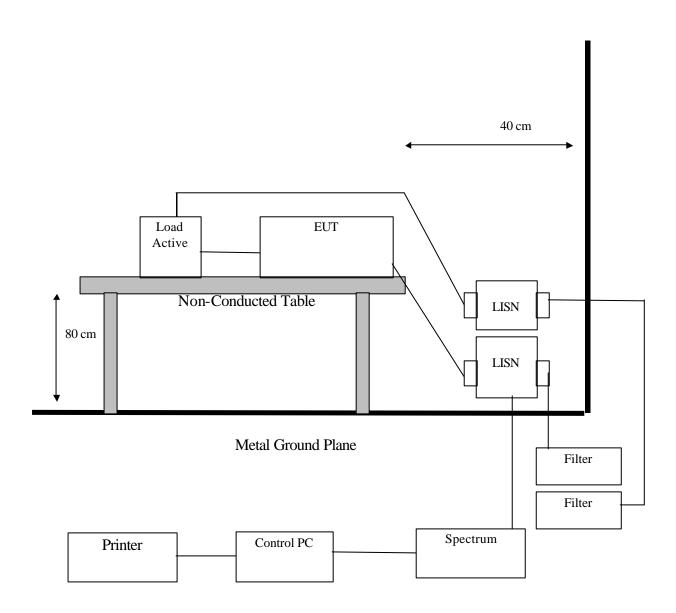
The radiated emissions test will then be repeated on the open site or 10m EMC chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 3 or 10 meter open field sites. Desktop EUT are set up on a wooden stand 0.8 meter above the ground.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. Both reading are recorded with the quasi-peak detector with 120KHz bandwidth. For frequency between 30 MHz and 1000MHz, the reading is recorded with peak detector or quasi-peak detector. For frequency above 1 GHz, the reading is recorded with peak detector or average detector with 1 MHz bandwidth.

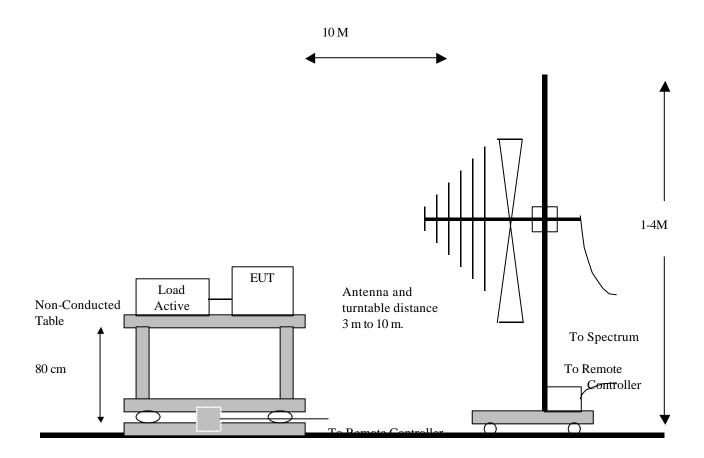
At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

