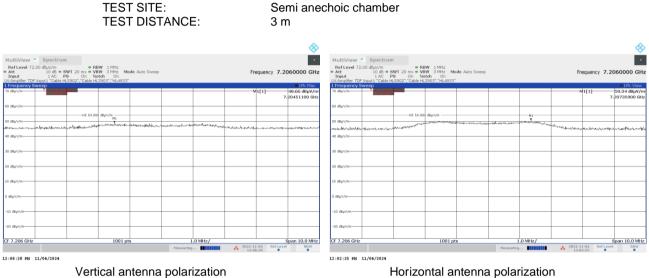
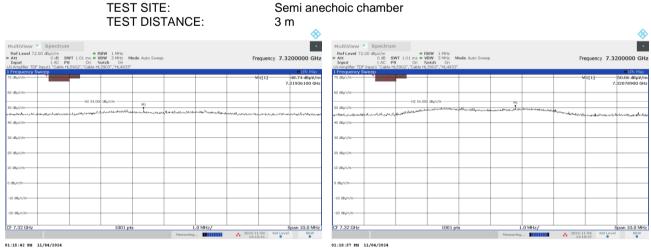


Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions						
Test procedure:	FR Vol. 62, page 26243, Sectio	15.247(c) / ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	04-Nov-24	verdict:	PA35				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz				
Remarks: BLE							

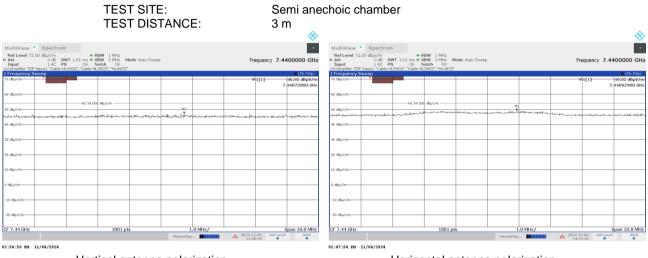

Plot 7.3.15 Radiated emission measurements at the second harmonic of high carrier frequency


			TE	ST SI	ΓE:			:	Semi ar	echoic	cham	ber							
			TE	ST DIS	STAN	CE:			3 m										
									-										-
MultiView	Spectrum								•	MultiView	Spectrum	n							•
Input	:00 dBµV/m 0 dB SWT : 1 AC PS ⁵ Input1 *Cable HL590	1.01 ms • VI On N	iotch On				Fi	requency 4.9	9600000 GHz	Ref Level 72 Att Input IN Amplifier TDF	0 d8 S 1 AC P	WT 1.01 ms WT 1.01 ms WT 1.01 ms	iotch On		, ,		Fre	aquency 4.9	600000 GHz
1 Frequency S 70 dBµV/m								M1[1]	1Pk Max 45.09 dBµV/m	1 Frequency S 70 dBµV/m	weep	ch control						1[1]	9 1Pk Max 45:57 dBµV/m
	P 50'000 48								4.95910100 GHz		6 20.000 d								4.95996000 GHz
60 d8µV/m							-			60 d8µV/m									
50 d8µV/m-		H2 54.000	d8µv/m —							50 d8µV/m-		H2 54.00	3 d8µiV/m ──						
				M1	a subs be seen								Autor	and the second	L	office to be			
40 d8µV/m	rnyaana amaan	ante and	and an all all all all all all all all all	in - and and a state		an call and a second	ordenhandenhan	mound	www.andron	40 dBµV/m	ventricellenter	- Apple and the second s	Sur Course to			and the second second	Munadharad	mandy-specifiker	1.000-000-0000-000
30 d8µV/m										30 d8µV/m									
20 d8µV/m										20 d8µV/m									
10 d8µV/m										10 dBµV/m									
0 d8µV/m										0 d8µV/m								<u> </u>	
-10 dBµV/m										-10 dBµV/m-									
-20 dBµV/m										-20 dBµV/m									
CF 4.96 GHz			1001 p	s		.0 MHz/	• 2024-1	11-04 Refley	Span 10.0 MHz	CF 4.96 GHz			1001 p	5		0 MHz/	. 2024-1		Span 10.0 MHz
					Measuring		14:	11-04 Ref Lev 25:58 •	•						• Measuring		14:3	1-04 Ref Leve 1:44 •	•
02:25:59 PM	11/04/2024									02:31:45 PM	11/04/2024								

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions						
Test procedure:	FR Vol. 62, page 26243, Section	15.247(c) / ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	04-Nov-24	verdict:	PA33				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz				
Remarks: BLE							

Plot 7.3.16 Radiated emission measurements at the third harmonic of low carrier frequency

Plot 7.3.17 Radiated emission measurements at the third harmonic of mid carrier frequency


Vertical antenna polarization

Horizontal antenna polarization

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions						
Test procedure:	FR Vol. 62, page 26243, Sectio	15.247(c) / ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	04-Nov-24	verdict.	PASS				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1012 hPa	Power: 110 VAC, 60 Hz				
Remarks: BLE							

Plot 7.3.18 Radiated emission measurements at the third harmonic of high carrier frequency

Vertical antenna polarization

Horizontal antenna polarization

Test specification:	Section 15.247(d) / RSS-24	Section 15.247(d) / RSS-247 section 5.5, Band edge emissions						
Test procedure:	ANSI C63.10 section 11.12.1							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	03-Nov-24	verdict.	FA33					
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1002 hPa	Power: 120 VAC, 60 Hz					
Remarks:								

7.4 Band edge radiated emissions

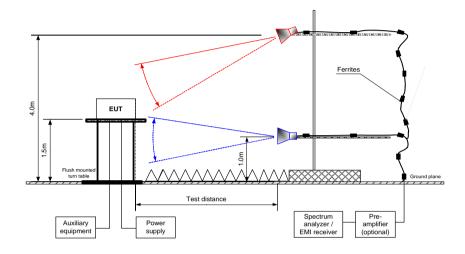
7.4.1 General

This test was performed to measure emissions, radiated from the EUT at the assigned frequency band edges. Specification test limits are given in Table 7.4.1.

Table 7.4.1	Band	edae	emission	limits
	Dana	cuge	0111331011	minus

Output power	Assigned frequency, MHz	Attenuation below carrier*, dBc	Field strength at 3 bands, d	
	inequency, withz		Peak	Average
Peak	2400.0 – 2483.5	20.0	74.0	54.0

* - Band edge emission limit is provided in terms of attenuation below the peak of modulated carrier measured with the same resolution bandwidth.


7.4.2 Test procedure

- 7.4.2.1 The EUT was set up as shown in Figure 7.4.1, energized normally modulated at the maximum data rate and its proper operation was checked.
- 7.4.2.2 The EUT was adjusted to produce maximum available to end user RF output power at the lowest carrier frequency.
- **7.4.2.3** The spectrum analyzer span was set to capture the carrier frequency and associated modulation products. The resolution bandwidth was set wider than 1 % of the frequency span.
- **7.4.2.4** The spectrum analyzer was set in max hold mode and allowed trace to stabilize. The highest emission level within the authorized band was measured.
- **7.4.2.5** The maximum band edge emission and modulation product outside of the band were measured as provided in Table 7.4.2 and associated plots and referenced to the highest emission level measured within the authorized band.
- **7.4.2.6** The above procedure was repeated with the EUT adjusted to produce maximum RF output power at the highest carrier frequency.
- **7.4.2.7** The above procedure was repeated with the frequency hopping function enabled.

Test specification:	Section 15.247(d) / RSS-24	Section 15.247(d) / RSS-247 section 5.5, Band edge emissions							
Test procedure:	ANSI C63.10 section 11.12.1								
Test mode:	Compliance	Verdict:	PASS						
Date(s):	03-Nov-24	verdict:	PASS						
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1002 hPa	Power: 120 VAC, 60 Hz						
Remarks:									

Figure 7.4.1 Band edge emission test setup

Test specification:	Section 15.247(d) / RSS-24	Section 15.247(d) / RSS-247 section 5.5, Band edge emissions						
Test procedure:	ANSI C63.10 section 11.12.1							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	03-Nov-24	verdict:	PASS					
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1002 hPa	Power: 120 VAC, 60 Hz					
Remarks:								

Table 7.4.2 Band edge emission test results outside restricted bands

DETECTOR USED: MODULATION:	MODULATION: GFSK TRANSMITTER OUTPUT POWER SETTINGS: Maximum VIDEO BANDWIDTH: ≥ RBW MODULATION/BITRATE: GFSK				
Frequency, Band edge emission, MHz dB(μV/m)	Emission at carrier, dB(μV/m)	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict
MODULATION/BITRATE:	GFSK /	1 Mbps			
2400.000 66.66	106.99	40.33	20.0	20.33	Pass
MODULATION/BITRATE:	GFSK /	2 Mbps			
2400.000 71.96	105.72 33.76 20 13.76				

*- Margin = Attenuation below carrier – specification limit.