4.5 Appendix E: Test Equipment

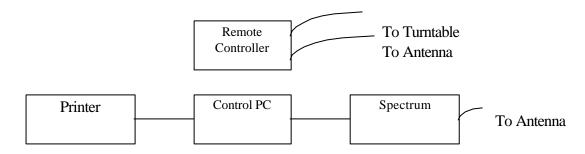
4.5.1 Test Equipment List


Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction	Coaxial Cable 1F-C1	Harbourindustr ies	RG400	1F-C1	06/03/2003	06/03/2004
Conduction	Digital Thermo-Hygro Meter Conduc	MicroLife		ISL-C-002	12/04/2002	12/04/2004
Conduction	EMI Receiver 01	R&S	ESMI; rev. 02.80	8491821013	10/09/2003	10/09/2004
Conduction	LISN 02	EMCO	3825/2	1407	06/28/2003	06/28/2004
Conduction	LISN 03	R&S	ESH3-Z5 831.5518.52	828874/010	06/28/2003	06/28/2004
Radiation	BILOG Antenna 01	CHASE	CBL6112	2487	11/21/2003	11/21/2004
Radiation	Coaxial Cable 3F-10M	Belden	RG-8/U	3F-10M	06/04/2003	06/04/2004
Radiation	Coaxial Cable 3F-3M	Harbourindustries	9913	3F-3M	06/04/2003	06/04/2004
Radiation	Preselector 02	НР	85685A	2837A00816	07/05/2003	07/05/2004
Radiation	Quasi-Peak Adapter 02	HP	85650A	2811A01188	07/05/2003	07/05/2004
Radiation	Spectrum Analyzer 02	HP	8568B	2415A00491, 2648A14610	07/05/2003	07/05/2004
Radiation	Thermo-Hygro Meter OATS 01	CRECER	HD30	ISL-C-001	12/04/2002	12/04/2004
Rad. above 1Ghz	Coaxial Cable CHMB	Harbourindustries	RG 213U	СНМВ	06/03/2003	06/03/2004
Rad. above 1Ghz	Horn Antenna 01	EMCO	3115	9504-4462	10/22/2003	10/22/2004
Rad. above 1Ghz	Horn Antenna 03	COM-Power	AH-826	100A	02/10/2004	02/10/2005
Rad. above 1Ghz	Microwave Cable RF07-3	HUBER+SUHN ER AG.	Sucoflex 103	42728/3	07/10/2003	07/10/2004
Rad. above 1Ghz	Preamplifier 01	R&S	ESMI-Z7	1045.502	07/10/2003	07/10/2004

4.5.2 Software for Controlling Spectrum/Receiver and Calculating Test Data


Radiation/Conduction	Filename	Version	Issued Date		
Conduction	Tile.exe	2.0.P	2/12/2002		
Radiation	Tile.exe	2.0.P	2/12/2002		

4.6 Appendix F: Layout of EUT and Support Equipment


4.6.1 General Conducted Test Configuration

4.6.2 General Radiation Test Configuration

Metal Full Soldered Ground Plane

4.7 Appendix G: Description of Support Equipment

4.7.1 Description of Support Equipment

Support Unit 1.

Description: Acer USB Speaker

Model Number: A-1
Serial Number: N/A
Power Supply Type: N/A
Power Cord: N/A

FCC ID: (Comply with FCC DOC)

Support Unit 2.

Description: Microsoft Joy Stick

Model Number: 90873
Serial Number: 01151545
Power Supply Type: N/A
Power Cord: N/A

FCC ID: C3KMGP1 BSMI ID: 3862A202

Support Unit 3.

Description: KOKA Microphone

Model Number: DM-510
Serial Number: N/A
Power Supply Type: N/A
Power Cord: N/A
FCC ID: N/A

Support Unit 4.

Description: SONY radio cassette player

Model Number: WM-FX50

Serial Number: N/A
Power Supply Type: N/A
Power Cord: N/A

Support Unit 5.

Description: HP Printer (for parallel interface port)

Model Number: C2642E Serial Number: N/A

Power Supply Type: AC Adaptor (HP Model: C2175A)

Power Cord: Non-shielded, Detachable

Data Cable: Shielded, Detachable, With Metal Hood

FCC ID: N/A

Support Unit 6.

Description: Logitech Mouse

Model Number: M-SAH

Serial Number: LZB81251703

Power Supply Type: N/A
Power Cord: N/A

FCC ID: DZL211029

Support Unit 7.

Description: Aceex Modem

(for serial interface port)

Model Number: DM1414 Serial Number: 0301000557

Power Supply Type: Linear, Power Adapter

(AC to AC Xfmr, Wall Mounted Type) Nonshielded, Without Grounding Pin

FCC ID: IFAXDM1414

Support Unit 8.

Power Cord:

Description: Acer Monitor Model: 7377xe

Serial Number: 999027100501700055P644E1 P

Power Supply Type: Switching

Power Cord: Nonshielded, Detachable FCC ID: (Comply with FCC DOC)

Support Unit 9.

Description: Acer Keyboard Model Number: 6511-TW4C

Serial Number: 916600704C83D11076S00000

Power Supply Type: N/A
Power Cord: N/A

FCC ID: JVPKBS-WIN

International Standards Laboratory

FCC ID: E5XKB6100C

Support Unit 10.