Table 7.4.3 Band edge emission inside restricted bands test results

ASSIGNED FREQUENCY RANGE: DETECTOR USED: TRANSMITTER OUTPUT POWER SETTINGS: VIDEO BANDWIDTH: 2400.0 – 2483.5 MHz Peak, AVG Maximum ≥ RBW

MODULATION/BITRATE:

GFSK / 1 Mbps

				-			
	Pea	ak field stren	gth	Avera	ge field strengt	h	
Frequency, MHz	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Verdict
2389.95	48.59	74.0	-25.41	NA	54.0	-5.41	Pass
2483.50	68.68	74.0	-5.32	51.74	54.0	-2.26	Pass

MODULATION/BITRATE:

GFSK / 2 Mbps

	Pea	ak field stren	gth	Avera	ge field strengt	h	
Frequency, MHz	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Verdict
2389.74	48.21	74.0	-25.79	NA	54.0	-5.79	Pass
2483.50	62.50	74.0	-11.50	51.88	54.0	-2.12	Pass

Reference numbers of test equipment used

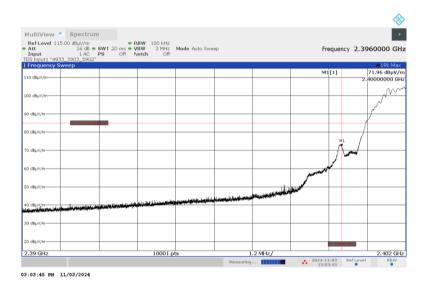
Ī	HL 3903	HL 4933	HL 5902	HL 7585	HL 4114		

Full description is given in Appendix A.

Test specification:	Section 15.247(d) / RSS-247 section 5.5, Band edge emissions							
Test procedure:	ANSI C63.10 section 11.12.1							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	03-Nov-24	verdict:	PASS					
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1002 hPa	Power: 120 VAC, 60 Hz					
Remarks:								

Plot 7.4.1 The highest emission level outside restricted band at low carrier frequency (1 Mbps)

Ref Level 115.00 dB	uV/m	• RBW 100 kHz				_			
Att Input DS Input1 "4933_390:		 VBW 300 kHz Notch Off 	Mode Auto Sw	eep		Fre	equer	1CY 2.3	960000 (
Frequency Sweep									●1Pk M
10 dBuV/m-							M2[66.66 dBµ
10 000017111							м1[.40000000 106.99 dBµ
							MIL		40195020
30 dBµV/m									17
0 dBµV/m									
HI	97.000 dBµV/m								
) dBµV/m									+
									1
0 dBµ∀/m									1
o asha/w							Ň	2	7
							1		1
0 dBµV/m							1	L.A.	r
							لجد	Care -	
D dBµV/m					llar.	فستبغ والاستديد بالالتف	ſ		
				letiety kiererie	المفاجعة والمتحد والمارجة والمارجة				
) dBµV/m	والمراجع والمراجع والمحاج والمحاج	خاجها إجرارة والأردرية فاستدره	الوابنا وربوا به وقيلهم	A A DALLAND AND A DALLAND					
فرم فالمنفوة الاردية ومغيقيه ويعام	WUMMEN PROPERTY.								
0 dBµV/m									
o approxim									
				1					
0 dBµV/m							V1 2.40	0 GHz	
.39 GHz		10001 p	ts	1	.2 MHz/				2,402

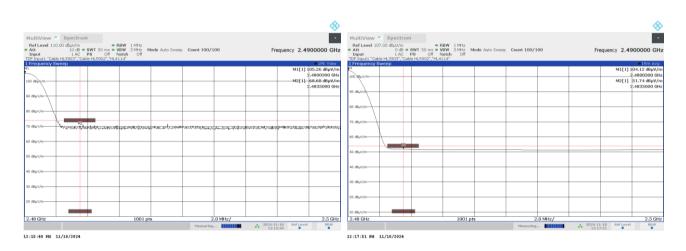

Plot 7.4.2 The highest emission level within restricted band at low carrier frequency (1 Mbps)