Description: Personal Computer

Model: IBM 2170
Serial No.: N/A
Power Supply Type: Switching

Delta (Model: DPS-145PB-80A)

-22-

Hard Disk Drive: Maxtor (Model: 91303D6) 13.3GB
Floppy Driver: Panasonic (Model: JU256A276P)
CD-ROM Drive: AOpen (Model: CD-940E/TKU PRO)

ZIP Driver: Iomega (Model:Z100ATAPI)

FDD/HDD Controller and

VGA port/ Parallel/

Serial port: Built on Motherboard

VGA port: one 15-pin Parallel Port: one 25-pin Serial Port: one 9-pin **Keyboard Connector:** 6-pin Mouse Connector: 6-pin **USB** Connector: two 4-pin Game Port: one 15-pin Speaker Port: one Microphone Port: one Line In Port: one

Power Cord: Nonshielded, Detachable

FCC ID: N/A (comply witch FCC DOC)

4.7.2 Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

- A. Read and write to the disk drives.
- B. Send audio signal to the speaker.
- C. Receive audio signal from the microphone.
- D. Receive audio signal from walkman.
- E. Send H pattern to the parallel port device (Printer).
- F. Send H pattern to the serial port device (Modem).
- G. Send H pattern to the video port device (Monitor).
- H. Press the "H" font key, Send H pattern to the WordPad file show on the monitor screen.
- I. Repeat the above steps.

	Filename	Issued Date		
Monitor	HH.bat	8/20/1991		
Modem 1	Hm.bat	8/20/1991		
Printer1	Wordpad.exe	11/11/1999		
WordPad	WordPad.exe	8/21/2002		

4.7.3 I/O Cable Condition of EUT and Support Units

Description	Path	Cable Length	Cable Type	Connector Type
AC Power Cord	110V (~240V) to AC Power Cord Inlet (3-pin)	1.8M	Nonshielded, Detachable	Plastic Head
Keyboard Data Cable	Keyboard to PC Keyboard port	1.8M	Shielded, Undetachable	Metal Head
Monitor Data Cable	Monitor to PC VGA port	1.6M	Shielded, Un-detachable	Metal Head
Modem Data Cable	Modem to PC COM 1 port	1.5M	Shielded, Detachable	Metal Head
Mouse Data Cable	Mouse to PC Mouse port	1.8M	Shielded, Un-detachable	Metal Head
Printer Data Cable	Printer to PC Parallel port	1.5M	Shielded, Detachable	Metal Head
Audio-in Data Cable	Walkman to PC Line In Port	1.5M	Non-shielded, Detachable	Plastic Head
Microphone Data Cable	Microphone to PC Line In Port	1.5M	Nonshielded, Undetachable	Plastic Head
Joy Stick Data Cable	Joystick to PC Game port	1.8M	Shielded, Un-detachable	Metal Head
USB Speaker Data Cable	USB Speaker to PC USB port	1.5M	Shielded, Un-detachable	Metal Head
USB Speaker Data Cable	USB Speaker to PC Line out port	1.5M	Non-shielded, Un-detachable	Plastic Head
USB Data Cable	EUT USB Port to Personal Computer USB port	1.65M	Shielded, Detachable	Metal Head

Report Number: ISL-04HE048FB

HC LAB: NVLAP: 200234-0; VCCI: R-341, C-354; NEMKO: ELA 113a, 113c; BSMI: SL2-IN-E-0037, SL2-R1-E-0037; CNLA:1178 **LT LAB**: NVLAP: 200234-0; VCCI: R-1435, C-1440; NEMKO: ELA 113b,113d; BSMI: SL2-IN-E-0013; CNLA:0997

FCC ID: E5XKB6100C

4.8 Appendix H: Description of Equipment Under Test

EUT

Description: Keyboard Condition: Pre-Production

Model: 6100C Serial Number: N/A

Power: From Personal Computer USB port

USB Connector: one 4 pin

USB Signal Data Cable: Shielded, Detachable

Internet Keys: Back, Forward, WWW, Favorites, E-mail

-25-

Multimedia Keys: Volume up, Volume down, Mute

Other Function Keys: Sleep

The test configurations are listed below:

Configuration 1:

The EUT inserted into the USB port on Personal Computer.

Configuration 2:

The EUT used USB to PS/2 adaptor inserted into the PS/2 Keyboard port on Personal Computer.

EMI Noise Source:

Crystal: 6MHz (Y1).

EMI Solution:

- 1. Added one ferrite core on the USB Signal Cable.
- 2. Added one aluminum foil on the keyboard iron contact with Multimedia iron. Type: RH6cmx4cm.