Ref Level 115.00 dE Att Input	16 dB . SWT 20 ms .	RBW 1 MHz VBW 3 MHz N Notch Off	Node Auto Sweep	, ,		Fre	equency 2	.2950000 G
IDS Input1 "4933_390 Frequency Sweep	3_5902"	Notan on						e 1Pk Ma
						MI	[1]	48.59 dBµV
110 dBµV/m-								2.3899530 0
100 dBµV/m								_
90 dBµV/m								_
30 dBµV/m								
HI	74.000 dBµV/m 6 20.000 dB							
70 dBµV/m								
50 dBµV/m								
	H2 54	.000 dBµV/m						
50 dBµV/m								
40 dBµV/m	مصالحتها ويرقبوا وتناجه أراريه	وعرفته والمتعر والمتموج والعراب والم	فعليلته ويشتحون والجلي	والمتحجب والمستقورة		الأبيال المحيقية الأجاجة البناوم	<u>ىرى بەر بەر بەر بەر بەر بەر بەر بەر بەر بەر</u>	San Statistics
	and the second se		I					
30 dBµV/m								
20 dBµV/m								
2.2 GHz		10001 p	ts	19	9.0 MHz/			2.39 G

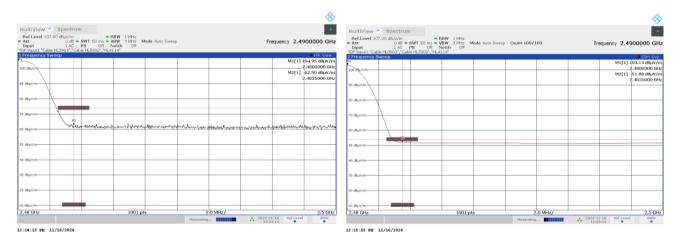
Test specification:	Section 15.247(d) / RSS-247 section 5.5, Band edge emissions						
Test procedure:	ANSI C63.10 section 11.12.1						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	03-Nov-24	verdict:	PASS				
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1002 hPa	Power: 120 VAC, 60 Hz				
Remarks:	-						

Plot 7.4.2 The highest emission level outside restricted band at low carrier frequency (2 Mbps)

Plot 7.4.2 The highest emission level within restricted band at low carrier frequency (2 Mbps)


RefLevel 115.00 dB		RBW 1 MHz						
Att 1	6 dB = SWT 20 ms = 1 1 AC PS Off 1		ode Auto Sweep			Fre	equency 2.29	50000 GH
Frequency Sweep	_5902							●1Pk Max
10 dBµV/m						MI		48.21 dBµV/
10 0804/10							2	.3897440 G
00 dBµV/m								
uu aeµv/m								
0 dBµV/m								
) dBuV/m								
H1 7	4.000 dBuV/m							
0 dBµV/m	20.000 dis							
D dBµV/m								
	H2 54.00	0 dBµV/m						
0 dBµV/m−−−−								
0 dBµ∀/m		والمتعرف والمتعاد والمتعاد والمتعاد				alate a lasse initia de de sure	l. a tarata infactivita kalina	and a state of the
والمادية والمترجعة والمترجع والمراجع	an a	han the state of the second	الإسابة البارغانية بالمراب			and an alternative second		a subset of
0 dBµV/m								
0 dBµ∀/m								
2.2 GHz		10001 p		11	9.0 MHz/			2.39 G

03:01:55 PM 11/03/2024



Test specification:	Section 15.247(d) / RSS-247 section 5.5, Band edge emissions						
Test procedure:	ANSI C63.10 section 11.12.1						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	03-Nov-24	verdict:	PASS				
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1002 hPa	Power: 120 VAC, 60 Hz				
Remarks:	-						

Plot 7.4.3 The highest emission level within restricted band at high carrier frequency (1 Mbps)

Plot 7.4.4 The highest emission level within restricted band at high carrier frequency (2 Mbps)

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density							
Test procedure:	ANSI C63.10 section 11.10.2							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	03-Nov-24	verdict:	PA33					
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz					
Remarks:								

7.5 Peak spectral power density

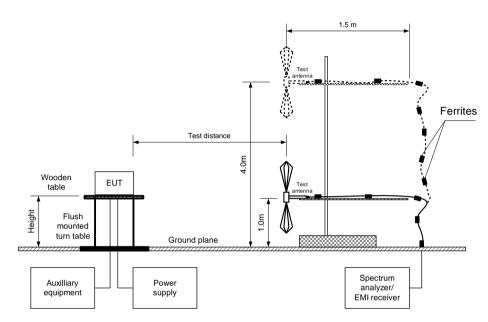
7.5.1 General

This test was performed to measure the peak spectral power density radiated by the transmitter RF antenna. Specification test limits according to FCC part 15 section 15.247(d) and RSS-210 section A8.2(b) are given in Table 7.5.1.

Table 7.5.1 Peak spectral power density limits

Assigned frequency	Measurement	Peak spectral power	Equivalent Peak spectral power
range, MHz	bandwidth, kHz	density, dBm	density limit @ 3m, dB(μV/m)*
2400.0 – 2483.5	3.0	8.0	103.2

* - Equivalent field strength limit was calculated from the peak spectral power density as follows: E=sqrt(30×P)/r, where P is peak spectral power density and r is antenna to EUT distance in meters.


7.5.2 Test procedure for field strength measurements

- **7.5.2.1** The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- 7.5.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.5.2.3** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360^o and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.5.2.4** The frequency span of spectrum analyzer was set to capture the entire 6 dB band of the transmitter, in peak hold mode with resolution bandwidth set to 3.0 kHz, video bandwidth wider than resolution bandwidth, auto sweep time and sufficient number of sweeps was allowed for trace stabilization. The spectrum lines spacing was verified to be wider than 3 kHz. Otherwise the resolution bandwidth was reduced until individual spectrum lines were resolved and the power of individual spectrum lines was integrated over 3 kHz band.
- **7.5.2.5** The peak of emission was zoomed with span set just wide enough to capture the emission peak area and sweep time was set equal to span width divided by resolution bandwidth. Spectrum analyzer was set in peak hold mode, sufficient number of sweeps was allowed for trace stabilization and peak spectral power density was measured as provided in Table 7.5.2 and associated plots.

Test specification:	Section 15.247(e) / RSS-24	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density							
Test procedure:	ANSI C63.10 section 11.10.2								
Test mode:	Compliance	Verdict:	PASS						
Date(s):	03-Nov-24	verdict:	PASS						
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz						
Remarks:									

Figure 7.5.1 Setup for carrier field strength measurements

Test specification:	Section 15.247(e) / RSS-2	47 section 5.2(2), Maximum	power spectral density
Test procedure:	ANSI C63.10 section 11.10.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	03-Nov-24	verdict:	PASS
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz
Remarks:	•		

Table 7.5.2 Field strength measurement of peak spectral power density

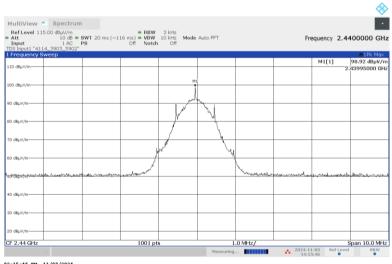
ASSIGNED FREQUENCY: TEST DISTANCE: TEST SITE: EUT HEIGHT: DETECTOR USED: RESOLUTION BANDWIDTH: VIDEO BANDWIDTH: TEST ANTENNA TYPE: MODULATION: TRANSMITTER OUTPUT POWER SETTINGS:					2402 – 2483.5 MHz 3 m Semi anechoic chamber 1.5 m Peak 3 kHz 10 kHz Double ridged guide (above 1000 MHz) GFSK Maximum				
Frequency, MHz	Field strength, dB(μV/m)	EUT antenna gain, dBi	Limit, dB(µV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees		
MODULATI	ON/BITRATE:		GFSK	/ 1 Mbps					
2402	92.06	2.5	103.2	-13.64	Н	2.46	-35		
2440	98.92	2.5	103.2	-6.78	Н	2.74	-40		
2480	96.16	2.5	103.2	-9.54	Н	2.55	-40		
MODULATI	ON/BITRATE:	GFSK	/ 2 Mbps						
2402	87.47	2.5	103.2	-18.23	Н	2.43	-40		
2440	94.02	2.5	103.2	-11.68	Н	2.70	-30		
2480	90.66	2.5	103.2	-15.04	Н	2.49	-40		

*- Margin = Field strength - EUT antenna gain - calculated field strength limit. **- EUT front panel refer to 0 degrees position of turntable.

Reference numbers of test equipment used

					1
HL 3903	HL 4114	HL 5902	HL 7585		

Full description is given in Appendix A.