4.9 Appendix I: Uncertainty of Measurement

Test Site: Condcution 01

Test Site:	Condcution 01						
Item	Source of Uncertainty	Probability Distribution	Total Uncerta	ainties (dB)	Standard Uncertainty (dB)		
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=1	0.098	k=1	0.098	
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.682	k=1	0.341	
3	Receiver: Sine wave voltage	Normal	k=2		k=2	0.000	
4	Receiver: Pulse amplitude response	Rectangular	k=1.73	1.000	k=1	0.577	
5	Receiver: Pulse repetition rate response	Rectangular	k=1.73		k=1	0.000	
6	Receiver: Noise floor proximity	Normal	k=1.73	0.000	k=1	0.000	
7	LISN Factor Calibration	Normal	k=2	1.200	k=1	0.600	
8	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500	
9	Combined Standard Uncertainty Uc(y)	Normal			k=1	1.034	
10	Total Uncertainty @95% mim. Confidence Level	Normal			k=2	2.068	

Measurement Uncertainty Calculations: Uc (y) = square root $(u_1(y)^2 + u_2(y)^2 + \dots + u_n(y)^2)$ U = 2 * Uc(y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

International Standards Laboratory Report Number: ISL-04HE048FB

HC LAB: NVLAP: 200234-0; VCCI: R-341, C-354; NEMKO: ELA 113a, 113c; BSMI: SL2-IN-E-0037, SL2-R1-E-0037; CNLA:1178 **LT LAB**: NVLAP: 200234-0; VCCI: R-1435, C-1440; NEMKO: ELA 113b,113d; BSMI: SL2-IN-E-0013; CNLA:0997

Test Site: Conduction 02

rest site.	Collauction 02					
Item	Source of Uncertainty	Probability Distribution	Total Uncertainties (dB)		Standard Uncertainty (dB)	
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.104	k=1	0.052
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.330	k=1	0.165
3	Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
4	LISN Factor Calibration	Normal	k=2	1.200	k=1	0.600
5	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
6	Combined Standard Uncertainty Uc(y)	Normal			k=1	0.850
7	Total Uncertainty @95% mim. Confidence Level	Normal	k=2	1.701		

Measurement Uncertainty Calculations:

Uc (y) = square root (
$$u_1$$
 (y)² + u_2 (y)² ++ u_n (y)²)
U = 2 * Uc (y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

OATS 01

Source of Uncertainty	Probability Distribution	Total Uncerta	inties (dB)	Standard Uncertainty (dE		
Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.286	k=1	0.143	
Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	1.642	k=1	0.821	
Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577	
Antenna Factor Calibration	Normal	k=2	1.400	k=1	0.700	
Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500	
Combined Standard Uncertainty Uc(y)	Normal			k=1	1.232	
Total Uncertainty @95% mim. Confidence Level	Normal			k=2	2.464	

Measurement Uncertainty Calculations: Uc (y) = square root $(u_1 (y)^2 + u_2 (y)^2 ++ u_n (y)^2)$ U = 2 * Uc (y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

Test Site: Chamber 01-3M

Test Site.	Chambel 01-3M	1			1	
Item	Source of	Probability		certainties		Incertainty
	Uncertainty	Distribution	,	B)	(d	
1	Systematic Effects:	Normal	k=1	0.036	k=1	0.036
	(Assessment from 20					
	repeat observation;					
	1 reading on EUT)					
2	Random Effects:	Normal	k=1	0.040	k=1	0.040
	(Assessment from 20					
	random					
	observations; 1					
	reading on EUT)					
3	Antenna Factor	Normal	k=2	1.400	k=1	0.700
	Calibration					
4	Receiver: Sine wave	Normal	k=2	0.500	k=1	0.250
	voltage					
5	Receiver: Pulse	Rectangular	k=1.73	1.000	k=1	0.577
	amplitude response					
6	Receiver: Pulse	Rectangular	k=1.73	1.000	k=1	0.577
	repetition rate					
	response					
7	Receiver: Noise floor	Normal	k=2	0.500	k=1	0.250
	proximity					
8	Mismatch:	U-shaped	k=1	0.670	k=1	0.670
	antenna-receiver					
9	Antenna: AF freq.	Rectangular	k=1.73	1.000	k=1	0.577
	Interpolation					
10	Antenna: AF height	Rectangular	k=1.73	1.000	k=1	0.577
	deviation					
11	Antenna: Directivity	Rectangular	k=1.73	1.000	k=1	0.577
	diffrence					
12	Antenna: Balance	Rectangular	k=1	1.000	k=1	1.000
13	Site imperfections	Triangular	k=1.73	1.000	k=1	0.577
14	Site separation	Rectangular	k=1.73	1.000	k=1	0.577
	distance					
15	Table height	Normal	k=2	1.000	k=1	0.500
16	Cable Loss	Normal	k=2	1.000	k=1	0.500
	Calibration					
17	Combined Standard	Normal			k=1	2.214
	Uncertainty Uc(y)					
18	Total Uncertainty	Normal			k=2	4.427
	@95% mim.					
	Confidence Level					