Test specification:	Section 15.247(e) / RSS-24	7 section 5.2(2), Maximum	power spectral density	
Test procedure:	ANSI C63.10 section 11.10.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	03-Nov-24	verdict:	PA33	
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz	
Remarks:				

Plot 7.5.1 Peak spectral power density at low frequency (1 Mbps)

Ref Level 115.00 dBµV/m Att 10 dB Input 1 AC	SWT 20 ms (~116 ms)	 RBW 3 kHz VBW 10 kHz Mod Notch Off 	e Auto FFT		Fre	equency 2.4	1020000
0S Input1 "4114_3903_5902 Frequency Sweep							⊖1Pk N
LO dBµV/m						M1[1]	92.06 dBj 2.40196000
							2.40190000
0 dBµV/m							
			мi X.				
dBµV/m							
dBµV/m		/	1				
		1					
dBµ∀/m							
dBµ∨/m		_/f\/					
dB of the				Lauburn	want 1		
dBUV/m ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	warder and a born	(~~~~			and the second s	ana sa ang sa	and more manufactures
dBµV/m							
dBµ∀/m							-
dBµ∀/m-							
2.402 GHz		1001 pts	1	.0 MHz/	2024-11 14:16	-03 Ref Lev	Span 10.0

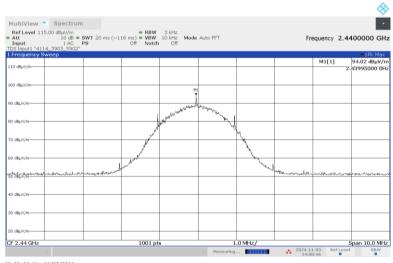
02:15:46 PM 11/03/2024

Test specification:	Section 15.247(e) / RSS-24	7 section 5.2(2), Maximum	power spectral density
Test procedure:	ANSI C63.10 section 11.10.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	03-Nov-24	verdict:	PA33
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz
Remarks:			

Plot 7.5.3 Peak spectral power density at high frequency (1 Mbps)

Input 1 A	B = SWT 20 ms (~1 C PS	 RBW 16 ms) = VBW Off Notch 	10 kHz Mode	Auto FFT		Fre	equency 2	2.4800000 G
DS Input1 "4114_3903_59 Frequency Sweep	02"							●1Pk Ma
10 dBµV/m							M1[1]	96.16 dBµV 2.47995000 (
00 dBµV/m			M					
0 dBµV/m			l	n				
0 dBµV/m			- M	N.				
0 dBµV/m				1				
				Ľ.				
) dBµ∀/m				7				
Tabballing and the second s	hand marine and marine and the	han sing for a started			- Marin Million	and and a stand of the second	and the strategy of the	unant shamae whate a
I dBµV/m								
) dBµ∀/m								

02:14:02 PM 11/03/2024


Test specification:	Section 15.247(e) / RSS-24	7 section 5.2(2), Maximum	power spectral density	
Test procedure:	ANSI C63.10 section 11.10.2			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	03-Nov-24	verdict:	PASS	
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz	
Remarks:				

Plot 7.5.4 Peak spectral power density at low frequency (2 Mbps)

Ref Level 115.00 dBµV/m Att 10 dB Input 1 AC	BW SWT 20 ms (~116 ms) VBW S Off Notch	3 kHz 10 kHz Mode	Auto FFT		Fre	equency 2	2.4020000
IDS Input1 "4114_3903_5902" Frequency Sweep	• • • • • • •	0.1					e 1Pk M
110 dBµV/m						M1[1]	87.47 dBµ\ 2.40195000
100 dBμV/m							
0 dBµV/m		M					
		, mark	~				
0 dBµ∀/m							
			X				
70 dBµ∀/m							
0 dBµV/m							
				1m			
O dBUY/m	walker all and a start a start a start a			~~~	anner water and	h-sint-sont-paper	mann
0 dBµV/m							
o dopremi							
0 dBµV/m							
20 dBµV/m							
CF 2,402 GHz	1001 pt	s	1	.0 MHz/			Span 10

02:03:04 PM 11/03/2024

Plot 7.5.5 Peak spectral power density at mid frequency (2 Mbps)

02:00:46 PM 11/03/2024

Test specification:	Section 15.247(e) / RSS-24	7 section 5.2(2), Maximum	power spectral density
Test procedure:	ANSI C63.10 section 11.10.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	03-Nov-24	verdict:	PA33
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz
Remarks:			