 $\label{eq:measurement} \begin{array}{ll} \text{Measurement Uncertainty Calculations:} \\ \text{Uc } (y) = \text{square root} \left(\ u_1 \left(y \right)^2 \ + u_2 \left(y \right)^2 + + u_n \left(y \right)^2 \right) \\ \text{U} = 2 * \text{Uc } (y) \end{array}$

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

International Standards Laboratory

Report Number: ISL-04HE048FB

HC LAB: NVLAP: 200234-0; VCCI: R-341, C-354; NEMKO: ELA 113a, 113c; BSMI: SL2-IN-E-0037, SL2-R1-E-0037; CNLA:1178 **LT LAB**: NVLAP: 200234-0; VCCI: R-1435, C-1440; NEMKO: ELA 113b,113d; BSMI: SL2-IN-E-0013; CNLA:0997

Test Site: Chamber 02-10M

Item	Source of Uncertainty	Probability Distribution	Total Uncerta	inties (dB)	Standard Uncertainty (dB	
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.134	k=1	0.067
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.206	k=1	0.103
3	Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
4	Antenna Factor Calibration	Normal	k=2	1.400	k=1	0.700
5	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
6	Combined Standard Uncertainty Uc(y)	Normal			k=1	0.916
7	Total Uncertainty @95% mim. Confidence Level	Normal	k=2	1.831		

Measurement Uncertainty Calculations:

$$\begin{array}{ll} Uc\left(y\right) = square\;root\left(\;u_{1}\left(y\right)^{2}\;+u_{2}\left(y\right)^{2}+.....+u_{n}\left(y\right)^{2}\right)\\ U=2\;*\;Uc\left(y\right) \end{array}$$

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

Test Site: Chamber 02-3M

rest site.	Chamber 02-31vi					
Item	Source of Uncertainty	Probability Distribution	Total Uncertainties (dB)		Standard Uncertainty (dB	
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.067	k=1	0.034
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.103	k=1	0.052
3	Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
4	Antenna Factor Calibration	Normal	k=2	1.700	k=1	0.850
5	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
6	Combined Standard Uncertainty Uc(y)	Normal			k=1	1.029
7	Total Uncertainty @95% mim. Confidence Level	Normal	k=2	2.059		

Measurement Uncertainty Calculations:

$$\begin{array}{ll} Uc\;(y) = square\;root\;(\;u_1\;(y)^2\;\;+u_2\;(y)^2 ++u_n\;(y)^2\;)\\ U=2\;*\;Uc\;(y) \end{array}$$

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994~ of NAMAS : The treatment of Uncertainty in EMC Measurement.

4.10 Appendix J: Photographs of EUT Configuration Test Set Up

The measurement results along with the appropriate limits for comparison shall be presented in tabular form. If an alternate test method is used, the test report must identify that method and justification for its use shall be provided. Instrumentation, instrument attenuator and bandwidth settings, detector function, EUT arrangements, a sample calculation with all conversion factors and all other pertinent details shall be included along with the measurement results. When automatic scan techniques are used, an explanation of how each emission from the EUT was maximized shall be included in the test report along with the scan rate used to obtain each level.

The justification for selecting a particular EUT configuration and particular length of interface cable to produce maximized emissions must be documented in the test report. Photographs clearly showing the test set-up and interface cable arrangement for the highest radiated and line conducted emission measured shall be included.

The Front View of Highest Radiated Set-up For EUT

The Back View of Highest Radiated Set-up For EUT

-34- FCC ID: E5XKB6100C

4.11 Appendix K: Photographs of EUT

Please find this appendix in the File of ISL-04HE048P