Plot 7.5.6 Peak spectral power density at high frequency (2 Mbps)

Input 1	//m I dB = SWT 20 ms (~ AC PS	• RBW 116 ms) • VBW Off Notch	10 kHz Mode	Auto FFT		Fre	equency 2	.4800000 G
DS Input1 "4114_3903_ Frequency Sweep	5902"							⊜1Pk Ma
10 dBµV/m							M1[1]	90.66 dBµV 2.47995000 G
00 dBµV/m								_
0 dBµV/m			M					
0 dBµV/m			WWWwwwwwwwh	North Carlos				
0 dBuV/m		Å	p ^{NN}	~	h			
0 dBµV/m		J.			M.			
rashvinderralaerral		e made apar			Mara Wester H			
MBHV/Heaters Weaters						Contraction of the second s Second second second Second second sec		
) dBµV/m								
i dBµ∀/m						<u> </u>		
0 dBµV/m								

02:06:56 PM 11/03/2024

Test specification:	Section 15.203 / RSS-Gen	Section 15.203 / RSS-Gen section 6.8, Antenna requirement						
Test procedure:	Visual inspection							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	03-Nov-24	verdict:	PA33					
Temperature: 24 °C	Relative Humidity: 42 %	Air Pressure: 1003 hPa	Power: 120 VAC, 60 Hz					
Remarks:								

7.6 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.6.1.

Table 7.6.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	Visual inspection	
The transmitter employs a unique antenna connector	NA	Comply
The transmitter requires professional installation	NA	

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 (9) kHz - 30 MHz	EMCO	6502	2857	29-Feb-24	28-Feb-25
3440	Precision Fixed Attenuator, 50 Ohm, 5 W, 20 dB, DC to 18 GHz	Mini-Circuits	BW- S20W5+	NA	05-Aug-24	05-Aug-25
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1226/2A	06-May-24	06-May-25
4114	Antenna, Double-Ridged Waveguide Horn, 1 to 18 GHz	ETS Lindgren	3117	00123515	27-Oct-24	27-Oct-25
4338	Reject Band Filter, 50 Ohm, 0 to 2170 and 3000 to 18000 MHz,SMA-FM / SMA- M	Micro-Tronics	BRM 50702-02	023	10-Jul-24	10-Jul-26
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATI ON	AHA-118	701046	20-Feb-24	20-Feb-25
4956	Active horn antenna, 18 to 40 GHz	COM-POWER CORPORATI ON	AHA-840	105004	03-Mar-24	03-Mar-25
5112	RF cable, 40 GHz, 5.5 m, K-type	Huber-Suhner	SF102EA/ 11SK/11S K/5500M M	502494/2E A	02-Jun-24	02-Jun-25
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX- 8000E	00809	24-Mar-22	24-Mar-25
5902	RF cable, 18 GHz, 6.0m, N-type	Huber-Suhner	SF126EA/ 11N/11N/ 6000	NA	19-Nov-23	19-Nov-24
7585	EMI Test Receiver, 1 Hz to 44 GHz	Rohde & Schwarz	ESW44	103130	24-Sep-24	24-Sep-25

8 APPENDIX A Test equipment and ancillaries used for tests

9 APPENDIX B Test equipment correction factors

HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 30-1000 MHz

Frequency, MHz	Antenna factor, dB/m
30	14.96
35	15.33
40	16.37
45	17.56
50	17.95
60	16.87
70	13.22
80	10.56
90	13.61
100	15.46
120	14.03
140	12.23

Frequency, MHz	Antenna factor, dB/m
160	12.67
180	13.34
200	15.40
250	16.42
300	17.28
400	19.98
500	21.11
600	22.90
700	24.13
800	25.25
900	26.35
1000	27.18

The antenna factor shall be added to receiver reading in $dB\mu V$ to obtain field strength in $dB\mu V/m$. above 1000 MHz

	above 1
Frequency, MHz	Antenna factor, dB/m
1000	26.9
1100	28.1
1200	28.4
1300	29.6
1400	29.1
1500	30.4
1600	30.7
1700	31.5
1800	32.3
1900	32.6
2000	32.5
2100	32.9
2200	33.5
2300	33.2
2400	33.7
2500	34.6
2600	34.7
2700	34.6
2800	35.0
2900	35.5
3000	36.2
3100	36.8
3200	36.8
3300	37.0
3400	37.5
3500	38.2

Frequency, MHz	Antenna factor, dB/m
3600	38.9
3700	39.4
3800	39.4
3900	39.6
4000	39.7
4100	39.8
4200	40.5
4300	40.9
4400	41.1
4500	41.4
4600	41.3
4700	41.6
4800	41.9
4900	42.3
5000	42.7
5100	43.0
5200	42.9
5300	43.5
5400	43.6
5500	44.3
5600	44.7
5700	45.0
5800	45.0
5900	45.3
6000	45.9

The antenna factor shall be added to receiver reading in dB_µV to obtain field strength in dB_µV/m.

HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB	Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
10	-33.4	±1.0	2000	-41.4	±1.0
20	-37.8	±1.0	3000	-41.4	±1.0
50	-40.5	±1.0	4000	-41.5	±1.0
75	-41.0	±1.0	5000	-41.5	±1.0
100	-41.2	±1.0	10000	-41.7	±1.0
150	-41.2	±1.0	15000	-42.1	±1.0
250	-41.1	±1.0	20000	-42.7	±1.0
500	-41.2	±1.0	25000	-44.2	±1.0
750	-41.3	±1.0	30000	-45.8	±1.0
1000	-41.3	±1.0			

The antenna factor shall be added to receiver reading in $dB\mu V$ to obtain field strength in $dB\mu A/m$.

HL 4933: Active Horn Antenna COM-POWER CORPORATION, model: AHA-118, s/n 701046

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
1000	-16.1
1500	-15.1
2000	-10.9
2500	-11.9
3000	-11.1
3500	-10.6
4000	-8.6
4500	-8.3
5000	-5.9
5500	-5.7
6000	-3.3
6500	-4.0
7000	-2.2
7500	-1.7
8000	1.1
8500	-0.8
9000	-1.5
9500	-0.2

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
10000	1.8
10500	1.0
11000	0.3
11500	-0.5
12000	3.1
12500	1.4
13000	-0.3
13500	-0.4
14000	2.5
14500	2.2
15000	1.9
15500	0.5
16000	2.1
16500	1.2
17000	0.6
17500	3.1
18000	4.2

The antenna factor shall be added to receiver reading in dB_{μ}V to obtain field strength in dB_{μ}V/m.

10 APPENDIX C Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measured	rements
--	---------

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Occupied bandwidth	± 8.0 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: \pm 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

11 APPENDIX D Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), ISED #2186A, CAB identifier is IL1001; Certified by VCCI, Japan (the registration numbers for OATS are R-10808 for RE measurements below 1 GHz, G-20112 for RE measurements above 1 GHz, R-11082 for anechoic chamber for RE measurements below 1 GHz, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address:P.O. Box 23, Binyamina 3055001, Israel.Telephone:+972 4628 8001Fax:+972 4628 8277e-mail:mail@hermonlabs.comwebsite:www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

12 APPENDIX E Specification references

FCC 47CFR part 15: 2022	Radio Frequency Devices
ANSI C63.10: 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
RSS-247 Issue 3: 2023	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence- Exempt Local Area Network (LE-LAN) Devices
RSS-Gen Issue 5 with_amendment_1_2: 2021	General Requirements and Information for the Certification of Radiocommunication Equipment

13 APPENDIX F Abbreviations and acronyms

A AC A/m AM AVRG cm	ampere alternating current ampere per meter amplitude modulation average (detector) centimeter
dB dBm	decibel decibel referred to one milliwatt
dB(μV)	decibel referred to one microvolt
dB(μV/m)	decibel referred to one microvolt per meter
dB(μA)	decibel referred to one microampere
DC	direct current
EIRP	equivalent isotropically radiated power
ERP	effective radiated power
EUT	equipment under test
F GHz	frequency gigahertz
GND	ground
H	height
HL	Hermon laboratories
Hz	hertz
k	kilo
kHz	kilohertz
LO m	local oscillator meter
MHz	megahertz
min	minute
mm	millimeter
ms	millisecond
μS	microsecond
NA	not applicable
NB OATS	narrow band
0A13 0	open area test site Ohm
PM	pulse modulation
PS	power supply
ppm	part per million (10 ⁻⁶)
QP	quasi-peak
RE	radiated emission
RF rms	radio frequency root mean square
Rx	receive
S	second
T	temperature
Тх	transmit
V	volt
WB	wideband

END OF DOCUMENT